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Abstract

In modern operating systems and programming languages adapted to multicore computer architectures, par-
allelism is abstracted by the notion of execution threads. Multi-threaded systems have two major specificities:
on the one part, new threads can be created dynamically at runtime, so there is no bound on the number of
threads participating in long-running executions. On the other part, threads have access to a memory allocation
mechanism that cannot allocate infinite arrays. These specificities make it challenging to adapt some algorithms
to multi-threaded systems, in particular those that need to assign one shared register per process.

This paper explores the synchronization power of shared objects in multi-threaded systems by extending the
famous Herlihy’s wait-free hierarchy to take these constraints into consideration. It proposes to subdivide the set
of objects with an infinite consensus number into nine new degrees, depending on their ability to synchronize a
bounded, finite or infinite number of processes, with or without the need to allocate an infinite array. To show
the relevance of the proposed extension, for each new degree it is either proved that it is empty, or an object
illustrating it is proposed.

keywords: Arrival Models Consensus Number Memory allocation Multi-Threaded System Universality
Wait-Freedom

1 Introduction

1.1 Wait-free universality
In sequential computing, the notion of universality is represented by a Turing machine capable of computing any-
thing that is computable. Read/write registers, the basic objects of a Turing machine, are thus universal objects in
sequential computing. In the context of distributed systems, we know, since 1985 and the famous FLP impossibil-
ity result, that the consensus problem has no deterministic solution in a distributed system where even one process
might fail by crashing [10]. This impossibility is not due to the computing power of the individual processes,
but rather to the difficulty of coordination between the different processes that compose the distributed system.
Coordination and agreement problems are thus at the heart of computability in distributed systems [13].

A shared memory distributed system can be abstracted as a set of processes accessing concurrently a set of
shared objects. The implementations of these objects are based on read/write registers and hardware instructions.
Searching for correct and efficient implementations of usual objects (e.g. queues, stacks) is far from being trivial
when the system is failure prone [14, 19, 21]. Intuitively, a “good” implementation of a concurrent object has to
satisfy two properties: a consistency condition and a progress condition that specify respectively the meaningful-
ness of the returned results, and the guarantees on the liveness.

Linearizability [15] is a consistency condition. It ensures that all the operations of a distributed history appear
as if they were executed sequentially: each operation on an object appearing at a single point in time, between its
start and end events. This gives the illusion to the processes to access a physical concurrent object.

The use of locks in an implementation may cause blocking in a system where processes can crash. Prohibiting
the use of locks leads to several progress conditions, among which wait-freedom [12] and lock-freedom [15].
While wait-freedom guarantees that every operation terminates after a finite time, lock-freedom guarantees that,
∗LS2N, Université de Nantes, France
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Figure 1: Extended wait-free hierarchy: in a multi-treaded system, it is impossible to implement an object O1
using any number of instances of O2 and read/write registers, if O2 is more on the left, or bottom, than O1. Green
circles display the consensus number of each degree.

if a computation runs for long enough, at least one process makes progress (this may lead some other processes
to starve). Wait-freedom is thus stronger than lock-freedom: while lock-freedom is a system-wide progress con-
dition, wait-freedom is a per-process progress condition.

A major difficulty of distributed computing is that wait-free linearizable implementations are often costly,
when not impossible. In the latter, the system has to be enriched with some more sophisticated objects or hardware
special instructions. The coordination power of objects is thus important for computability in distributed systems.
In [12], consensus is proved universal. Namely, any object having a sequential specification has a wait-free
implementation using only read/write registers and some number of consensus objects.

Hence the idea to assign to each object a consensus number representing its ability to solve consensus. More
precisely, an object has consensus number x if it is universal in an asynchronous system composed of x processes,
but not in a system composed of x+1 processes. If no upper bound exists on x, the object has an infinite consensus
number.

1.2 Problem statement
This last decade, first with peer-to-peer systems, and then with multi-threaded programs on multicore machines,
the assumption of a closed system with a fixed number n of processes and where every process knows the identi-
fiers of all processes became too restrictive. In multi-threaded systems, new processes can be created and started at
run-time, so although the number of processes at each time instant is finite, there is no bound on the total number
of processes that can participate in long-running executions.

Another specificity of multi-threaded systems must be taken into account. Threads share a (virtually) un-
bounded common memory space. As in the Java and C languages, the processes have access to a primitive to
allocate this memory (new or malloc). Such calls should specify the number of memory locations they ask for.
By this mean and during its execution time each thread can allocate an unbounded but finite number of memory
locations. This memory allows to instantiate record data structures or arrays.

It turns out that many synchronization algorithms require the sharing of an array whose size depends on
the number of processes to be synchronized (e.g. The bakery mutual exclusion algorithm [16]). This may be
problematic, when no bound is known on the number of threads in an execution: assigning one register to each
of them is not trivial, especially if this number can be infinite. This fact is often regarded as secondary when
designing concurrent algorithms. For example, [4] identifies as ”trivial” the change of finite arrays indexed by
processes to infinite arrays or linked lists. Among other contributions of this paper, the fact that maintaining
extensible data structures such as linked lists requires synchronization power that is not necessarily provided by
all objects which have an infinite consensus number.
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The two aspects noted above have an important impact on which algorithms can be implemented in multi-
threaded systems and which algorithms cannot, and therefore on the coordination power of shared objects: in [2],
Afek, Morrison and Wertheim exhibited an object called the iterator stack (noted IStack) that has an infinite
consensus number, but cannot be used to implement consensus when infinitely many processes may join an exe-
cution over time. The present paper answers the following question: how to compare the synchronization power
of shared objects in multi-threaded systems?

1.3 Approach
Following the same approach as in [12], we propose to compare the synchronization power of shared objects
based on the maximal number of processes they are able to synchronize, including in situations where the set of
participating processes is initially unknown or may change during an execution. More precisely, we differentiate
computing models according to the restrictions on process arrival, as introduced in [11]. In these models, any
number of processes may crash (or leave, in a same way as in the classical model), but fresh processes can also
join the network during an execution. When a process joins such a system, it is not known to the already running
processes. Three (families of) arrival models are distinguished in [4]: 1

• For each integer n≥ 1, the n-arrival model Mn
1 , where the number n of processes is fixed and may appear in

the process code. As stated in [11], ”work on adaptive algorithms implicitly precludes the use of the system
size n as a parameter in a solution.” Hence, we generalize the model family into the bounded arrival model,
M1, in which at most n processes may participate, where n is only known, to the processes, at the beginning
of each execution, but may vary from one execution to another.

• The finite arrival model, M2, in which a finite number of processes participate in each execution.

• The infinite arrival model, M3 (also referred to as unbounded concurrency model), where new processes
may keep arriving during the whole execution. Let us note that, at any time, the number of processes that
have already joined the system is finite, but can be infinitely growing.

We pointed out above that the impossibility to allocate an array with an infinite range of indices is a major
limiting factor that restricts the computing power of some objects in multi-threaded systems. We thus study the
power of synchronization of shared objects depending on whether the possibility of allocating infinite arrays is
offered or not. Therefore, we propose the two-dimensional hierarchy presented on Figure 1. In this hierarchy,
shared objects are sorted horizontally depending on their universality in models Mn

1 , M1, M2 and M3 when infinite
memory allocation is not available, and vertically on their ability to do so when it is possible to allocate infinite
arrays. We then challenge the significance of this hierarchy by exploring whether or not there exists an object
filling each possible degree.

1.4 Contributions of the paper
In a first step, we show how the proposed hierarchy encompasses the existing one and then for each new degree,
either a representative object is proposed or it is proved empty.

Extend the wait-free hierarchy. We show that, on the one hand, the proposed hierarchy coincides with Her-
lihy’s hierarchy on objects with a finite consensus number. Indeed, Theorem 2 proves that infinite arrays are not
necessary for universal constructions in models Mn

1 and M1, which justifies that we keep the same term “consensus
number” to categorize shared objects in our hierarchy. On the other hand, the proposed hierarchy refines the one
proposed by Herlihy for objects with infinite consensus number. We say that an object O has consensus number
∞

y
x, for x,y ∈ {1,2,3} if O is universal in Mx but not Mx+1 (if x 6= 3) when infinite memory allocation is not avail-

able, and O is universal in My but not My+1 (if y 6= 3) when infinite memory allocation is available. As having
access to infinite arrays is never detrimental, no object has consensus number ∞

y
x for y < x.

1A fourth model, M4, called infinite concurrency, was introduced in [4], where infinitely many processes may be present in the system and
an infinite number of operations can take place in any finite interval of time. We choose to ignore this model because it poses a problem to
define linearizability.

Suppose that, for each i ≥ 1, process pi writes the value i in a variable x during the interval
[
1− 1

2i ;1− 1
2i+1

]
; then p0 starts reading x at

time 1. There is no ”last written value” before the read, so the return value is not well defined. Restricting infinite concurrency to a subset of
non-conflicting operations (e.g. reads or operations on different objects) would render infinite concurrency and infinite arrival computationally
equivalent as one can easily use contention on conflicting operations to control the arrival of processes.
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Identify all filled degrees. Following our approach, we prove that no object has consensus number ∞1
1 (Theo-

rem 3), and we identify objects filling all remaining degrees of the hierarchy, as depicted by Figure 1. We prove
that multi-valued consensus (denoted Cons〈N〉) is still universal in all the models considered in this paper, i.e. it
has consensus number ∞3

3. Rephrasing the theorems concerning the iterator stack [2], we naturally deduce that
iterator stacks have consensus number ∞2

2. Interestingly, we prove that binary consensus (denoted Cons〈B〉) is
not universal in multi-threaded systems, resulting in a consensus number of ∞3

1 (Theorem 5). The proof that the
composition of binary consensus and iterator stacks has consensus number ∞3

2 (Theorem 6) is the most technical
part of the paper. We define a new special instruction, called setOrDecrement and denoted SOD, that either writes
its parameter or decrements the register depending on the sign of its previous value, and we show that a register
provided with the setOrDecrement operation has consensus number ∞2

1 (Theorem 4).

1.5 Organization of the paper
The remainder of this paper is organized as follows. We first illustrate the practical issues that led to our problem
statement in Section 2 and, then, we present the infinite arrival models in Section 3. Section 4 shows that consensus
is still universal in the infinite arrival model. Sections 5 and 6 identify the empty degrees of the hierarchy by
proving theorems 2 and 3. Sections 8, 7, and 9 show that the remaining degrees are not empty by proving the
consensus number of setOrDecrement registers, binary consensus and a composition of binary consensus and
iterator stacks. Finally, Section 10 concludes the paper.

2 Illustration of the issue
Sharded counters. Several implementations of shared counters are available for concurrent programs. One
may simply use the fetchAndAdd instruction, if available. Another solution is to protect the incrementation of a
single shared variable using a compareAndSwap instruction, within a loop that retries until the compareAndSwap
is successful. 2 Such a strategy has the drawback of creating contention on the single variable, that may impact
performance when many processes try to access the variable simultaneously. Another possibility, similar to the
sharded counter in cloud computing, consists in assigning to each process p a single-writer/multi-reader register,
which only p can safely increment without fear of concurrent updates. A read of the shared counter is then the
sum of all the values obtained after a snapshot of the set of registers. This strategy is at the basis of the LongAdder
class in the standard library of Java, but this class is neither wait-free nor linearizable. In the following, we will
discuss how we can implement a sharded counter in Java.

The bounded arrival model. The simplest implementation of a sharded counter uses an array of size n, where
n is the number of threads. However, n must be known by the constructor when creating the array. Passing n
as an argument to the constructor might not be a problem for some programs. For example, when parallelism is
managed through a fixed-size thread pool, the size of the thread pool can be used for the size of the array. Programs
for which a limit on the number of threads created throughout an execution is a priori known are said to belong to
the bounded arrival model, denoted by M1.

