Stability results for the KdV equation with time-varying delay

Hugo Parada, Chahnaz Timimoun, Julie Valein

To cite this version:

Hugo Parada, Chahnaz Timimoun, Julie Valein. Stability results for the KdV equation with timevarying delay. Systems and Control Letters, 2023, 177, pp.105547. 10.1016/j.sysconle.2023.105547. hal-03819356v2

HAL Id: hal-03819356
https://hal.science/hal-03819356v2

Submitted on 7 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Stability results for the KdV equation with time-varying delay ${ }^{\star}$

Hugo Parada ${ }^{a, *}$, Chahnaz Timimoun ${ }^{b}$ and Julie Valein ${ }^{c}$
${ }^{a}$ Université Grenoble Alpes, Laboratoire Jean Kunztamnn, Av. Centrale 700, Saint-Martin-d’Hères, 38400, France
${ }^{b}$ Université Oran1 Ahmed Ben Bella, Laboratoire de mathématique et ses applications, Oran, 31000, Algérie
${ }^{c}$ Université de Lorraine, CNRS, Inria, IECL, Nancy, F-54000, France

ARTICLE INFO

Keywords:

KdV equation
Stability
Time-depending delay.

Abstract

In this paper, we consider the Korteweg-de Vries equation with time-dependent delay on the boundary or internal feedbacks. Under some assumptions on the time-dependent delay, on the weights of the feedbacks and on the length of the spatial domain, we prove the exponential stability results, using appropriate Lyapunov functionals. We finish by some numerical simulations that illustrate the stability results and the influence of the delay on the decay rate.

1. Introduction

In this work, we are interested in the effect of a timevarying delay in the boundary or internal stabilization of the Korteweg-de Vries equation (KdV). The KdV equation is given by $y_{t}+y_{x}+y_{x x x}+y y_{x}=0$, this third-order nonlinear one-dimensional equation was introduced in Korteweg and de Vries (1895) to model the propagation of long water waves in a channel. In recent years, the controllability and stabilization properties of the KdV have been amply studied. We mention for instance the pioneer work Rosier (1997) where the boundary exact controllability was studied: the author showed that the KdV equation is not controllable by the right with one control if the length of the spatial domain L belongs to a countable set. This phenomena is related to the existence of solutions conserving the $L^{2}(0, L)$ - energy. In Menzala, Vasconcellos and Zuazua (2002) the authors showed that if the length L is critical, an internal damping allows the exponential stability. This idea was then applied in several works for instance Pazoto (2005); Linares and Pazoto (2009); Parada, Crépeau and Prieur (2022b). We also refer to Cerpa (2014); Rosier and Zhang (2009) for a complete introduction about control of KdV equation.

Time delay phenomena appear in many applications, for example in biology, mechanics or engineering. Delays terms are unavoidable in practice due to measurement lag, analysis time, or computation time. Very active research has developed recently on stability problems of partial differential equations with delay. It is well known that even a small delay in the feedback mechanism can destabilize a system (see for example Datko (1988); Datko, Lagnese and Polis (1986)). But a delay term can also improve the performance of the system (Abdallah, Dorato, Benites-Read and Byrne (1993)).

[^0]The problems of stability of systems with delay are of both theoretical and practical interest.

Recently, the problem of robustness with respect to constant time-delay of the KdV equation was studied in Baudouin, Crépeau and Valein (2019); Parada, Crépeau and Prieur (2022a); Valein (2022) using Lyapunov theory or deriving suitable observability inequalities. In the case where the KdV equation is in presence of memory terms, stability results were obtained in Chentouf (2021); Chentouf and Guesmia (2022). The stability of PDE's involving timevarying delays was analyzed in Nicaise, Valein and Fridman (2009) for one-dimensional heat and wave equations, in Nicaise and Pignotti (2011); Nicaise, Pignotti and Valein (2011) for wave equations in domains in \mathbb{R}^{n} and in Fridman, Nicaise and Valein (2010) for general second-order evolution equations. We can also mention Park (2014) where a weak viscoelastic beam equation with time-varying delay was considered and the recent work Kong, Nonato, Liu, Dos Santos, Raposo and An (2022) studying exponential stability of piezoelectric beams. In our best knowledge, there is no work dealing with this problem for the KdV equation.

In this work, we are going to consider the two following systems

$$
\left\{\begin{array}{l}
\left(y_{t}+y_{x}+y_{x x x}+y y_{x}\right)(x, t)=0, t>0, x \in(0, L) \\
y(0, t)=y(L, t)=0, \quad t>0, \\
y_{x}(L, t)=\alpha y_{x}(0, t)+\beta y_{x}(0, t-\tau(t)), \quad t>0 \tag{1}\\
y(x, 0)=y_{0}(x), \quad x \in(0, L), \\
y_{x}(0, t-\tau(0))=z_{0}(t-\tau(0)), \quad 0<t<\tau(0)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\left(y_{t}+y_{x}+y_{x x x}+y y_{x}\right)(x, t)+a(x) y(x, t) \tag{2}\\
+b(x) y(x, t-\tau(t))=0, \quad t>0, \quad x \in(0, L) \\
y(0, t)=y(L, t)=y_{x}(L, t)=0, \quad t>0 \\
y(x, 0)=y_{0}(x), \quad x \in(0, L) \\
y(x, t-\tau(0))=z_{0}(x, t-\tau(0)) \\
\quad 0<t<\tau(0), x \in(0, L)
\end{array}\right.
$$

where $L>0$ is the length of the spatial domain, $y(x, t)$ is the amplitude of the water wave at position x at time t. We assume that the delay τ is a function of time t, which satisfies
the following conditions

$$
\begin{align*}
0<\tau_{0} \leq \tau(t) \leq M, & \forall t \geq 0 \tag{3}\\
\dot{\tau}(t) \leq d<1, & \forall t \geq 0, \tag{4}
\end{align*}
$$

where $0 \leq d<1$, and

$$
\begin{equation*}
\tau \in W^{2, \infty}([0, T]), \quad \forall T>0 \tag{5}
\end{equation*}
$$

Moreover, we assume that α, β, d in (1) are real constants satisfying

$$
\text { The matrix } \Phi_{\alpha, \beta}=\left(\begin{array}{cc}
\alpha^{2}-1+|\beta| & \alpha \beta \tag{6}\\
\alpha \beta & \beta^{2}+|\beta|(d-1)
\end{array}\right)
$$

is definite negative.
In (2), $a=a(x)$ and $b=b(x)$ are nonnegative functions in $L^{\infty}(0, L)$. We will also assume that supp $b=\omega$ and

$$
\begin{equation*}
b(x) \geq b_{0}>0 \quad \text { in } \quad \omega, \tag{7}
\end{equation*}
$$

where ω is an open nonempty subset of $(0, L)$. We assume that the coefficients a and b satisfy the following assumption:

$$
\begin{equation*}
\exists c_{0}>0, \quad \frac{2-d}{2-2 d} b(x)+c_{0} \leqslant a(x) \quad \text { in } \quad \omega . \tag{8}
\end{equation*}
$$

Then $\omega=\operatorname{supp} b \subset \operatorname{supp} a$ and $a(x) \geq b_{0}+c_{0}>0$ in ω. Some examples of functions satisfying these conditions are given in Section 4.

Remark 1.1. We can note the following points on the coefficients of the boundary or internal feedback:

- A sufficient condition to obtain (6) is $|\alpha|+|\beta|+d<1$. Indeed, on the one hand, we have $\operatorname{tr}\left(\Phi_{\alpha, \beta}\right)=\alpha^{2}+\beta^{2}-$ $1+|\beta| d<0 \Leftrightarrow \alpha^{2}+\beta^{2}+|\beta| d<1$, and $\alpha^{2}+\beta^{2}+|\beta| d<|\alpha|+|\beta|+d<1$. On the other hand we have,

$$
\begin{aligned}
\operatorname{det}\left(\Phi_{\alpha, \beta}\right) & =|\beta|\left(\beta^{2}-2|\beta|+1-\alpha^{2}+d \alpha^{2}-d+|\beta| d\right) \\
& =|\beta|\left((1-|\beta|)^{2}+d(|\beta|-1)+\alpha^{2}(d-1)\right) \\
& =|\beta|\left((1-|\beta|)(1-|\beta|-d)+\alpha^{2}(d-1)\right) \\
& >|\beta|\left(\alpha^{2}+\alpha^{2} d-\alpha^{2}\right)=|\beta| \alpha^{2} d>0 .
\end{aligned}
$$

Then, $|\alpha|+|\beta|+d<1$ implies that $\Phi_{\alpha, \beta}$ is definite negative.

