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In this paper, we consider the Korteweg-de Vries equation with time-dependent delay on the boundary or internal feedbacks. Under some assumptions on the time-dependent delay, on the weights of the feedbacks and on the length of the spatial domain, we prove the exponential stability results, using appropriate Lyapunov functionals. We finish by some numerical simulations that illustrate the stability results and the influence of the delay on the decay rate.

Introduction

In this work, we are interested in the effect of a timevarying delay in the boundary or internal stabilization of the Korteweg-de Vries equation (KdV). The KdV equation is given by 𝑦 𝑡 + 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 + 𝑦𝑦 𝑥 = 0, this third-order nonlinear one-dimensional equation was introduced in Korteweg and de Vries (1895) to model the propagation of long water waves in a channel. In recent years, the controllability and stabilization properties of the KdV have been amply studied. We mention for instance the pioneer work [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] where the boundary exact controllability was studied: the author showed that the KdV equation is not controllable by the right with one control if the length of the spatial domain 𝐿 belongs to a countable set. This phenomena is related to the existence of solutions conserving the 𝐿 2 (0, 𝐿)-energy. In [START_REF] Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] the authors showed that if the length 𝐿 is critical, an internal damping allows the exponential stability. This idea was then applied in several works for instance [START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF]; [START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF]; Parada, Crépeau and Prieur (2022b). We also refer to [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]; [START_REF] Rosier | Control and stabilization of the Kortewegde Vries equation: recent progresses[END_REF] for a complete introduction about control of KdV equation.

Time delay phenomena appear in many applications, for example in biology, mechanics or engineering. Delays terms are unavoidable in practice due to measurement lag, analysis time, or computation time. Very active research has developed recently on stability problems of partial differential equations with delay. It is well known that even a small delay in the feedback mechanism can destabilize a system (see for example [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]; [START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF]). But a delay term can also improve the performance of the system [START_REF] Abdallah | Delayed positive feedback can stabilize oscillatory systems[END_REF]).

The problems of stability of systems with delay are of both theoretical and practical interest.

Recently, the problem of robustness with respect to constant time-delay of the KdV equation was studied in [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF]; Parada, Crépeau and Prieur (2022a); [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback[END_REF] using Lyapunov theory or deriving suitable observability inequalities. In the case where the KdV equation is in presence of memory terms, stability results were obtained in [START_REF] Chentouf | Qualitative analysis of the dynamic for the nonlinear Korteweg-de Vries equation with a boundary memory[END_REF]; [START_REF] Chentouf | Well-posedness and stability results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations with infinite memory: A history approach[END_REF]. The stability of PDE's involving timevarying delays was analyzed in [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF] for one-dimensional heat and wave equations, in Nicaise and Pignotti (2011); [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF] for wave equations in domains in ℝ 𝑛 and in Fridman, [START_REF] Fridman | Stabilization of second order evolution equations with unbounded feedback with time-dependent delay[END_REF] for general second-order evolution equations. We can also mention [START_REF] Park | Decay rate estimates for a weak viscoelastic beam equation with time-varying delay[END_REF] where a weak viscoelastic beam equation with time-varying delay was considered and the recent work Kong, Nonato, Liu, Dos Santos, Raposo and An (2022) studying exponential stability of piezoelectric beams. In our best knowledge, there is no work dealing with this problem for the KdV equation.

In this work, we are going to consider the two following systems

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
(𝑦 𝑡 + 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 + 𝑦𝑦 𝑥 )(𝑥, 𝑡) = 0, 𝑡 > 0, 𝑥 ∈ (0, 𝐿), 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0, 𝑡 > 0, 𝑦 𝑥 (𝐿, 𝑡) = 𝛼𝑦 𝑥 (0, 𝑡) + 𝛽𝑦 𝑥 (0, 𝑡 -𝜏(𝑡)), 𝑡 > 0, 𝑦(𝑥, 0) = 𝑦 0 (𝑥), 𝑥 ∈ (0, 𝐿), 𝑦 𝑥 (0, 𝑡 -𝜏(0)) = 𝑧 0 (𝑡 -𝜏(0)), 0 < 𝑡 < 𝜏(0),

(1) and

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
(𝑦 𝑡 + 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 + 𝑦𝑦 𝑥 )(𝑥, 𝑡) + 𝑎(𝑥)𝑦(𝑥, 𝑡) +𝑏(𝑥)𝑦(𝑥, 𝑡 -𝜏(𝑡)) = 0, 𝑡 > 0, 𝑥 ∈ (0, 𝐿), 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 𝑦 𝑥 (𝐿, 𝑡) = 0, 𝑡 > 0, 𝑦(𝑥, 0) = 𝑦 0 (𝑥), 𝑥 ∈ (0, 𝐿), 𝑦(𝑥, 𝑡 -𝜏(0)) = 𝑧 0 (𝑥, 𝑡 -𝜏(0)), 0 < 𝑡 < 𝜏(0), 𝑥 ∈ (0, 𝐿),

(2)

where 𝐿 > 0 is the length of the spatial domain, 𝑦(𝑥, 𝑡) is the amplitude of the water wave at position 𝑥 at time 𝑡. We assume that the delay 𝜏 is a function of time 𝑡, which satisfies
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the following conditions

0 < 𝜏 0 ≤ 𝜏(𝑡) ≤ 𝑀, ∀𝑡 ≥ 0, (3) τ(𝑡) ≤ 𝑑 < 1, ∀𝑡 ≥ 0, (4) 
where 0 ≤ 𝑑 < 1, and

𝜏 ∈ 𝑊 2,∞ ([0, 𝑇 ]), ∀𝑇 > 0. (5) 
Moreover, we assume that 𝛼, 𝛽, 𝑑 in (1) are real constants satisfying

The matrix Φ 𝛼,𝛽 =

( 𝛼 2 -1 + |𝛽| 𝛼𝛽 𝛼𝛽 𝛽 2 + |𝛽|(𝑑 -1)
)

is definite negative. ( 6 
)
In ( 2), 𝑎 = 𝑎(𝑥) and 𝑏 = 𝑏(𝑥) are nonnegative functions in 𝐿 ∞ (0, 𝐿). We will also assume that supp 𝑏 = 𝜔 and

𝑏(𝑥) ≥ 𝑏 0 > 0 in 𝜔, ( 7 
)
where 𝜔 is an open nonempty subset of (0, 𝐿). We assume that the coefficients 𝑎 and 𝑏 satisfy the following assumption:

∃𝑐 0 > 0, 2 -𝑑 2 -2𝑑 𝑏(𝑥) + 𝑐 0 ⩽ 𝑎(𝑥) in 𝜔. ( 8 
)
Then 𝜔 = supp 𝑏 ⊂ supp 𝑎 and 𝑎(𝑥)

≥ 𝑏 0 + 𝑐 0 > 0 in 𝜔.
Some examples of functions satisfying these conditions are given in Section 4.

Remark 1.1. We can note the following points on the coefficients of the boundary or internal feedback:

• A sufficient condition to obtain (6) is |𝛼| + |𝛽| + 𝑑 < 1.
Indeed, on the one hand, we have

𝑡𝑟(Φ 𝛼,𝛽 ) = 𝛼 2 +𝛽 2 - 1 + |𝛽|𝑑 < 0 ⇔ 𝛼 2 + 𝛽 2 + |𝛽|𝑑 < 1, and 𝛼 2 + 𝛽 2 + |𝛽|𝑑 < |𝛼| + |𝛽| + 𝑑 < 1.
On the other hand we have,

det(Φ 𝛼,𝛽 ) = |𝛽|(𝛽 2 -2|𝛽| + 1 -𝛼 2 + 𝑑𝛼 2 -𝑑 + |𝛽|𝑑) = |𝛽|((1 -|𝛽|) 2 + 𝑑(|𝛽| -1) + 𝛼 2 (𝑑 -1)) = |𝛽|((1 -|𝛽|)(1 -|𝛽| -𝑑) + 𝛼 2 (𝑑 -1)) > |𝛽|(𝛼 2 + 𝛼 2 𝑑 -𝛼 2 ) = |𝛽|𝛼 2 𝑑 > 0. Then, |𝛼| + |𝛽| + 𝑑 < 1 implies that Φ 𝛼,𝛽 is definite negative. • If 𝑑 = 0, (6) (resp. (8)) is equivalent to |𝛼| + |𝛽| < 1 (resp. 𝑏(𝑥) + 𝑐 0 ≤ 𝑎(𝑥) in 𝜔)
which corresponds to the assumption for a constant time-delay given in [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF]) (resp. Valein (2022)).

• If 𝑑 → 1 -, 2 -𝑑 2 -2𝑑
→ +∞, and so we need that the weight 𝑎 of the internal feedback without delay to be very large.

In [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF], two different approaches for the exponential stability of the nonlinear KdV equation with boundary (constant) time-delay feedback were studied. The first was a Lyapunov functional approach with an estimation of the decay rate, but with a restrictive assumption on the length 𝐿 of the spatial domain. The second one was an observability inequality approach without estimation on the decay rate and for any non-critical lengths (i.e.

𝐿 ∉  = { 2𝜋 √ 𝑘 2 +𝑘𝑙+𝑙 2 3 , 𝑘, 𝑙 ∈ ℕ * } ).
The asymptotic stability of the nonlinear KdV equation with (constant) time-delay internal feedback was studied in [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback[END_REF]. A semiglobal stability result for any lengths was proven in the case where the weight of the term with delay is smaller than the weight of the term without delay, using an observability inequality directly on the nonlinear system. A local exponential stability result was given in the case where the support of the term with delay is not included in the support of the term without delay.

The aim of our work is to extend these results in the case where the delay depends on the time. An important fact about systems (1) and ( 2) is that due to the effect of the timevarying delay, these systems are no longer invariant in time. Thus, the observability inequality approach does not work anymore, and we have to choose a new appropriate Lyapunov functional. An other difficulty, beyond the difficulty of dealing with a nonlinear equation, is that the first order linear operator depends on time (contrary to constant delay case) and the well-posedness is not trivial.

The outline of this paper is as follows. In Section 2, we prove the well-posedness results, firstly for the boundary case, secondly for the internal case. The stability results are proved in Section 3. Finally, we illustrate our results by some numerical simulations in Section 4.

Well-posedness results

The goal of this section is to prove appropriate wellposedness results of (1) and (2). We first prove the wellposedness result of the linearization around 0 of (1) (resp.

(2)). The proof will be based on the semigroup theory and on introducing a new function for the delayed term. Then, we add a source term that plays the role of the nonlinearity. Finally, using a fixed-point approach, we show the wellposedness of the nonlinear systems (1) and (2).

Well-posedness result of (1)

The goal of this section is to prove appropriate local wellposedness result of (1).

Well-posedness result of the linear system

In this part, we focus on the study of linearization around 0 of (1), that is

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (𝑦 𝑡 + 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 )(𝑥, 𝑡) = 0, 𝑡 > 0, 𝑥 ∈ (0, 𝐿), 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0, 𝑡 > 0, 𝑦 𝑥 (𝐿, 𝑡) = 𝛼𝑦 𝑥 (0, 𝑡) + 𝛽𝑦 𝑥 (0, 𝑡 -𝜏(𝑡)), 𝑡 > 0, 𝑦(𝑥, 0) = 𝑦 0 (𝑥), 𝑥 ∈ (0, 𝐿), 𝑦 𝑥 (0, 𝑡 -𝜏(0)) = 𝑧 0 (𝑡 -𝜏(0)), 0 < 𝑡 < 𝜏(0). (9)
Now, classically, we introduce a new variable that takes into account the delay term (see, for instance, [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF]). Let 𝑧(𝜌, 𝑡) = 𝑦 𝑥 (0, 𝑡-𝜏(𝑡)𝜌) for 𝜌 ∈ (0, 1) and 𝑡 > 0. Then, 𝑧 verifies the following transport equation

⎧ ⎪ ⎨ ⎪ ⎩
𝜏(𝑡)𝑧 𝑡 (𝜌, 𝑡) + (1 -τ(𝑡)𝜌)𝑧 𝜌 (𝜌, 𝑡) = 0, 𝑡 > 0, 𝜌 ∈ (0, 1), 𝑧(0, 𝑡) = 𝑦 𝑥 (0, 𝑡), 𝑡 > 0, 𝑧(𝜌, 0) = 𝑧 0 (-𝜏(0)𝜌), 𝜌 ∈ (0, 1).