The finite arrival model. Now imagine a program that must first create a shared counter, then read a configu-
ration file, starting a new thread for each selected option. Here, the assumption of a fixed n known at the start of
execution may not be realistic. One solution could be to allocate arrays that are much larger than the size that will
be used in practice. This approach has several drawbacks. Indeed, in the case where the limit of the allocated array
is effectively reached, the correctness and the termination of the algorithms are no longer ensured. The rest of the
time, this approach presents a huge waste. It would therefore be more judicious to have dynamic data structures
having the possibility of arbitrarily growing to adapt to the number of threads, such as dynamic arrays, linked lists,
sets, or dictionaries.

Simple linked lists can be designed following the same algorithmic pattern as the push operation of Treiber’s
stack [22]. The constructor of such an algorithm only creates a sentinel cell (the end of the linked list) as well as a
shared register, head (reference to this sentinel cell). The first time a thread accesses the shared object, it allocates
its own cell and, in an infinite loop, attempts to insert it at the head of the list, using a compareAndSwap.

2This was the standard implementation of getAndIncrement in Java, prior to version 8.

4



An important question is the following: is the algorithm described above wait-free? Since there is an infinite
loop, it is possible that some process always loses its compareAndSwap, and never terminates its operation. How-
ever, this cannot happen in the example of the configuration file described above, because no new thread is created
after the configuration file has been completely parsed, and each process only needs to win the compareAndSwap
once. The hypothesis that there is an instant after which no new thread is started is called the finite arrival model,
denoted by M2.

The infinite arrival model. Finally, let us consider a server that starts a new thread each time it receives a request
from a client. If the server is properly sized, the number of threads running at any time may remain relatively low.
Yet, the linked list algorithm described above is only lock-free, as there are executions in which some thread may
never be able to insert its own cell. The most general model, in which there is no assumption about the number of
threads that can be created during an execution, is called the infinite arrival model and denoted by M3.

The example of the sharded counter above illustrates a common issue when trying to adapt many distributed
algorithms to multi-threaded programming languages such as Java or C++: how to deal with data structures whose
size depends on the number of participants? This paper explores one facet of this issue: the synchronization power
necessary, and sufficient, to build any wait-free data structure.

3 Computing Models
This paper considers distributed computations where processes (or threads) have access to local memory for local
computations and also have access to shared objects (shared memory) to communicate and synchronize with each
other. We define, below, the assumptions on the set of processes and the kind of memory they can access. Each
combination of a process model and a memory model instantiates a different computing model. Moreover, as some
objects cannot be implemented using only read/write registers, a system can be enriched with synchronization
objects like consensus objects, iterator stacks, etc, or by special instructions that can be invoked on registers, such
as setOrDecrement.

3.1 Arrival models
We consider computation models composed of a set Π of sequential processes p0, p1, . . . Each process pi has a
unique identifier i that may appear in its code. The set Π is the set of potential processes that may join, get started
and crash or leave during a given execution. At any time, the number of processes that have joined is finite. The
cardinality of Π defines four computing models:

n-arrival models Mn
1 (n≥ 1): |Π|= n, and n is a parameter of each system model.

Bounded arrival model M1: Π is finite and |Π| is known to the processes at runtime. In other words, M1 is the
union of the Mn

1 , for all n, and a problem can be solved in the bounded arrival model if, and only if, it can
be solved in the n-arrival model, regardless the size of the system.

Finite arrival model M2: Π is finite but |Π| is unknown to the processes.

Infinite arrival model M3: Π is countable.

3.2 Communication between processes
Processes communicate by reading and writing a memory composed of an infinite number of unbounded registers
3. Reads and writes on a shared register x are denoted by x.read() and x.write(v). We also consider local
variables and read-only shared registers, for which we use the lighter notations x and x← v.

Processes have access to a dynamic allocation mechanism that can only return an unbounded, but finite, num-
ber of memory locations at once. The allocation mechanism is accessible through the syntax new T , that instan-
tiates an object of type T (T may be a record datatype or a shared object giving access to a set of operations) and
returns its reference, i.e. it allocates the memory locations needed to manage the object and initializes them by
calling a constructor.4

3Memory addresses of an infinite memory are unbounded, so this assumption is necessary to store references.
4In this paper, we do not consider a de-allocation or garbage collection mechanism, because we only investigate computability issues that

are not affected by the possibility to reuse memory locations.

5



Processes are not limited in the number of registers they can access, nor by the number of times they can use
the allocation mechanism, during an execution. However, they can only access memory locations that either 1)
have been allocated at the system set up, or 2) they obtained directly through the allocation mechanism, or 3) are
accessible by following references stored (as integer values) in some accessible memory location. In other words,
when a process pi allocates a memory location at runtime, it can initially only be accessed by pi until pi shares a
reference pointing to it with other processes.

As advocated in the Introduction, when sufficiently powerful synchronization objects are not available, it may
be necessary to assume an allocation mechanism which allows to allocate and initialize an infinite number of
memory locations at once. When a system allows such allocation, it is said to provide infinite allocation. This
defines four more arrival system models MAn

1,MA1,MA2 and MA3 that represent the four above-mentioned models
enriched with an infinite memory allocation mechanism. In our algorithms, infinite arrays are accessible through
a type InfiniteArray, whose constructor takes, as a parameter, a rule i 7→ f (i) stating that the cell at index i
must be set to f (i). Like in finite arrays, the cell at index i of an array A is denoted by A[i].

3.3 Synchronization objects.
In order to improve their computability, the different computing models can be enriched by giving access to more
evolved shared atomic objects, that are denoted between square brackets in the model name and referred to as
enriching shared objects. For example, M3[Cons〈N〉] denotes the infinite arrival model where as many consensus
objects as necessary are made available.
Set-or-decrement registers. A set-or-decrement register SOD is an integer register providing the standard read

and write operations, as well as a setOrDecrement special instruction that takes an integer as argument and has
no return value. An invocation of setOrDecrement(v) first reads the current value x of the register. If x≤ 0, the
register is set to v. Otherwise, the register is decremented by one.
Iterator stacks. The iterator stack IStack, introduced in [2], provides a write operation isWrite() and a read
operation isRead(). Intuitively, isWrite(v) prepends the value v at the beginning of a stack and returns a
reference i to a fresh iterator, and isRead(i) increments iterator i and returns the value it points to. More precisely,
isWrite(v) takes a written value v ∈ N as argument and returns the next integer value in a sequence 0,1, . . . For
a given i ∈ N, the kth invocation of isRead(i) returns the kth value ever written if isWrite was invoked at least
max(i+1,k) times, and ⊥ otherwise.
Consensus objects. A consensus object, denoted Cons〈T 〉, provides two operations. The operation propose(v)
takes an argument v ∈ T and returns the oldest proposed value, i.e. the first process that invokes the operation gets
its own value and all invocations returns this same value, called decision value and we say that the consensus object
is won. A second operation, get(), returns the value stored in the consensus object if it has been won; otherwise,
it returns a default value ⊥. We distinguish between binary consensus Cons〈B〉 in which only two values can
be proposed (e.g. true and false), and the multi-valued consensus, for example Cons〈N〉 in which proposed
values are integer values, possibly encoding a reference to a memory location. Finally, Consn〈N〉 designates the
n-process consensus that only has a propose(v) operation that only verify the previously-stated properties for its
first n invocations, and the next returned values are left unspecified.

3.4 Distributed executions
An execution α is a (finite or infinite) sequence of steps, each taken by a process of Π. A step of a process
corresponds to the execution of a hardware instruction or an operation of one of the atomic enriching objects
defined above. Processes are asynchronous, in the sense that there is no constraint on which process takes each
step: a process may take an unbounded number of consecutive steps, or wait an unbounded but finite number of
other processes’ steps between two of its own steps. Moreover, it is possible that a process stops taking steps at
some point in the execution, in which case we say this process has crashed, or even that a process takes no step
during a whole execution (|Π| is only an upper bound on the number of participating processes). We say that a
process pi arrives in an execution at the time of its first step during this execution. Remark that, although the
number of processes in an execution may be infinite in M3, the number of processes that have arrived into the
system at any step is finite.

A configuration C is composed of the local state of each process in Π and the internal state of each enriching
shared object, including read/write registers. For a finite execution α , we denote by C(α) the configuration
obtained at the end of α . An empty execution is noted ε . An execution β is an extension of α if α is a prefix of β .
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Implementation of shared objects. An implementation of a shared object is an algorithm divided into a set of
sub-algorithms, one for the initialization (a.k.a. the constructor of the object), and one for each operation of the
object, that produces wait-free and linearizable executions. Linearizability and atomicity are equivalent thanks to
observational refinement, i.e. if an object O has a linearizable implementation in a model M, then M and M[O] are
computationally equivalent (M[O] represents the model M enriched with atomic objects O) [9].

Definition 1 (Linearizability). An execution α is linearizable if all operations return the same value as if they
occurred instantly at some point of the timeline, called the linearization point, between their invocation and their
response, possibly after removing some non-terminated operations.

Definition 2 (Wait-freedom). An execution α is wait-free if no operation takes an infinite number of steps in α .

Consensus protocols. Similarly to [12], it may be useful to express consensus as a one-shot task [10], i.e. one
in which each process proposes some value and may decide a value, such that the three following properties are
respected:

• Wait-freedom (see Definition 2).

• Validity: all decided values are proposed by some process.

• Agreement: distinct processes never decide on distinct values.

Previous affirmations that one-shot consensus and wait-free linearizable consensus objects are computationally
equivalent [18] still apply in all models used in this papers, so we use both definitions interchangeably.

Universality. A model M is said to be wait-free universal (or simply universal) if any object with a sequential
specification can be implemented in M, with respect to linearizability and wait-freedom. By extension, an object
O is said to be universal in M if M[O] is universal.

Let O be an object. We say that O has consensus number n ∈ N if Mn
1 [O] is universal but not Mn+1

1 [O], and
that O has consensus number ∞

y
x, for x,y ∈ {1,2,3} if it verifies both following conditions:

• Mx[O] is universal and, if x≤ 2, then Mx+1[O] is not universal.

• MAy[O] is universal and, if y≤ 2, then MAy+1[O] is not universal.

Remark that the proposed hierarchy is not strict: it is impossible to use any number of objects with consensus
number ∞3

1 to implement an object with consensus number ∞2
2 in a multi-threaded system, because this would

require allocating infinite arrays. Conversely, it is impossible to implement an object with consensus number
∞3

1 using only objects with consensus number ∞2
2 because some participating processes could starve while new

processes constantly arrive in the system.

4 Universality of Consensus in M3

The aim of this section is to extend universality of consensus to multi-threaded systems. In order to prove the
universality of consensus in the bounded arrival model, Herlihy introduced the notion of universal construction5.
It is a generic algorithm that, given a sequential specification of any object whose operations are deterministic and
total6, provides a concurrent implementation of this object. Wait-free implementations rely on what is called a
helping mechanism, recently formalized in [6]. This mechanism requires that, before terminating its operation, a
process helps completing pending ones of other processes. Helping is not obvious in the infinite arrival model.
Indeed, a process should be able to announce itself to processes willing to help it. However, due to the infinite
number of potential participating processes over time, it is not reasonable to assume that each process can write in
a dedicated register that can be read by all.

Similarly to [8] which first proposes a Collect object and then uses it as a building block for a universal
construction, we define the weak log object, a data structure used as a list of presence where a process that arrives
registers. We first propose a universal construction based on consensus objects and a weak log object and then an

5A small guided tour on universal constructions can be found in [20].
6This means that any operation on the object can be called and the call returns regardless of the state of the object.
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implementation of the weak log using read/write registers and consensus objects. This proves that consensus is
universal in all models considered in this paper.

Interestingly, this presentation also highlights how constructions that verify both liveness and safety conditions
can be obtained as a combination of a seed of liveness, here illustrated by the wait-free weak log that is not
linearizable but only eventually consistent, and a sprout of safety, in our case the list of operations that would be
sufficient for a lock-free linearizable universal construction without the need of the weak log. It also illustrates a
use case for weak consistency in a situation where strong consistency can also be achieved.

