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Abstract

We develop a comprehensive continuum model capable of treating both elec-
trostatic and structural interactions in liquid dielectrics. Starting from a two-
order parameter description in terms of charge density and polarization, we
derive a field-theoretic model generalizing previous theories. Our theory explic-
itly includes electrostatic and structural interactions in the bulk of the liq-
uid and allows for polarization charges within a Drude model. In particular,
we develop a detailed description of the boundary conditions which include
the charge regulation mechanism and surface polarization. The general fea-
tures for solving the saddle-point equations of our model are elucidated and
future applications to predict and validate experimental results are outlined.
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1 Introduction

The continuous development and improvement of modern experimental techniques
is pushing the resolution limits in soft matter systems continuously further down
towards atomistic regimes. As an example one can take the advances made with
the application of different varieties of atomic-force microscopy (AFM) in liquids.
Both conventional methods and the recently developed 3D-AFM technique [1–6]
meanwhile allow access to unprecedented molecular and atomistic detail of liquids,
notably aqueous ionic solutions, near hydrophilic and hydrophobic surfaces.

These successes, in turn, challenge theory. The parallel advances made in molecu-
lar computation, in addition in combination with machine learning approaches, seem
to render purely theoretical approaches obsolete: theorists may want to lay down
their original weapons and declare defeat. This view was recently expressed in the
work of Mugele and collaborators. They notice that it is difficult or perhaps impos-
sible to decouple the total monotonically decaying force into various well-defined
separate contributions like DLVO and/or non-DLVO interactions, “because one can-
not develop a universal Poisson-Boltzmann theory accounting for all nonelectrostatic
effects (ionic chemical nature, size, charge, polarizability, and solvation)” [6].

In this paper we take up this challenge by developing a comprehensive field-
theoretic continuum model extending standard Poisson-Boltzmann-type theories.
The starting point of our analysis is our recently developed field theory of structured
dielectrics [7], in which the bulk theory was developed based on a two-order parame-
ter description in terms of charge density and polarization. In the development of this
theory we were guided by the Onsager-Dupuis theory of the dielectric properties of
ice [8–11]. For a recent perspective on how our work [7] can be placed in the context
of earlier theories of polarization, see [12].

In order to bring this approach close to experiment, in this work we extend the
basic theory in several respects. First, for the bulk system, we go beyond the pre-
vious formulation by explicit allowance for polarizability of the solvent, which we
treat in terms of a Drude model. More importantly, we develop the formulation of
the boundary conditions in detail, overall missing from previous endeavours, allow-
ing for surface polarization as well as for charge regulation mechanisms. This part
is the main new result of the present paper. Having formulated our general theory,
we discuss how the saddle-point equations can be solved together with the bound-
ary conditions. In closing we discuss experimental systems of interest to which our
theory can be applied in the future.

2 A continuum model for a polarizable dipole-ion

mixture

In our previous work we considered a structured liquid dielectric described by charge
density and solvent polarization in a harmonic approximation and formulated the cor-
responding field theory for a bulk system [7]. Here, we first revisit the formulation of
this theory by including the polarizability of the solvent dipoles, the non-electrostatic
dipole-dipole interaction and the charge-dipole hydration coupling. In the subsequent
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step, we derive a general expression for the surface free energy and the associ-
ated boundary conditions, which completes the development of our formalism and
prepares our theory for applications to a variety of experimental systems.

2.1 Bulk equations

The physical components of the system we study are the solvent molecules and the
electrolyte cations and anions. The polarizability of the constituents is implemented
via harmonically connected Drude charges; this is fully described in Appendix A.
Our approach begins with the identification of the appropriate order parameters; for
a motivation, see, e.g., Ref. [13]. For the simple electrolyte component we can define
the cation and anion density fields

ρ̂(±)(x)≡±e ∑
(±)

δ (x−xn)+qI ∑
(±)

ℓi ·∇ δ (x−xi), (1)

where e is the elementary charge of the salt ions and qI (assumed to be the same for
both types of ions) are the Drude charges, with a fluctuating separation ℓi exhibiting
an average of 〈ℓi〉 = 0 and a variance of

〈

ℓ2
i

〉

= σ2
I . The solvent molecule dipolar

charge is now given as

ρ̂(N)(x) = = qD ∑
(N)

ℓi ·∇ δ (x−xi). (2)

For the solvent molecules the fluctuating distance between the two Drude charges,
ℓi, has an average of 〈ℓi〉= s and a variance of

〈

ℓ2
i

〉

= σ2
D. Through we use the same

symbol for the ionic and polarization Drude fluctuating separation, the context and
properties are clearly different.