Define 𝑈 = (𝑦, 𝑧) 𝑇 , then 𝑈 satisfies

𝑈 𝑡 = ( 𝑦 𝑡 𝑧 𝑡 ) = ⎛ ⎜ ⎜ ⎝ -𝑦 𝑥 -𝑦 𝑥𝑥𝑥 τ(𝑡)𝜌 -1 𝜏(𝑡) 𝑧 𝜌 ⎞ ⎟ ⎟ ⎠ .
This problem can be rewritten as the following first-order evolution equation

{ 𝑈 𝑡 (𝑡) = (𝑡)𝑈 (𝑡), 𝑡 > 0, 𝑈 (0) = (𝑦 0 , 𝑧 0 (-𝜏(0)⋅)) 𝑇 =∶ 𝑈 0 , ( 10 
)
where the time-dependent operator (𝑡) is defined by

(𝑡) ( 𝑦 𝑧 ) = ⎛ ⎜ ⎜ ⎝ -𝑦 𝑥 -𝑦 𝑥𝑥𝑥 τ(𝑡)𝜌 -1 𝜏(𝑡) 𝑧 𝜌 ⎞ ⎟ ⎟ ⎠
, with domain

𝐷((𝑡)) = { (𝑦, 𝑧) ∈ ( 𝐻 3 (0, 𝐿) ∩ 𝐻 1 0 (0, 𝐿) ) × 𝐻 1 (0, 1), 𝑧(0) = 𝑦 𝑥 (0), 𝑦 𝑥 (𝐿) = 𝛼𝑦 𝑥 (0) + 𝛽𝑧(1) } .
Note that the domain of the operator (𝑡) is independent of time 𝑡, i.e., 𝐷((𝑡)) = 𝐷((0)), 𝑡 > 0. Now, we introduce the Hilbert space 𝐻 = 𝐿 2 (0, 𝐿) × 𝐿 2 (0, 1), equipped with the usual inner product

⟨( 𝑦 𝑧

) ,

( ỹ z)⟩ = ∫ 𝐿 0 𝑦 ỹ𝑑𝑥 + ∫ 1 0 𝑧 z𝑑𝜌,
endowed with the norm ‖ ⋅ ‖ 𝐻 . To prove the well-posedness of (10) we follow [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF]. The proof is based on showing that the triplet {, 𝐻, }, with  = {(𝑡) ∶ 𝑡 ∈ [0, 𝑇 ]}, for some 𝑇 > 0 fixed and  = 𝐷((0)), forms a constant domain system (CD-system), see [START_REF] Kato | Linear evolution equations of "hyperbolic" type[END_REF][START_REF] Kato | Exponential stability for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights[END_REF]. The following theorem gives the existence and uniqueness results and is proved in [START_REF] Kato | Linear evolution equations of "hyperbolic" type[END_REF]:

Theorem 2.1. Assume that Then, problem (10) has a unique solution 𝑈 ∈ 𝐶([0, 𝑇 ], )∩ 𝐶 1 ([0, 𝑇 ], 𝐻) for any initial datum in .

1.  = 𝐷((0)) is a dense subset of 𝐻, 2. 𝐷((𝑡)) = 𝐷((0)),
In particular, we are going to prove the following result.

Theorem 2.2. Assume (3)-( 6). Let 𝑈 0 ∈ 𝐻, then there exists a unique solution 𝑈 ∈ 𝐶([0, +∞), 𝐻) to (10). Moreover, if 𝑈 0 ∈ 𝐷((0)) then 𝑈 ∈ 𝐶([0, +∞), 𝐷((0))) ∩ 𝐶 1 ([0, +∞), 𝐻).

Proof: Clearly, the space  = 𝐷((0)) is a dense subset of 𝐻 and, by definition, 𝐷((𝑡)) = 𝐷((0)), for all 𝑡 > 0. Now, to prove the third point of Theorem 2.1, we introduce the following time-dependent inner product on 𝐻 to use the variable norm technique of Kato

⟨( 𝑦 𝑧

) ,

( ỹ z)⟩ 𝑡 = ∫ 𝐿 0 𝑦 ỹ𝑑𝑥 + |𝛽|𝜏(𝑡) ∫ 1 0 𝑧 z𝑑𝜌,
with associated norm denoted by ‖ ⋅ ‖ 𝑡 . By (3), the norms

‖ ⋅ ‖ 𝐻 and ‖ ⋅ ‖ 𝑡 are equivalent in 𝐻: ∀𝑡 ≥ 0, ∀(𝑦, 𝑧) ∈ 𝐻, (1 + |𝛽|𝜏 0 )‖(𝑦, 𝑧)‖ 2 𝐻 ≤ ‖(𝑦, 𝑧)‖ 2 𝑡 ≤ (1 + |𝛽|𝑀)‖(𝑦, 𝑧)‖ 2 𝐻 . ( 11 
)
We first observe that, following [START_REF] Fridman | Stabilization of second order evolution equations with unbounded feedback with time-dependent delay[END_REF], Theorem 2.4),

‖𝑈 ‖ 𝑡 ‖𝑈 ‖ 𝑠 ≤ 𝑒 𝑐 2𝜏 0 |𝑡-𝑠| , ∀𝑡, 𝑠 ∈ [0, 𝑇 ], (12) 
where 𝑈 = (𝑦, 𝑧) ∈ 𝐻 and 𝑐 is a positive constant. Now, we calculate ⟨(𝑡)𝑈 , 𝑈 ⟩ 𝑡 for a fixed 𝑡 ∈ [0, 𝑇 ]. Take 𝑈 = (𝑦, 𝑧) 𝑇 ∈ 𝐷((0)), then

⟨(𝑡)𝑈 , 𝑈 ⟩ 𝑡 = ⟨ ⎛ ⎜ ⎜ ⎝ -𝑦 𝑥 -𝑦 𝑥𝑥𝑥 τ(𝑡)𝜌 -1 𝜏(𝑡) 𝑧 𝜌 ⎞ ⎟ ⎟ ⎠ , ( 𝑦 𝑧 ) ⟩ 𝑡 = ∫ 𝐿 0 (-𝑦 𝑥 -𝑦 𝑥𝑥𝑥 )𝑦𝑑𝑥 + |𝛽| ∫ 1 0 ( τ(𝑡)𝜌 -1)𝑧 𝜌 𝑧𝑑𝜌.
By integrating by parts in space and in 𝜌, we have

⟨(𝑡)𝑈 , 𝑈 ⟩ 𝑡 = 1 2 [𝑦 2 𝑥 ] 𝐿 0 - |𝛽| 2 τ(𝑡) ∫ 1 0 𝑧 2 𝑑𝜌 + |𝛽| 2 [( τ(𝑡)𝜌 -1)𝑧 2 ] 1 0 .
Moreover using the boundary conditions, we obtain

⟨(𝑡)𝑈 , 𝑈 ⟩ 𝑡 = 1 2 ( 𝛼𝑦 𝑥 (0) + 𝛽𝑧(1) ) 2 - 1 2 𝑦 2 𝑥 (0) - |𝛽| 2 τ(𝑡) ∫ 1 0 𝑧 2 𝑑𝜌 + |𝛽| 2 ( τ(𝑡) -1)𝑧 2 (1) + |𝛽| 2 𝑦 2 𝑥 (0).
Now, by (4) we derive 1)

⟨(𝑡)𝑈 , 𝑈 ⟩ 𝑡 -𝜅(𝑡)⟨𝑈 , 𝑈 ⟩ 𝑡 ≤ 1 2 ( 𝑦 𝑥 (0) 𝑧(
) 𝑇 Φ 𝛼,𝛽 ( 𝑦 𝑥 (0) 𝑧(1)
) ,

where

𝜅(𝑡) = ( τ(𝑡) 2 + 1) 1∕2 2𝜏(𝑡)
and where Φ 𝛼,𝛽 is defined by (6). Finally, using (6), we get ⟨(𝑡)𝑈 , 𝑈 ⟩ 𝑡 -𝜅(𝑡)⟨𝑈 , 𝑈 ⟩ 𝑡 ≤ 0. The above inequality proves the dissipativeness of (𝑡) = (𝑡) -𝜅(𝑡)𝐼 for the inner product ⟨⋅, ⋅⟩ 𝑡 .

Let us prove that for all 𝑡 ∈ [0, 𝑇 ], (𝑡) is maximal, i.e., that 𝜆𝐼 -(𝑡) is surjective for some 𝜆 > 0.

Let 𝑡 ∈ [0, 𝑇 ] be fixed, and (𝑓 , ℎ) 𝑇 ∈ 𝐻. We look for

𝑈 = (𝑦, 𝑧) 𝑇 ∈ 𝐷((𝑡)) solution of (𝜆𝐼 -(𝑡))𝑈 = (𝑓 , ℎ) 𝑇 , that is ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝜆𝑦 + 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 = 𝑓 , 𝜆𝑧 + ( 1 -τ(𝑡)𝜌 𝜏(𝑡) ) 𝑧 𝜌 = ℎ, 𝑦(0) = 𝑦(𝐿) = 0, 𝑦 𝑥 (0) = 𝑧(0), 𝑦 𝑥 (𝐿) = 𝛼𝑦 𝑥 (0) + 𝛽𝑧(1). ( 13 
)
Following [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF], if we find 𝑦 with the appropriate regularity, then we can obtain 𝑧, given by

𝑧(𝜌) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝑦 𝑥 (0)𝑒 𝜆 𝜏(𝑡) τ(𝑡) ln(1-τ(𝑡)𝜌) + 𝑒 𝜆 𝜏(𝑡) τ(𝑡) ln(1-τ(𝑡)𝜌) × ∫ 𝜌 0 ℎ(𝜎)𝜏(𝑡) 1 -τ(𝑡)𝜎 𝑒 -𝜆 𝜏(𝑡) τ(𝑡) ln(1-τ(𝑡)𝜎) 𝑑𝜎, if τ(𝑡) ≠ 0, 𝑦 𝑥 (0)𝑒 -𝜆𝜏(𝑡)𝜌 + 𝜏(𝑡)𝑒 -𝜆𝜏(𝑡)𝜌 × ∫ 𝜌 0 𝑒 𝜆𝜏(𝑡)𝜎 ℎ(𝜎)𝑑𝜎, if τ(𝑡) = 0.
In particular 𝑧(1) = 𝑦 𝑥 (0)𝑔 0 (𝑡) + 𝑔 ℎ (𝑡), where

𝑔 0 (𝑡) = { 𝑒 𝜆 𝜏(𝑡) τ(𝑡) ln(1-τ(𝑡)) , if τ(𝑡) ≠ 0, 𝑒 -𝜆𝜏(𝑡) , if τ(𝑡) = 0, 𝑔 ℎ (𝑡) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑒 𝜆 𝜏(𝑡) τ(𝑡) ln(1-τ(𝑡)) ∫ 1 0 ℎ(𝜎)𝜏(𝑡) 1 -τ(𝑡)𝜎 ×𝑒 -𝜆 𝜏(𝑡) τ(𝑡) ln(1-τ(𝑡)𝜎) 𝑑𝜎, if τ(𝑡) ≠ 0, 𝜏(𝑡)𝑒 -𝜆𝜏(𝑡) ∫ 1 0 𝑒 𝜆𝜏(𝑡)𝜎 ℎ(𝜎)𝑑𝜎, if τ(𝑡) = 0.
This implies that 𝑦 must satisfy

⎧ ⎪ ⎨ ⎪ ⎩ 𝜆𝑦 + 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 = 𝑓 , 𝑦(0) = 𝑦(𝐿) = 0, 𝑦 𝑥 (𝐿) = (𝛼 + 𝛽𝑔 0 (𝑡))𝑦 𝑥 (0) + 𝛽𝑔 ℎ (𝑡). Consider now 𝜓(𝑥) = 𝛽𝑥(𝑥 -𝐿)𝑔 ℎ (𝑡) 𝐿(1 + 𝛼 + 𝛽𝑔 0 (𝑡))
(𝑡 is fixed here) and α = α(𝑡) = 𝛼 + 𝛽𝑔 0 (𝑡). After some computations, we can observe that 𝜑 = 𝑦 -𝜓 solves

⎧ ⎪ ⎨ ⎪ ⎩ 𝜆𝜑 + 𝜑 𝑥 + 𝜑 𝑥𝑥𝑥 = f ∶= 𝑓 -𝜆𝜓 -𝜓 𝑥 -𝜓 𝑥𝑥𝑥 , 𝜑(0) = 𝜑(𝐿) = 0, 𝜑 𝑥 (𝐿) = α𝜑 𝑥 (0). ( 14 
)
As 𝑡 is fixed, the problem can be seen as (𝜆𝐼 -𝐴 α )𝜑 = f where the operator 𝐴 α is defined by

𝐴 α 𝜑 = -𝜑 ′ -𝜑 ′′′ , with 𝐷(𝐴 α ) = {𝜑 ∈ 𝐻 3 (0, 𝐿) ∩ 𝐻 1 0 (0, 𝐿), 𝜑 ′ (𝐿) = α𝜑 ′ (0)} and where f ∈ 𝐿 2 (0, 𝐿) (since 𝜑 ∈ 𝐶 ∞ ([0, 𝐿]) and 𝑓 ∈ 𝐿 2 (0, 𝐿)).
To conclude this part, we show that under the condition, (6) the operator 𝐴 α is maximal.