- If $d=0$, (6) (resp. (8)) is equivalent to $|\alpha|+|\beta|<1$ (resp. $b(x)+c_{0} \leq a(x)$ in ω) which corresponds to the assumption for a constant time-delay given in Baudouin et al. (2019) (resp. Valein (2022)).
- If $d \rightarrow 1^{-}, \frac{2-d}{2-2 d} \rightarrow+\infty$, and so we need that the weight a of the internal feedback without delay to be very large.

In Baudouin et al. (2019), two different approaches for the exponential stability of the nonlinear KdV equation with boundary (constant) time-delay feedback were studied. The
first was a Lyapunov functional approach with an estimation of the decay rate, but with a restrictive assumption on the length L of the spatial domain. The second one was an observability inequality approach without estimation on the decay rate and for any non-critical lengths (i.e. $L \notin \mathcal{N}=$ $\left\{2 \pi \sqrt{\frac{k^{2}+k l+l^{2}}{3}}, k, l \in \mathbb{N}^{*}\right\}$). The asymptotic stability of the nonlinear KdV equation with (constant) time-delay internal feedback was studied in Valein (2022). A semiglobal stability result for any lengths was proven in the case where the weight of the term with delay is smaller than the weight of the term without delay, using an observability inequality directly on the nonlinear system. A local exponential stability result was given in the case where the support of the term with delay is not included in the support of the term without delay.

The aim of our work is to extend these results in the case where the delay depends on the time. An important fact about systems (1) and (2) is that due to the effect of the timevarying delay, these systems are no longer invariant in time. Thus, the observability inequality approach does not work anymore, and we have to choose a new appropriate Lyapunov functional. An other difficulty, beyond the difficulty of dealing with a nonlinear equation, is that the first order linear operator depends on time (contrary to constant delay case) and the well-posedness is not trivial.

The outline of this paper is as follows. In Section 2, we prove the well-posedness results, firstly for the boundary case, secondly for the internal case. The stability results are proved in Section 3. Finally, we illustrate our results by some numerical simulations in Section 4.

2. Well-posedness results

The goal of this section is to prove appropriate wellposedness results of (1) and (2). We first prove the wellposedness result of the linearization around 0 of (1) (resp. (2)). The proof will be based on the semigroup theory and on introducing a new function for the delayed term. Then, we add a source term that plays the role of the nonlinearity. Finally, using a fixed-point approach, we show the wellposedness of the nonlinear systems (1) and (2).

2.1. Well-posedness result of (1)

The goal of this section is to prove appropriate local wellposedness result of (1).

2.1.1. Well-posedness result of the linear system

In this part, we focus on the study of linearization around 0 of (1), that is

$$
\left\{\begin{array}{l}
\left(y_{t}+y_{x}+y_{x x x}\right)(x, t)=0, \quad t>0, \quad x \in(0, L) \tag{9}\\
y(0, t)=y(L, t)=0, \quad t>0, \\
y_{x}(L, t)=\alpha y_{x}(0, t)+\beta y_{x}(0, t-\tau(t)), \quad t>0 \\
y(x, 0)=y_{0}(x), \quad x \in(0, L) \\
y_{x}(0, t-\tau(0))=z_{0}(t-\tau(0)), \quad 0<t<\tau(0)
\end{array}\right.
$$

Now, classically, we introduce a new variable that takes into account the delay term (see, for instance, Nicaise et al.
(2009)). Let $z(\rho, t)=y_{x}(0, t-\tau(t) \rho)$ for $\rho \in(0,1)$ and $t>0$. Then, z verifies the following transport equation

$$
\left\{\begin{array}{l}
\tau(t) z_{t}(\rho, t)+(1-\dot{\tau}(t) \rho) z_{\rho}(\rho, t)=0, t>0, \rho \in(0,1) \\
z(0, t)=y_{x}(0, t), \quad t>0 \\
z(\rho, 0)=z_{0}(-\tau(0) \rho), \quad \rho \in(0,1)
\end{array}\right.
$$

Define $U=(y, z)^{T}$, then U satisfies

$$
U_{t}=\binom{y_{t}}{z_{t}}=\binom{-y_{x}-y_{x x x}}{\frac{\dot{\tau}(t) \rho-1}{\tau(t)} z_{\rho}} .
$$

This problem can be rewritten as the following first-order evolution equation

$$
\left\{\begin{array}{l}
U_{t}(t)=\mathcal{A}(t) U(t), \quad t>0 \tag{10}\\
U(0)=\left(y_{0}, z_{0}(-\tau(0) \cdot)\right)^{T}=: U_{0},
\end{array}\right.
$$

where the time-dependent operator $\mathcal{A}(t)$ is defined by

$$
\begin{gathered}
\mathcal{A}(t)\binom{y}{z}=\binom{-y_{x}-y_{x x x}}{\frac{i(t) \rho-1}{\tau(t)} z_{\rho}}, \quad \text { with domain } \\
D(\mathcal{A}(t))=\left\{(y, z) \in\left(H^{3}(0, L) \cap H_{0}^{1}(0, L)\right) \times H^{1}(0,1),\right. \\
\left.z(0)=y_{x}(0), y_{x}(L)=\alpha y_{x}(0)+\beta z(1)\right\} .
\end{gathered}
$$

Note that the domain of the operator $\mathcal{A}(t)$ is independent of time t, i.e., $D(\mathcal{A}(t))=D(\mathcal{A}(0)), t>0$. Now, we introduce the Hilbert space $H=L^{2}(0, L) \times L^{2}(0,1)$, equipped with the usual inner product

$$
\left\langle\binom{ y}{z},\binom{\tilde{y}}{\tilde{z}}\right\rangle=\int_{0}^{L} y \tilde{y} d x+\int_{0}^{1} z \tilde{z} d \rho,
$$

endowed with the norm $\|\cdot\|_{H}$. To prove the well-posedness of (10) we follow Nicaise et al. (2009). The proof is based on showing that the triplet $\{\mathcal{A}, H, \mathcal{Y}\}$, with $\mathcal{A}=\{\mathcal{A}(t)$: $t \in[0, T]\}$, for some $T>0$ fixed and $\mathcal{Y}=D(\mathcal{A}(0))$, forms a constant domain system (CD-system), see Kato (1970, 1985). The following theorem gives the existence and uniqueness results and is proved in Kato (1970):

Theorem 2.1. Assume that

1. $\mathcal{Y}=D(\mathcal{A}(0))$ is a dense subset of H,
2. $D(\mathcal{A}(t))=D(\mathcal{A}(0))$, for all $t>0$,
3. for all $t \in[0, T], \mathcal{A}(t)$ generates a strongly continuous semigroup on H and the family $\mathcal{A}=\{\mathcal{A}(t): t \in$ $[0, T]\}$ is stable with stability constants C and m independent of $\left(\right.$ i.e. the semigroup $\left(S_{t}(s)\right)_{s \geq 0}$ generated by $\mathcal{A}(t)$ satisfies $\left\|S_{t}(s) U\right\|_{H} \leq C e^{m s}\|U\|_{H}$, for all $U \in H$ and $s \geq 0$),
4. $\partial_{t} \mathcal{A}(t)$ belongs to $L_{*}^{\infty}([0, T], B(\mathcal{Y}, H))$, the space of equivalent classes of essentially bounded, strongly measure functions from $[0, T]$ into the set $B(\mathcal{Y}, H)$ of bounded operators from \mathcal{Y} into H.

Then, problem (10) has a unique solution $U \in C([0, T], \mathcal{Y}) \cap$ $C^{1}([0, T], H)$ for any initial datum in \mathcal{Y}.

In particular, we are going to prove the following result.
Theorem 2.2. Assume (3)-(6). Let $U_{0} \in H$, then there exists a unique solution $U \in C([0,+\infty), H)$ to (10). Moreover, if $U_{0} \in D(\mathcal{A}(0))$ then $U \in C([0,+\infty), D(\mathcal{A}(0))) \cap$ $C^{1}([0,+\infty), H)$.