The total charge density field subject to Coulomb interactions is then given by
the sum of the ionic charges and the divergence of the total polarization vector

ρ̂(x) = ±e ∑
(±)

δ (x−xi)+∇ · P̂(x). (3)

with the total polarization given by

P̂(x) = qD ∑
(N)

ℓiδ (x−xi)+qI ∑
(±)

ℓiδ (x−xi), (4)

where we reiterate that 〈ℓi〉= s for the solvent (N) and 〈ℓi〉= 0 for ions (±).
The total Coulomb interaction energy has the standard form

HC = 1
2

∫ ∫

V
dx dx′ ρ̂(x)u(x−x′)ρ̂(x′) (5)

where the Coulomb kernel corresponds to the dielectric constant given solely by
its non-configurational part, corresponding to the high-frequency dielectric constant,
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ε∞ = ε(ω −→ ∞), i.e.

u =
1

4πε∞ε0 |x−x′|
, with u−1 =−ε∞ε0 ∇2δ (x−x′), (6)

where ε∞ accounts for all the relaxation mechanisms at higher relaxation frequencies.
Clearly, while the Coulomb potential presents a non-local coupling, its inverse is a
purely local operator.

The non-electrostatic short-range interactions (denoted by a tilde symbol) act
between local solvent dipoles and can be written in a quadratic approximation as

HSR = 1
2

∫ ∫

V
dx dx′ P̂i(x)ũi j(x−x′)P̂ j(x

′), (7)

where ũi j(x−x′) is a short-range, non-electrostatic interaction potential. A minimal
model expression for this potential is the fourth order non-local derivative expression

ũi j(x−x′) = ũP(0)
(

δi jδ (x−x′)+ξ 2 ∇′
j∇iδ (x−x′)+ζ 4∇′

k∇′
j∇k∇iδ (x−x′)

)

+ . . . (8)

for the dipolar interactions, containing the correlation and the structural length of the
solvent, implying the following form of the structural interaction free energy

HSR = 1
2 uP(0)

∫

V
dx
(

P̂2(x)+ξ 2 (∇ · P̂(x)
)2

+ζ 4 (∇(∇ · P̂(x))
)2
)

. (9)

There is no universality in the non-electrostatic interactions and they are invariably
linked with different models of the liquid structure. Higher-order terms either in the
polarization vector or its derivatives are also possible, e.g., close to an ordering tran-
sition of water dipoles where the polarization energy could be written in a Landau
form consistent with presumed microscopic symmetries [14, 15].

Next we consider the hydration shell of the ions that corresponds to the coupling
between the ion density and ρ̂(±)(x) and P̂(x). To the lowest order this coupling could
be written as

HHY =
∫ ∫

V
dxdx′ ρ̂(x)ũ(x−x′) ∇ · P̂(x′), (10)

where the potential ũ(x− x′) is again a short-range, non-electrostatic potential that
can be modeled as

ũ(x−x′) = α δ (x−x′)+ . . . (11)

We assumed that the hydration polarization for anions and cations is - apart from the
direction - identical for both. The implied hydration free energy then assumes the
form

HHY = α
∫

V
dx ρ̂(x) ∇ · P̂(x). (12)
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The total interaction energy equals the sum of the above three contributions, i.e.,

H = HC +HSR +HHY . (13)

In the next step we introduce the two collective variables, ρ(x) and P(x), which
imply also two auxiliary fields, E(x), φ(x), which on the mean-field level turn out to
be the non-electrostatic part of the polarization vector and the electrostatic potential
scalar. On the saddle-point (mean-field level) the free energy can be cast into the form
of a functional of the collective order parameters and auxiliary fields given by

βF [P(x),ρ(x); E(x),φ(x)] ≡ 1
2

∫ ∫

V
dxdx′ Pi(x)ũi j(x−x′)P j(x

′)+

1
2

∫ ∫

V
dxdx′ ρ(x)u(x−x′)ρ(x′)+

∫ ∫

V
dxdx′ ρ(x)ũ(x−x′)∇ ·P(x′)

−
∫

V
dx Pi(x)Ei(x)−

∫

V
dx ρ(x)φ(x)−V [E(x),φ(x)], (14)

where V [E(x),φ(x)] is the one-particle partition function of the system in an external
field with the field Hamiltonian H̃ ∗ of the form

βH̃
∗[E(x),φ(x)] =

∫

V
dx P̂(x) ·E(x)+

∫

V
dx ρ̂(x)φ(x)

= qD ∑
(N)

ℓi

(

E(xi)−∇φ(xi)
)

+qI ∑
(±)

ℓi

(

E(xi)−∇φ(xi)
)