Lemma 2.3. If | α| < 1, then the operator 𝐴 α is maximal. Proof: Consider | α| < 1, clearly 𝐴 α is closed. Let us prove that 𝐴 α and 𝐴 * α are dissipative. Let 𝜑 ∈ 𝐷(𝐴 α ), then we get (𝐴 α 𝜑, 𝜑) 𝐿 2 (0,𝐿) = ∫ 𝐿 0 (-𝜑 ′ -𝜑 ′′′ )𝜑𝑑𝑥 = 1 2 ( α2 -1)(𝜑 ′ (0)) 2 ≤ 0.
The dual of the operator 𝐴 α is defined by [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], 𝐴 α is the generator of a 𝐶 0 semigroup of contraction on 𝐿 2 (0, 𝐿). By the Lumer-Phillips theorem (see (Pazy, 1983, Thm. 4 6) and Remark 1.1. Therefore, by Lemma 2.3, we have the existence of 𝜑 ∈ 𝐷(𝐴 α ) solution of ( 14) and hence (𝑦, 𝑧) 𝑇 ∈ 𝐷((𝑡)) solution of (13).

𝐴 * α 𝜁 = 𝜁 ′ + 𝜁 ′′′ with domain 𝐷(𝐴 * 𝛼 ) = {𝜁 ∈ 𝐻 3 (0, 𝐿) ∩ 𝐻 1 0 (0, 𝐿), 𝜁 ′ (0) = α𝜁 ′ (𝐿)}. Similarly, for 𝜁 ∈ 𝐷(𝐴 * α ) we have (𝐴 * α 𝜁 , 𝜁) 𝐿 2 (0,𝐿) = 1 2 ( α2 -1)(𝜁 ′ (𝐿)) 2 ≤ 0. Thus, by
.3)), 𝐴 α is a maximal operator. □ Thus, it is enough to check that | α| < 1: as |𝑔 0 (𝑡)| < 1, then | α| ≤ |𝛼| + |𝛽| < 1 by (
We have then shown that 𝜆𝐼 -(𝑡) is surjective. Then, as 𝜅(𝑡) > 0, we have that 𝜆𝐼 -(𝑡) = (𝜆 + 𝜅(𝑡))𝐼 -(𝑡) is surjective for some 𝜆 > 0 and 𝑡 ∈ [0, 𝑇 ]. We conclude that (𝑡) generates a strongly semigroup on 𝐻 and  = { (𝑡), 𝑡 ∈ [0, 𝑇 ]} is a stable family of generators in 𝐻 with a stability constant independent of 𝑡, using (12), by (Kato, 1970, Prop 3.4) (see also [START_REF] Kato | Exponential stability for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights[END_REF]). Finally, κ(𝑡) = τ(𝑡) τ(𝑡)

2𝜏(𝑡)( τ(𝑡) 2 +1) 1∕2 -τ(𝑡)( τ(𝑡) 2 +1) 1∕2 2𝜏(𝑡) 2
is bounded on [0, 𝑇 ] for all 𝑇 > 0 (by ( 5)) and we have

𝑑 𝑑𝑡 (𝑡)𝑈 = ⎛ ⎜ ⎜ ⎝ 0 τ(𝑡)𝜏(𝑡)𝜌 -τ(𝑡)( τ(𝑡)𝜌 -1) 𝜏(𝑡) 2 𝑧 𝜌 ⎞ ⎟ ⎟ ⎠ with τ(𝑡)𝜏(𝑡)𝜌 -τ(𝑡)( τ(𝑡)𝜌 -1) 𝜏(𝑡) 2 bounded on [0, 𝑇 ] by (5).
Thus,

𝑑 𝑑𝑡 (𝑡) ∈ 𝐿 ∞ * ([0, 𝑇 ], 𝐵(𝐷((0)), 𝐻)),
which proves the fourth point of Theorem 2.1. Therefore, all assumptions of Theorem 2.1 are verified, thus the problem

{ Ũ𝑡 (𝑡) = (𝑡) Ũ (𝑡), 𝑡 > 0, Ũ (0) = 𝑈 0 has a unique solution Ũ ∈ 𝐶([0, ∞), 𝐻) and Ũ ∈ 𝐶([0, ∞), 𝐷((0))) ∩ 𝐶 1 ([0, ∞), 𝐻) if 𝑈 0 ∈ 𝐷((0)).
Lastly, we can check that our solution of ( 9) is 𝑈 (𝑡) =

𝑒 ∫ 𝑡 0 𝜅(𝑠)𝑑𝑠 Ũ (𝑡). Indeed, 𝑈 𝑡 (𝑡) = 𝜅(𝑡)𝑒 ∫ 𝑡 0 𝜅(𝑠)𝑑𝑠 Ũ (𝑡) + 𝑒 ∫ 𝑡 0 𝜅(𝑠)𝑑𝑠 Ũ𝑡 (𝑡) = 𝜅(𝑡)𝑒 ∫ 𝑡 0 𝜅(𝑠)𝑑𝑠 Ũ (𝑡) + 𝑒 ∫ 𝑡 0 𝜅(𝑠)𝑑𝑠 (𝑡) Ũ (𝑡) = 𝑒 ∫ 𝑡 0 𝜅(𝑠)𝑑𝑠 (𝜅(𝑡) Ũ (𝑡) + (𝑡) Ũ (𝑡)) = 𝑒 ∫ 𝑡 0 𝜅(𝑠)𝑑𝑠 (𝑡) Ũ (𝑡) = (𝑡)𝑒 ∫ 𝑡 0 𝜅(𝑠)𝑑𝑠 Ũ (𝑡) = (𝑡)𝑈 (𝑡),
which concludes the proof. □

Well-posedness of the linear system with extra source term

Consider now (9) with a source term 𝑓 in the 𝑦-equation

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ (𝑦 𝑡 + 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 )(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡), 𝑡 > 0, 𝑥 ∈ (0, 𝐿), 𝜏(𝑡)𝑧 𝑡 (𝜌, 𝑡) + (1 -τ(𝑡)𝜌)𝑧 𝜌 (𝜌, 𝑡) = 0, 𝑡 > 0, 𝜌 ∈ (0, 1), 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0, 𝑡 > 0, 𝑦 𝑥 (𝐿, 𝑡) = 𝛼𝑦 𝑥 (0, 𝑡) + 𝛽𝑧(1, 𝑡), 𝑡 > 0, 𝑧(0, 𝑡) = 𝑦 𝑥 (0, 𝑡), 𝑡 > 0, 𝑦(𝑥, 0) = 𝑦 0 (𝑥), 𝑥 ∈ (0, 𝐿), 𝑧(𝜌, 0) = 𝑧 0 (-𝜏(0)𝜌), 𝜌 ∈ (0, 1). (15) Proposition 2.4. Assume that (3)-(6) hold. Let 𝑈 0 = (𝑦 0 , 𝑧 0 ) ∈ 𝐻 and 𝑓 ∈ 𝐿 1 ((0, ∞), 𝐿 2 (0, 𝐿)).
Then there exists a unique solution 𝑈 = (𝑦, 𝑧) ∈ 𝐶([0, +∞), 𝐻) to (15). Moreover, for 𝑇 > 0, the following estimates hold

‖(𝑦, 𝑧)‖ 𝐶([0,𝑇 ],𝐻) ≤ 𝐶 ( ‖𝑈 0 ‖ 𝐻 + ‖𝑓 ‖ 𝐿 1 ((0,𝑇 ),𝐿 2 (0,𝐿))
) , ( 16)

‖𝑦‖ 𝐿 2 ((0,𝑇 ),𝐻 1 (0,𝐿)) ≤ 𝐶 ( ‖𝑈 0 ‖ 𝐻 + ‖𝑓 ‖ 𝐿 1 ((0,𝑇 ),𝐿 2 (0,𝐿))
)

. ( 17)

Proof: The above system can be written as 𝑈 𝑡 (𝑡) = (𝑡)𝑈 (𝑡) + (𝑓 , 0). Using [START_REF] Kato | Quasi-linear equations of evolution, with applications to partial differential equations[END_REF], Th 2) we can show that if 𝑈 0 ∈ 𝐻 and 𝑓 ∈ 𝐿 1 ((0, ∞), 𝐿 2 (0, 𝐿)), then there exists a unique solution

𝑈 ∈ 𝐶([0, ∞), 𝐻). Furthermore, 𝑈 ∈ 𝐶([0, ∞), 𝐷((0))) ∩ 𝐶 1 ([0, ∞), 𝐻) if 𝑈 0 ∈ 𝐷((0)) and 𝑓 ∈ 𝐶([0, ∞), 𝐿 2 (0, 𝐿)) ∩ 𝐿 1 ((0, ∞), 𝐷((0)))
. Now take 𝑈 = (𝑦, 𝑧) a classical solution of (15). Let us choose the following energy

𝐸(𝑡) = 1 2 ∫ 𝐿 0 𝑦 2 (𝑥, 𝑡)𝑑𝑥 + |𝛽|𝜏(𝑡) 2 ∫ 1 0 𝑧 2 (𝜌, 𝑡)𝑑𝜌 (18)
corresponding to the time-dependent norm ‖⋅‖ 𝑡 on 𝐻. Differentiating (18), we obtain

Ė(𝑡) = ∫ 𝐿 0 𝑦𝑦 𝑡 𝑑𝑥+ |𝛽| τ(𝑡) 2 ∫ 1 0 𝑧 2 𝑑𝜌+|𝛽|𝜏(𝑡) ∫ 1 0 𝑧𝑧 𝑡 𝑑𝜌.
Now, using (15) and integrations by parts, we derive

Ė(𝑡) = 1 2 [ (𝛼 2 -1 + |𝛽|)𝑦 2 𝑥 (0, 𝑡) + 2𝛼𝛽𝑦 𝑥 (0, 𝑡)𝑧(1, 𝑡) +(𝛽 2 -|𝛽|(1 -τ(𝑡)))𝑧 2 (1, 𝑡) ] + ∫ 𝐿 0 𝑦𝑓 𝑑𝑥.
Using ( 4)-( 6) we get

Ė(𝑡) + ( 𝑦 𝑥 (0, 𝑡) 𝑧(1, 𝑡) ) 𝑇 ( - 1 2 Φ 𝛼,𝛽 ) ( 𝑦 𝑥 (0, 𝑡) 𝑧(1, 𝑡) ) ≤ ∫ 𝐿 0 𝑦𝑓 𝑑𝑥.
Notice that -Φ 𝛼,𝛽 is a symmetric positive definite matrix.