Proof: Clearly, the space $\mathcal{Y}=D(\mathcal{A}(0))$ is a dense subset of H and, by definition, $D(\mathcal{A}(t))=D(\mathcal{A}(0))$, for all $t>0$. Now, to prove the third point of Theorem 2.1, we introduce the following time-dependent inner product on H to use the variable norm technique of Kato

$$
\left\langle\binom{ y}{z},\binom{\tilde{y}}{\tilde{z}}\right\rangle_{t}=\int_{0}^{L} y \tilde{y} d x+|\beta| \tau(t) \int_{0}^{1} z \tilde{z} d \rho
$$

with associated norm denoted by $\|\cdot\|_{t}$. By (3), the norms $\|\cdot\|_{H}$ and $\|\cdot\|_{t}$ are equivalent in $H: \forall t \geq 0, \forall(y, z) \in H$,

$$
\begin{align*}
\left(1+|\beta| \tau_{0}\right)\|(y, z)\|_{H}^{2} & \leq\|(y, z)\|_{t}^{2} \\
& \leq(1+|\beta| M)\|(y, z)\|_{H}^{2} \tag{11}
\end{align*}
$$

We first observe that, following (Fridman et al., 2010, Theorem 2.4),

$$
\begin{equation*}
\frac{\|U\|_{t}}{\|U\|_{s}} \leq e^{\frac{c}{2 \tau_{0}}|t-s|}, \quad \forall t, s \in[0, T] \tag{12}
\end{equation*}
$$

where $U=(y, z) \in H$ and c is a positive constant. Now, we calculate $\langle\mathcal{A}(t) U, U\rangle_{t}$ for a fixed $t \in[0, T]$. Take $U=$ $(y, z)^{T} \in D(\mathcal{A}(0))$, then

$$
\begin{gathered}
\langle\mathcal{A}(t) U, U\rangle_{t}=\left\langle\left(\begin{array}{c}
-y_{x}-y_{x x x} \\
\dot{i}(t) \rho-1 \\
\tau(t) \\
z_{\rho}
\end{array}\right),\binom{y}{z}\right\rangle_{t} \\
=\int_{0}^{L}\left(-y_{x}-y_{x x x}\right) y d x+|\beta| \int_{0}^{1}(\dot{\tau}(t) \rho-1) z_{\rho} z d \rho .
\end{gathered}
$$

By integrating by parts in space and in ρ, we have

$$
\begin{gathered}
\langle\mathcal{A}(t) U, U\rangle_{t}=\frac{1}{2}\left[y_{x}^{2}\right]_{0}^{L}-\frac{|\beta|}{2} \dot{\tau}(t) \int_{0}^{1} z^{2} d \rho \\
+\frac{|\beta|}{2}\left[(\dot{\tau}(t) \rho-1) z^{2}\right]_{0}^{1} .
\end{gathered}
$$

Moreover using the boundary conditions, we obtain

$$
\begin{gathered}
\langle\mathcal{A}(t) U, U\rangle_{t}=\frac{1}{2}\left(\alpha y_{x}(0)+\beta z(1)\right)^{2}-\frac{1}{2} y_{x}^{2}(0) \\
-\frac{|\beta|}{2} \dot{\tau}(t) \int_{0}^{1} z^{2} d \rho+\frac{|\beta|}{2}(\dot{\tau}(t)-1) z^{2}(1)+\frac{|\beta|}{2} y_{x}^{2}(0) .
\end{gathered}
$$

Now, by (4) we derive

$$
\langle\mathcal{A}(t) U, U\rangle_{t}-\kappa(t)\langle U, U\rangle_{t} \leq \frac{1}{2}\binom{y_{x}(0)}{z(1)}^{T} \Phi_{\alpha, \beta}\binom{y_{x}(0)}{z(1)}
$$

where $\kappa(t)=\frac{\left(\dot{\tau}(t)^{2}+1\right)^{1 / 2}}{2 \tau(t)}$ and where $\Phi_{\alpha, \beta}$ is defined by (6). Finally, using (6), we get

$$
\langle\mathcal{A}(t) U, U\rangle_{t}-\kappa(t)\langle U, U\rangle_{t} \leq 0 .
$$

The above inequality proves the dissipativeness of $\tilde{\mathcal{A}}(t)=$ $\mathcal{A}(t)-\kappa(t) I$ for the inner product $\langle\cdot, \cdot\rangle_{t}$.

Let us prove that for all $t \in[0, T], \mathcal{A}(t)$ is maximal, i.e., that $\lambda I-\mathcal{A}(t)$ is surjective for some $\lambda>0$.

Let $t \in[0, T]$ be fixed, and $(f, h)^{T} \in H$. We look for $U=(y, z)^{T} \in D(\mathcal{A}(t))$ solution of $(\lambda I-\mathcal{A}(t)) U=(f, h)^{T}$, that is

$$
\left\{\begin{array}{l}
\lambda y+y_{x}+y_{x x x}=f \tag{13}\\
\lambda z+\left(\frac{1-i(t) \rho}{\tau(t)}\right) z_{\rho}=h \\
y(0)=y(L)=0, y_{x}(0)=z(0) \\
y_{x}(L)=\alpha y_{x}(0)+\beta z(1)
\end{array}\right.
$$

Following Nicaise et al. (2009), if we find y with the appropriate regularity, then we can obtain z, given by
$z(\rho)= \begin{cases}y_{x}(0) e^{\lambda \frac{\tau(t)}{\dot{i}(t)} \ln (1-\dot{i}(t) \rho)}+e^{\lambda \frac{\tau(t)}{i(t)} \ln (1-\dot{\tau}(t) \rho)} \\ \times \int_{0}^{\rho} \frac{h(\sigma) \tau(t)}{1-\dot{\tau}(t) \sigma} e^{-\lambda \frac{\tau(t)}{\dot{\tau}(t)} \ln (1-\dot{i}(t) \sigma)} d \sigma, & \text { if } \dot{\tau}(t) \neq 0, \\ y_{x}(0) e^{-\lambda \tau(t) \rho}+\tau(t) e^{-\lambda \tau(t) \rho} & \\ \times \int_{0}^{\rho} e^{\lambda \tau(t) \sigma} h(\sigma) d \sigma, & \text { if } \dot{\tau}(t)=0 .\end{cases}$
In particular $z(1)=y_{x}(0) g_{0}(t)+g_{h}(t)$, where

$$
\begin{gathered}
g_{0}(t)= \begin{cases}e^{\lambda \frac{\tau(t)}{\dot{i}(t)} \ln (1-\dot{i}(t))}, & \text { if } \dot{\tau}(t) \neq 0, \\
e^{-\lambda \tau(t)}, & \text { if } \dot{\tau}(t)=0,\end{cases} \\
g_{h}(t)= \begin{cases}e^{\lambda \frac{\tau(t)}{\dot{\tau}(t)} \ln (1-\dot{i}(t))} \int_{0}^{1} \frac{h(\sigma) \tau(t)}{1-\dot{\tau}(t) \sigma} \\
\times e^{-\lambda \frac{\tau(t)}{\dot{\tau}(t)} \ln (1-\dot{i}(t) \sigma)} d \sigma, & \text { if } \dot{\tau}(t) \neq 0, \\
\tau(t) e^{-\lambda \tau(t)} \int_{0}^{1} e^{\lambda \tau(t) \sigma} h(\sigma) d \sigma, & \text { if } \dot{\tau}(t)=0\end{cases}
\end{gathered}
$$

This implies that y must satisfy

$$
\left\{\begin{array}{l}
\lambda y+y_{x}+y_{x x x}=f \\
y(0)=y(L)=0 \\
y_{x}(L)=\left(\alpha+\beta g_{0}(t)\right) y_{x}(0)+\beta g_{h}(t)
\end{array}\right.
$$

Consider now $\psi(x)=\frac{\beta x(x-L) g_{h}(t)}{L\left(1+\alpha+\beta g_{0}(t)\right)}(t$ is fixed here $)$ and $\tilde{\alpha}=\tilde{\alpha}(t)=\alpha+\beta g_{0}(t)$. After some computations, we can observe that $\varphi=y-\psi$ solves

$$
\left\{\begin{array}{l}
\lambda \varphi+\varphi_{x}+\varphi_{x x x}=\tilde{f}:=f-\lambda \psi-\psi_{x}-\psi_{x x x} \tag{14}\\
\varphi(0)=\varphi(L)=0 \\
\varphi_{x}(L)=\tilde{\alpha} \varphi_{x}(0)
\end{array}\right.
$$