4.1 The Weak Log Abstraction
We first define the weak log abstraction. In an instance of the weak log, a process pi proposes a value through an
operation append(vi), that returns the sequence of all the values previously appended. The weak log is wait-free
but not linearizable, in the sense that there might be no inclusion between the sequences returned by different op-
erations. However, it is requested that values appended by correct processes will eventually appear in all returned
sequences and that the order of the values within each sequence is consistent with the different sequences returned
by all operations.

Definition 3 (weak log). A process pi proposes a value vi (all appended values are assumed different) by invoking
append(vi), that returns a finite sequence wi = wi,1 ·wi,2 · · ·wi,|wi| such that:

Validity. Any value returned in a sequence was the argument of some invocation of append.

Suffixing. If some invocation of append(vi) terminates, then vi is appended at the end of its returned sequence
wi: ∀i,wi,|wi| = vi.

Total order. If two invocations of append return respectively wi and w j, then all pairs of values that wi and w j
both contain appear in the same order: for all i, j,ki,k j, li, l j such that wi,ki = w j,k j and wi,li = w j,l j , we have
ki ≤ li if, and only if, k j ≤ l j.

Eventual visibility. If some invocation of append(vi) terminates, then, eventually, all sequences returned by
invocations of append will contain vi. In other words, the number of returned sequences that do not contain
vi is finite.

Wait-freedom. Any invocation of append(vi) by a correct process pi eventually returns.

4.2 A Universal Construction
Algorithm 1 presents a universal construction using a weak log and consensus objects. This algorithm is similar
to the one presented in [14], except that the array of single-writer/multi-reader registers used by processes to
announce their operations is replaced by a weak log. A universal construction emulates any shared object. The
shared object to implement is represented by an initial state initialState, passed as an argument to the constructor,
and a set of operations called invocations that change the state of the object and return a value. A process pi that
want to execute an operation invoci on the emulated object calls apply(invoci) on the universal construction.

Processes share two variables:
• announce is a weak log in which processes append their invocations;

• operations is a consensus object at the head of a linked list of operations. The list is a succession of nodes
of type Node, defined as a structured type made up of two fields: value is the invocation of some process,
and next is a consensus object referencing another node of type Node after the consensus has been won by
some process.

When process pi calls apply(invoci), it first appends invoci to announce and obtains in return a list toHelpi
of invocations. Then, it attempts to insert the invocations of toHelpi at the end of the list operations until all the
invocations of toHelpi have been inserted. While traversing the list, it maintains a state statei of the implemented
object, initialized to initialState and on which all invocations are applied in their order of appearance in the list.

We now prove that Algorithm 1 is linearizable and wait-free. Linearizability is achieved by Algorithm 1 in the
same way as in [14], so the proof of Lemma 1 is similar.
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constructor (statei) is
1 announce← new WeakLog;
2 operations← new Cons〈N〉;
3 initialState← statei;

operation apply(invoci) is
4 toHelpi← announce.append(invoci);
5 consi← operations;
6 statei← initialState;
7 while toHelpi 6= ε do
8 nodei← new Node {value← toHelpi[0]; next← new Cons〈N〉};
9 nodei← consi.propose(nodei);

10 consi← nodei.next;
11 toHelpi← toHelpi \nodei.value;
12 ri← statei.invoke(nodei.value);
13 if nodei.value = invoci then resulti← ri;

14 return resulti;

Algorithm 1: Wait-free universal construction in the infinite arrival model

Lemma 1 (Linearizability). All executions admissible by Algorithm 1 are linearizable.

Proof. Let α be an execution admissible by Algorithm 1.
Let us first remark that, for any operation apply(invoci) invoked by process pi, at most one node node is

such that node.value = invoci. Indeed, suppose this is not the case, and let us consider the first two such nodes,
node j and nodek. Both were proposed on line 9 by processes p j and pk respectively. As operations are totally
ordered in a list, process pk accessed node j before accessing nodek. After accessing node j and executing line 11,
invoci = node j.value /∈ toHelpk , which contradicts the fact that pk proposed nodek = invoci.

Let us define the linearization point of any operation apply(invoci) as, if it exists, the first step in which some
process p j proposed a node node j with node j.value = invoci and won the consensus on line 9.

We now prove that any operation apply(invoci) done by a terminating process pi has a linearization point,
between its invocation and termination point. By the validity property of announce, and as all invoci values are
different, no process proposes invoci before pi arrived in the system. By the suffixing property of announce, at the
beginning of pi’s loop, invoci ∈ toHelpi. When pi terminates, invoci /∈ toHelpi. Therefore, invoci was removed
on line 11 of some iteration of the loop, so some process won a consensus where it proposed a node node j with
node j.value = invoci.

Finally, operations are applied by pi on statei in the same order as they appear in the list (lines 12), which is
the same order as their linearization points, which concludes the proof.

The proof of wait-freedom (Lemma 2) is more challenging because the proof of [14] heavily relies on the fact
that the number of processes is finite.

Lemma 2 (Wait-freedom). All executions admissible by Algorithm 1 are wait-free.

Proof. Suppose there is an execution α admissible by Algorithm 1 that is not wait-free. It means that some
process pi takes an infinite number of steps in its invocation of apply(invoci) in α . By the wait-freedom property
of announce, pi enters the while loop after a finite number of steps, and each iteration of the loop terminates.
Therefore, pi executes an infinite number of loop iterations. Let wi = wi,1 ·wi,2 · · ·wi,|wi| be the initial value of
toHelpi. Before Line 9, as wi is finite and nodei.value equals some wi,k at each iteration, there exists a value k such
that nodei.value = wi,k an infinite number of times.

Let win0,win1, . . . be the infinite sequence of the values taken by nodei.value just after Line 9 during the
execution, let pω( j) be the process that took the step on line 9 installing the value win j in the consensus and let
pa( j) be the process that invoked apply(win j).

As processes pω( j) always proposes the first invocation of toHelpω( j) that was not inserted in the list yet, there
is an infinite number of values win j such that either

• wi,k is not part of wω( j) or

9



constructor () is
1 first← new Cons〈N〉;
2 last← new R/W-Register(first);

operation append(vi) is
// add vi to the log

3 owni← new SideNode {value← vi; next← new Cons〈N〉};
4 maini← new MainNode {side← owni; next← new Cons〈N〉};
5 consi← last.read();
6 maini← consi.propose(maini);
7 sidei← maini.side;
8 last.write(maini.next);
9 while sidei 6= owni do

10 sidei← sidei.next.propose(owni);

// read the log

11 logi← ε; maini← first.get(); sidei← maini.side;
12 while true do
13 logi← logi⊕ sidei.value;
14 if sidei = owni then return logi;
15 sidei← sidei.next.get();
16 if sidei =⊥ then
17 maini← maini.next.get();
18 sidei← maini.side;

Algorithm 2: Wait-free weak log using consensus

• wi,k is part of wω( j), but appears after win j in the list.

By the eventual visibility property, the first case only concerns a finite number of win j, so there is an infinite
number of values win j in the second case.

For each of them, by the suffixing property, win j = wa( j),|wa( j)|, i.e. the process that invoked apply(win j)

obtained win j as the last value of its toHelpa( j). By the total order property, it is impossible that pω( j) obtains
win j before wi,k and pa( j) obtains wi,k before win j. Therefore wa( j) does not contain wi,k. However, this contradicts
the eventual visibility property that prevents an infinite number of pa( j) processes to ignore wi,k.

This contradicts the assumption of a non wait-free execution.

4.3 An implementation of the Weak Log
The main difficulty in the implementation of a weak log lies in the allocation of one memory location per process,
where it can safely append its value. As it is impossible to allocate an infinite array at once, it is necessary to build
a data structure in which processes allocate their own piece of memory, and make it reachable to other processes,
by winning a consensus. The list (operations) of Algorithm 1 displays such a pattern, but it poses a challenge:
as an infinite number of processes access the same sequence of consensus objects, one process may loose all its
attempts to insert its own node, breaking wait-freedom.

Algorithm 2 solves this issue by using a novel feature, that we call passive helping: when a process wins a
consensus, it creates a side list to host values of processes concurrently competing on the same consensus object.
As only a finite number of processes have arrived in the system when the consensus is won, a finite number of
processes will try to insert their value in the side list, which ensures termination. Figure 2 presents an execution
of Algorithm 2.

In other words, the processes share a main list of side lists of appended values. Side lists are a succession of
nodes of type SideNode, defined as a structured type made up of two fields: value is a value appended by some
process, and next is a consensus object referencing another node of type SideNode after the consensus has been
won by some process. Similarly, the main list is a succession of nodes of type MainNode, defined as a structured
type made up of two fields: side is a reference to a SideNode, and next is a consensus object referencing another
node of type MainNode after the consensus has been won by some process.

10
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Figure 2: An execution of Algorithm 2. Consensus objects and read/write registers are represented respectively
with circles and diamonds. Processes p5 and p6 attempt to concurrently insert v5 and v6, respectively, in the
weak log. They both read the same value in last, referencing the consensus object in the main list containing
v4. Process p5 wins the consensus and inserts v5 in its own side list after the one containing v4, and p6 loses the
consensus, so it inserts v6 in the side list created by p5.

Processes executing Algorithm 2 share two variables: first and last defined as follows.

• first is a consensus object on references to MainNode, at the beginning of the main list.

• last is a read/write register referencing a consensus object on references to MainNode. In the absence of
concurrency, last references the next field of the last MainNode of the main list. Initially, the main list is
empty and last is set to a reference at first.

When a process pi invokes append(vi), it first creates a SideNode owni containing its value vi. Then, it reads
last, and proposes a new MainNode whose side list is only composed of owni as its successor, and writes the next
consensus field of the MainNode returned by the consensus in last. If pi loses the consensus, it inserts owni in
the side list of the winner of the consensus (lines 7, 9 and 10). After that, pi traverses the list of lists to build the
sequence logi it returns (⊕ represents concatenation).

Note that the consensus and the write on lines 6 and 8 are not done atomically. This means that a very old
value can be written in last, in which case its value could move backward. The central property of the algorithm,
proved by Lemma 3, is that last eventually moves forward, allowing very slow processes to find some place in a
side list.

Lemma 3. If an infinite number of processes execute line 8, then the number of processes that read the same last
value at line 6 is finite.

Proof. We first prove by induction on the succession of nodes in the main list of the weak log that for each
MainNode main, the number of write operations of main.next in last at line 8 is finite.

• Initially, first is never written in last, because only decided values on line 6 are written, and first is never
proposed.

• We now prove that, if the number of writes of main in last is finite, then the number of writes of main.next
in last is finite.

We prove the following contrapositive proposition: if the number of writes of main.next in last is infinite,
then the number of writes of main in last is infinite as well.

In order to write main.next in last, a process needs to read main in last at line 6. As main.next is written an
infinite number of times and main is read an infinite number of times, then necessarily, main is written an
infinite number of times as well.

11



Let us now suppose that an infinite number of processes execute line 8, and that an infinite number of reads of last
return main. This implies that there was an infinite number of write operations of main in last at line 8, which
contradicts the previous induction result.

Lemma 4 (Validity). All the values in a returned sequence have been appended by processes.

Proof. The value logi returned by the algorithm is built by concatenation of values sidei.value that can only be
created, at line 6 or 10, using an appended value.

Lemma 5 (suffixing). If wi is the sequence returned when pi appended vi then wi,|wi| = vi.

Proof. This is a direct consequence of the fact that vi = owni.value is appended at the end of logi at Line 13 just
before the return statement on Line 14.

Definition 4 formalizes the order in which values are ordered in the weak log. Intuitively, this order is the
concatenation of all the side lists, in the order of the main list. In Algorithm 2, the main list is traversed in this
precedence order, which ensures consistency of the order of all returned sequences (Total order property of the
weak log).