Then there exists 𝐶 > 0 such that

Ė(𝑡) + 𝑦 2 𝑥 (0, 𝑡) + 𝑧 2 (1, 𝑡) ≤ 𝐶 ∫ 𝐿 0 𝑦𝑓 𝑑𝑥.
Now take 0 ≤ 𝑠 ≤ 𝑇 and integrate the above expression on [0, 𝑠] to obtain

𝐸(𝑠) + ∫ 𝑠 0 𝑦 2 𝑥 (0, 𝑡)𝑑𝑡 + ∫ 𝑠 0 𝑧 2 (1, 𝑡)𝑑𝑡 ≤ 𝐶 ( ∫ 𝑠 0 ∫ 𝐿 0 𝑦𝑓 𝑑𝑥𝑑𝑡 + 𝐸(0)
) .

(

) 19 
Thus, by ( 11) and the Cauchy-Schwarz inequality, we have

‖(𝑦(⋅, 𝑠), 𝑧(⋅, 𝑠))‖ 2 𝐻 ≤ 𝐶 ( ‖𝑈 0 ‖ 2 𝐻 + ‖𝑓 ‖ 𝐿 1 ((0,𝑇 ),𝐿 2 (0,𝐿)) ‖(𝑦, 𝑧)‖ 𝐶([0,𝑇 ],𝐻)
) .

Taking the maximum for 𝑠 ∈ [0, 𝑇 ] and using the Young inequality, we conclude ( 16). In addition, taking 𝑠 = 𝑇 in (19) and using ( 16) we obtain the following hidden regularity:

∫ 𝑇 0 𝑦 2 𝑥 (0, 𝑡)𝑑𝑡 + ∫ 𝑇 0 𝑧 2 (1, 𝑡)𝑑𝑡 ≤ 𝐶 ( ‖𝑈 0 ‖ 2 𝐻 + ‖𝑓 ‖ 2 𝐿 1 ((0,𝑇 ),𝐿 2 (0,𝐿))
) .

(20)

Multiplying 𝑦-equation of ( 15) by 𝑥𝑦, integrating on (0, 𝑇 )× (0, 𝐿) and performing integration by parts, we get

1 2 ∫ 𝐿 0 𝑥𝑦 2 (𝑥, 𝑇 )𝑑𝑥 + 3 2 ∫ 𝑇 0 ∫ 𝐿 0 𝑦 2 𝑥 𝑑𝑥𝑑𝑡 = 1 2 ∫ 𝐿 0 𝑥𝑦 2 0 𝑑𝑥 + 1 2 ∫ 𝑇 0 ∫ 𝐿 0 𝑦 2 𝑑𝑥𝑑𝑡 + 1 2 ∫ 𝑇 0 𝐿𝑦 2 𝑥 (𝐿, 𝑡)𝑑𝑡 + ∫ 𝑇 0 ∫ 𝐿 0 𝑥𝑓 𝑦𝑑𝑥𝑑𝑡,
and then

‖𝑦 𝑥 ‖ 2 𝐿 2 ((0,𝐿)×(0,𝑇 )) ≤ 𝐶 ( ∫ 𝐿 0 𝑦 2 0 𝑑𝑥 + ∫ 𝑇 0 ∫ 𝐿 0 𝑦 2 𝑑𝑥𝑑𝑡 + ∫ 𝑇 0 𝑦 2 𝑥 (0, 𝑡)𝑑𝑡 + ∫ 𝑇 0 𝑧 2 (1, 𝑡)𝑑𝑡 + ∫ 𝑇 0 ∫ 𝐿 0 𝑓 𝑦𝑑𝑥𝑑𝑡
) .

Finally, using ( 16) and (20) we derive (17). □

Well-posedness of the nonlinear system

Now we are ready to prove the local well-posedness result for the nonlinear system (1). Let 𝑇 > 0 and introduce the space 𝐵 = 𝐶([0, 𝑇 ], 𝐿 2 (0, 𝐿)) ∩ 𝐿 2 ((0, 𝑇 ), 𝐻 1 (0, 𝐿)) endowed with the norm ‖𝑦‖ 𝐵 = ‖𝑦‖ 𝐶([0,𝑇 ],𝐿 2 (0,𝐿)) + ‖𝑦‖ 𝐿 2 ((0,𝑇 ),𝐻 1 (0,𝐿)) . Now, to consider the nonlinearity 𝑦𝑦 𝑥 , the next proposition will be crucial; its proof can be founded in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF].

Proposition 2.5. Let 𝑦 ∈ 𝐿 2 ((0, 𝑇 ), 𝐻 1 (0, 𝐿)). Then 𝑦𝑦 𝑥 ∈ 𝐿 1 ((0, 𝑇 ), 𝐿 2 (0, 𝐿)) and the map 𝑦 ∈ 𝐿 2 ((0, 𝑇 ), 𝐻 1 (0, 𝐿)) ↦ 𝑦𝑦 𝑥 ∈ 𝐿 1 ((0, 𝑇 ), 𝐿 2 (0, 𝐿)) is continuous. Moreover, there exists 𝐾 > 0 such that, for any 𝑦, ỹ ∈ 𝐿 2 ((0, 𝑇 ), 𝐻 1 (0, 𝐿)), we have

∫ 𝑇 0 ‖𝑦𝑦 𝑥 -ỹ ỹ𝑥 ‖ 𝐿 2 (0,𝐿) ≤ 𝐾‖𝑦 -ỹ‖ 𝐿 2 ((0,𝑇 ),𝐻 1 (0,𝐿))

×

( ‖𝑦‖ 𝐿 2 ((0,𝑇 ),𝐻 1 (0,𝐿)) + ‖ ỹ‖ 𝐿 2 ((0,𝑇 ),𝐻 1 (0,𝐿))

) .

Theorem 2.6. Let 𝑇 > 0, 𝐿 > 0 and assume that (3)-( 6) hold. Then there exist 𝑟, 𝐶 > 0 such that for every (𝑦 0 , 𝑧 0 ) ∈ 𝐻 satisfying ‖(𝑦 0 , 𝑧 0 )‖ 𝐻 ≤ 𝑟, there exists a unique solution 𝑦 ∈ 𝐵 of the system (1) verifying ‖𝑦‖ 𝐵 ≤ 𝐶‖(𝑦 0 , 𝑧 0 )‖ 𝐻 .

Proof: Let (𝑦 0 , 𝑧 0 ) ∈ 𝐻 such that ‖(𝑦 0 , 𝑧 0 )‖ 𝐻 ≤ 𝑟 for 𝑟 > 0 chosen small enough later. Take ỹ ∈ 𝐵 and consider the map 𝑃 ∶ 𝐵 → 𝐵, defined by 𝑃 ( ỹ) = 𝑦, where 𝑦 is the solution of

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (𝑦 𝑡 + 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 )(𝑥, 𝑡) = (-ỹ ỹ𝑥 )(𝑥, 𝑡), 𝑡 > 0, 𝑥 ∈ (0, 𝐿), 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0, 𝑡 > 0, 𝑦 𝑥 (𝐿, 𝑡) = 𝛼𝑦 𝑥 (0, 𝑡) + 𝛽𝑦 𝑥 (0, 𝑡 -𝜏(𝑡)), 𝑡 > 0, 𝑦(𝑥, 0) = 𝑦 0 (𝑥), 𝑥 ∈ (0, 𝐿), 𝑦 𝑥 (0, 𝑡 -𝜏(0)) = 𝑧 0 (𝑡 -𝜏(0)), 0 < 𝑡 < 𝜏(0).
Clearly, 𝑦 ∈ 𝐵 is a solution of (1) if and only if 𝑦 is a fixed point of 𝑃 . Now from Proposition 2.4 we find that the map 𝑃 is well-defined and from Proposition 2.5, ( 16)-( 17), we get

‖𝑃 ( ỹ)‖ 𝐵 = ‖𝑦‖ 𝐵 ≤ 𝐶 ( ‖(𝑦 0 , 𝑧 0 )‖ 𝐻 + ‖ ỹ ỹ𝑥 ‖ 𝐿 1 ((0,𝑇 ),𝐿 2 (0,𝐿)) ) ≤ 𝐶 ( ‖(𝑦 0 , 𝑧 0 )‖ 𝐻 + ‖ ỹ‖ 2 𝐵 ) .
Following the same arguments, we can show that

‖𝑃 ( ỹ1 ) -𝑃 ( ỹ2 )‖ 𝐵 ≤ 𝐶 ( ‖ ỹ1 ‖ 𝐵 + ‖ ỹ2 ‖ 𝐵 ) ‖ ỹ1 -ỹ2 ‖ 𝐵 .
Now we restrict 𝑃 to the closed ball { ỹ ∈ 𝐵, ‖ ỹ‖ 𝐵 ≤ 𝑅}, where 𝑅 > 0 to be chosen later. Then,

‖𝑃 ( ỹ)‖ 𝐵 ≤ 𝐶(𝑟 + 𝑅 2 ), ‖𝑃 ( ỹ1 ) -𝑃 ( ỹ2 )‖ 𝐵 ≤ 2𝐶𝑅‖ ỹ1 -ỹ2 ‖ 𝐵 .
Finally, it is enough to consider 𝑅 < 1 2𝐶 and 𝑟 < 𝑅 2𝐶 . With this choice, 𝑃 maps the closed ball { ỹ ∈ 𝐵, ‖ ỹ‖ ≤ 𝑅} into itself and ‖𝑃 ( ỹ1 ) -𝑃 ( ỹ2 )‖ 𝐵 ≤ 2𝐶𝑅‖ ỹ1 -ỹ2 ‖ 𝐵 with 2𝐶𝑅 < 1. Lastly, we deduce the well-posedness result by invoking the Banach fixed point theorem on the map 𝑃 . □

Well-posedness result of (2)

The goal of this section is to prove appropriate global well-posedness result of (2). We adopt the same methodology as in subsection 2.1, so we skip here some details.

Well-posedness of the linear system

In this subsection, we will study the well-posedness result of the KdV equation (2) linearized around 0, that is

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (𝑦 𝑡 + 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 )(𝑥, 𝑡) + 𝑎(𝑥)𝑦(𝑥, 𝑡)
+𝑏(𝑥)𝑦(𝑥, 𝑡 -𝜏(𝑡)) = 0, 𝑡 > 0, 𝑥 ∈ (0, 𝐿), 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 𝑦 𝑥 (𝐿, 𝑡) = 0, 𝑡 > 0, 𝑦(𝑥, 0) = 𝑦 0 (𝑥), 𝑥 ∈ (0, 𝐿), 𝑦(𝑥, 𝑡 -𝜏(0)) = 𝑧 0 (𝑥, 𝑡 -𝜏(0)), 0 < 𝑡 < 𝜏(0), 𝑥 ∈ (0, 𝐿).

As previously, we introduce 𝑧(𝑥, 𝜌, 𝑡) = 𝑦 |𝜔 (𝑥, 𝑡 -𝜏(𝑡)𝜌) for any 𝑥 ∈ 𝜔, 𝜌 ∈ (0, 1) and 𝑡 > 0, and define 𝑈 = (𝑦, 𝑧) 𝑇 . This problem can be rewritten as the following first-order evolution equation

{ 𝑈 𝑡 (𝑡) =  2 (𝑡)𝑈 (𝑡), 𝑡 > 0, 𝑈 (0) = (𝑦 0 , 𝑧 0 (⋅, -𝜏(0)⋅)) 𝑇 =∶ 𝑈 0 , ( 21 
)
where the time-dependent operator  2 (𝑡) is defined by

 2 (𝑡) ( 𝑦 𝑧 ) = ⎛ ⎜ ⎜ ⎝ -𝑦 𝑥 -𝑦 𝑥𝑥𝑥 -𝑎𝑦 -𝑏 z(., 1) τ(𝑡)𝜌 -1 𝜏(𝑡) 𝑧 𝜌 ⎞ ⎟ ⎟ ⎠
, where z(., 1) ∈ 𝐿 2 (0, 𝐿) is the extension of 𝑧(., 1) by zero outside 𝜔, with domain

𝐷( 2 (𝑡)) = { (𝑦, 𝑧) ∈ 𝐻 3 (0, 𝐿) × 𝐿 2 (𝜔, 𝐻 1 (0, 1)), 𝑦(0) = 𝑦(𝐿) = 𝑦 𝑥 (𝐿) = 0, 𝑧(𝑥, 0) = 𝑦 |𝜔 (𝑥)
} .