As t is fixed, the problem can be seen as $\left(\lambda I-A_{\tilde{\alpha}}\right) \varphi=\tilde{f}$ where the operator $A_{\tilde{\alpha}}$ is defined by $A_{\tilde{\alpha}} \varphi=-\varphi^{\prime}-\varphi^{\prime \prime \prime}$, with
$D\left(A_{\tilde{\alpha}}\right)=\left\{\varphi \in H^{3}(0, L) \cap H_{0}^{1}(0, L), \varphi^{\prime}(L)=\tilde{\alpha} \varphi^{\prime}(0)\right\}$ and where $\tilde{f} \in L^{2}(0, L)$ (since $\varphi \in C^{\infty}([0, L])$ and $f \in$ $\left.L^{2}(0, L)\right)$. To conclude this part, we show that under the condition, (6) the operator $A_{\tilde{\alpha}}$ is maximal.

Lemma 2.3. If $|\tilde{\alpha}|<1$, then the operator $A_{\tilde{\alpha}}$ is maximal.
Proof: Consider $|\tilde{\alpha}|<1$, clearly $A_{\tilde{\alpha}}$ is closed. Let us prove that $A_{\tilde{\alpha}}$ and $A_{\tilde{\alpha}}^{*}$ are dissipative. Let $\varphi \in D\left(A_{\tilde{\alpha}}\right)$, then we get

$$
\begin{aligned}
\left(A_{\tilde{\alpha}} \varphi, \varphi\right)_{L^{2}(0, L)} & =\int_{0}^{L}\left(-\varphi^{\prime}-\varphi^{\prime \prime \prime}\right) \varphi d x \\
& =\frac{1}{2}\left(\tilde{\alpha}^{2}-1\right)\left(\varphi^{\prime}(0)\right)^{2} \leq 0
\end{aligned}
$$

The dual of the operator $A_{\tilde{\alpha}}$ is defined by $A_{\tilde{\alpha}}^{*} \zeta=\zeta^{\prime}+\zeta^{\prime \prime \prime}$ with domain $D\left(A_{\alpha}^{*}\right)=\left\{\zeta \in H^{3}(0, L) \cap H_{0}^{1}(0, L), \zeta^{\prime}(0)=\right.$ $\left.\tilde{\alpha} \zeta^{\prime}(L)\right\}$. Similarly, for $\zeta \in D\left(A_{\tilde{\alpha}}^{*}\right)$ we have $\left(A_{\tilde{\alpha}}^{*} \zeta, \zeta\right)_{L^{2}(0, L)}=$ $\frac{1}{2}\left(\tilde{\alpha}^{2}-1\right)\left(\zeta^{\prime}(L)\right)^{2} \leq 0$. Thus, by Pazy (1983), $A_{\tilde{\alpha}}$ is the generator of a C_{0} semigroup of contraction on $L^{2}(0, L)$. By the Lumer-Phillips theorem (see (Pazy, 1983, Thm. 4.3)), $A_{\tilde{\alpha}}$ is a maximal operator.
Thus, it is enough to check that $|\tilde{\alpha}|<1$: as $\left|g_{0}(t)\right|<1$, then $|\tilde{\alpha}| \leq|\alpha|+|\beta|<1$ by (6) and Remark 1.1. Therefore, by Lemma 2.3, we have the existence of $\varphi \in D\left(A_{\tilde{\alpha}}\right)$ solution of (14) and hence $(y, z)^{T} \in D(\mathcal{A}(t))$ solution of (13).

We have then shown that $\lambda I-\mathcal{A}(t)$ is surjective. Then, as $\kappa(t)>0$, we have that $\lambda I-\tilde{\mathcal{A}}(t)=(\lambda+\kappa(t)) I-\mathcal{A}(t)$ is surjective for some $\lambda>0$ and $t \in[0, T]$. We conclude that $\tilde{\mathcal{A}}(t)$ generates a strongly semigroup on H and $\tilde{\mathcal{A}}=$ $\{\tilde{\mathcal{A}}(t), t \in[0, T]\}$ is a stable family of generators in H with a stability constant independent of t, using (12), by (Kato, 1970, Prop 3.4) (see also Kato (1985)).
Finally, $\dot{\kappa}(t)=\frac{\ddot{\tau}(t) \dot{\tau}(t)}{2 \tau(t)\left(\dot{i}(t)^{2}+1\right)^{1 / 2}}-\frac{\dot{\tau}(t)\left(\dot{i}(t)^{2}+1\right)^{1 / 2}}{2 \tau(t)^{2}}$ is bounded on $[0, T]$ for all $T>0$ (by (5)) and we have

$$
\frac{d}{d t} \mathcal{A}(t) U=\binom{0}{\frac{\ddot{\tau}(t) \tau(t) \rho-\dot{\tau}(t)(\dot{\tau}(t) \rho-1)}{\tau(t)^{2}} z_{\rho}}
$$

with $\frac{\ddot{\tau}(t) \tau(t) \rho-\dot{\tau}(t)(\dot{\tau}(t) \rho-1)}{\tau(t)^{2}}$ bounded on [0,T] by (5). Thus,

$$
\frac{d}{d t} \tilde{\mathcal{A}}(t) \in L_{*}^{\infty}([0, T], B(D(\mathcal{A}(0)), H))
$$

which proves the fourth point of Theorem 2.1. Therefore, all assumptions of Theorem 2.1 are verified, thus the problem

$$
\left\{\begin{array}{l}
\tilde{U}_{t}(t)=\tilde{\mathcal{A}}(t) \tilde{U}(t), \quad t>0 \\
\tilde{U}(0)=U_{0}
\end{array}\right.
$$

has a unique solution $\tilde{U} \in C([0, \infty), H)$ and $\tilde{U} \quad \in$ $C([0, \infty), D(\mathcal{A}(0))) \cap C^{1}([0, \infty), H)$ if $U_{0} \in D(\mathcal{A}(0))$. Lastly, we can check that our solution of (9) is $U(t)=$
$e^{\int_{0}^{t} \kappa(s) d s} \tilde{U}(t)$. Indeed,

$$
\begin{aligned}
U_{t}(t) & =\kappa(t) e^{\int_{0}^{t} \kappa(s) d s} \tilde{U}(t)+e^{\int_{0}^{t} \kappa(s) d s} \tilde{U}_{t}(t) \\
& =\kappa(t) e^{\int_{0}^{t} \kappa(s) d s} \tilde{U}(t)+e^{\int_{0}^{t} \kappa(s) d s} \tilde{\mathcal{A}}(t) \tilde{U}(t) \\
& =e^{\int_{0}^{t} \kappa(s) d s}(\kappa(t) \tilde{U}(t)+\tilde{\mathcal{A}}(t) \tilde{U}(t)) \\
& =e^{\int_{0}^{t} \kappa(s) d s} \mathcal{A}(t) \tilde{U}(t)=\mathcal{A}(t) e^{\int_{0}^{t} \kappa(s) d s} \tilde{U}(t) \\
& =\mathcal{A}(t) U(t)
\end{aligned}
$$

which concludes the proof.