Definition 4 (Precedence). A SideNode s precedes a SideNode s′ in the weak log if:

• there exists a sequence of SideNode {s1, . . . ,sn} such that for all 1 ≤ k < n, sk+1 is decided in sk.next,
s1 = s, and sn = s′;

• or there exists a sequence of MainNode {m1, . . . ,mn} such that for all 1≤ k < n, mk+1 is decided in mk.next,
m1.side precedes s and mn.side precedes s′.

A value v precedes a value v′ in the weak log if there exist two SideNode s and s′ such that s precedes s′, s.value= v
and s′.value = v′.

Lemma 6 (Total order). If two processes pi and p j terminate their invocations, then all pairs of values that belong
to both wi and w j appear in the same order.

Proof. Let us remark that both processes pi and p j append values in their log following the precedence order
defined by Definition 4. Therefore, for any two values vk and vl that appear in both wi and w j, pi and p j have
appended them at the end of the log in the same order, which proves the lemma.

Lemma 7 (Eventual visibility). If some process pi terminates its invocation, then the number of returned se-
quences that do not contain vi is finite.

Proof. Let us denote by mi and si the values of maini and sidei when pi terminates.
Let us suppose (by contradiction) that there is an infinite number of processes which return sequences that do

not contain vi, and an infinite number of them started their operation after pi returned. For each such process p j,
let m j and s j be the values of main j and side j when p j terminates its execution. As the collect loop respects the
precedence order of Definition 4, for an infinite number of p j, m j precedes mi. As there is only a finite number of
lists preceding mi (pi terminates), an infinite number of processes have the same value m of m j. All of them read
the same value of last at Line 6 and wrote on Line 8. This contradicts Lemma 3.

Lemma 8 (Wait-freedom). No process takes an infinite number of steps in an execution.

Proof. Let us suppose that there exists an execution α such that process pi takes an infinite number of steps in α

trying to append vi. This means that one of the two loops (lines 9 and 12) loops an infinite number of times:

• If the loop at Line 9 loops for an infinite number of times, it means that sidei 6= owni for an infinite number
of nodes. This implies that an infinite number of values are appended to the same side list at Line 10,
which means that an infinite number of processes read the same value at Line 6, and wrote at Line 8, which
contradicts Lemma 3.

• If the loop at Line 12 loops forever, this means that pi never reads vi, and as there is a finite number of
MainNode that precede the list mi in which vi has been appended, one of their side lists contains an infinite
number of nodes. All these nodes were created by processes reading the same value of last at Line 6, which
also contradicts Lemma 3.
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Both cases lead to a contradiction.

Theorem 1. Multi-valued consensus has consensus number ∞3
3.

Proof. By Lemmas 4, 5, 6, 7 and 8, Algorithm 2 implements a weak log. By Lemmas 1 and 2, Algorithm 1 is a
universal construction in M3[Cons〈N〉].

Remark 1. The usual algorithm for solving consensus using the compare-and-swap special instruction on atomic
registers does not need any adaptation to work in model M3. Therefore, compare-and-swap has consensus number
∞3

3 as well.

5 Infinite memory allocation is not necessary in M1

The original paper on the wait-free hierarchy [12] mentions no limitation that could arise in computing models
where infinite allocation is not available. In this section, we prove that, in the context of bounded arrival models,
infinite memory allocation is not a decisive factor to determine if universality can be achieved or not. This implies
that our hierarchy is an extension of that proposed by Herlihy because they coincide for objects with a finite
consensus number. This justifies our choice to keep the same name.

This result builds on the observation that, in MAn
1, any wait-free algorithm of binary consensus has a bound

on the number of memory locations used by any execution, as long as there is a bound on process identifiers
(Lemma 9). Such a bound can be obtained by using renaming algorithms: for example, the algorithm introduced
in [5] does not require infinite memory allocation either. In this section, we suppose, without loss of generality,
that there is a bound N on process identifiers.

Lemma 9. For any object O, if Cons〈B〉 can be implemented in MAn
1[O], then Cons〈B〉 can be implemented in

Mn
1 [O].

Proof. Suppose there exists an algorithm A that implements binary consensus in MAn
1[O]. As discussed in Sec-

tion 3, we can suppose without loss of generality that A is a one-shot consensus, hence an input of A is composed
of a set Π of at most n processes taken from {p0, . . . , pN}, and a map that associates a Boolean input to each
process in Π. The number of possible inputs is bounded by 2N×2n.

For each possible input 〈Π⊂{p0, . . . , pN},Π→B〉, let us consider the tree of all possible executions of A with
this input: the root is the empty execution, and an execution αβ is the son of an execution α if β is a step taken by
some process pi according to A. By construction, the tree is locally finite since no execution can have more than
n sons, and as A is wait-free, the graph does not contain any infinite path. Therefore, by Konig’s lemma, for each
possible input 〈Π⊂ {p0, . . . , pN},Π→ B〉, a finite number of configurations may be accessed by some execution.

Finally, a finite number Xn of configurations are accessible by any execution of A. In each configuration, each
process may be about to invoke an operation on a different shared object, so at most a finite number n×Xn of
objects can be used by A. Therefore, A can be simulated by an algorithm in Mn

1 [O] that only allocates n×Xn
memory locations at set up.

Theorem 2. For any object O, if MAn
1[O] is universal, then Mn

1 [O] is also universal.

Proof. Suppose that MAn
1[O] is universal; by definition, Cons〈B〉 can be implemented in MAn

1[O]. By Lemma 9,
Cons〈B〉 can be implemented in Mn

1 [O]. It is possible to implement Cons〈N〉 using a bounded number of Cons〈B〉
objects in the bounded arrival model using an algorithm like the one given in [23], and that can be easily adapted
to shared memory [19]. Finally, by Theorem 1, O is universal in Mn

1 [O].

Remark 2. Since M1[O] is the union of the Mn
1 [O] for all n, Theorem 2 implies that, if MA1[O] is universal, then

M1[O] is also universal. However, this does not mean that M1[O] and MA1[O] are equivalent. In particular, some
algorithms from MA1 that use infinite arrays for other reasons than creating a universal construction or assigning
one single-writer/multiple-reader register to each process [1, 3] might not be possible to adapt to M1.
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6 No object has consensus number ∞1
1

In this section, we prove that no object has consensus number ∞1
1. We prove this by showing that, when infinite

memory allocation is available, any universal object O in the bounded arrival model is also universal in the finite
arrival model. Indeed, if MA1[O] is universal, it is possible to use objects O to solve consensus among n processes,
for all n. Algorithm 3 then uses these Consn〈N〉 objects to solve Consensus in MA2 (Lemmas 10, 11 and 12).

Processes share three infinite arrays: greaterId, cons and adopt. For each index r ∈N, greaterId[r] is a Boolean
register, initially false, that can be written by pi only if i ≥ r;
cons[r] is a Consr〈N〉 object that accepts participation of processes p0, . . . , pr−1; and adopt[r] is a register, initially
⊥ (any value that cannot be proposed), that will store the decided value of cons[r] so that processes pr, pr+1, . . .
can know the decided value without participating.

Algorithm 3 is round-based. At round r, processes with identifiers smaller than r agree on some value using
the Consr〈N〉 object cons[r], while the other processes simply announce their presence by marking greaterId[r].
If the former decide first, they return the value they decided. Otherwise, if the latter arrive before consensus took
place, more rounds are necessary. If the two groups write concurrently, it is possible that some processes decide a
value at round r while others start round r+1. In that case, the protocol ensures that they adopt the decided value
for the next rounds, ensuring agreement.

constructor () is
1 greaterId← new InfiniteArray(r 7→ new R/W-Register(false));
2 cons← new InfiniteArray(r 7→ new Consr〈N〉);
3 adopt← new InfiniteArray(r 7→ new R/W-Register(⊥));

operation propose(vali) is
4 vi← vali;
5 for ri = 1,2, . . . , i do
6 greaterId[ri].write(true);
7 xi← adopt[ri].read();
8 if xi 6=⊥ then vi← xi;

9 for ri = i+1, i+2, . . . do
10 vi← cons[ri].propose(vi);
11 adopt[ri].write(vi);
12 if ¬greaterId[ri].read() then return vi;

Algorithm 3: Consensus in Model MA2[Cons
n〈N〉〉] (code for pi)

Claim 1. For any round r, at most r processes invoke propose on cons[r] Line 7.

Proof. By Line 9, a process pi can only execute Line 10 if r > i, and there are at most r processes with identifiers
less than r.

Lemma 10 (Wait-freedom). All executions of Algorithm 3 terminate in MA2.

Proof. In MA2, each execution has a process with the greatest identifier (call it imax). Variable greaterId[r] is only
set to true (Line 5) if r≤ imax (Line 4), so all processes terminate at the latest at round imax +1 (Line 12).

Lemma 11 (Validity). If pi decides v, then some process proposed v.

Proof. Let pi be a process that decides vi on round ri. Let us suppose vi is not the input of some process, and
let us consider the first time a value that is not the input of some process is written in either v j or adopt[r j] by
some process p j. This cannot happen on Line 4 by definition of val j. By Claim 1 and validity for Consr j〈N〉,
only a value previously written in some v j can be written in vi on Line 10. Due to the condition xi 6= ⊥, only a
value previously written in adopt[r] can be written in vi on Line 9, and only a value of vi is written in adopt[ri] on
Line 11. This is absurd, so the value vi is set to vali on Line 4 and is still a proposed value when pi decides.

Lemma 12 (Agreement). If processes pi and p j decide respectively vi and v j, then vi = v j.
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Proof. Let pi be a process that terminates, deciding vi, at the smallest round number ri.
We first prove, by induction on r, that, for all r > ri, all processes p j participating to round r start the round

with v j = vi. Suppose p j participates at round r = ri +1. If j > ri, then v j = vi after p j executed Line 10 during
round ri, by Claim 1 and the agreement property of Consri〈N〉. Otherwise, p j set greaterId[ri] to true Line 6 after
pi read greaterId[ri] as false (Line 12), so p j read adopt[ri] on Line 7 after pi wrote vi to adopt[ri] on Line 11.
By Lemma 11, the value vi decided by pi was proposed by some process, so vi 6= ⊥, and p j started round ri + 1
with v j = vi (Line 8). Let us suppose the claim holds for some r > ri. By Claim 1 and the validity property of
Consr〈N〉, only vi can be decided on Line 10, and therefore written in adopt[r] Line 11, so all processes either
keep their value vi (if the condition on Line 8 is false), or adopt the value vi they read in adopt[r] (Line 7) or the
value vi they decide on cons[r] Line 10, to start round r+1.

Let p j be a process that decides v j at round r j ≥ ri. We have r j > j, so p j returned the value decided on
Line 10, which we have already established to be vi.

Theorem 3. No object has consensus number ∞1
1.

Proof. Suppose, by contradiction, that some object O has consensus number ∞1
1. Hence, MA1[O] is universal. For

all n, it is possible to implement a Consn〈N〉 object in MA2, using O by simulating the algorithm of the bounded
arrival model and setting the bound to n.

By Lemmas 10, 12 and 11, Algorithm 3 is an implementation of consensus in MA2, which is universal by
Theorem 1. A contradiction.

7 Objects with consensus number ∞2
1

By Theorem 3, objects that have consensus number ∞2
1 are the weakest objects that can be used to solve consensus

among n processes, for all n, but are unable to adapt to an unknown number of processes. This section proves
that set-or-decrement registers have consensus number ∞2

1 (Theorem 4). Intuitively, this is because the number of
processes that can be synchronized using the setOrDecrement special instruction depends on the argument it is
invoked with. The proof of Theorem 4 requires three intermediate results: the universality of set-or-decrement in
M1 (Proposition 1), and the impossibility to solve consensus in MA3[SOD] (Proposition 2) and M2[SOD] (Proposi-
tion 3).