+

+∑
(+)

eφ(xi)−∑
(−)

eφ(xi), (15)

with vector and scalar (external) auxiliary fields. The one particle partition function
is then obtained by taking the trace over all the particle degrees of freedom, that is

e−V [E(x),φ(x)] =
〈

e−βH̃

〉

(16)

where the symbolic average stands for the trace over the particle coordinates and
internal degrees of freedom, i.e., the extension ℓi and the orientation n for the Drude
model description. In addition this average can be taken either for a grand canonical
ensemble or for a lattice gas ensemble, resulting in two different forms of the one-
particle partition function V [E(x),φ(x)]. The one-particle partition function can be
obtained explicitly for a mixture of a polarizable solvent - electrolyte solute by first
defining

υ (E(x),φ(x)) ≡ eµD
sinh(βqDs |∇φ(x)−E(x)|)

qDβ s |∇φ(x)−E(x)|
e

1
2 (β σqD)

2(∇φ(x)−E(x))
2

+

2eµ± coshβeφ(x)e
1
2 (β σqI)

2(∇φ(x)−E(x))
2

. (17)
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Then we have in the grand canonical ensemble

V [E(x),φ(x)] =
∫

d3r υ (E(x),φ(x)) , (18)

while the lattice gas ensemble leads to

V [E(x),φ(x)] =
1
a3

∫

d3r lnυ (E(x),φ(x)) . (19)

We assume that for a univalent electrolyte the chemical potentials satisfy µ± =
µ− = µ+, while a3 is the volume of a site in the lattice gas partition function. Apart
from the contribution of the polarizability on the Drude model level, the expression
matches the one derived before [7]. We also note that in the pure electrostatic case
(E = 0, see below) and with equal polarizability for the solvent and solute species,
the polarizability terms decouple from the rest of the free energy.

We note that the above expressions differs from the case of the fixed dipole-ion
mixture analyzed by Abrashkin et al. [16? ] and others as well as from the polar-
izable dipole-ion mixture analyzed by Buyukdagli et al. [18] and others, or indeed
from the polarizable ion case as formulated by Demery et al. [19, 20] and others.
There are, indeed, two crucial differences: the inclusion of the polarizability terms
for the solvent moelcules as well as the solute ions, and the dipolar orientational
field, ∇φ(x)−E(x), which is given by the sum of the non-electrostatic component
of polarization and the electrostatic field, i.e., accounting for electrostatic as well as
non-electrostatic orientational ordering, as we show explicitly in what follows.

Inserting the non-local potentials Eqs. (6), (8), (11) explicitly into the free energy
allows us first to write down the equivalent mean-field form of the free energy, Eq.
(14), as

βF [P(x); E(x),φ(x)] ≡ 1
2 uP(0)

∫

V
dx
(

P̂2(x)+ξ 2 (∇ · P̂(x)
)2

+ζ 4 (∇(∇ · P̂(x))
)2
)

− 1
2 ε∞ε0

∫

V
dx
(

∇(φ(x)−α(∇ ·P(x))
)2

−
∫

V
dx Pi(x)Ei(x)−V [E(x),φ(x)].

(20)

The free energy is now cast into a completely local form and the corresponding form
of the Euler-Lagrange equations are obtained straightforwardly. The transformation
of the general non-local free energy Eq. (14) into a local form, i.e., containing only
local kernels, is important for our later analysis of the boundary conditions.

In deriving the Euler-Lagrange equations for the above free energy one needs to
remember that for the free energy density dependent on the first derivatives of a field,
fV (u,∇u), the Euler-Lagrange equations have the standard form

∂ fV

∂u
−∇

( ∂ fV

∂∇u

)

= 0, (21)



Springer Nature 2021 LATEX template

A comprehensive continuum theory of structured liquids 7

while for the free energy density dependent on the first and second derivatives of a
field, fV (u,∇u,∇2u), the Euler-Lagrange equations then read as

∂ fV

∂u
−∇

( ∂ fV

∂∇u

)

+∇2
( ∂ fV

∂∇2u

)

= 0. (22)

With this in mind, the variation of the free energy with respect to polarization, δP(x),
leads to the following equation for the polarization vector

uP(0)P(x)−uP(0)ξ
2∇(∇ ·P(x))+uP(0)ζ

4∇2 (∇ ·P(x))+

+αε∞ε0∇2
(

φ(x)−α (∇ ·P(x))
)

−E(x) = 0. (23)

From the above equation it follows straightforwardly that the auxiliary field E is
coupled exclusively with non-electrostatic dipolar and hydration interactions.

The variation with respect to the auxiliary polarization field, δE(x), leads to the
modified non-linear Langevin-Poisson constitutive relation

−P(x)−
∂

∂E(x)
υ (E(x),φ(x)) = 0, (24)

while the variation with respect to the auxiliary electrostatic potential, δφ(x), yields
the modified non-linear Poisson-Boltzmann equation

− ε∞ε0∇2
(

φ(x)−α (∇ ·P(x))
)

−

(

∂

∂φ(x)
−∇

(

∂

∂∇φ(x)

))

υ (E(x),φ(x)) = 0.