2.1.2. Well-posedness of the linear system with extra source term

Consider now (9) with a source term f in the y-equation

$$
\left\{\begin{array}{l}
\left(y_{t}+y_{x}+y_{x x x}\right)(x, t)=f(x, t), t>0, x \in(0, L) \tag{15}\\
\tau(t) z_{t}(\rho, t)+(1-\dot{\tau}(t) \rho) z_{\rho}(\rho, t)=0 \\
\quad t>0, \quad \rho \in(0,1), \\
y(0, t)=y(L, t)=0, \quad t>0, \\
y_{x}(L, t)=\alpha y_{x}(0, t)+\beta z(1, t), \quad t>0 \\
z(0, t)=y_{x}(0, t), \quad t>0 \\
y(x, 0)=y_{0}(x), \quad x \in(0, L) \\
z(\rho, 0)=z_{0}(-\tau(0) \rho), \quad \rho \in(0,1)
\end{array}\right.
$$

Proposition 2.4. Assume that (3)-(6) hold. Let $U_{0}=$ $\left(y_{0}, z_{0}\right) \in H$ and $f \in L^{1}\left((0, \infty), L^{2}(0, L)\right)$. Then there exists a unique solution $U=(y, z) \in C([0,+\infty), H)$ to (15). Moreover, for $T>0$, the following estimates hold

$$
\begin{align*}
\|(y, z)\|_{C([0, T], H)} & \leq C\left(\left\|U_{0}\right\|_{H}+\|f\|_{L^{1}\left((0, T), L^{2}(0, L)\right)}\right) \tag{16}\\
\|y\|_{L^{2}\left((0, T), H^{1}(0, L)\right)} & \leq C\left(\left\|U_{0}\right\|_{H}+\|f\|_{\left.L^{1}\left((0, T), L^{2}(0, L)\right)\right)}\right) \tag{17}
\end{align*}
$$

Proof: The above system can be written as $U_{t}(t)=$ $\mathcal{A}(t) \boldsymbol{U}(t)+(f, 0)$. Using (Kato, 1975, Th 2) we can show that if $U_{0} \in H$ and $f \in L^{1}\left((0, \infty), L^{2}(0, L)\right)$, then there exists a unique solution $U \in C([0, \infty), H)$. Furthermore, $U \in C([0, \infty), D(\mathcal{A}(0))) \cap C^{1}([0, \infty), H)$ if $U_{0} \in D(\mathcal{A}(0))$ and $f \in C\left([0, \infty), L^{2}(0, L)\right) \cap L^{1}((0, \infty), D(\mathcal{A}(0)))$. Now take $U=(y, z)$ a classical solution of (15). Let us choose the following energy

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{L} y^{2}(x, t) d x+\frac{|\beta| \tau(t)}{2} \int_{0}^{1} z^{2}(\rho, t) d \rho \tag{18}
\end{equation*}
$$

corresponding to the time-dependent norm $\|\cdot\|_{t}$ on H. Differentiating (18), we obtain

$$
\dot{E}(t)=\int_{0}^{L} y y_{t} d x+\frac{|\beta| \dot{\tau}(t)}{2} \int_{0}^{1} z^{2} d \rho+|\beta| \tau(t) \int_{0}^{1} z z_{t} d \rho
$$

Now, using (15) and integrations by parts, we derive

$$
\begin{aligned}
\dot{E}(t) & =\frac{1}{2}\left[\left(\alpha^{2}-1+|\beta|\right) y_{x}^{2}(0, t)+2 \alpha \beta y_{x}(0, t) z(1, t)\right. \\
& \left.+\left(\beta^{2}-|\beta|(1-\dot{\tau}(t))\right) z^{2}(1, t)\right]+\int_{0}^{L} y f d x
\end{aligned}
$$

Using (4)-(6) we get

$$
\dot{E}(t)+\binom{y_{x}(0, t)}{z(1, t)}^{T}\left(-\frac{1}{2} \Phi_{\alpha, \beta}\right)\binom{y_{x}(0, t)}{z(1, t)} \leq \int_{0}^{L} y f d x .
$$

Notice that $-\Phi_{\alpha, \beta}$ is a symmetric positive definite matrix. Then there exists $C>0$ such that

$$
\dot{E}(t)+y_{x}^{2}(0, t)+z^{2}(1, t) \leq C \int_{0}^{L} y f d x
$$

Now take $0 \leq s \leq T$ and integrate the above expression on $[0, s]$ to obtain

$$
\begin{align*}
& E(s)+\int_{0}^{s} y_{x}^{2}(0, t) d t+\int_{0}^{s} z^{2}(1, t) d t \\
& \leq C\left(\int_{0}^{s} \int_{0}^{L} y f d x d t+E(0)\right) \tag{19}
\end{align*}
$$

Thus, by (11) and the Cauchy-Schwarz inequality, we have

$$
\begin{gathered}
\|(y(\cdot, s), z(\cdot, s))\|_{H}^{2} \\
\leq C\left(\left\|U_{0}\right\|_{H}^{2}+\|f\|_{L^{1}\left((0, T), L^{2}(0, L)\right)}\|(y, z)\|_{C([0, T], H)}\right)
\end{gathered}
$$

Taking the maximum for $s \in[0, T]$ and using the Young inequality, we conclude (16). In addition, taking $s=T$ in (19) and using (16) we obtain the following hidden regularity:

$$
\begin{gather*}
\int_{0}^{T} y_{x}^{2}(0, t) d t+\int_{0}^{T} z^{2}(1, t) d t \tag{20}\\
\leq C\left(\left\|U_{0}\right\|_{H}^{2}+\|f\|_{L^{1}\left((0, T), L^{2}(0, L)\right)}^{2}\right)
\end{gather*}
$$

Multiplying y-equation of (15) by $x y$, integrating on $(0, T) \times$ $(0, L)$ and performing integration by parts, we get

$$
\begin{gathered}
\frac{1}{2} \int_{0}^{L} x y^{2}(x, T) d x+\frac{3}{2} \int_{0}^{T} \int_{0}^{L} y_{x}^{2} d x d t=\frac{1}{2} \int_{0}^{L} x y_{0}^{2} d x \\
\quad+\frac{1}{2} \int_{0}^{T} \int_{0}^{L} y^{2} d x d t+\frac{1}{2} \int_{0}^{T} L y_{x}^{2}(L, t) d t \\
\quad+\int_{0}^{T} \int_{0}^{L} x f y d x d t
\end{gathered}
$$

and then

$$
\begin{aligned}
& \left\|y_{x}\right\|_{L^{2}((0, L) \times(0, T))}^{2} \leq C\left(\int_{0}^{L} y_{0}^{2} d x+\int_{0}^{T} \int_{0}^{L} y^{2} d x d t\right. \\
& \left.+\int_{0}^{T} y_{x}^{2}(0, t) d t+\int_{0}^{T} z^{2}(1, t) d t+\int_{0}^{T} \int_{0}^{L} f y d x d t\right)
\end{aligned}
$$

Finally, using (16) and (20) we derive (17).

2.1.3. Well-posedness of the nonlinear system

Now we are ready to prove the local well-posedness result for the nonlinear system (1). Let $T>0$ and introduce the space $B=C\left([0, T], L^{2}(0, L)\right) \cap L^{2}\left((0, T), H^{1}(0, L)\right)$ endowed with the norm

$$
\|y\|_{B}=\|y\|_{C\left([0, T], L^{2}(0, L)\right)}+\|y\|_{L^{2}\left((0, T), H^{1}(0, L)\right)}
$$

Now, to consider the nonlinearity $y y_{x}$, the next proposition will be crucial; its proof can be founded in Rosier (1997).

Proposition 2.5. Let $y \in L^{2}\left((0, T), H^{1}(0, L)\right)$. Then $y y_{x} \in$ $L^{1}\left((0, T), L^{2}(0, L)\right)$ and the map

$$
y \in L^{2}\left((0, T), H^{1}(0, L)\right) \mapsto y y_{x} \in L^{1}\left((0, T), L^{2}(0, L)\right)
$$

is continuous. Moreover, there exists $K>0$ such that, for any $y, \tilde{y} \in L^{2}\left((0, T), H^{1}(0, L)\right)$, we have

$$
\begin{aligned}
& \int_{0}^{T}\left\|y y_{x}-\tilde{y} \tilde{y}_{x}\right\|_{L^{2}(0, L)} \leq K\|y-\tilde{y}\|_{L^{2}\left((0, T), H^{1}(0, L)\right)} \\
& \quad \times\left(\|y\|_{L^{2}\left((0, T), H^{1}(0, L)\right)}+\|\tilde{y}\|_{L^{2}\left((0, T), H^{1}(0, L)\right)}\right)
\end{aligned}
$$

Theorem 2.6. Let $T>0, L>0$ and assume that (3)-(6) hold. Then there exist $r, C>0$ such that for every $\left(y_{0}, z_{0}\right) \in$ H satisfying $\left\|\left(y_{0}, z_{0}\right)\right\|_{H} \leq r$, there exists a unique solution $y \in B$ of the system (1) verifying $\|y\|_{B} \leq C\left\|\left(y_{0}, z_{0}\right)\right\|_{H}$.