7.1 Set-or-decrement is universal in M1

Algorithm 4 presents an implementation of multi-valued consensus using a set-or-decrement register. The under-
lying idea is to encode each value v as the interval [v× n;v× n+ n− 1]. The algorithm uses a set-or-decrement
register shared initialized to 0. When a process pi invokes propose(vi), it invokes the operation setOrDecrement
on shared, with the interval maximum v×n+n−1 as argument. If pi is the first process to do so, it sets the value.
Otherwise, it decrements the register by 1, which leaves the value of the register within the same interval. Finally,
pi reads the register to decode the decision value.

constructor () is
1 shared← new SOD(0);

operation propose(vi) is
2 shared.setOrDecrement(vi×n+n−1);

3 return b shared.read()
n c;

Algorithm 4: Multi-valued consensus in M1[SOD] (code for pi)

Proposition 1. M1[SOD] is universal.

Proof. Algorithm 4 is wait-free because it does not contain any loop. Let pi be the first process that executes
Line 2, writing vi× n+ n− 1. After that, shared is decremented at most n− 1 times so all reads return a value
between vi× n+ n− 1− (n− 1) = vi× n and vi× n+ n− 1 (Line 3) and all processes decide vi. This implies
validity and agreement on consensus, so SOD is universal.
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7.2 Set-or-decrement is not universal in MA3

It was already noted in [2] that having access to Consn〈N〉 objects for all n was not sufficient to solve consensus
in MA3. This section adapts the arguments to the setOrDecrement special instruction (Proposition 2). The proof
relies on an extension of the classical notion of valency to runs that only contain steps by processes with identifiers
smaller than n (Definition 5). In order to solve consensus between n processes, p0 must reach an n-critical con-
figuration (Lemma 13), in which it must invoke setOrDecrement with an argument larger than n (Lemma 14).
In the infinite arrival model, more and more processes may arrive, forcing p0 to invoke setOrDecrement with
ever-growing arguments, breaking wait-freedom.

Definition 5 (n-critical configuration). Let α be an execution of a consensus algorithm. Let C(α) be the con-
figuration (state of the computation) obtained after the execution α . We say that C(α) is v-n-valent if v can be
decided in some extension αβ of α in which only processes p0, p1, . . . pn−1 take steps. We say that C(α) is n-
bivalent if it is both v-n-valent and w-n-valent for some v 6= w, and that it is v-n-univalent if it is v-n-valent and
not n-bivalent. Finally, we say that C(α) is n-critical if it is n-bivalent and that the next step taken by any process
in p0, p1, . . . pn−1 leads to a v-n-univalent configuration, for some v.

Lemma 13. Any finite execution α such that C(α) is n-bivalent has an extension αβ such that C(αβ ) is n-critical.

Proof. Suppose this is not the case. We build an infinite execution α ′ = αβ1β2 . . . such that, for all i, αi =
αβ1β2 . . .βi leads to an n-bivalent configuration. For i = 0, α0 = α is an n-bivalent configuration. Suppose we
have built such an execution for some i. By hypothesis, C(αi) is not n-critical, so there is a process pi whose next
step is βi+1 such that αi+1 = αiβi+1 leads to an n-bivalent configuration. Finally, α ′ is infinite but finitely many
processes arrived, so some process took an infinite number of steps, which contradicts wait-freedom.

Lemma 14. In any n-critical configuration, with n > 2, p0, . . . , pn−1 are about to invoke setOrDecrement(xi)
with xi ≥ n−1 on the same register, the value of which is non-positive.

Proof. Let n> 2 and let α be an execution leading to a n-critical configuration. Each process pi is about to execute
a step βi on some shared object.

Let us suppose there exists a process pi whose next step is a read. As C(α) is critical, C(αβi) is v-n-univalent
and there exists p j such that C(αβ j) is w-n-univalent, with v 6= w. This is impossible since C(αβiβ j) is v-n-
univalent, but C(αβ j) and C(αβiβ j) are indistinguishable to p j.

Let us suppose that processes q1 and q2 are about to access two different registers x1 and x2. As C(α) is
critical, these steps lead to v1-n-univalent and v2-n-univalent configurations, and, if v1 = v2, there exists a process
q3 accessing a register x3 and leading to a v3-n-univalent configuration, with v3 6= v1 = v2. As x3 6= x1 or x3 6= x2,
there always exist two processes pi and p j accessing different registers such that C(αβi) is v-n-univalent and
C(αβ j) is w-n-univalent, with v 6= w. This is impossible because C(αβiβ j) is v-n-univalent, C(αβ jβi) is w-n-
univalent, and C(αβiβ j) =C(αβ jβi).

Let us suppose that all processes are about to access the same register and there exists a process pi whose next
step is a write. As C(α) is critical, C(αβi) is v-n-univalent and there exists p j such that C(αβ j) is w-n-univalent,
with v 6= w. This is impossible since C(αβ jβi) is w-n-univalent, but C(αβi) and C(αβ jβi) are indistinguishable
to pi.

Let us suppose that all processes p0, . . . , pn−1 are about to invoke SOD(xi) on the same register, whose value
is x > 0. As C(α) is critical, there exist two processes pi and p j such that C(αβi) is v-n-univalent and C(αβ j)
is w-n-univalent, with v 6= w. As n > 2, there exists a third process pk. This is impossible because C(αβi) and
C(αβ j) are indistinguishable to pk, since the value of the register is x−1 in both configurations.

Let us suppose that all processes p0, . . . , pn−1 are about to invoke SOD(xi) on the same register whose value is
nonpositive, and for some i, xi ≤ n−2. As C(α) is critical, C(αβi) is v-n-univalent and there exists p j such that
C(αβ j) is w-n-univalent, with v 6= w. Let γ be some concatenation of the next step of xi processes, excluding pi
and p j. C(αβiγβ j) is v-n-univalent and C(αβ j) is w-n-univalent, but the two configurations are indistinguishable
to p j.

The only remaining case is that processes p0, . . . , pn−1 are about to invoke SOD(xi) with xi ≥ n−1 on the same
register, whose value is nonpositive.

Proposition 2. MA3[SOD] is not universal.
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Figure 3: Illustration of the covering arguments used in the paper, by a proof that M2 is not universal. The goal is to
build an execution such that two processes are about to terminate but do not know about each other, hence deciding
a different value (Figure 3e). We do that by building, inductively, an execution in which more and more registers
(pictured in diamond shapes) are covered enough times (Figure 3d), starting with the register first (Figure 3b).
The difficult part in most proofs is to make one more process cover one more register (Figure 3c). Here, two
processes (p4 and p8) have overwritten the values written by p9 in x0 and x1 and been executed in isolation until
p4 covers a register in X \X1. Notice that p4 and p8 may have learned about each other in the process, but not
about p9. Hence, we maintain a set Πi, j,u of processes that do not know about each other. Other processes (in light
color), are ignored in the rest of the execution, but they might only be known by one process still in Πi, j,u, which
we encode by an equivalence relation ∼i, j,u. The notations used in the proofs are illustrated on Figure 3a.

Proof. Suppose there exists an algorithm A that solves consensus in MA3[SOD]. We build a sequence of executions
α0 = β0,α1 = β0β1,α2 = β0β1β2, . . . and a sequence of integers n0 ≤ n1 ≤ n2 ≤ ·· · such that, for all i, process p0
takes a step in βi and C(αi) is ni-critical.

For i = 0, let n0 = 3, and γ be the execution in which each pi proposes i. In a pi-solo extension of γ , pi decides
i, so C(γ) is n0-bivalent. By Lemma 13, there is an extension α0 of γ such that C(α0) is n0-critical.

Suppose we have built an execution αi and an integer ni respecting the induction invariant for some i. By
Lemma 14, in C(αi), p0, . . . , pni−1 are about to invoke SOD(xi) on the same non-positive register, with xi ≥ ni−1.
Let us pose ni+1 = maxi∈{0,...,ni−1} xi +2.

As C(αi) is ni-critical, C(αi) is also ni-bivalent, so C(αi) is ni+1-bivalent. By Lemma 13, there is an extension
αi+1 = αiβi+1 of αi such that C(αi+1) is ni+1-critical. By Lemma 14, in C(αi+1), p0 is about to invoke SOD(x′0),
with x′0 ≥ ni+1−1 = maxi∈{0,...,ni−1} xi +2−1 ≥ x0 +2−1 > x0. In particular, p0 took a step to invoke SOD(x0)
in βi+1.

To conclude, p0 took an infinite number of steps in α = β1β2 . . . , i.e. α is not wait-free. A contradiction.

7.3 Set-or-decrement is not universal in M2

Proposition 3 below shows that set-or-decrement registers are not universal in the finite arrival model when infi-
nite memory allocation is not possible. In addition to set-or-decrement registers, one reason why infinite memory
allocation mechanisms may be necessary and sufficient in M2 is that the number of instances of set-or-decrement
registers required by the synchronization grows boundlessly with the number of processes. Recently, [7] intro-
duced a complexity-based hierarchy ranking shared objects according to the number of instances that are needed
to solve obstruction-free consensus. For example, at least O(

√
n) registers in addition to a test-and-set operation

are necessary to solve obstruction-free multi-valued consensus between n processes. In order to be universal in
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M2, an object has only two ways to circumvent the limitation that only a fixed and finite number of objects can be
created at the initialization of any algorithm: either it has a constant complexity in the hierarchy proposed in [7],
or it provides enough synchronization power to maintain an extensible data structure (e.g. a linked list), where
new instances of itself can be created at runtime and accessed by newly arrived processes.

The proof of Proposition 3 has the same flavor as the proofs in [7], but simplified as we are only interested in
decidability whereas their bounds need to be as tight as possible. Figure 3 illustrates the main steps of the proof.
More precisely, the proof of Proposition 5 builds a scheduler that keeps track of a subset Π′ of processes that
have never communicated with each other because the values they write in registers are overwritten. The property
maintained by the executions produced by this scheduler, called Π′-partitioning, is specified in Definition 6. The
scheduler builds an execution in which a large number of processes participate, and more and more shared registers
are covered by many processes (i.e. these processes try to write or invoke set-or-decrement in the registers, see
Definition 7) ignore the existence of each other, until all objects are covered and two processes decide different
values. The main difficulty of the proof is that the number of processes that need to participate depends on the
arguments of the setOrDecrement invocations, so it has to be guessed by the scheduler before the information is
available. Nevertheless, due to Π′-partitioning, processes in different partitions cannot communicate to adapt their
arguments to the number of processes, which allows us to pick the appropriate number of processes a posteriori.

Definition 6 (Partitioned execution). Let Π′ ⊂Π be a set of processes, let∼ be an equivalence relation on Π, and
let p ∈ Π′ be a process. We say that a finite execution α is (Π′,∼, p)-partitioned (or simply Π′-partitioned if ∼
and p are immaterial) if: (1) for all processes q,q′ ∈Π′ q� q′, (2) for all processes q ∈Π′, the restriction αq of α

to steps taken by processes q′ ∼ q is a valid execution of the algorithm, and (3) all shared registers have the same
value in C(α) and C(αp).

Definition 7 (Covered register). Let p be a process and x be a register, we say that p covers x in a configuration
C if the next step performed by p in C is either a write to x or an invocation of setOrDecrement on x.

Proposition 3. M2[SOD] is not universal.

Proof. Let us suppose there exists an algorithm A that solves consensus in M2[SOD]. To simplify the proof, we
also suppose that processes start the algorithm by writing their value to some register first, and finish it by writing
their decided value in another register last. Remark that such registers and steps can be added to any consensus
algorithm without loss of generality. A finite set X of m = |X | registers are created by the constructor of A.