(25)

The three Euler-Lagrange equations, Eqs. (23), (24) and (25), then correspond to the
definition of the non-electrostatic part of polarization auxiliary field, the polarization
field constitutive equation, and the generalized Poisson-Boltzmann equation.

These are the final equations valid in the bulk of the system. We next analyze the
boundary conditions.

2.2 Boundary terms and boundary conditions

In an inhomogeneous system, which is the standard in (bio)colloid science, the bulk
is delimited by boundary surfaces. Often the surface is idealized to the extent that it
presumably imposes some kind of ad hoc boundary conditions on the inhomogeneous
mean-field solution. We believe these types of - otherwise easily implementable
approaches - are insufficient to describe the intricacies of the solution-interface inter-
actions. In fact boundary surfaces and their interactions with the vicinal solution ions
as well as solvent molecules give no hint of universality, and a plethora of models
exist to describe these surface-solution interactions.

The existence of surfaces implies boundary conditions for the order parameters
and auxiliary fields that have to be consistent with the underlying free energies [21].
In order to derive these boundary conditions we need to include the variation of
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the bulk fields as well as the surface fields into the Euler-Lagrange equations [22].
For a free energy that decouples into a volume part with density fV (u,∇u) and a
surface part with density fS(uS), index S denoting the surface value, the complete
Euler-Lagrange equations Eq. (21) then also contains a surface part

n ·

(

∂ fV

∂∇u

)

S

+
∂ fS

∂uS

= 0 (26)

where n is the boundary surface normal. For the field which enters the free energy
also with a second derivative, fV (u,∇u,∇2u), the surface part of the Euler-Lagrange
equations Eq. (22) then reads

n ·
(

( ∂ fV

∂∇u

)

−∇
( ∂ fV

∂∇2u

)

)

S
+

∂ fS

∂uS

= 0. (27)

In most of the existing literature one usually considers only the volume part because
the surface-specific interactions are assumed to be absent. Nevertheless, the part
played by the surface specific interactions has been recognized by several authors
[15, 23, 24].

This decoupling of the Euler-Lagrange equations is of course only possible if the
free energy can be separated into the volume and surface parts and if it can be written
as a purely local functional of the fields, which means that in Eq. (14) we need to
integrate out the Coulomb non-local interactions leading to a local inverse Coulomb
operator, which then finally yields a purely local functional Eq. (9).

Decoupling the local free energy functional into a volume and surface part allows
us to derive not only the bulk Euler-Lagrange equations, but also their surface
counterpart, see Ref. [13], a.k.a. the boundary conditions. We therefore start with

βF = βFbulk +
∮

S
d2x fS(PS,ES,φS), (28)

with βFbulk given by Eq. (9). We assume that the order parameters and the auxiliary
fields have independent surface variations δφS, δES = δ (E ·n)S and δPS = δ (P ·n)S,
where the index S refers to the surface values of the variables, we then end up with
the following boundary equations: the surface variation of the electrostatic potential,
δφS, yields

n ·

(

−ε∞ε0∇(φ −α (∇ ·P))−
∂υ

∂∇φ

)

S

+
∂ fS

∂φS

= 0, (29)

where the subscript S in the first term signifies that the subscripted bulk quantity
needs to be taken at the surface. Clearly this equation generalizes the boundary con-
dition for the PB equation with surface interactions [25]; analogously the surface
variation of the auxiliary field, δES, yields a single surface terms of the form

∂ fS

∂ES

= 0, (30)
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and finally the surface variation of the polarization field, δPS, which can be deduced
from the free energy Eq. (23) and leads to

uP(0)ξ 2 (∇ ·P)S −uP(0)ζ 4∇2 (∇ ·P)S + ε∞ε0α n ·∇
(

φ −α (∇ ·P)
)

S
+

∂ fS

∂PS

= 0.

(31)

The last two boundary conditions are specific for our approach and embody the fact
that electrostatic and polarization fields represent separate and independent degrees
of freedom in this system.

The question now remains as to what is the surface free energy density that
we refer to above. This issue has been detailed in Ref. [21] within the mean-field
approximation and remains unchanged in the present formulation.

Since the description of the surface is much less universal and much more model
dependent than the equivalent description of the bulk, we cannot aspire to the same
level of generality as for the bulk. In fact, we need to make certain additional
assumptions at this point in order to proceed.