Proof: Let $\left(y_{0}, z_{0}\right) \in H$ such that $\left\|\left(y_{0}, z_{0}\right)\right\|_{H} \leq r$ for $r>0$ chosen small enough later. Take $\tilde{y} \in B$ and consider the map $P: B \rightarrow B$, defined by $P(\tilde{y})=y$, where y is the solution of

$$
\left\{\begin{array}{l}
\left(y_{t}+y_{x}+y_{x x x}\right)(x, t)=\left(-\tilde{y} \tilde{y}_{x}\right)(x, t), t>0, x \in(0, L) \\
y(0, t)=y(L, t)=0, \quad t>0 \\
y_{x}(L, t)=\alpha y_{x}(0, t)+\beta y_{x}(0, t-\tau(t)), \quad t>0 \\
y(x, 0)=y_{0}(x), \quad x \in(0, L), \\
y_{x}(0, t-\tau(0))=z_{0}(t-\tau(0)), \quad 0<t<\tau(0)
\end{array}\right.
$$

Clearly, $y \in B$ is a solution of (1) if and only if y is a fixed point of P. Now from Proposition 2.4 we find that the map P is well-defined and from Proposition 2.5, (16)-(17), we get

$$
\begin{gathered}
\|P(\tilde{y})\|_{B}=\|y\|_{B} \leq C\left(\left\|\left(y_{0}, z_{0}\right)\right\|_{H}+\left\|\tilde{y} \tilde{y}_{x}\right\|_{L^{1}\left((0, T), L^{2}(0, L)\right)}\right) \\
\leq C\left(\left\|\left(y_{0}, z_{0}\right)\right\|_{H}+\|\tilde{y}\|_{B}^{2}\right) .
\end{gathered}
$$

Following the same arguments, we can show that

$$
\left\|P\left(\tilde{y}_{1}\right)-P\left(\tilde{y}_{2}\right)\right\|_{B} \leq C\left(\left\|\tilde{y}_{1}\right\|_{B}+\left\|\tilde{y}_{2}\right\|_{B}\right)\left\|\tilde{y}_{1}-\tilde{y}_{2}\right\|_{B}
$$

Now we restrict P to the closed ball $\left\{\tilde{y} \in B,\|\tilde{y}\|_{B} \leq R\right\}$, where $R>0$ to be chosen later. Then,

$$
\begin{aligned}
& \|P(\tilde{y})\|_{B} \leq C\left(r+R^{2}\right) \\
& \left\|P\left(\tilde{y}_{1}\right)-P\left(\tilde{y}_{2}\right)\right\|_{B} \leq 2 C R\left\|\tilde{y}_{1}-\tilde{y}_{2}\right\|_{B}
\end{aligned}
$$

Finally, it is enough to consider $R<\frac{1}{2 C}$ and $r<\frac{R}{2 C}$. With this choice, P maps the closed ball $\{\tilde{y} \in B,\|\tilde{y}\| \leq R\}$ into itself and $\left\|P\left(\tilde{y}_{1}\right)-P\left(\tilde{y}_{2}\right)\right\|_{B} \leq 2 C R\left\|\tilde{y}_{1}-\tilde{y}_{2}\right\|_{B}$ with $2 C R<1$. Lastly, we deduce the well-posedness result by invoking the Banach fixed point theorem on the map P.

2.2. Well-posedness result of (2)

The goal of this section is to prove appropriate global well-posedness result of (2). We adopt the same methodology as in subsection 2.1 , so we skip here some details.

2.2.1. Well-posedness of the linear system

In this subsection, we will study the well-posedness result of the KdV equation (2) linearized around 0 , that is

$$
\left\{\begin{array}{l}
\left(y_{t}+y_{x}+y_{x x x}\right)(x, t)+a(x) y(x, t) \\
\quad+b(x) y(x, t-\tau(t))=0, \quad t>0, x \in(0, L) \\
y(0, t)=y(L, t)=y_{x}(L, t)=0, \quad t>0, \\
y(x, 0)=y_{0}(x), \quad x \in(0, L), \\
y(x, t-\tau(0))=z_{0}(x, t-\tau(0)), 0<t<\tau(0), x \in(0, L)
\end{array}\right.
$$

As previously, we introduce $z(x, \rho, t)=y_{\mid \omega}(x, t-\tau(t) \rho)$ for any $x \in \omega, \rho \in(0,1)$ and $t>0$, and define $U=(y, z)^{T}$. This problem can be rewritten as the following first-order evolution equation

$$
\left\{\begin{array}{l}
U_{t}(t)=\mathcal{A}_{2}(t) U(t), \quad t>0, \tag{21}\\
U(0)=\left(y_{0}, z_{0}(\cdot,-\tau(0) \cdot)\right)^{T}=: U_{0},
\end{array}\right.
$$

where the time-dependent operator $\mathcal{A}_{2}(t)$ is defined by

$$
\mathcal{A}_{2}(t)\binom{y}{z}=\binom{-y_{x}-y_{x x x}-a y-b \tilde{z}(., 1)}{\frac{i(t) \rho-1}{\tau(t)} z_{\rho}}
$$

where $\tilde{z}(., 1) \in L^{2}(0, L)$ is the extension of $z(., 1)$ by zero outside ω, with domain

$$
\begin{gathered}
D\left(\mathcal{A}_{2}(t)\right)=\left\{(y, z) \in H^{3}(0, L) \times L^{2}\left(\omega, H^{1}(0,1)\right),\right. \\
\left.y(0)=y(L)=y_{x}(L)=0, z(x, 0)=y_{\mid \omega}(x)\right\}
\end{gathered}
$$

The domain of the operator $\mathcal{A}_{2}(t)$ is independent of the time t, i.e $D\left(\mathcal{A}_{2}(t)\right)=D\left(\mathcal{A}_{2}(0)\right)$, $t>0$. The Hilbert space $H=L^{2}(0, L) \times L^{2}(\omega \times(0,1))$, is provided with the timedependent inner product

$$
\left\langle\binom{ y}{z},\binom{\tilde{y}}{\tilde{z}}\right\rangle_{t}=\int_{0}^{L} y \tilde{y} d x+\tau(t) \int_{\omega} \int_{0}^{1} \xi(x) z \tilde{z} d \rho d x
$$

where ξ is a nonnegative function in $L^{\infty}(0, L)$ such that $\operatorname{supp} \xi=\operatorname{supp} b=\omega$ and

$$
\begin{equation*}
\frac{1}{1-d} b(x)+c_{0} \leqslant \xi(x) \leqslant 2 a(x)-b(x)-c_{0} \quad \text { in } \quad \omega .(22 \tag{22}
\end{equation*}
$$

This choice of ξ is possible due to (8).
It is clear that the norm $\|\cdot\|_{t}$ is equivalent to the usual norm $\|\cdot\|_{H}$ on $H: \forall t \geq 0, \forall(y, z) \in H$,

$$
\begin{align*}
\left(1+\tau_{0} b_{0}\right)\|(y, z)\|_{H}^{2} & \leq\|(y, z)\|_{t}^{2} \\
& \leq\left(1+2 M\|a\|_{\infty}\right)\|(y, z)\|_{H}^{2} \tag{23}
\end{align*}
$$

using (3) and (7). The following theorem gives the existence and uniqueness results of (21).

Theorem 2.7. Assume (3)-(5), that a and b are nonnegative functions belonging to $L^{\infty}(0, L)$ satisfying (7)-(8) and that $U_{0} \in H$. Then there exists a unique mild solution $U \in$ $C([0,+\infty), H)$ to (21). Moreover, if $U_{0} \in D\left(\mathcal{A}_{2}(0)\right)$ then $U \in C\left([0,+\infty), D\left(\mathcal{A}_{2}(0)\right)\right) \cap C^{1}([0,+\infty), H)$.