We build (by induction on i and j), for all i ∈ {0, . . . ,m− 1}, a shared register xi ∈ X (we define Xi =
{x0, . . . ,xi}) and for all j ∈ N and u≥ 2, a set Πi, j,u of processes, and an execution αi, j,u such that:

• αi, j,u is Πi, j,u-partitioned (we denote by ∼i, j,u the corresponding equivalence relation),

• all registers of at Xi are covered at least u times by processes in Πi, j,u,

• j processes of Πi, j,u cover registers in X \Xi,

• all registers of X \Xi are in their initial state,

• for all u′ > u, Πi, j,u ⊂Πi, j,u′ and for all processes p ∈Πi, j,u, C(αi, j,u) and C(αi, j,u′) are indistinguishable to
p. In particular, it means that the classes of equivalence of ∼i, j,u are also classes of equivalence of ∼i, j,u′ .

Initialization for i = 0 and j = 0. Let u≥ 2. We pose x0 = first, Π0,0,u = {p1, . . . , pu} and∼0,0,u as the equality
over Π0,0,u. In execution α0,0,u, each process pk ∈Π0,0,u proposes its own identifier k and stops executing when it
is about to write in x0 = first. Execution α0,0,u is Π0,0,u-partitioned because no process accessed any shared object,
and all u processes of Π0,0,u cover x0 by construction.

From j to j+1, for a fixed i. Suppose that, for some i ∈ {0, . . . ,m−1}, we have built Xi, and for some j ∈ N,
we have built, for all u≥ 2, Πi, j,u and αi, j,u verifying the properties stated above.

Let us first remark that last /∈Xi. Otherwise, at least 2 processes q and q′ of Πi, j,2, would cover last in C
(
αi, j,2

)
.

Let α ′ be the extension of C
(
αi, j,2

)
in which q, then q′, writes in last, and the decide the same value v by agreement

of A. By validity of A, and as all processes proposed different values, some unique process qv proposed v. Since
α ′ is partitioned, q also decided v in α ′q, so by validity of A again, qv ∼i, j,2 q. Similarly, qv ∼i, j,2 q′, so q∼i, j,2 q′,
which contradicts the fact that q and q′ both belong to Πi, j,2.

For all registers x∈Xi, let x̄ be the value stored in x in Configuration C(αi, j,2). We pose U =maxx∈Xi (max(x̄,0))+
2. Let us also pick a subset Φi, j of Πi, j,U , containing, for each x ∈ Xi, either:
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• one process about to write in x, or

• one process about to invoke setOrDecrement on x if x̄≤ 0, or

• x̄+1 processes about to invoke setOrDecrement on x,

in Configuration C(αi, j,U ). Such a Φi, j exists because U ≥ 2 processes of Πi, j,U covered each register of Xi.
Moreover, for all u≥ 2, Φi, j ⊂Πi, j,u+U . Let us pick pi, j ∈Φi, j.

Let u ≥ 2. We pose Πi, j+1,u = (Πi, j,u+U \Φi, j)∪{pi, j}, ∼i, j+1,u as the equivalence relation built by merging
the classes of equivalence of processes in Φi, j in ∼i, j,u+U , and αi, j+1,u = αi, j,u+U βi, j,u, where βi, j,u is built by
first letting each process q ∈ Φi, j take one step, and then executing pi, j until it covers a register in X \Xi. Such a
situation must happen because A is wait-free, and pi, j cannot terminate its execution before covering last ∈ X \Xi.

All registers xu ∈Xi were overwritten by processes in Φi, j before pi, j had a chance to do a read, and all registers
in X \Xi are in their initial state, so pi, j only read values written by processes p′ ∼i, j+1,u pi, j. Therefore, αi, j+1,u is
Πi, j+1,u-partitioned. Moreover, all registers in Xi are still covered by at least u processes in Πi, j,u+U \Φi, j. Adding
pi, j to the j processes that already covered registers from X \Xi in C(αi, j,u), at least j+1 processes cover registers
that are not in Xi, in C(αi, j+1,u). Moreover for u′ > u, the executions αi, j+1,u′ and αi, j+1,u are indistinguishable to
all processes in Πi, j+1,u, because αi, j,u′+U and αi, j,u+U are indistinguishable to them, and the same processes in
Φi, j took the same steps in βi, j,u and βi, j,u′ .

From i to i+1. Suppose that, for some i∈ {0, . . . ,m−2}, we have built Xi, and for all j ∈N and u≥ 2, Πi, j,u and
αi, j,u verifying the properties stated above. Let u≥ 2. We pose Πi+1,0,u = Πi,(m−i)u,u and αi+1,0,u = αi,(m−i)u,u. As
(m− i)u processes cover some of the m− i registers in X \Xi, by the pigeon holes theorem, at least one register, that
defines xi+1, is covered by at least u processes of Πi+1,0,u. All registers of Xi are covered by the same u processes
in C(αi+1,0,u) and in C(αi,(m−i)u,u). The other properties of αi+1,0,u are naturally deduced from the properties of
αi,(m−i)u,u.

Contradiction. Finally, in C(αm−1,1,2), some process covers a shared object in X \Xi = /0 by definition of m.
This is absurd, so A cannot exist.

Theorem 4. setOrDecrement has consensus number ∞2
1.

Proof. Direct consequence of Propositions 1, 2 and 3.

8 Objects with consensus number ∞3
1

As advocated in Section 6, binary consensus has long been known to be equivalent to multi-valued consensus
in the classical model M1. This section extends this result by presenting an implementation of multi-valued
consensus from binary consensus in the infinite arrival model, when an infinite memory allocation mechanism
is available (Proposition 4). Conversely, we also prove that binary consensus is not universal in multi-threaded
systems, because infinite memory allocation is necessary to solve multi-valued consensus in the finite arrival
model (Proposition 5). Interestingly, this means that Cons〈B〉 is not at the top of the extended wait-free hierarchy,
as it only has consensus number ∞3

1 (Theorem 5).

8.1 Binary consensus is universal in MA3

The sticky bit object, a resettable version of binary consensus, has been shown to be universal in MA1 in [18].
Reductions of multi-valued consensus to binary consensus have later been proposed for message-passing sys-
tems [17], and extended to M1 [19]. Algorithm 5 extends this result to the model MA3. Processes share three
infinite arrays: propose, isSet and cons. For each index j ∈ N, propose[ j] is intended to store the value pro-
posed by p j, isSet[ j] is a Boolean set to true only after propose[ j] has been set, and cons[ j] is a binary consensus
object in which true is decided if, and only if, the value of p j is decided. When a process pi proposes a value vali,
it first writes it to proposed[i] and sets isSet[i] to true to announce its value. Then, it browses the array indexes
in the increasing order of the identifiers, trying to agree with other participants whether or not proposed[ j] can be
decided.

Proposition 4. MA3[Cons〈B〉] is universal.
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constructor () is
1 proposed← new InfiniteArray(i 7→ new R/W-Register(⊥));
2 isSet← new InfiniteArray(i 7→ new R/W-Register(false));
3 cons← new InfiniteArray(i 7→ new Cons〈B〉);

operation propose(vali) is
4 proposed[i].write(vali);
5 isSet[i].write(true);
6 for j = 0,1,2, . . . do
7 seti← isSet[ j].read();
8 if cons[ j].propose(seti) then
9 return proposed[ j].read();

Algorithm 5: Consensus in MA3[cons〈B〉] (code for pi)

Proof. We prove that Algorithm 5 implements Cons〈N〉 in MA3[Cons〈B〉].

Termination. As all processes write true to isSet[i] (Line 5) before reading isSet[ j] (Line 7), the first access to
isSet is a write by some process p j0 . All processes pi executing the loop for j = j0 will propose true, so by
the validity property of binary consensus, no process executes an iteration for j > j0.

Agreement. By the agreement property of binary consensus, all deciding processes decide on the same round j,
which is the smallest x such that true is decided by cons[x].

Validity. Suppose pi decides at round j on Line 9. Some process read isSet[ j] = true on Line 7, so process p j
previously wrote true on Line 5, after writing its proposed value in proposed[r j] on Line 4. This is the value
returned by pi.

Finally, by Theorem 1, MA3[Cons〈N〉] is universal.

8.2 Binary consensus is not universal in M2

Although Algorithm 5 solves consensus in the infinite arrival model, it requires O(n) memory locations to syn-
chronize n processes. Similarly, to our knowledge, no known algorithm uses less than log2(n) binary consensus
objects to solve multi-valued consensus in Mn

1 in the worst case [23]. In this section, we prove that infinite memory
allocation is necessary to make binary consensus universal in the finite arrival model. Proposition 5 below actually
shows a more general result, stating that no deterministic object that can be in a finite number of states (which is
the case for binary consensus), is universal in the finite arrival model without infinite memory allocation. Similarly
to the proof of Proposition 3, the proof of Proposition 5 proposes a scheduler that builds executions in which all
shared registers are covered by enough processes to force two of them to decide different values (the definition
of covered register is adapted in Definition 8). Contrastingly, the proof of Proposition 5 differs from the proof of
Proposition 3 in that the indistinguishability arguments concern the values proposed by the different participants
(captured by a notion of valuation), rather than which processes participate.

Definition 8 (Covered register). Let p be a process and x an shared register. We say that p covers x in a configu-
ration C if the next step of p in C is a write to x.

Proposition 5. For all deterministic objects O with a finite number of reachable states, M2[O] is not universal.

Proof. Let O be a finite deterministic object, and let us suppose there exists an algorithm A that solves consensus
in M2[O]. Similarly to Proposition 3, we suppose, to simplify the proof, that processes start the algorithm by
writing their value to some register first, and finish it by writing their decided value in another register last, not
used otherwise in the algorithm. At the initialization of A, a finite set X of m = |X | registers is created (we do not
include instances of O in X , but their number must be finite in M2).

For all i ∈ {0, ...,m}, we pose ui = 2(m− i+ 1)!. We consider executions of processes in the finite set Π =
{p1, . . . , pu0}. We will now build, by induction on (i, j) ∈ N2, with 0 ≤ i < m and 0 ≤ j ≤ (m− i)ui+1, taken in
lexicographical order:

• A sequence xi ∈ X of shared registers (we define Xi = {x0, . . . ,xi});
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• A sequence Πi, j of sets of processes;

• A sequence Vi, j of infinite sets of integers (we define a valuation V of Vi, j as a function that associates some
V (p) ∈ Vi, j to each p ∈ Πi, j, and for all v ∈ Vi, j, let Vv be the constant valuation that associates v to each
p ∈Πi, j);

• For each valuation V of Vi, j, one execution αV
i, j;

Such that, for all valuations V,V ′ of Vi, j:

IH1i, j: All processes of Πi, j cover the same registers in C
(

αV
i, j

)
and C

(
αV ′

i, j

)
;

IH2i, j: All instances of O are in the same state in C
(

αV
i, j

)
and C

(
αV ′

i, j

)
;

IH3i, j: All registers of Xi are covered at least (ui− j) times in C
(

αV
i, j

)
;

IH4i, j: At least j processes of Πi, j cover shared registers of X \Xi in C
(

αV
i, j

)
;

IH5i, j: All registers of X \Xi are in their initial state in C
(

αV
i, j

)
;

IH6i, j: For each process p ∈Πi, j, C
(

αV
i, j

)
and C

(
α

VV (p)
i, j

)
are indistinguishable to p.

Initialization for i = 0 and j = 0. Let us pose x0 = first, Π0,0 = Π, and V0,0 = N. For each valuation V of V0,0,
let αV

0,0 be the execution in which each process p ∈Π proposes V (p) and stops executing when it is about to write
into x0 = first. By construction, all processes of Π0,0 cover first (hence, IH10,0), so x0 is covered u0 times (hence,
IH30,0), and O is in the initial state regardless of the valuation (hence, IH20,0). No process covered or wrote any

other register (hence, IH40,0 and IH50,0). Moreover, for all p and V , C
(

αV
i, j

)
and C

(
α

VV (p)
i, j

)
are indistinguishable

to p since the processes did not communicate (hence, IH60,0).

From j to j+1, for a fixed i. Suppose that, for some i < m and for some j < (m− i)ui+1, we have built Xi, Πi, j,
Vi, j and αV

i, j for all V , verifying the induction hypotheses IH1i, j to IH6i, j.