The domain of the operator  2 (𝑡) is independent of the time 𝑡, i.e 𝐷( 2 (𝑡)) = 𝐷( 2 (0)), 𝑡 > 0. The Hilbert space 𝐻 = 𝐿 2 (0, 𝐿) × 𝐿 2 (𝜔 × (0, 1)), is provided with the timedependent inner product

⟨( 𝑦 𝑧

) ,

( ỹ z)⟩ 𝑡 = ∫ 𝐿 0 𝑦 ỹ𝑑𝑥 + 𝜏(𝑡) ∫ 𝜔 ∫ 1 0 𝜉(𝑥)𝑧 z𝑑𝜌𝑑𝑥,
where 𝜉 is a nonnegative function in 𝐿 ∞ (0, 𝐿) such that supp 𝜉 = supp 𝑏 = 𝜔 and

1 1 -𝑑 𝑏(𝑥)+𝑐 0 ⩽ 𝜉(𝑥) ⩽ 2𝑎(𝑥)-𝑏(𝑥)-𝑐 0 in 𝜔. (22)
This choice of 𝜉 is possible due to (8).

It is clear that the norm ‖ ⋅ ‖ 𝑡 is equivalent to the usual norm

‖ ⋅ ‖ 𝐻 on 𝐻: ∀𝑡 ≥ 0, ∀(𝑦, 𝑧) ∈ 𝐻, (1 + 𝜏 0 𝑏 0 )‖(𝑦, 𝑧)‖ 2 𝐻 ≤ ‖(𝑦, 𝑧)‖ 2 𝑡 ≤ (1 + 2𝑀‖𝑎‖ ∞ )‖(𝑦, 𝑧)‖ 2 𝐻 , ( 23 
)
using ( 3) and ( 7). The following theorem gives the existence and uniqueness results of (21).

Theorem 2.7. Assume (3)-( 5), that 𝑎 and 𝑏 are nonnegative functions belonging to 𝐿 ∞ (0, 𝐿) satisfying (7)-( 8) and that 𝑈 0 ∈ 𝐻. Then there exists a unique mild solution

𝑈 ∈ 𝐶([0, +∞), 𝐻) to (21). Moreover, if 𝑈 0 ∈ 𝐷( 2 (0)) then 𝑈 ∈ 𝐶([0, +∞), 𝐷( 2 (0))) ∩ 𝐶 1 ([0, +∞), 𝐻).
Proof: As for Theorem 2.2, we prove the four assumptions of Theorem 2.1. We have, for all 𝑡 > 0, 𝐷( 2 (𝑡)) = 𝐷( 2 (0)), which is a dense subset of 𝐻. Let 𝑡 ∈ [0, 𝑇 ] be fixed. To prove 3. of Theorem 2.1, we start by computing ⟨ 2 (𝑡)𝑈 , 𝑈 ⟩ 𝑡 .

Let 𝑈 = (𝑦, 𝑧) 𝑇 ∈ 𝐷( 2 (0)). Similarly to the proof of Theorem 2.2, integrating by parts in space and in 𝜌, we obtain

⟨ 2 (𝑡)𝑈 , 𝑈 ⟩ 𝑡 = 1 2 [𝑦 2 𝑥 ] 𝐿 0 -∫ 𝐿 0 𝑎(𝑥)𝑦 2 𝑑𝑥 -∫ 𝜔 𝑏(𝑥)𝑧(𝑥, 1)𝑦(𝑥)𝑑𝑥 + 1 2 ∫ 𝜔 𝜉(𝑥)( τ(𝑡) -1)𝑧 2 (𝑥, 1)𝑑𝑥 + 1 2 ∫ 𝜔 𝜉(𝑥)𝑧 2 (𝑥, 0)𝑑𝑥 - 1 2 τ(𝑡) ∫ 𝜔 ∫ 1 0 𝜉(𝑥)𝑧 2 𝑑𝜌𝑑𝑥.
Since we have

-∫ 𝜔 𝑏(𝑥)𝑧(𝑥, 1)𝑦(𝑥)𝑑𝑥 ⩽ 1 2 ∫ 𝜔 𝑏(𝑥)𝑧 2 (𝑥, 1)𝑑𝑥 + 1 2 ∫ 𝜔 𝑏(𝑥)𝑦 2 𝑑𝑥, then ⟨ 2 (𝑡)𝑈 , 𝑈 ⟩ 𝑡 ≤ - 1 2 𝑦 2 𝑥 (0) + ∫ 𝜔 ( -𝑎(𝑥) + 𝑏(𝑥) 2 + 𝜉(𝑥) 2 ) 𝑦 2 (𝑥)𝑑𝑥 -∫ (0,𝐿)∖𝜔 𝑎(𝑥)𝑦 2 𝑑𝑥 + ∫ 𝜔 ( 𝑏(𝑥) 2 + 𝜉(𝑥)( τ(𝑡) -1) 2 ) 𝑧 2 (𝑥, 1)𝑑𝑥 - 1 2 τ(𝑡) ∫ 𝜔 ∫ 1 0 𝜉(𝑥)𝑧 2 𝑑𝜌𝑑𝑥.
Taking 𝜉 such that ( 22) is satisfied and from (4), we get

-𝑎(𝑥) + 𝑏(𝑥) 2 + 𝜉(𝑥) 2 < 0 and 𝑏(𝑥) 2 + 𝜉(𝑥)( τ(𝑡) -1) 2 ⩽ 𝑏(𝑥) 2 + 𝜉(𝑥)(𝑑 -1) 2 < 0. Hence, ⟨ 2 (𝑡)𝑈 , 𝑈 ⟩ 𝑡 -𝜅(𝑡)⟨𝑈 , 𝑈 ⟩ 𝑡 ⩽ 0, where 𝜅(𝑡) = ( τ(𝑡) 2 + 1) 1∕2 2𝜏(𝑡) ,
which means that the operator 2 (𝑡) ∶=  2 (𝑡) -𝜅(𝑡)𝐼 is dissipative. Now we will compute ⟨ 2 (𝑡) * 𝑈 , 𝑈 ⟩ 𝑡 , where  2 (𝑡) * is the adjoint of  2 (𝑡). The adjoint  2 (𝑡) * is defined by

 2 (𝑡) * ( 𝑦 𝑧 ) = ⎛ ⎜ ⎜ ⎝ 𝑦 𝑥 + 𝑦 𝑥𝑥𝑥 -𝑎𝑦 + 𝜉(𝑥) z(., 0) 1 -τ(𝑡)𝜌 𝜏(𝑡) 𝑧 𝜌 - τ(𝑡) 𝜏(𝑡) 𝑧 ⎞ ⎟ ⎟ ⎠ , with domain 
𝐷( 2 (𝑡) * ) = { (𝑦, 𝑧) ∈ 𝐻 3 (0, 𝐿) × 𝐿 2 (𝜔, 𝐻 1 (0, 1)), 𝑦(0) = 𝑦(𝐿) = 𝑦 𝑥 (0) = 0, 𝑧(𝑥, 1) = -𝑏(𝑥) 𝜉(𝑥)(1 -τ(𝑡)) 𝑦 |𝜔 (𝑥) } .
Then, for all 𝑈 = (𝑦, 𝑧) 𝑇 ∈ 𝐷( 2 (𝑡) * ), we get integrating by parts in space and in 𝜌,

⟨ 2 (𝑡) * 𝑈 , 𝑈 ⟩ 𝑡 = - 1 2 [𝑦 2 𝑥 ] 𝐿 0 -∫ 𝐿 0 𝑎(𝑥)𝑦 2 𝑑𝑥 + ∫ 𝜔 𝜉(𝑥)𝑦(𝑥)𝑧(𝑥, 0)𝑑𝑥 + 1 2 ∫ 𝜔 ∫ 1 0 𝜉(𝑥) τ(𝑡)𝑧 2 𝑑𝜌𝑑𝑥 + 1 2 ∫ 𝜔 𝜉(𝑥)[(1 -τ(𝑡)𝜌)𝑧 2 ] 1 0 𝑑𝑥 -∫ 𝜔 ∫ 1 0 𝜉(𝑥) τ(𝑡)𝑧 2 𝑑𝜌𝑑𝑥.
Then, using the boundary conditions, we have

⟨ 2 (𝑡) * 𝑈 , 𝑈 ⟩ 𝑡 = - 1 2 𝑦 2 𝑥 (𝐿, 𝑡) -∫ 𝐿 0 𝑎(𝑥)𝑦 2 𝑑𝑥 + ∫ 𝜔 𝜉(𝑥)𝑦(𝑥)𝑧(𝑥, 0)𝑑𝑥 - τ(𝑡) 2 ∫ 𝜔 ∫ 1 0 𝜉(𝑥)𝑧 2 𝑑𝜌𝑑𝑥 + 1 2 ∫ 𝜔 𝑏 2 (𝑥) 𝜉(𝑥)(1 -τ(𝑡)) 𝑦 2 (𝑥)𝑑𝑥 - 1 2 ∫ 𝜔 𝜉(𝑥)𝑧 2 (𝑥, 0)𝑑𝑥.
Using Young's inequality, we obtain

⟨ 2 (𝑡) * 𝑈 , 𝑈 ⟩ 𝑡 ≤ -∫ (0,𝐿)∖𝜔 𝑎(𝑥)𝑦 2 𝑑𝑥 - τ(𝑡) 2 ∫ 𝜔 ∫ 1 0 𝜉(𝑥)𝑧 2 𝑑𝜌𝑑𝑥 - 1 2 ∫ 𝜔 ( 2𝑎(𝑥) -𝜉(𝑥) - 𝑏 2 (𝑥) 𝜉(𝑥)(1 -τ(𝑡)) ) 𝑦 2 𝑑𝑥.
By ( 22) and ( 4), we have

𝜉(𝑥) ≤ 2𝑎(𝑥) -𝑏(𝑥) -𝑐 0 ≤ 2𝑎(𝑥) - 𝑏 2 (𝑥) 𝜉(𝑥)(1 -𝑑) -𝑐 0 ≤ 2𝑎(𝑥) - 𝑏 2 (𝑥) 𝜉(𝑥)(1 -τ(𝑡)) , since 𝑏(𝑥) ≤ 𝜉(𝑥)(1 -𝑑) (see (22)). Consequently 2𝑎(𝑥) - 𝜉(𝑥) - 𝑏 2 (𝑥) 𝜉(𝑥)(1 -τ(𝑡)) ≥ 0. Hence, ⟨ 2 (𝑡) * 𝑈 , 𝑈 ⟩ 𝑡 -𝜅(𝑡)⟨𝑈 , 𝑈 ⟩ 𝑡 ⩽ 0,
which means that the operator 2 (𝑡) * =  2 (𝑡) * -𝜅(𝑡)𝐼 is dissipative.