Proof: As for Theorem 2.2, we prove the four assumptions of Theorem 2.1. We have, for all $t>0, D\left(\mathcal{A}_{2}(t)\right)=$ $D\left(\mathcal{A}_{2}(0)\right)$, which is a dense subset of H. Let $t \in[0, T]$ be fixed. To prove 3. of Theorem 2.1, we start by computing $\left\langle\mathcal{A}_{2}(t) U, U\right\rangle_{t}$.
Let $U=(y, z)^{T} \in D\left(\mathcal{A}_{2}(0)\right)$. Similarly to the proof of Theorem 2.2, integrating by parts in space and in ρ, we obtain

$$
\begin{gathered}
\left\langle\mathcal{A}_{2}(t) U, U\right\rangle_{t}=\frac{1}{2}\left[y_{x}^{2}\right]_{0}^{L}-\int_{0}^{L} a(x) y^{2} d x-\int_{\omega} b(x) z(x, 1) y(x) d x \\
+\frac{1}{2} \int_{\omega} \xi(x)(\dot{\tau}(t)-1) z^{2}(x, 1) d x+\frac{1}{2} \int_{\omega} \xi(x) z^{2}(x, 0) d x \\
\quad-\frac{1}{2} \dot{i}(t) \int_{\omega} \int_{0}^{1} \xi(x) z^{2} d \rho d x .
\end{gathered}
$$

Since we have

$$
-\int_{\omega} b(x) z(x, 1) y(x) d x \leqslant \frac{1}{2} \int_{\omega} b(x) z^{2}(x, 1) d x+\frac{1}{2} \int_{\omega} b(x) y^{2} d x
$$

then

$$
\begin{gathered}
\left\langle\mathcal{A}_{2}(t) U, U\right\rangle_{t} \leq-\frac{1}{2} y_{x}^{2}(0)+\int_{\omega}\left(-a(x)+\frac{b(x)}{2}+\frac{\xi(x)}{2}\right) y^{2}(x) d x \\
-\int_{(0, L) \backslash \omega} a(x) y^{2} d x+\int_{\omega}\left(\frac{b(x)}{2}+\frac{\xi(x)(\dot{\tau}(t)-1)}{2}\right) z^{2}(x, 1) d x \\
-\frac{1}{2} \dot{\tau}(t) \int_{\omega} \int_{0}^{1} \xi(x) z^{2} d \rho d x .
\end{gathered}
$$

Taking ξ such that (22) is satisfied and from (4), we get $-a(x)+\frac{b(x)}{2}+\frac{\xi(x)}{2}<0$ and $\frac{b(x)}{2}+\frac{\xi(x)(\dot{\tau}(t)-1)}{2} \leqslant$ $\frac{b(x)}{2}+\frac{\xi(x)(d-1)}{2}<0$.
Hence,
$\left\langle\mathcal{A}_{2}(t) U, U\right\rangle_{t}-\kappa(t)\langle U, U\rangle_{t} \leqslant 0$, where $\kappa(t)=\frac{\left(\dot{\tau}(t)^{2}+1\right)^{1 / 2}}{2 \tau(t)}$,
which means that the operator $\widetilde{\mathcal{A}_{2}}(t):=\mathcal{A}_{2}(t)-\kappa(t) I$ is dissipative.
Now we will compute $\left\langle\mathcal{A}_{2}(t)^{*} U, U\right\rangle_{t}$, where $\mathcal{A}_{2}(t)^{*}$ is the adjoint of $\mathcal{A}_{2}(t)$. The adjoint $\mathcal{A}_{2}(t)^{*}$ is defined by

$$
\mathcal{A}_{2}(t)^{*}\binom{y}{z}=\binom{y_{x}+y_{x x x}-a y+\xi(x) \tilde{z}(., 0)}{\frac{1-\dot{\tau}(t) \rho}{\tau(t)} z_{\rho}-\frac{\dot{\tau}(t)}{\tau(t)} z}
$$

with domain

$$
\begin{gathered}
D\left(\mathcal{A}_{2}(t)^{*}\right)=\left\{(y, z) \in H^{3}(0, L) \times L^{2}\left(\omega, H^{1}(0,1)\right),\right. \\
\left.y(0)=y(L)=y_{x}(0)=0, z(x, 1)=\frac{-b(x)}{\xi(x)(1-\dot{\tau}(t))} y_{\mid \omega}(x)\right\}
\end{gathered}
$$

Then, for all $U=(y, z)^{T} \in D\left(\mathcal{A}_{2}(t)^{*}\right)$, we get integrating by parts in space and in ρ,

$$
\begin{gathered}
\left\langle\mathcal{A}_{2}(t)^{*} U, U\right\rangle_{t}=-\frac{1}{2}\left[y_{x}^{2}\right]_{0}^{L}-\int_{0}^{L} a(x) y^{2} d x+\int_{\omega} \xi(x) y(x) z(x, 0) d x \\
+\frac{1}{2} \int_{\omega} \int_{0}^{1} \xi(x) \dot{\tau}(t) z^{2} d \rho d x+\frac{1}{2} \int_{\omega} \xi(x)\left[(1-\dot{\tau}(t) \rho) z^{2}\right]_{0}^{1} d x \\
-\int_{\omega} \int_{0}^{1} \xi(x) \dot{\tau}(t) z^{2} d \rho d x .
\end{gathered}
$$

Then, using the boundary conditions, we have

$$
\begin{gathered}
\left\langle\mathcal{A}_{2}(t)^{*} U, U\right\rangle_{t}=-\frac{1}{2} y_{x}^{2}(L, t)-\int_{0}^{L} a(x) y^{2} d x \\
+\int_{\omega} \xi(x) y(x) z(x, 0) d x-\frac{i}{2}(t) \\
+\frac{1}{2} \int_{\omega} \int_{0}^{1} \xi(x) z^{2} d \rho d x \\
\xi(x)(1-\dot{\tau}(t)) \\
b^{2}(x) \\
2 \\
\hline
\end{gathered} x-\frac{1}{2} \int_{\omega} \xi(x) z^{2}(x, 0) d x .
$$

Using Young's inequality, we obtain

$$
\begin{gathered}
\left\langle\mathcal{A}_{2}(t)^{*} U, U\right\rangle_{t} \leq-\int_{(0, L) \backslash \omega} a(x) y^{2} d x-\frac{\dot{\tau}(t)}{2} \int_{\omega} \int_{0}^{1} \xi(x) z^{2} d \rho d x \\
-\frac{1}{2} \int_{\omega}\left(2 a(x)-\xi(x)-\frac{b^{2}(x)}{\xi(x)(1-\dot{\tau}(t))}\right) y^{2} d x .
\end{gathered}
$$

By (22) and (4), we have

$$
\begin{aligned}
\xi(x) \leq 2 a(x)-b(x)-c_{0} & \leq 2 a(x)-\frac{b^{2}(x)}{\xi(x)(1-d)}-c_{0} \\
& \leq 2 a(x)-\frac{b^{2}(x)}{\xi(x)(1-\dot{\tau}(t))}
\end{aligned}
$$

since $b(x) \leq \xi(x)(1-d)($ see $(22))$. Consequently $2 a(x)-$ $\xi(x)-\frac{b^{2}(x)}{\xi(x)(1-\dot{\tau}(t))} \geq 0$. Hence,

$$
\left\langle\mathcal{A}_{2}(t)^{*} U, U\right\rangle_{t}-\kappa(t)\langle U, U\rangle_{t} \leqslant 0
$$

which means that the operator $\widetilde{\mathcal{A}_{2}}(t)^{*}=\mathcal{A}_{2}(t)^{*}-\kappa(t) I$ is dissipative.
Since $\widetilde{\mathcal{A}_{2}}(t)$ and $\widetilde{\mathcal{A}_{2}}(t)^{*}$ are dissipative and $\widetilde{\mathcal{A}_{2}}(t)$ is a densely defined closed linear operator, then $\widetilde{\mathcal{A}_{2}}(t)$ is the infinitesimal generator of a C_{0} semigroup of contraction on H (see Pazy (1983)) for any $t \in[0, T]$ be fixed. As the proof of Theorem 2.2, we can easily prove (12). Consequently, for all $t \in$ $[0, T], \widetilde{\mathcal{A}_{2}}(t)$ generates a strongly continuous semigroup on H and the family $\widetilde{\mathcal{A}_{2}}=\left\{\widetilde{\mathcal{A}_{2}}(t): t \in[0, T]\right\}$ is stable with stability constants C and m independent of t (see Proposition 3.4 of Kato (1970)). These mean that 3. of Theorem 2.1 is satisfied. Finally, we can also prove, similarly to the proof of Theorem 2.2, that

$$
\frac{d}{d t} \widetilde{\mathcal{A}_{2}}(t) \in L_{*}^{\infty}\left([0, T], B\left(D\left(\mathcal{A}_{2}(0)\right), H\right)\right)
$$

Since all assumptions of Theorem 2.1 are verified, then the problem

$$
\left\{\begin{array}{l}
\tilde{U}_{t}(t)=\tilde{\mathcal{A}}_{2}(t) \tilde{U} \\
\tilde{U}(0)=U_{0}
\end{array}\right.
$$

has a unique solution $\tilde{U} \in C\left([0,+\infty), D\left(\mathcal{A}_{2}(0)\right)\right) \cap$ $C^{1}([0,+\infty), H)$ for $U_{0} \in D\left(\mathcal{A}_{2}(0)\right)$. The requested solution of (21) is then given by $U(t)=e^{\int_{0}^{t} \kappa(s) d s} \tilde{U}(t)$, similarly to the proof of Theorem 2.2.