Let us remark that last /∈ Xi. Otherwise, by IH3i, j, at least ui− j > 2 processes would cover last in C
(

αV
i, j

)
for all valuations V of Vi, j. Let us take p and q amongst them, and let V be an injective valuation of Vi, j (V exists

because Πi, j is finite and Vi, j is infinite). Let αV , αp and αq be respectively the extensions of αV
i, j, α

VV (p)
i, j and

α
VV (q)
i, j , in which p and then q, took their last step and decided a value. In αp, all processes would have proposed

V (p) so p would decide V (p) by the validity property of consensus. By IH6i, j, αp and αV are indistinguishable
to p, so p would decide αV . Similarly, q would decide V (q) in αq and in αV , which would violate the Agreement
property of consensus.

Let us pick, arbitrarily, a set Φ⊂Πi, j of i+1 processes, each covering a different register from Xi in C
(

αV
i, j

)
(regardless of V , by IH1i, j). Φ exists because of IH3i, j, with ui− j > ui− (m− i)ui+1 > 1. Let us also pick,
arbitrarily as well, a process p ∈Φ. We pose Πi, j+1 = (Πi, j \Φ)∪{p}.

For all valuations Ṽ of Vi, j such that, for all q ∈ Φ, Ṽ (q) = Ṽ (p), we build α̃Ṽ
i, j as the extension of αṼ

i, j in
which, at first, each process q ∈ Φ takes one step, which overwrites all registers in Xi ; then, p takes steps until it
covers a register that is not in Xi. Such a situation must happen because, on the one side, A is wait-free so p cannot
run in isolation forever, and on the other side, p must write into last /∈ Xi before terminating.

On the one hand, since Vi, j is infinite, there is an infinite set S of valuations on Vi, j that are constant on Φ. On
the other hand, there are a finite number of ways for p to cover a register not in Xi and finitely many instances of O
with finitely many states. Therefore, by the pigeon holes Theorem, there exists an infinite subset S′ of S such that,
for all valuations Ṽ and Ṽ ′ of S′ that are constant on Φ, p covers the same register, and all instances of O are in
the same state, in C

(
α̃Ṽ

i, j

)
and C

(
α̃Ṽ ′

i, j

)
. Let us pose Vi, j as the union of the ranges of the valuations in S′. For all

valuations V of Vi, j+1, we define Ṽ as the valuation of Vi, j such that Ṽ (q) =V (q) for all q ∈Πi, j and Ṽ (q) =V (p)
for all q ∈Φ, and we let αV

i, j+1 = α̃Ṽ
i, j.
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Let V and V ′ be two valuations of Vi, j+1. By construction, and by IH1i, j and IH2i, j, all processes of Πi, j cover

the same registers, and all instances of O are in the same states in C
(

αV
i, j+1

)
and C

(
αV ′

i, j+1

)
, hence IH1i, j+1 and

IH2i, j+1. Moreover, all registers in Xi are still covered by the processes in Πi, j \Φ, hence IH3i, j+1. Adding p to

the j processes that already covered registers from X \Xi in C
(

αṼ
i, j

)
(by IH4i, j), j+ 1 processes cover registers

that are not in Xi, in C
(

αV
i, j+1

)
, hence IH4i, j+1. Registers not in Xi were in their initial state in αṼ

i, j by IH5i, j, and

were not overwritten in αV
i, j+1, hence IH5i, j+1.

Let q ∈Πi, j+1. If q 6= p, the local state of q is the same in C
(

αV
i, j+1

)
and in C

(
αṼ

i, j

)
, and by IH6i, j, C

(
αṼ

i, j

)
and C

(
α

VV (q)
i, j

)
are indistinguishable to q, so C

(
αV

i, j+1

)
and C

(
α

VV (q)
i, j+1

)
are indistinguishable to q. Moreover, in all

the steps of αV
i, j+1 following αṼ

i, j, p only read from (1) the state of instances of O, which are the same in C
(

α
VV (p)
i, j

)
and C

(
αṼ

i, j

)
by IH2i, j, (2) the shared registers of Xi, that were overwritten by processes of Φ with the same value

in αV
i, j+1 and α

VV (p)
i, j+1 by IH6i, j and by definition of Ṽ , and (3) the other shared registers that are in their initial state

by IH5i, j. Therefore, C
(

αV
i, j

)
and C

(
α

VV (p)
i, j

)
are indistinguishable to p. Hence, IH6i, j+1.

From i to i+1. Suppose that, for some i < m−1, and for j = (m− i)ui+1, we have built Πi, j, Vi, j and αV
i, j for

all V , verifying the induction hypotheses IH1i, j to IH6i, j stated above.
We pose Πi+1,0 = Πi, j, Vi+1,0 = Vi, j and for all valuations V of Vi+1,0, αV

i+1,0 = αV
i, j. By IH4i, j and the pigeon

holes Theorem, there exists one of the m− i registers in X \Xi, that defines xi+1, that is covered by at least ui+1
processes of Πi+1,0.

Induction hypotheses IH1i+1,0, IH2i+1,0, IH5i+1,0 and IH6i+1,0 trivially follow from IH1i, j, IH2i, j, IH5i, j and
IH6i, j, respectively, and IH4i+1,0 is a tautology when j = 0. By IH3i, j, all registers of Xi are covered at least

ui− j = ui+1 times in C
(

αV
i, j

)
, and so is xi+1 by construction, hence IH3i+1,0.

Contradiction. To conclude the proof, let us consider the last step in the induction above, with i = m− 1 and
j = (m− i)ui+1 = 2. By IH4m−1,2, at least 2 processes cover shared objects in X \Xi = /0 by definition of m. This
is absurd, so A cannot exist.

Theorem 5. Binary consensus has consensus number ∞3
1.

Proof. As stated earlier, M1[Cons〈B〉] is universal, and, by Proposition 4, so is MA3[Cons〈B〉]. Moreover, as
Cons〈B〉 has a finite number of states, M2[Cons〈B〉] is not universal by Proposition 5. In conclusion, Cons〈B〉 has
consensus number ∞3

1.

9 Objects with consensus number ∞3
2

Because an object with consensus number ∞3
1 is universal in MA3 and an object with consensus number ∞2

2 is
universal in M2, their composition can only have consensus number ∞3

2 or ∞3
3. In this section, we prove that the

composition of binary consensus and iterator stacks, our respective examples for consensus numbers ∞3
1 and ∞2

2,
is not universal in M3 (Proposition 6), so it has consensus number ∞3

2 (Theorem 6).
Similarly to propositions 3 and 5, the proof of Proposition 6 proposes a scheduler that builds a Π′-partitioned

execution, keeping track of a subset Π′ of processes that have never communicated with each other, and in which
more and more shared objects are covered (Definition 9 adapts the notion of coverage to take iterator stacks and
binary consensus objects into account, and adds a property that applies to the whole configuration). The major
difficulty is that iterator stacks cannot be overwritten by a finite number of processes, and the valency-based
proof introduced in [2] cannot be adapted to a setting where binary consensus objects can be used in a critical
configuration. Lemma 15 allows the scheduler to introduce a flow of newly arrived processes that, by covering,
reading or writing all iterator stacks, prevents any chosen process trying to access an iterator stacks from learning
any valuable information about the existence of other processes. This intuition is specified in Definition 10, by the
concept of blind extensions.
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Definition 9 (Covered configuration). An object x is write-covered by a process p in a configuration C if: (1) x is
a register and the next step of p in C is a write on x, (2) x is a binary consensus object and the next step of p in C
is to propose a value to x, or (3) x is an iterator stack and the next step of p in C is a write on x.

An object x is covered by a process p in a configuration C if x is write-covered, or x is an iterator stack and
the next step of p in C is a read on x.

Let Π′ ⊂Π be a set of processes, let n ∈ N, and let Y be a set of shared objects. We say that a configuration C
is (Π′,n,Y )-covered if, in C, all objects in Y are covered at least n times by processes from Π′, and, in the case of
a binary consensus object x, at least n processes are about to propose the same value.

Definition 10 (Blind extension). Let α be a (Π′,∼, p)-partitioned execution. We say that αβ is a blind extension
of α if no process took steps in both α and β , and for each process q taking steps in β , there is an extension αpβ ′

of αp such that the local state of q is the same in C(αβ ) and in C(αpβ ′). In other words, only fresh processes took
steps in β , but they could not learn about the existence of processes other than those that are equivalent to p.

Lemma 15. Let α be a (Π′,∼, p)-partitioned execution of a consensus algorithm A, let X be the set of objects
instantiated at the set-up of A, and let m = |X |. For all k ∈ {0, . . . ,m}, there exists a blind extension αβ of α such
that either:

• at least k different objects are write-covered in C(αβ ) by processes q1, · · · ,qk that did not take steps in α ,
or

• some process q that did not take any step in α terminates its execution.

Proof. We prove the lemma by induction on k. For k = 0, we pose β = ε , the empty execution. Let us suppose, as
the induction hypothesis H(k), that the lemma holds for some k ∈ {0, . . . ,m−1}. We start the proof of H(k+1)
by proving a claim.

Claim 2. There exists a blind extension αβ of α such that either:

• at least k different objects are write-covered in C(αβ ) by processes q1, ...,qk that did not take steps in α ,
and one more different object is covered in C(αβ ) by a process qk+1 that did not take steps in α , or

• some process q that did not take any step in α terminates its execution.

Proof. Suppose this claim is false. We build an infinite execution αβ0β1β2 . . . in which some process q takes
an infinite number of steps, such that each extension αβ0 . . .βn of α is blind. Let w be the number of writes on
iterator stacks in α , let αβ0 = αγ1 . . .γw+2 be the blind execution obtained after invoking the induction hypothesis
H(k), w+2 times, and let Yl be the set containing the k objects write-covered in γl , for each l. Let q be a process
that did not take steps in αβ0. As we supposed the claim was false, Y =

⋃w+2
l=1 Yl has size k and each object y ∈ Y

is write-covered at least w+2 times in C(αβ0).
Suppose we have built a blind extension δn =αβ0 . . .βn of α . We build βn+1 as follows, such that αβ0 . . .βnβn+1

is a blind extension of α . As we supposed the claim was false, q cannot terminate its execution in its next step.

• Suppose q is about to read an iterator stack y ∈ Y in configuration C(δn). Let w′ be the number of writes on
some iterator stack in δn. We build δn+1 = δnζ1 . . .ζw′η as follows: each ζl is the result of one invocation
of the induction hypothesis H(k). As we supposed the claim was false, the set of write-covered objects in
each ζl is Y . In particular, in C(δnζ1 . . .ζw′), y is write-covered w′ times by processes that did not take steps
in δn. In η , we let w′ processes write in y, then q reads in y and gets one of the values written by one of
these processes, which ensures the extension is blind.

• If q is about to write into an iterator stack y ∈Y in configuration C(δn), βn+1 is solely composed of the next
step of q. The write returns an iterator i = iα + i′, where iα is the number of writes on y in α and i′ is the
number of writes on y in β0 . . .βn. As iα ≤ w, q cannot distinguish the return value with a return value it
would have had if its write in y was preceded by iα writes from processes that arrived in β0, so the extension
is blind.

• Otherwise, in configuration C(δn), q is about to execute a local step, read from a register x ∈ X , write into a
register y ∈ Y , propose a value to a consensus object y ∈ Y , or access an object instantiated during β0 . . .βn
or in α by some process p′ ∼ p. In all these cases, βn+1 is solely composed of the next step of q, which is a
blind extension of δn.
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Supposing the claim is false, we built an execution in which process q takes an infinite number of steps, which
contradicts wait-freedom and concludes the proof of the claim.

Let us continue the proof of Lemma 15 by supposing that H(k+ 1) is false. We build an infinite execution
αβ0β1β2 . . . in which some process q takes an infinite number of steps, and such that each extension αβ0 . . .βn is
blind.