Since 2 (𝑡) and 2 (𝑡) * are dissipative and 2 (𝑡) is a densely defined closed linear operator, then 2 (𝑡) is the infinitesimal generator of a 𝐶 0 semigroup of contraction on 𝐻 (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]) for any 𝑡 ∈ [0, 𝑇 ] be fixed. As the proof of Theorem 2.2, we can easily prove (12). Consequently, for all 𝑡 ∈ [0, 𝑇 ], 2 (𝑡) generates a strongly continuous semigroup on 𝐻 and the family 2 = { 2 (𝑡) ∶ 𝑡 ∈ [0, 𝑇 ]} is stable with stability constants 𝐶 and 𝑚 independent of 𝑡 (see Proposition 3.4 of [START_REF] Kato | Linear evolution equations of "hyperbolic" type[END_REF]). These mean that 3. of Theorem 2.1 is satisfied. Finally, we can also prove, similarly to the proof of Theorem 2.2, that

𝑑 𝑑𝑡 2 (𝑡) ∈ 𝐿 ∞ * ([0, 𝑇 ], 𝐵(𝐷( 2 (0)), 𝐻)).
Since all assumptions of Theorem 2.1 are verified, then the problem

{ Ũ𝑡 (𝑡) = 2 (𝑡) Ũ , Ũ (0) = 𝑈 0 , has a unique solution Ũ ∈ 𝐶([0, +∞), 𝐷( 2 (0))) ∩ 𝐶 1 ([0, +∞), 𝐻) for 𝑈 0 ∈ 𝐷( 2 (0)).
The requested solution of ( 21) is then given by 𝑈 (𝑡) = 𝑒 ∫ 𝑡 0 𝜅(𝑠)𝑑𝑠 Ũ (𝑡), similarly to the proof of Theorem 2.2. □

Well-posedness of the linear system with a source term

In this subsection, we will study the well-posedness of the following linear KdV equation with a source term

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝑦 𝑡 (𝑥, 𝑡) + 𝑦 𝑥 (𝑥, 𝑡) + 𝑦 𝑥𝑥𝑥 (𝑥, 𝑡) + 𝑎(𝑥)𝑦(𝑥, 𝑡) +𝑏(𝑥)𝑦(𝑥, 𝑡 -𝜏(𝑡)) = 𝑓 (𝑥, 𝑡), 𝑡 > 0, 𝑥 ∈ (0, 𝐿), 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 𝑦 𝑥 (𝐿, 𝑡) = 0, 𝑡 > 0, 𝑦(𝑥, 0) = 𝑦 0 (𝑥), 𝑥 ∈ (0, 𝐿), 𝑦(𝑥, 𝑡 -𝜏(0)) = 𝑧 0 (𝑥, 𝑡 -𝜏(0)), 0 < 𝑡 < 𝜏(0), 𝑥 ∈ (0, 𝐿). ( 24 
)
Proposition 2.8. Assume (3)-( 5) and that 𝑎 and 𝑏 are nonnegative functions belonging to 𝐿 ∞ (0, 𝐿) satisfying ( 7)-( 8).

For any (𝑦 0 , 𝑧 0 (., -𝜏(0).)) ∈ 𝐻 and 𝑓 ∈ 𝐿 1 (0, 𝑇 , 𝐿 2 (0, 𝐿)) there exists a unique mild solution (𝑦, 𝑦(., 𝑡 -𝜏(𝑡).)) ∈ 𝐵 × 𝐶([0, 𝑇 ], 𝐻) to (24). Moreover, there exists 𝐶 > 0 independent of 𝑇 such that ( 16) and ( 17) hold.

Proof:

The proof is similar to the proof of Proposition 2.4 and is left to the readers (see also [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback[END_REF]). □

Well-posedness of the nonlinear system (2)

Finally, we will show the global well-posedness result of the nonlinear system (2).

Theorem 2.9. Let 𝐿 > 0 and assume (3)-( 5) and that 𝑎 and 𝑏 are nonnegative functions belonging to 𝐿 ∞ (0, 𝐿) satisfying (7) and (8). Then for any (𝑦 0 , 𝑧 0 (., -𝜏(0).)) ∈ 𝐻, there exists a unique 𝑦 ∈ 𝐵 solution of system (2).

Proof: Following [START_REF] Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF], we can get the global existence of the solution by showing the local (in time) existence and using the decay of the energy. Let ỹ ∈ 𝐵, we consider the map Ψ ∶ 𝐵 ⟶ 𝐵 defined by Ψ( ỹ) = 𝑦 where 𝑦 is the solution of the following system

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑦 𝑡 (𝑥, 𝑡) + 𝑦 𝑥 (𝑥, 𝑡) + 𝑦 𝑥𝑥𝑥 (𝑥, 𝑡) + 𝑎(𝑥)𝑦(𝑥, 𝑡) +𝑏(𝑥)𝑦(𝑥, 𝑡 -𝜏(𝑡)) = -ỹ(𝑥, 𝑡) ỹ𝑥 (𝑥, 𝑡), 𝑡 > 0, 𝑥 ∈ (0, 𝐿), 𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 𝑦 𝑥 (𝐿, 𝑡) = 0, 𝑡 > 0, 𝑦(𝑥, 0) = 𝑦 0 (𝑥), 𝑥 ∈ (0, 𝐿), 𝑦(𝑥, 𝑡 -𝜏(0)) = 𝑧 0 (𝑥, 𝑡 -𝜏(0)), 0 < 𝑡 < 𝜏(0), 𝑥 ∈ (0, 𝐿).
We can prove similarly to the proof of [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback[END_REF], Proposition 4) (see also Theorem 2.6) that Ψ is a contraction on the closed ball {𝑦 ∈ 𝐵∕‖𝑦‖ 𝐵 ≤ 𝑅} for some chosen 𝑅. Hence, from the Banach fixed point theorem, the map Ψ has a unique fixed point 𝑦 ∈ 𝐵 which is the solution of the nonlinear system (2). □

Exponential stability results

In this section, we prove the exponential stability results, firstly with the boundary damping, secondly with the internal damping.

Boundary stability result

We start this section showing that for a solution of (1) the energy is a not-increasing function of time. We recall that the energy of ( 1) is defined by

𝐸(𝑡) = 1 2 ∫ 𝐿 0 𝑦 2 (𝑥, 𝑡)𝑑𝑥 + |𝛽|𝜏(𝑡) 2 ∫ 1 0 𝑦 2 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌. ( 25 
)
Proposition 3.1. Suppose that (3)-( 6) be satisfied. Then for all regular solution of (1), the energy defined by (25) is not increasing and satisfies

Ė(𝑡) ≤ 1 2 𝑌 𝑇 Φ 𝛼,𝛽 𝑌 ≤ 0, (26) 
where 𝑌 = (𝑦 𝑥 (0, 𝑡), 𝑦 𝑥 (0, 𝑡 -𝜏(𝑡))) 𝑇 .

Proof: It is enough to follow the proof of Proposition 2.4 and notice that for 𝑦 ∈ 𝐻 1 0 (0, 𝐿),

∫ 𝐿 0 𝑦 2 𝑦 𝑥 𝑑𝑥 = 0. □ Consider the following new Lyapunov candidate 𝑉 (𝑡) = 𝐸(𝑡) + 𝜇 1 𝑉 1 (𝑡) + 𝜇 2 𝑉 2 (𝑡), (27) 
where 𝐸 is defined by ( 25), 𝜇 1 , 𝜇 2 > 0 and

𝑉 1 (𝑡) = ∫ 𝐿 0 𝑥𝑦 2 (𝑥, 𝑡)𝑑𝑥, ( 28 
) 𝑉 2 (𝑡) = 𝜏(𝑡) ∫ 1 0 (1 -𝜌)𝑦 2 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌. ( 29 
)
Note that 𝑉 1 is classical for the KdV equation and 𝑉 2 comes from the delay term depending on time.

Theorem 3.2. Suppose that (3)-( 6) are satisfied and assume that the length 𝐿 fulfills 𝐿 < 𝜋 √ 3. Then, there exists 𝑟 > 0 such that, for every (𝑦 0 , 𝑧 0 ) ∈ 𝐻 satisfying ‖(𝑦 0 , 𝑧 0 )‖ 0 ≤ 𝑟, the energy of the system (1) decays exponentially. More precisely, there exist two positive constants 𝛾 and 𝐶 such that

𝐸(𝑡) ≤ 𝐶𝑒 -2𝛾𝑡 𝐸(0), ∀𝑡 > 0, (30) 
with

𝛾 ≤ min { (9𝜋 2 -3𝐿 2 -2𝐿 3∕2 𝑟𝜋 2 )𝜇 1 3𝐿 2 (1 + 2𝐿𝜇 1 ) , (1 -𝑑)𝜇 2 𝑀(2𝜇 2 + |𝛽|) } , ( 31 
) 𝐶 ≤ 1 + max { 𝐿𝜇 1 , 2𝜇 2 |𝛽| } ,
where, 𝜇 1 and 𝜇 2 are taken such that

𝜇 2 ≤ min { 1 -𝛼 2 -𝛽 2 -|𝛽|𝑑 2 , (1 -|𝛽|)(1 -|𝛽| -𝑑) + 𝛼 2 (𝑑 -1) 2(1 -|𝛽| -𝑑) , |𝛽| -𝛼 2 (𝑑 -1) -𝛽 2 2|𝛽| } , ( 32 
)
𝜇 1 ≤ min { (1 -|𝛽|)(1 -|𝛽| -𝑑) + 𝛼 2 (𝑑 -1) + 2𝜇 2 (|𝛽| + 𝑑 -1) 2𝐿(|𝛽| -𝛼 2 (𝑑 -1) -𝛽 2 -2𝜇 2 |𝛽|) , 1 -𝛼 2 -𝛽 2 -|𝛽|𝑑 + 2𝜇 2 2𝐿(𝛼 2 + 𝛽 2 ) } . ( 33 
)
Remark 3.3. We note that the decay rate 𝛾 decreases when the upper bound 𝑀 of the delay 𝜏(𝑡) increases, as shown in the estimation of the decay rate (31). We can also observe the same phenomenom when 𝑑 tends to 1.

Proof: Note that the function 𝑉 is equivalent to the energy 𝐸. More precisely, for every 𝑡 > 0,

𝐸(𝑡) ≤ 𝑉 (𝑡) ≤ ( 1 + max { 𝐿𝜇 1 , 2𝜇 2 |𝛽| }) 𝐸(𝑡). (34)
Thus, it suffices to show that 𝑉 decays exponentially. Let 𝛾 > 0 to fix later, we are going to prove that V (𝑡) + 2𝛾𝑉 (𝑡) ≤ 0. Let 𝑦 solution of ( 1) with (𝑦 0 , 𝑧 0 ) 𝑇 ∈ 𝐷(( 0)) such that ‖(𝑦 0 , 𝑧 0 )‖ 0 ≤ 𝑟 with 𝑟 > 0 chosen later. First, we differentiate 𝑉 1 and use integration by parts to have

V1 (𝑡) = 𝐿𝛼 2 𝑦 2 𝑥 (0, 𝑡) + 2𝐿𝛼𝛽𝑦 𝑥 (0, 𝑡)𝑦 𝑥 (0, 𝑡 -𝜏(𝑡)) +𝐿𝛽 2 𝑦 2 𝑥 (0, 𝑡 -𝜏(𝑡)) -3 ∫ 𝐿 0 𝑦 2 𝑥 𝑑𝑥 + ∫ 𝐿 0 𝑦 2 𝑑𝑥 + 2 3 ∫ 𝐿 0 𝑦 3 𝑑𝑥. ( 35 
)
Similarly, we differentiate 𝑉 2 :

V2 (𝑡) = τ(𝑡) ∫ 1 0 (1 -𝜌)𝑦 2 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌 +2𝜏(𝑡) ∫ 1 0 (1 -𝜌)𝑦 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌)𝜕 𝑡 𝑦 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌.
Noting that -𝜏(𝑡)𝜕 𝑡 𝑦 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌) = (1 -τ(𝑡)𝜌)𝜕 𝜌 𝑦 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌) and performing integration by parts, we get

V2 (𝑡) = -∫ 1 0
(1 -τ(𝑡)𝜌)𝑦 2 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌 + 𝑦 2 𝑥 (0, 𝑡). (36)

Joining ( 26), ( 35) and (36) we have

V (𝑡) + 2𝛾𝑉 (𝑡) ≤ 𝑌 𝑇 [ 1 2 Φ 𝛼,𝛽 + Ψ 𝛼,𝛽 ] 𝑌 -3𝜇 1 ∫ 𝐿 0 𝑦 2 𝑥 𝑑𝑥 + 2 3 𝜇 1 ∫ 𝐿 0 𝑦 3 𝑑𝑥 + (𝜇 1 + 𝛾 + 2𝐿𝜇 1 𝛾) ∫ 𝐿 0 𝑦 2 𝑑𝑥 +(𝛾|𝛽|𝑀 + 2𝜇 2 𝛾𝑀 -𝜇 2 (1 -𝑑)) ∫ 1 0 𝑦 2 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌,
where the matrix Ψ 𝛼,𝛽 is defined by

Ψ 𝛼,𝛽 = ( 𝐿𝜇 1 𝛼 2 + 𝜇 2 𝜇 1 𝛼𝛽𝐿 𝜇 1 𝛼𝛽𝐿 𝜇 1 𝛽 2 𝐿
) .