We assume that there are surface specific polarization and charge interactions that
contribute the analogous terms to the total surface free energy as in the volume case
that we derived before. This leads us to the proposition

fS(PS,ES,φS) =
1
2 uSP2

S −PSES − (P0PS +σ0φS)+

+
kBT

b2 ln
(

λDP
(

βqDs |ES − (∇φ)S|
)

+λ+ e(β eφS−α+)+λ− e−(β eφS+α−)
)

= 1
2 uSP2

S −PSES − (P0PS +σ0φS)+υS(ES,φS), (32)

with P(u)= sinhu/u. Eq. (32) is of course just one, but a fairly general one, assumed
model to describe the bounding surfaces. Polarizability terms could be included if
one deems the form of the free energy is still not complicated enough. Here, b is
the size of the surface sites, which in general differs from the bulk lattice gas sites.
The first two terms in the above expression quantify the surface specific, short-range
polarization interactions, where P0 is the surface density of polarization sources and
σ0 is the surface density of charge sources.

Inserting now this free energy into the boundary conditions we are left with the
modified surface electrostatic boundary condition

n ·

(

−ε∞ε0∇
(

φ −α (∇ ·P)
)

−
∂υ

∂∇φ

)

S

−σ0 +
∂υS

∂φS

= 0,

(33)

(note the difference between υ and υS), the modified surface constitutive relation

−PS +
∂υS

∂ES

= 0, (34)
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and the modified surface polarization boundary condition

uP(0)ξ
2 (∇ ·P)S −uP(0)ζ 4∇2 (∇ ·P)S +

+ ε∞ε0α n ·∇
(

φ −α (∇ ·P)
)

S
+uSPS −ES −P0 = 0.

(35)

Clearly the derived boundary conditions, consistent with the form of the bulk as well
as the surface free energies, are nowhere close to the assumption of constant sur-
face fields. The electrostatic field boundary condition, Eq. (33), is closely related to
the boundary conditions used in the charge regulation theory [21, 26, 27], while the
polarization boundary condition, Eq. (35), is related to the boundary conditions used
in the theory of hydration/structural forces [16, 23, 24].

Together with the bulk Euler-Lagrange equations these boundary conditions close
the formulation of the non-homogeneous case. We next consider two illuminat-
ing limiting cases of the boundary condition obtained in the absence of hydration
coupling, i.e., α = 0, that reduce to more familiar forms.

2.2.1 Limiting cases: inner Helmholtz layer - surface polarization

An interesting limiting case is obtained by ignoring any specific interactions of the
ions with the surface, or actually ignoring ions altogether. In that case Eq. (32)
simplifies to

fS(PS,ES,φS) = 1
2 uSP2

S −PSES −P0PS +
kBT

b2 lnΞ(ES,(∇φ)S),

(36)

where now the surfcae partition function

Ξ(ES,(∇φ)S) = 1+λDP(βqDs|ES − (∇φ)S|), (37)

corresponds to the surface lattice gas of dipoles. In this case the relevant boundary
conditions are obtained as

−ε∞ε0(n ·∇φ)S +PS = 0 with PS =
kBT

b2

∂ lnΞ

∂ES

,

(38)

for the surface constitutive relation connecting the electrostatic field and the polar-
ization field, as well as

uP(0)ξ 2 (∇ ·P)S −uP(0)ζ 4∇2 (∇ ·P)S +uSPS −ES −P0 = 0. (39)

The solution of these boundary conditions gives us the surface polarization at the
inner Helmholtz plane as a function of the surface electrostatic field. Because of the
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ln in Eq. (38) the surface polarization

PS =
λDqDs

b2

∂P(u)
u ∂u

(ES − (∇φ)S)

1+P(βqDs|ES − (∇φ)S|)
,

(40)

clearly shows a saturation behavior and cannot exceed the value of a fully oriented
layer of surface solvent molecules.

2.2.2 Limiting cases: outer Helmholtz layer - charge regulation

We obtain another interesting limit of the above general model by first assuming that
there are no polarization effects at the surface. In that case Eq. (32) becomes

fS(PS,ES,φS) =−σ0φS +
kBT

b2 lnΞS(φS), (41)

with the surface partition function

ΞS(φS) = 1+λ+ e(β eφS−α+)+λ− e−(β eφS+α−), (42)

that obviously corresponds to a surface lattice gas of adsorbed ions, or equivalently
to a Langmuir isotherm. Of the different boundary conditions only Eq. (33) remains
relevant and it can be recast in the form

−ε∞ε0(n ·∇φ)S +PS = σ0 −σ(φS), (43)

where we introduced

σ(φS) =
∂υS

∂φS

=
λ+βe

ΞS(φS)
e(β eφS−α+)−

λ−βe

ΞS(φS)
e−(β eφS+α−). (44)

In the limit of adsorption for only a single type of ion, e.g. α− −→ ∞, we get the
boundary condition Eq. (43) in the simplified form

ε∞ε0ES +PS = σ0 −2λ+βe
(

1+ tanh 1
2 (βeφS −α+)

)

, (45)

corresponding exactly with the Langmuir adsorption isotherm charge regulation [21,
28]. The Ansatz for the surface free energy, Eq. (32), thus in general also incorporates
charge regulation.