Let w be the number of write operations on iterator stacks in α , and w′ = (m− k)(w2 +1). Remark that w′ is
an upper bound on the number of read operations that can return a non-⊥ value in (m− k) iterator stacks, starting
from C(α). We build αβ0 = αγ1 . . .γw′+1 such that each γl is the blind extension given by the claim. As we
supposed H(k+1) was false, 1) a set Y of k objects are write-covered (w′+1) times in C(αβ0) by processes that
arrived in β0, 2) no process wrote in an iterator stack y /∈ Y in β0, and 3) (w′+1) processes that did not take steps
in α are about to read iterator stacks that are not in Y . Let Φ be the set of these (w′+1) processes.

Let us suppose we have built a blind extension δn = αβ0 . . .βn of α such that some process in Φ took at least
one step in βl , for each l ≤ n. To build βn+1, we pick some process q ∈ Φ that did not read a value v 6= ⊥ in an
iterator stack y /∈Y in δn. Such a process does exist because if the hypothesis that H(k+1) is false then no process
wrote in an iterator stack y /∈ Y in β0 . . .βn. On the other side, it is impossible to read a non-⊥ value in an iterator
stack y /∈ Y more than w′ < |Φ| times. Moreover, if the hypothesis that H(k+1) is false, then q cannot terminate
its execution in its next step.

• Suppose q is about to read from an iterator stack y∈Y in configuration C(δn). Let w′′ be the number of writes
on iterator stacks in δn, and let us build δn+1 = δnζ1 . . .ζ2w′′η as follows. Let λ1 = δn and λi = δnζ1 . . .ζi−1
for i > 1. For each i ∈ {1, . . . ,2w′′}, λiζi is the shortest blind extension of λi such that a process that did not
take steps in λi, is about to write in y, or to read from y in the same iterator as q. Such an extension exists
by the claim and the supposition that H(k+1) is false. By the pigeon holes theorem, two cases are possible
in C(δnζ1 . . .ζ2w′′). If at least w′′ new processes are about to read y, then η contains their read, and then the
read by q returning ⊥. Otherwise, at least w′′ new processes are about to write in y, and η contains their
write and the read by q, that returns a value written in η . In both cases, δn+1 is blind.

• If q is about to write in an iterator stack y ∈ Y in configuration C(δn), the only step of βn+1 is the write
operation of q. As described in the claim, the fact that y is write-covered at least (w′′+1) times by processes
arrived in β0, which is more than the number of writes on y in α , implies that the extension is blind.

• In the other cases, in configuration C(δn), process q is about to execute a local step, to read from a register
x ∈ X , to write into a register y ∈ Y , to propose a value to a consensus object y ∈ Y , or to access an object
instantiated during β0 . . .βn or in α by some process q′ ∼ q. In all these cases, βn+1 is solely composed of
the next step of q, which is a blind extension of δn.

Assuming H(k+ 1) is false, we have built an execution in which a finite number of processes takes an infinite
number of steps, which contradicts wait-freedom and concludes the proof.

Proposition 6. M3[Cons〈B〉,IStack] is not universal.

Proof. Suppose there exists an algorithm A that solves consensus in M3[Cons〈B〉,IStack]. Similarly to Proposi-
tion 3, we suppose that processes start the algorithm by writing their value to some register first, and finish it by
writing their decided value to another register last. At the initialization of A, a finite set X of |X |= m objects are
created.

For all i∈ {0, ...,m}, we pose ui = (m− i+1)!2m−i+1. We consider an execution in which Π= {p0, p1, p2, . . .}
is infinite and each process pi proposes its identifier i to consensus. We will now build, by induction on (i, j)∈N2,
with 0≤ i < m and 0≤ j ≤ 2× (m− i)×ui+1, taken in lexicographical order:

• A sequence xi ∈ X of shared objects of X (we define Xi = {x0, . . . ,xi});

• A sequence Πi, j of processes sets;

• A sequence αi, j of Πi, j-partitioned executions (let ∼i, j be the equivalence relation) leading to a (Πi, j,ui−
j,Xi)-covered configuration, such that at least j processes of Πi, j cover objects that are not in Xi, and these
objects are in their initial state.

24



Initialization for i = 0 and j = 0. We pose Π0,0 = Π and x0 = first. In execution α0,0, each process pk ∈
{p0, . . . , pu0} proposes its identifier k and stops executing when it is about to write in first. As no operation on
shared objects has occured in α0,0, α0,0 is Π0,0-partitioned and C(α0,0) is (Π0,0,u0,X0)-covered.

From j to j + 1, for a fixed i. Suppose that, for some i ∈ {0, . . . ,m− 1}, we have built Xi, and for some
j < 2×(m−i)×ui+1, we have built Πi, j and αi, j verifying the properties stated above. We build αi, j+1 =αi, jβi, jγi, j
and Πi, j+1 as follows.

Let us first remark that last /∈ Xi. Otherwise, at least ui− j > 2 processes pA 6= pB ∈ Πi, j would be about
to write respectively a and b to the register last in C (αi, j), such that a was proposed by process pa and b was
proposed by process pb, with pa ∼i, j pA �i, j pB ∼i, j pb, by validity of consensus. Then, pA and pB would decide
different values violating the agreement property of consensus.

Let us pick, arbitrarily, a set Φ⊂ Πi, j of i+1 processes, each covering a different register from Xi in C (αi, j)
(recall that each of them is covered at least ui− j > 1 times). The extension βi, j is composed of one step of each
process in Φ. Let us also pick, arbitrarily as well, a process p ∈ Φ. We pose Π′ = (Πi, j \Φ)∪{p}, and let ∼′ be
the equivalence relation built by merging the classes of equivalence of processes of Φ, in ∼i, j. Execution αi, jβi, j
is (Π′,∼′, p)-partitioned.

Let αi, j+1 = αi, jβi, jγi, j be the shortest blind extension of αi, jβi, j such that, in C(αi, jβi, jγi, j), some process q
covers an object y /∈ Xi or terminate its execution. Such an extension exists by Lemma 15 for k = i+ 1. Since q
cannot terminate itts execution before covering last /∈ Xi, q covers an object y /∈ Xi in C(αi, jβi, jγi, j). Moreover, as
we considered the shortest such extension, objects that are not in Xi are still in their initial state.

Let Πi, j+1 = (Πi, j \Φ)∪{q}, and let∼i, j+1 be the equivalence relation built by merging the classes of equiva-
lence of processes of Φ, in ∼i, j and adding all processes introduced in γi, j in the class of equivalence of q. Execu-
tion αi, j+1 is (Πi, j+1,∼i, j+1,q)-partitioned because αi, jβi, j is (Π′,∼′, p)-partitioned and αi, j+1 is a blind extension
of αi, jβi, j. Moreover, C

(
αi, j+1

)
is (Πi, j+1,ui− ( j+ 1),Xi)-covered by the same processes as C (αi, jβi, j), and q,

as well as j processes from Πi, j, cover objects that are not in Xi.

From i to i+1. Suppose that, for some i ∈ {0, . . . ,m−2} and j = 2× (m− i)×ui+1, we have built Xi, Πi, j and
αi, j verifying the properties stated above.

At least j = 2× (m− i)×ui+1 objects are covered in αi, j. By the pigeon holes theorem, there exists one of the
m−k objects that is not in Xi, denoted by xi+1, covered by at least 2×ui+1 processes. If xi+1 is a binary consensus
object, by the pigeon holes theorem again, the most proposed value is proposed at least ui+1 times. Let us denote
by Φ the set of these processes. Moreover, at least ui− j = 2ui+1 > ui+1 processes of Πi, j cover each object in Xi.
Let us denote by Ψ the set of these processes.

We pose αi+1,0 =αi, j and Πi+1,0 =Φ∪Ψ. Execution αi+1,0 is Πi+1,0-partitioned and C(αi+1,0) is (Πi+1,0,ui+1,Xi+1)-
covered, which concludes the induction.

Contradiction. Let us consider the last step in the induction above, with i = m − 1 and
j = 2× (m− i)× ui+1 = 4. At least 4 processes cover shared objects in X \Xi = /0 by definition of m. This is
absurd, so A cannot exist.

Theorem 6. The composition of iterator stacks and binary consensus has consensus number ∞3
2.

Proof. By [2], M2[IStack] is universal, and by Proposition 4, MA3[Cons〈B〉] is universal, so IStack+Cons〈B〉
has at least consensus number ∞3

2. By Proposition 6, IStack+Cons〈B〉 has at most consensus number ∞3
2.

10 Conclusion
This paper explores the universality of shared objects in the infinite arrival model where it is not possible to
allocate and initialize, at once, an infinite number of memory locations. For that, we extend the existing wait-free
hierarchy by separating the objects having an infinite consensus number into five categories, according to their
universality in the bounded, finite or infinite arrival models, and the need or not of an infinite memory allocation
mechanism. This paper raises several new open issues, that we detail thereafter.

We proposed a universal construction using consensus objects and read/write registers, in which all invoked
operations are stored twice in infinitely growing logs. Although this construction serves the purpose of proving
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the universality of consensus in all considered models, its complexity makes it impractical. An interesting open
problem is the space complexity of universal constructions in multi-threaded systems, including in situations
where different special instructions, such as compare-and-swap, are available.

We supposed that processes share an infinite memory. Although this assumption is central to the definition
of the Turing Machine at the basis of computer science, it naturally implies that pointers to memory locations
have infinite size, which is less practical. Without this assumption, multi-valued consensus could be solved using
a number of binary consensus objects equal to the size of a pointer [23]. An interesting open problem is the
existence of a shared object with consensus number ∞3

1 that does not have a poly-logarithmic implementation of
consensus in MA2.

Finally, the example of an object having consensus number ∞3
2 we exhibited in this paper is a composition of

two objects having a consensus number resp. ∞2
2 and ∞3

1. It would be interesting to investigate if this is always
the case. This can be split into two questions. Does there exist an object of consensus number ∞3

2 that cannot be
expressed as such a composition? Conversely, does there exist two objects of consensus number ∞2

2 and ∞3
1 whose

composition has consensus number ∞3
3?
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[9] Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for concurrent objects.
Theoretical Computer Science, 411(51-52):4379–4398, 2010.

[10] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with one
faulty process. J. ACM, 32(2):374–382, 1985.

[11] Eli Gafni, Michael Merritt, and Gadi Taubenfeld. The concurrency hierarchy, and algorithms for unbounded
concurrency. In Proceedings of the twentieth annual ACM symposium on Principles of distributed computing,
pages 161–169. ACM, 2001.

26



[12] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(1):124–149, 1991.

[13] Maurice Herlihy, Sergio Rajsbaum, and Michel Raynal. Power and limits of distributed computing shared
memory models. Theor. Comput. Sci., 509:3–24, 2013.

[14] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann, 2008.

[15] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[16] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Commun. ACM, 17(8):453–
455, 1974.

[17] Achour Mostefaoui, Michel Raynal, and Frédéric Tronel. From binary consensus to multivalued consensus
in asynchronous message-passing systems. Information Processing Letters, 73(5-6):207–212, 2000.

[18] Serge A Plotkin. Sticky bits and universality of consensus. In Proceedings of the eighth annual ACM
Symposium on Principles of distributed computing, pages 159–175, 1989.

[19] Michel Raynal. Concurrent Programming - Algorithms, Principles, and Foundations. Springer Science &
Business Media, 2012.

[20] Michel Raynal. Distributed universal constructions: a guided tour. Bulletin of the EATCS, 121, 2017.

[21] Gadi Taubenfeld. Distributed Computing Pearls. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers, 2018.

[22] R Kent Treiber. Systems programming: Coping with parallelism. International Business Machines Incorpo-
rated, Thomas J. Watson Research . . . , 1986.

[23] Jialin Zhang and Wei Chen. Bounded cost algorithms for multivalued consensus using binary consensus
instances. Information Processing Letters, 109(17):1005–1009, 2009.

27