Then, as Φ 𝛼,𝛽 is definite negative and by the continuity of the trace and the determinant, we find that for 𝜇 1 and 𝜇 2 small enough, the matrix 1 2 Φ 𝛼,𝛽 + Ψ 𝛼,𝛽 is negative definite. More precisely, following (Baudouin et al., 2019, Remark 5), we can take 𝜇 1 and 𝜇 2 as in ( 32)-( 33) . For the term involving

∫ 𝐿 0 𝑦 3 𝑑𝑥, note that ∫ 𝐿 0 𝑦 3 𝑑𝑥 ≤ ‖𝑦‖ 2 𝐿 ∞ (0,𝐿) ∫ 𝐿 0 |𝑦|𝑑𝑥 ≤ ‖𝑦‖ 2 𝐿 ∞ (0,𝐿) ‖𝑦‖ 𝐿 2 (0,𝐿) √ 𝐿.
By the injection of 𝐻 1 0 (0, 𝐿) into 𝐿 ∞ (0, 𝐿) we know that

‖𝑦‖ 𝐿 ∞ (0,𝐿) ≤ √ 𝐿‖𝑦 𝑥 ‖ 𝐿 2 (0,𝐿) , then ∫ 𝐿 0 𝑦 3 𝑑𝑥 ≤ 𝐿 3∕2 ‖𝑦 𝑥 ‖ 2 𝐿 2 (0,𝐿) ‖𝑦‖ 𝐿 2 (0,𝐿) .
Finally, using Proposition 3.1 we can obtain ‖𝑦‖ 𝐿 2 (0,𝐿) ≤ 𝑟 and hence invoking Poincaré's inequality

V (𝑡) + 2𝛾𝑉 (𝑡) ≤ ( 𝐿 2 𝜋 2 (𝜇 1 + 𝛾 + 2𝐿𝜇 1 𝛾) + 2 3 𝐿 3∕2 𝑟𝜇 1 -3𝜇 1 ) ∫ 𝐿 0 𝑦 2 𝑥 𝑑𝑥 + (𝛾|𝛽|𝑀 + 2𝜇 2 𝛾𝑀 -𝜇 2 (1 -𝑑)) ∫ 1 0 𝑦 2 𝑥 (0, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌.
Now, following [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF], as 𝐿 < 𝜋 √ 3, it is possible to choose 𝑟 small enough to have 𝑟 < 3(3𝜋 2 -𝐿 2 ) 2𝐿 3∕2 𝜋 2 . Then, we can choose 𝛾 > 0 such that

𝐿 2 𝜋 2 (𝜇 1 + 𝛾 + 2𝐿𝜇 1 𝛾) + 2 3 𝐿 3∕2 𝑟𝜇 1 -3𝜇 1 ≤ 0, 𝛾|𝛽|𝑀 + 2𝜇 2 𝛾𝑀 -𝜇 2 (1 -𝑑) < 0.
Thus, we can easily obtain (31). Therefore, we have V (𝑡) + 2𝛾𝑉 (𝑡) ≤ 0 and hence 𝑉 (𝑡) ≤ 𝑉 (0)𝑒 -2𝛾𝑡 for all 𝑡 > 0. Using (34) we obtain (30). Since 𝐷(( 0)) is dense in 𝐻, we can take (𝑦 0 , 𝑧 0 ) ∈ 𝐻. □

Internal stability result

In this section, we will study the local stability of (2) using some Lyapunov functional. We consider the following definition of the energy of the nonlinear system ( 2)

𝐸(𝑡) = 1 2 ∫ 𝐿 0 𝑦 2 (𝑥, 𝑡)𝑑𝑥 + 𝜏(𝑡) 2 ∫ 𝜔 ∫ 1 0 𝜉(𝑥)𝑦 2 (𝑥, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌𝑑𝑥, ( 37 
)
where 𝜉 is defined by ( 22). In the following proposition, we will prove the decay of the energy of the nonlinear system (2).

Proposition 3.4. Assume (3)-( 5) and that 𝑎 and 𝑏 are nonnegative functions belonging to 𝐿 ∞ (0, 𝐿) satisfying ( 7) and (8). Then, for any regular solution of (2), the energy 𝐸 defined by (37) is non-increasing and satisfies

Ė(𝑡) ≤ - 1 2 𝑦 2 𝑥 (0, 𝑡) -∫ (0,𝐿)∖𝜔 𝑎(𝑥)𝑦 2 (𝑥, 𝑡)𝑑𝑥 - 1 2 ∫ 𝜔 (2𝑎(𝑥) -𝑏(𝑥) -𝜉(𝑥))𝑦 2 (𝑥, 𝑡)𝑑𝑥 - 1 2 ∫ 𝜔 (𝜉(𝑥)(1 -𝑑) -𝑏(𝑥))𝑦 2 (𝑥, 𝑡 -𝜏(𝑡))𝑑𝑥 ≤ 0.
Proof: The proof is similar to the proof of the dissipativity of  2 (𝑡), noting that ∫ 𝐿 0 𝑦 2 𝑦 𝑥 𝑑𝑥 = 0 (see also the proof of Proposition 2.4). □

Now we take the following Lyapunov functional

𝑉 (𝑡) = 𝐸(𝑡) + 𝜇 1 𝑉 1 (𝑡) + 𝜇 2 𝑉 3 (𝑡), (38) 
where 𝜇 1 > 0 and 𝜇 2 > 0 are fixed constants taken small enough, 𝐸 is the energy defined by (37), 𝑉 1 by (28) and 𝑉 3 is defined by

𝑉 3 (𝑡) = 𝜏(𝑡) ∫ 𝜔 ∫ 1 0 (1 -𝜌)𝑦 2 (𝑥, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌𝑑𝑥. ( 39 
)
From the definition of 𝑉 (𝑡) and 𝐸(𝑡), we have for any 𝑡 > 0,

𝐸(𝑡) ≤ 𝑉 (𝑡) ≤ ( 1 + max { 𝐿𝜇 1 , 𝜇 2 𝑏 0 }) 𝐸(𝑡). ( 40 
)
In the following theorem, we will prove that the energy of the nonlinear system (2) decays exponentially.

Theorem 3.5. Assume (3)-( 5) and that 𝑎 and 𝑏 are nonnegative functions belonging to 𝐿 ∞ (0, 𝐿) that satisfy (7) and (8), and assume that the length L satisfies 𝐿 < 𝜋 √ 3. Then, there exists 𝑟 > 0 small enough, such that, for every (𝑦 0 , 𝑧 0 ) ∈ 𝐻 satisfying ‖(𝑦 0 , 𝑧 0 )‖ 0 ≤ 𝑟, the energy of the nonlinear system (2) decays exponentially. More precisely, there exist two positive constants 𝛾 and 𝐶 such that

𝐸(𝑡) ≤ 𝐶𝑒 -2𝛾𝑡 𝐸(0), ∀𝑡 > 0, with 𝛾 ≤ min { (9𝜋 2 -3𝐿 2 -2𝐿 3∕2 𝑟𝜋 2 )𝜇 1 3𝐿 2 (1 + 2𝐿𝜇 1 ) , (1 -𝑑)𝜇 2 𝑀(2𝜇 2 + ‖𝜉‖ 𝐿 ∞ (0,𝐿) ) } , (41) 𝐶 ≤ 1 + max { 𝐿𝜇 1 , 2𝜇 2 𝑏 0 } ,
where, 𝜇 1 and 𝜇 2 are taken such that

𝜇 1 ≤ inf 𝑥∈𝜔 { 2𝑎(𝑥) -𝑏(𝑥) -𝜉(𝑥) 2𝐿𝑏(𝑥) , (1 -𝑑)𝜉(𝑥) -𝑏(𝑥) 2𝐿𝑏(𝑥) } , (42) 𝜇 2 ≤ inf 𝑥∈𝜔 { 2𝑎(𝑥) -𝑏(𝑥) -𝜉(𝑥) -2𝜇 1 𝐿𝑏(𝑥) 2 } . ( 43 
)
Remark 3.6. We note that the decay rate 𝛾 decreases when the upper bound 𝑀 of the delay 𝜏(𝑡) increases, as shown in the estimation of the decay rate (41). We can also observe the same phenomenon when 𝑑 tends to 1.

Proof: Since 𝐸 and 𝑉 are equivalent from (40), we will prove that 𝑉 decays exponentially, so we will prove that V (𝑡) + 2𝛾𝑉 (𝑡) ≤ 0 for all 𝑡 > 0. Assume that 𝑦 is a solution of (2) with (𝑦 0 , 𝑧 0 (., -𝜏(0).)) 𝑇 ∈ 𝐷( 2 (0)) satisfying ‖(𝑦 0 , 𝑧 0 (., -𝜏(0).))‖ 0 ≤ 𝑟. We start by differentiating 𝑉 1 and integrating by parts, we get

V1 (𝑡) = -3 ∫ 𝐿 0 𝑦 2 𝑥 (𝑥, 𝑡)𝑑𝑥 + ∫ 𝐿 0 𝑦 2 (𝑥, 𝑡)𝑑𝑥 + 2 3 ∫ 𝐿 0 𝑦 3 (𝑥, 𝑡)𝑑𝑥 -2 ∫ 𝐿 0 𝑥𝑎(𝑥)𝑦 2 (𝑥, 𝑡)𝑑𝑥 -2 ∫ 𝐿 0 𝑥𝑏(𝑥)𝑦(𝑥, 𝑡)𝑦(𝑥, 𝑡 -𝜏(𝑡))𝑑𝑥.
Now, we differentiate 𝑉 3 and integrating by parts, we get, using -𝜏(𝑡)𝜕 𝑡 𝑦(𝑥, 𝑡 -𝜏(𝑡)𝜌) = (1 -τ(𝑡)𝜌)𝜕 𝜌 𝑦(𝑥, 𝑡 -𝜏(𝑡)𝜌),

V3 (𝑡) = ∫ 𝜔 𝑦 2 (𝑥, 𝑡)𝑑𝑥-∫ 𝜔 ∫ 1 0 (1-τ(𝑡)𝜌)𝑦 2 (𝑥, 𝑡-𝜏(𝑡)𝜌)𝑑𝜌𝑑𝑥. Then V (𝑡) + 2𝛾𝑉 (𝑡) ≤ 1 2 ∫ 𝜔 (-2𝑎(𝑥) + 𝑏(𝑥) + 𝜉(𝑥) + 2𝜇 1 𝐿𝑏(𝑥) + 2𝜇 2 )𝑦 2 (𝑥, 𝑡)𝑑𝑥 + 1 2 ∫ 𝜔 (𝑏(𝑥) -(1 -𝑑)𝜉(𝑥) + 2𝜇 1 𝐿𝑏(𝑥))𝑦 2 (𝑥, 𝑡 -𝜏(𝑡))𝑑𝑥 -∫ (0,𝐿)⧵𝜔 𝑎(𝑥)𝑦 2 (𝑥, 𝑡)𝑑𝑥 + (𝜇 1 + 𝛾 + 2𝛾𝜇 1 𝐿) ∫ 𝐿 0 𝑦 2 (𝑥, 𝑡)𝑑𝑥 -3𝜇 1 ∫ 𝐿 0 𝑦 2 𝑥 (𝑥, 𝑡)𝑑𝑥 + 2 3 𝜇 1 ∫ 𝐿 0 𝑦 3 (𝑥, 𝑡)𝑑𝑥 + ∫ 𝜔 ∫ 1 0 (𝛾𝜉(𝑥)𝜏(𝑡) + 2𝛾𝜇 2 𝜏(𝑡) -𝜇 2 (1 -𝑑))𝑦 2 (𝑥, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌𝑑𝑥.
Using Poincaré's inequality, we obtain