3 Solving the model equations

In our previous work we have discussed different versions of the bulk model in order
to clarify the role the different bulk lengths play in the polarization interactions [7].
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Specifically, we solved the linearized equations in a one-dimensional geometry with
analytical and numerical methods.

The inclusion of further physical effects and, in particular, in the newly formu-
lated boundary condition in this work renders the resulting theory extremely rich in
physical variables and parameters. Not all of them will be of equal relevance for
a specific experimental system, such that the determination of completely general
parameter diagrams from the present theory will hardly be of general value. In this
section we would therefore like to point out general characteristics of our theory
which will be useful in later applications.

As in our previous work we consider the implementation of our theory for a 1D
case, corresponding to a single or two planar surfaces perpendicular to the axis z, and
in the latter case separated by the distance L.

In 1D the spatial dependence is a single coordinate z and all the vectorial variables
only retain their z component, i.e.,

P = (0,0,P(z)), ∇φ = (0,0,φ ′(z)), E = (0,0,E (z)). (46)

We can write Eq. (9) as

βF ≡ S

∫

L
dz f

(

P, P′, P′′; φ , φ ′; E
)

, (47)

where S is the surface area. A useful general result is now available in the form of a
first integral. In this case it can be obtained following the approach described in Ref.
[? ] as the expression

f −φ ′ ∂ f

∂φ ′
−P′ ∂ f

∂P′
−P′′ ∂ f

∂P′′
+P′

(

∂ f

∂P′′

)′

= const. (48)

The two last terms are a consequence of the higher-order derivative terms in the
free energy density, see our previous discussion of the Euler-Lagrange equations in
section II A. This relation is of general use in the integration of the saddle-point
equations, albeit in the present complicated case this is not as easy as for the standard
PB-equation for simple ions, where the electrostatic potential can be obtained by
exact integration of the first integral. Eq. (48) holds for the fully nonlinear equations.

Of crucial interest is the role of the boundary conditions given for the general
case by Eqs. (33), (34) and (35); we consider them for one surface only; we also set
α = 0. In the case of the two surfaces of the slit geometry, the discussion needs to be
adapted accordingly.

The first important element is to notice the interdependence of the different sur-
face variables expressed in these equations. The theory contains the six surface
variables

ES, φS, φ ′
S, PS, P′

S, P′′′
S ,

whose relations are determined by the three boundary equations. Ultimately, this
means that three values of the variables remain to be chosen.
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Looking more closely, Eq.(33) expresses a relation between the field values ES,
φS and φ ′

S. We can thus, e.g., obtain ES as a function of φS and φ ′
S, which together

with Eq. (34) then defines a function PS = g2(φS,φ
′
S). Fixing the values for ES and

PS then allows to determine the corresponding values of φS and φ ′
S. Further, Eq.(35)

generally expresses a relationship between PS, ES, φ ′
S and the higher-order derivatives

of PS. In fact, one now has

uP(0)(ξ 2P′′
S −ζ 4P′′′′

S ) = g3(ES,PS,φ
′
S) . (49)

From the previous expressions the right-hand side of the last equation is now entirely
fixed through the solution of the two previous equations. Thus, this relation fixes the
relative difference between the two higher-order derivatives which remains as a final
choice of boundary conditions. In this exemplary construction, the three values to
choose are thus (ES,PS) and the difference of the higher derivatives.

We finally illustrate this reasoning for the two limiting cases of surface polariza-
tion and charge regulation. In the case of example B.1, the surface polarization case
which ignores the ions, since the boundary conditions do not depend on the electro-
static potential φ , Eqs. (38) result in a functional relationship between ES and PS. In
general, this equation can only be resolved numerically. If one expands both P and
the ln for small arguments, ES turns out to be directly proportional to Ps. In this limit
Eq.(35), the relative difference in the polarization derivatives at the wall, becomes a
linear function of Ps, while the surface free energy becomes a quadratic function of
Ps, as is well-known. In the second limiting example B.2, the charge regulation case
neglecting all polarization effects, the value of PS only remains as a parameter in Eq.
(43) such that ultimately only the value of the electrostatic potential and its gradient,
i.e. the electric field at the surface, remain coupled.