V (𝑡) + 2𝛾𝑉 (𝑡) ≤ 1 2 ∫ 𝜔 (-2𝑎(𝑥) + 𝑏(𝑥) + 𝜉(𝑥) + 2𝜇 1 𝐿𝑏(𝑥) + 2𝜇 2 )𝑦 2 (𝑥, 𝑡)𝑑𝑥 + 1 2 ∫ 𝜔 (𝑏(𝑥) -(1 -𝑑)𝜉(𝑥) + 2𝜇 1 𝐿𝑏(𝑥))𝑦 2 (𝑥, 𝑡 -𝜏(𝑡))𝑑𝑥 + ( 𝐿 2 (𝜇 1 + 𝛾 + 2𝛾𝜇 1 𝐿) 𝜋 2 -3𝜇 1 ) ∫ 𝐿 0 𝑦 2 𝑥 (𝑥, 𝑡)𝑑𝑥 + 2 3 𝜇 1 ∫ 𝐿 0 𝑦 3 (𝑥, 𝑡)𝑑𝑥 + ∫ 𝜔 ∫ 1 0 (𝛾𝜉(𝑥)𝑀 + 2𝛾𝜇 2 𝑀 -(1 -𝑑)𝜇 2 )𝑦 2 (𝑥, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌𝑑𝑥.
From ( 22), we can choose 𝜇 1 and 𝜇 2 small enough to get -2𝑎(𝑥) + 𝑏(𝑥) + 𝜉(𝑥) + 2𝜇 1 𝐿𝑏(𝑥) + 2𝜇 2 ≤ 0 and 𝑏(𝑥) -(1 -𝑑)𝜉(𝑥)+2𝜇 1 𝐿𝑏(𝑥) ≤ 0 in 𝜔. More precisely, by ( 22), we can take 𝜇 1 and 𝜇 2 as in ( 42)-( 43). From the Cauchy-Schwarz inequality and Proposition 3.4, we get, as in the proof of Theorem 3.2,

∫ 𝐿 0 𝑦 3 (𝑥, 𝑡)𝑑𝑥 ≤ 𝐿 √ 𝐿𝑟‖𝑦 𝑥 (., 𝑡)‖ 2 𝐿 2 (0,𝐿) .
Finally, we obtain

V (𝑡) + 2𝛾𝑉 (𝑡) ≤ ( 𝐿 2 (𝜇 1 + 𝛾 + 2𝛾𝜇 1 𝐿) 𝜋 2 -3𝜇 1 + 2𝑟𝐿 3∕2 𝜇 1 3 ) ∫ 𝐿 0 𝑦 2 𝑥 (𝑥, 𝑡)𝑑𝑥 + ∫ 𝜔 ∫ 1 0 (𝛾𝜉(𝑥)𝑀 + 2𝛾𝜇 2 𝑀 -(1 -𝑑)𝜇 2 )𝑦 2 (𝑥, 𝑡 -𝜏(𝑡)𝜌)𝑑𝜌𝑑𝑥.
It is sufficient to have

𝐿 2 (𝜇 1 + 𝛾 + 2𝛾𝜇 1 𝐿) 𝜋 2 -3𝜇 1 + 2𝑟𝐿 3∕2 𝜇 1 3 ≤ 0
and 𝛾𝜉(𝑥)𝑀 +2𝛾𝜇 2 𝑀 -(1-𝑑)𝜇 2 ≤ 0. Hence, we take 𝛾 as in (41) where 𝑟 can be chosen such that 9𝜋 2 -3𝐿 2 -2𝐿 3∕2 𝑟𝜋 2 > 0 which means that 0 < 𝑟 < 9𝜋 2 -3𝐿 2 2𝐿 3∕2 𝜋 2 , and which is possible since 0 < 𝐿 < √ 3𝜋.

Finally, we integrate V (𝑡) + 2𝛾𝑉 (𝑡) ≤ 0 over (0, 𝑡) to obtain 𝑉 (𝑡) ≤ 𝑉 (0)𝑒 -2𝛾𝑡 , for all 𝑡 > 0. From (40), we obtain 𝐸(𝑡) ≤ 𝐸( 0)

( 1 + max{𝐿𝜇 1 , 2𝜇 2 𝑏 0 } ) 𝑒 -2𝛾𝑡 , ∀𝑡 > 0.
Since 𝐷( 2 (0)) is dense in 𝐻, we can take (𝑦 0 , 𝑧 0 (., -𝜏(0).)) ∈ 𝐻. □

Numerical simulations

The aim of this section is to illustrate the stability results obtained in this work with some numerical simulations that adapt the schemes used in [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF]; [START_REF] Colin | An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation[END_REF]; Parada et al. (2022a). We choose a final time 𝑇 and build a uniform spatial and time discretization of 𝑁 𝑥 + 1 and 𝑁 𝑡 + 1 points, respectively, separated by the steps Δ𝑥 = 𝐿∕𝑁 𝑥 and Δ𝑡 = 𝑇 ∕𝑁 𝑡 . We present now the numerical scheme in the case of boundary delay. The internal case follows similar ideas, (see Parada et al. (2022a) for a similar scheme in the case of constant delay in a network). We choose the delay step Δ𝜌 = 1∕𝑁 𝜌 . Now we introduce the notation 𝑦(𝑖Δ𝑥, 𝑛Δ𝑡) = 𝑦 𝑛 𝑖 and 𝑧(𝑘Δ𝜌, 𝑛Δ𝑡) = 𝑧 𝑛 𝑘 for 𝑖 = 0, ⋯ , 𝑁 𝑥 , 𝑘 = 0, ⋯ , 𝑁 𝜌 and 𝑛 = 0, ⋯ , 𝑁 𝑡 . We use the following approximation for the derivatives: rate depends on how large 𝑀 is, as explained in Remark 3.6. Finally, in Figure 3 we present a comparison between the 

  D + 𝑥 𝑦 𝑖 = 𝑦 𝑖+1 -𝑦 𝑖 Δ𝑥 , D - 𝑥 𝑦 𝑖 = 𝑦 𝑖 -𝑦 𝑖-1 Δ𝑥 , D 𝑥 𝑦 𝑖 = 𝑦 𝑖+1 -𝑦 𝑖-1 2Δ𝑥 , D + 𝜌 𝑧 𝑘 = 𝑧 𝑘+1 -𝑧 𝑘 Δ𝜌 .To approximate the term of third order 𝜕 3 𝑥 , we use D + 𝑥 D + 𝑥 D - 𝑥 . To approximate the nonlinear term, we use explicit approximation 𝑦 𝑛 𝑖 D + 𝑥 𝑦 𝑛 𝑖 . Note now that by the boundary conditions we have that 𝑦 𝑛𝑁 𝑥 = 𝑦 𝑛 0 = 0, 𝑧 𝑛 0 = 𝑦 𝑛 1 ∕Δ𝑥 and 𝑦 𝑛 𝑁 𝑥 -1 = -𝛼𝑦 𝑛 1 -𝛽Δ𝑥𝑧 𝑛 𝑁 𝜌 for all 𝑛 = 0, ⋯ , 𝑁 𝑡 . Then, taking  = D + 𝑥 D + 𝑥 D - 𝑥 + D 𝑥 , 𝜏 𝑛 = 𝜏(𝑛Δ𝑡) and τ𝑛 = τ(𝑛Δ𝑡), our scheme can be seen as 𝑛+1 𝑖) 𝑖 + 𝑦 𝑛 𝑖 D + 𝑥 𝑦 𝑛 𝑖 = 0, 𝑖 = 1, ⋯ , 𝑁 𝑥 -1, 𝑛 = 1, ⋯ , 𝑁 𝑡 -1, τ𝑛+1 𝑘Δ𝜌)(D + 𝜌 𝑧 𝑛+1 𝑘 ) = 0, 𝑘 = 1, ⋯ , 𝑁 𝜌 -1, 𝑛 = 1, ⋯ , 𝑁 𝑡 -1, 𝑦 𝑛 𝑁 𝑥 = 𝑦 𝑛 0 = 0, 𝑛 = 1, ⋯ , 𝑁 𝑡 , 𝑧 𝑛 0 = 𝑦 𝑛 1 ∕Δ𝑥, 𝑛 = 1, ⋯ , 𝑁 𝑡 , 𝑦 𝑛 𝑁 𝑥 -1 = -𝛼𝑦 𝑛 1 -𝛽Δ𝑥𝑧 𝑛 𝑁 𝜌 , 𝑛 = 1, ⋯ , 𝑁 𝑡 , 𝑦 0 𝑖 = 𝑦 0 (𝑖Δ𝑥), 𝑖 = 1, ⋯ , 𝑁 𝑥 , 𝑧 0 𝑘 = 𝑧 0 (-𝜏(0)𝑘Δ𝜌), 𝑘 = 1, ⋯ , 𝑁 𝜌 .Now, we use this scheme with the following parameters 𝐿 = 1 and 𝑇 = 10. For the discretization, we use 𝑁 𝑥 = 100, 𝑁 𝜌 = 100 and 𝑁 𝑡 = 100. The initial conditions are 𝑦 0 (𝑥) = 0.5(1 -cos(2𝜋𝑥)), 𝑧 0 (𝜌) = -0.5 sin(2𝜋𝜌) and the delay is 𝜏(𝑡) = 𝑑(1.5 + sin(𝑡)).For Figure1we use 𝛼 = 0.1 and 𝛽 = 0.1. We can observe how the decay rate depends on the size of 𝑑, as mentioned in Remark 3.3. In particular, in the case 𝑑 = 1.3 which does not satisfy (4), the energy is not decreasing. For Figure 2 we consider the internal delay where the feedback terms are constant in their support supp 𝑎 = supp 𝑏 = (0, 𝐿∕2), 𝑎(𝑥) = 2, 𝑏(𝑥) = 1 and 𝜉(𝑥) = 2.1. The initial conditions are 𝑦 0 (𝑥) = 1 -cos(2𝜋𝑥), 𝑧 0 (𝑥, 𝜌) = (1 -cos(2𝜋𝑥)) cos(2𝜋𝜌) and the delay is 𝜏(𝑡) = 𝑀 + sin(𝑡) 2 . We can observe how the decay

Figure 1 :

 1 Figure 1: Time-evolution of 𝑡 ↦ ln(𝐸(𝑡)) for dierent values of 𝑑 (boundary delay).

Figure 2 :

 2 Figure 2: Time-evolution of 𝑡 ↦ ln(𝐸(𝑡)) for dierent values of 𝑀 (internal delay).

  action of time-varying delay and constant delay for boundary and internal feedbacks. We take 𝜏(𝑡) = 𝑑(1.5 + sin(𝑡)), 𝜏 𝑚𝑎𝑥 = 2.5𝑑 and 𝜏 𝑚𝑖𝑛 = 0.5𝑑. In both figures, we see how the energy associates to time-varying delay is oscillating between the associated to 𝜏 𝑚𝑎𝑥 = 2.5𝑑 and 𝜏 𝑚𝑖𝑛 = 0.5𝑑. = Figure 3: Time-evolution of 𝑡 ↦ ln(𝐸(𝑡)) in the case of constant and varying (up) boundary delay (down) internal delay.
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Conclusion

In this paper, we presented some boundary and internal stability results for the nonlinear KdV equation with timevarying delay. We proved appropriate well-posedness results, and we studied the local stability using some Lyapunov functionals. Finally, numerical simulations were presented to illustrate the results obtained. We could improve this paper in the following directions: remove the assumption supp 𝑏 ⊂ supp 𝑎, consider the case 𝐿 non critical (and not only 𝐿 < √ 3𝜋) and the case 𝜏 0 = 0 in (3). These questions remain open, since, for the two first, the system is not invariant by translation in time contrary to constant delay (see Capistrano-Filho and Gonzalez Martinez (2023); Valein (2022)), and for the last one, we need more regularity of the solutions (see Nicaise et al. (2011)). Moreover the condition 𝐿 < √ 3𝜋 is a technical one and comes from the choice of the multiplier 𝑥 in the expression of 𝑉 1 . To find a better multiplier is an open problem as far as we know.

We mention here some possible future research: the cases of mixed boundary and internal damping with time-varying delay, time-and spatially-varying delay as in [START_REF] Lhachemi | Robustness of constant-delay predictor feedback for in-domain stabilization of reaction-diffusion PDEs with time-and spatially-varying input delays[END_REF] or study the stabilization problem when the delay (constant or variable) is in the nonlinear term as in [START_REF] Liu | Asymptotic behavior of solutions of time-delayed Burgers' equation[END_REF]; [START_REF] Zhu | Asymptotic behavior of solutions for the time-delayed Kuramoto-Sivashinsky equation[END_REF] for Burger's and Kuramoto-Sivashinsky equations, respectively.