4 Discussion

In this work we have derived a comprehensive continuum theory of structured inho-
mogeneous liquid dielectrics. Starting from previous work for the bulk case [7], we
develop a substantially extended version of our theory which explicitly includes the
polarizability of the solvent molecules and the solvated ions species. In particular,
we have carefully developed the theory of the surface free energy which includes
surface polarization and charge regulation as two generic mechanisms. After formu-
lating the bulk and surface free energies, we showed how to derive the corresponding
saddle-point equations (nonlinear mean-field equations) together with the boundary
equations. Being a fully formulated field theory, the application of the theory beyond
mean-field theory is achieved by the computation of corrections in terms of a loop
expansion.

We believe that our novel formulation of a comprehensive continuum theory of
structured liquid dielectrics meets the challenge raised by Mugele et al. that we cited
in the Introduction - it seems to be well possible to formulate a general Poisson-
Boltzmann theory containing all non-electrostatic effects. We are careful to rather
state ‘general’ than ‘universal’ here, since many of the included physical effects are
indeed highly specific and thus a properly ‘universal’ theory cannot exist in principle.
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The next step in the formulation of the theory will be the confrontation with
experiment. Clearly, our comprehensive theory contains special cases for which such
comparisons with experiment have already been undertaken; the challenge therefore
rather is: how far can we go? As already discussed in the Introduction we think that
the application to AFM measurements of structural forces are an evident first step to
take. Previous work by Benaglia et al. [29] went already along this path employing
density-functional theory (DFT). We think that the main advantage of the field-
theoretic approach is its high transparency of the physical mechanisms explicitly
built into the theory, in particular the flexibility of the treatment of the boundary con-
ditions. This point of view is strengthened by the recent AFM-experiments of ionic
solutions on silica and gibbsite surfaces. The experimentally observed oscillations
in the force-distance curves are clearly due the ordering of bulk water molecules in
the vicinity of the surface. The details of these curves are nevertheless dependent
on pH and hence on charge regulation effects [6]. We believe that our approach will
be flexible enough to disentangle and identify these different relevant effects on
electrostatic and hydration forces at complex substrate surfaces.

Acknowledgments. RP wishes to acknowledge the support of the University
of Chinese Academy of Sciences and funding from the NSFC under Grant No.
12034019.

Appendix A Drude model

The Drude model of polar and polarizable molecules [30] is based on two oppositely
charged particles connected by a harmonic spring potential [18, 31]

U(ℓ,n) = 1
2

(ℓ− s)2

σ2 = 1
2

(ℓ− sn)2

σ2 , (A1)

where n = s/|s|= s/s, yielding the separation distribution function g(ℓ) in the form

g(ℓ) = (2πσ2)−3/2
∫

Ω

dn

4π
exp−

(ℓ− s)2

2σ2 =

(2πσ2)−3/2
∫

Ω

dn

4π
e−U(ℓ,n) (A2)

with an average separation s and its variance σ2 given by

<ℓ>= s, <(ℓ− s)2>= σ2, (A3)

where the average was defined as

<.. .> =
∫

dℓg(ℓ) =

= (2πσ2)−3/2
∫

dℓ
∫

Ω

dn

4π
(. . . ) e−U(ℓ,n). (A4)
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This is the model that we use to represent the aqueous solvent molecules as well as
the solvated ions.

Appendix B One-body partition function

Here we derive the two expressions for the one-particle partition functions,
V [Ei(x),φ(x))], in external fields which feature in the filed-theoretic description of
our system. The derivations follow Ref. [16] except for the inclusion of the polariz-
ability terms. In addition, at the end because we work exclusively on the saddle-point
level, we will need to make the transform φ −→ iφ , E −→ iE .

The one-body partition function in an external field, V [Ei(x),φ(x))], is defined as

eV [Ei(x),φ(x))] ≡ ∑
N

∑
N+

∑
N−

λ N

N!

λ N+

(+)λ
N−

(−)

N+!N−!
× (B1)

×
∫

D [xN]D [ℓN]D [nN ]e
−∑N U(ℓi,ni)e−iβ qD ∑N(φ(xi)−φ(xi+ℓi))−iqD ∑N ℓiE(xi)

×
∫

D [x+]D [ℓ+]e
−∑N+ U(ℓi,ni)e−iβ ∑N+ φ(xi)−iβ qI ∑N+ (φ(xi)−φ(xi+ℓi))−iqI ∑N+ ℓiE(xi)

×
∫

D [x−]D [ℓ−]e
−∑N− U(ℓi,ni)eiβ ∑N− φ(xi)−iβ qI ∑N+ (φ(xi)−φ(xi+ℓi))−iqI ∑N− ℓiE(ℓi).

Using the definition of the average over the harmonic Drude degrees of freedom,
Eq. (A4), for polar solvent molecules (with <ℓ>= s and <(ℓ−s)2>= σ2

D) and ionic
charges (with <ℓ>= 0 and <ℓ2>= σ2

I ) we end up with

∫

D [ℓN]D [nN ] e−∑N U(ℓi,ni)e−iβ qD ∑N(φ(xi)−φ(xi+ℓi))−i qD ∑N ℓi·E(xi) =

=
( sin (βqDs |∇φ(x)−E(x)|)

βqDs |∇φ(x)−E(x)|
e
−

1
2 (β σqD)

2(∇φ(x)−E(x))
2)N

∫

D [x+] e−iβ ∑N+ φ(xi) =
(

∫

d3x e−iβ φ(x) e−
1
2 (β σqI)

2(∇φ(x)−E(x))
2)N+

∫

D [x−] eiβ ∑N− φ(xi) =
(

∫

d3x eiβ φ(x) e
−

1
2 (β σqI)

2(∇φ(x)−E(x))
2)N−

. (B2)

Clearly all the sums in Eq. (B1) can be evaluated explicitly so that we finally remain
with

V [E(x),φ(x)] =
∫

V
d3x

(

λD

sin(βqDs |∇φ(x)−E(x)|)

β s |∇φ(x)−E(x)|
e−

(βσqD )2

2 (∇φ(x)−E(x))
2

+

+2λs cosβeφ(x) e−
(βσqI )

2

2 (∇φ(x)−E(x))
2)

.
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(B3)

We now one repeat the procedure for the lattice gas case. The only difference is
in how one treats the sum over particles which now has to be performed over discrete
sites of the lattice. Introducing the occupation of sites by electrolyte ions and Drude
ions, which will be taken as occupying a single cell, we assign to each cell j, located
at x j, a spin-like variable s j that can have one of three values: s j = 0 if the cell is
occupied by a Drude dipole, and s j =±1 according to the sign of the electrolyte ion.

Defining a new variable that depends on the spin-like variable s j , u(s j), as

u(s j) = iβe s jφ(x j)+ iβqIs
2
j (φ(x j)−φ(x j + ℓ j))

−iβqIs
2
j (ℓ j ·E(x j))+µ js

2
j +

+iβqD(1− s2
j)(φ(x j)−φ(x j + ℓ j))−

−iβqD(1− s2
j) (ℓ j ·E(x j))+µ j(1− s2

j), (B4)

it then follows specifically for si =±1,0 that

u(s j =+1) = iβe φ(x j)+ iβqI (φ(x j)−φ(x j + ℓ j))+

−iβqI (ℓ j ·E(x j))+µ+

u(s j =−1) = −iβe φ(x j)+ iβqI (φ(x j)−φ(x j + ℓ j))+

−iβqI (ℓ j ·E(x j))+µ−

u(s j = 0) = iβqD (φ(x j)−φ(x j + ℓ j))−

−iβqD (ℓ j ·E(x j))+µD. (B5)

The one particle partition function can then be written as

eV [Ei(x),φ(x))] ≡ Π j

(

∑
s j

eu(s j)

)

= Π j

(

eu(s j=+1)+ eu(s j=−1)+ eu(s j=0)
)

. (B6)

From here it follows furthermore that

V [E(x),φ(x)] = ∑
j

ln
(

λD

sin(βqDs |∇φ(x j)−E(x j)|)

β s |∇φ(x j)−E(x j)|
e−

(βσqD)2

2 (∇φ(x j)−E(x j))
2

+2λs cosβeφ(x j) e−
(βσqI )

2

2 (∇φ(x j)−E(x j))
2)

.

(B7)

Here λD = eµD and λS = eµ± for an asymmetric electrolyte. Going to the continuum
limit from here and assuming that all the sites have the same volume a3 then the
continuum limit of the above result is given by

V [E(x),φ(x)] =
1
a3

∫

d3r ln
(

λD
sin (βqDs |∇φ(x)−E(x)|)

β s |∇φ(x)−E(x)|

)

e−
(βσqD )2

2 (∇φ(x)−E(x))
2
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+ 2λs cosβeφ(x) e−
(βσqI )

2

2 (∇φ(x)−E(x))
2)

. (B8)

These are the one body partition functions in the case of a mixture of the Drude
oscillators and Drude electrolyte ions. Without the dipolar contribution the two
expressions above reduce to the well known Poisson-Boltzmann theory and the
Poisson-Boltzmann lattice gas theory.

The form of these equations used in the main text, i.e. Eqs. (17), is obtained
by inserting the saddle point form (imaginary value) of the auxiliary field variables,
which eventually converts the trigonometric into hyperbolic functions and changes
the sign of the Gaussian factors.
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[10] Gruen, D.W.R., Marčelja, S.: Spatially varying polarization in ice. J. Chem.
Soc. Faraday Trans. 2 79, 211-223 (1983)
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