2.2.2. Well-posedness of the linear system with a source term

In this subsection, we will study the well-posedness of the following linear KdV equation with a source term

$$
\left\{\begin{array}{l}
y_{t}(x, t)+y_{x}(x, t)+y_{x x x}(x, t)+a(x) y(x, t) \tag{24}\\
+b(x) y(x, t-\tau(t))=f(x, t), t>0, x \in(0, L) \\
y(0, t)=y(L, t)=y_{x}(L, t)=0, \quad t>0 \\
y(x, 0)=y_{0}(x), \quad x \in(0, L) \\
y(x, t-\tau(0))=z_{0}(x, t-\tau(0)) \\
\quad 0<t<\tau(0), x \in(0, L)
\end{array}\right.
$$

Proposition 2.8. Assume (3)-(5) and that a and b are nonnegative functions belonging to $L^{\infty}(0, L)$ satisfying (7)-(8). For any $\left(y_{0}, z_{0}(.,-\tau(0)).\right) \in H$ and $f \in L^{1}\left(0, T, L^{2}(0, L)\right)$ there exists a unique mild solution $(y, y(., t-\tau(t)).) \in$ $B \times C([0, T], H)$ to (24). Moreover, there exists $C>0$ independent of T such that (16) and (17) hold.

Proof: The proof is similar to the proof of Proposition 2.4 and is left to the readers (see also Valein (2022)).

2.2.3. Well-posedness of the nonlinear system (2)

Finally, we will show the global well-posedness result of the nonlinear system (2).

Theorem 2.9. Let $L>0$ and assume (3)-(5) and that a and b are nonnegative functions belonging to $L^{\infty}(0, L)$ satisfying (7) and (8). Then for any $\left(y_{0}, z_{0}(.,-\tau(0)).\right) \in H$, there exists a unique $y \in B$ solution of system (2).

Proof: Following Menzala et al. (2002), we can get the global existence of the solution by showing the local (in time) existence and using the decay of the energy. Let $\tilde{y} \in B$, we consider the map $\Psi: B \longrightarrow B$ defined by $\Psi(\tilde{y})=y$ where y is the solution of the following system

$$
\left\{\begin{array}{l}
y_{t}(x, t)+y_{x}(x, t)+y_{x x x}(x, t)+a(x) y(x, t) \\
+b(x) y(x, t-\tau(t))=-\tilde{y}(x, t) \tilde{y}_{x}(x, t), t>0, x \in(0, L) \\
y(0, t)=y(L, t)=y_{x}(L, t)=0, \quad t>0, \\
y(x, 0)=y_{0}(x), \quad x \in(0, L), \\
y(x, t-\tau(0))=z_{0}(x, t-\tau(0)), 0<t<\tau(0), x \in(0, L)
\end{array}\right.
$$

We can prove similarly to the proof of (Valein, 2022, Proposition 4) (see also Theorem 2.6) that Ψ is a contraction on the closed ball $\left\{y \in B /\|y\|_{B} \leq R\right\}$ for some chosen R. Hence, from the Banach fixed point theorem, the map Ψ has a unique fixed point $y \in B$ which is the solution of the nonlinear system (2).

3. Exponential stability results

In this section, we prove the exponential stability results, firstly with the boundary damping, secondly with the internal damping.

3.1. Boundary stability result

We start this section showing that for a solution of (1) the energy is a not-increasing function of time. We recall that the energy of (1) is defined by

$$
\begin{align*}
E(t)=\frac{1}{2} \int_{0}^{L} & y^{2}(x, t) d x \\
& +\frac{|\beta| \tau(t)}{2} \int_{0}^{1} y_{x}^{2}(0, t-\tau(t) \rho) d \rho \tag{25}
\end{align*}
$$

Proposition 3.1. Suppose that (3)-(6) be satisfied. Then for all regular solution of (1), the energy defined by (25) is not increasing and satisfies

$$
\begin{equation*}
\dot{E}(t) \leq \frac{1}{2} Y^{T} \Phi_{\alpha, \beta} Y \leq 0 \tag{26}
\end{equation*}
$$

where $Y=\left(y_{x}(0, t), y_{x}(0, t-\tau(t))\right)^{T}$.
Proof: It is enough to follow the proof of Proposition 2.4 and notice that for $y \in H_{0}^{1}(0, L), \int_{0}^{L} y^{2} y_{x} d x=0$.
Consider the following new Lyapunov candidate

$$
\begin{equation*}
V(t)=E(t)+\mu_{1} V_{1}(t)+\mu_{2} V_{2}(t) \tag{27}
\end{equation*}
$$

where E is defined by (25), $\mu_{1}, \mu_{2}>0$ and

$$
\begin{array}{r}
V_{1}(t)=\int_{0}^{L} x y^{2}(x, t) d x \\
V_{2}(t)=\tau(t) \int_{0}^{1}(1-\rho) y_{x}^{2}(0, t-\tau(t) \rho) d \rho \tag{29}
\end{array}
$$

Note that V_{1} is classical for the KdV equation and V_{2} comes from the delay term depending on time.

Theorem 3.2. Suppose that (3)-(6) are satisfied and assume that the length L fulfills $L<\pi \sqrt{3}$. Then, there exists $r>0$ such that, for every $\left(y_{0}, z_{0}\right) \in H$ satisfying $\left\|\left(y_{0}, z_{0}\right)\right\|_{0} \leq r$, the energy of the system (1) decays exponentially. More precisely, there exist two positive constants γ and C such that

$$
\begin{equation*}
E(t) \leq C e^{-2 \gamma t} E(0), \forall t>0 \tag{30}
\end{equation*}
$$

with

$$
\begin{gather*}
\gamma \leq \min \left\{\frac{\left(9 \pi^{2}-3 L^{2}-2 L^{3 / 2} r \pi^{2}\right) \mu_{1}}{3 L^{2}\left(1+2 L \mu_{1}\right)}, \frac{(1-d) \mu_{2}}{M\left(2 \mu_{2}+|\beta|\right)}\right\}, \tag{31}\\
C \leq 1+\max \left\{L \mu_{1}, \frac{2 \mu_{2}}{|\beta|}\right\},
\end{gather*}
$$

where, μ_{1} and μ_{2} are taken such that

$$
\begin{gathered}
\mu_{2} \leq \min \left\{\frac{1-\alpha^{2}-\beta^{2}-|\beta| d}{2}, \frac{(1-|\beta|)(1-|\beta|-d)+\alpha^{2}(d-1)}{2(1-|\beta|-d)},\right. \\
\left.\frac{|\beta|-\alpha^{2}(d-1)-\beta^{2}}{2|\beta|}\right\},
\end{gathered}
$$

$$
\begin{equation*}
\mu_{1} \leq \min \left\{\frac{(1-|\beta|)(1-|\beta|-d)+\alpha^{2}(d-1)+2 \mu_{2}(|\beta|+d-1)}{2 L\left(|\beta|-\alpha^{2}(d-1)-\beta^{2}-2 \mu_{2}|\beta|\right)},\right. \tag{33}
\end{equation*}
$$

$$
\left.\frac{1-\alpha^{2}-\beta^{2}-|\beta| d+2 \mu_{2}}{2 L\left(\alpha^{2}+\beta^{2}\right)}\right\} .
$$

Remark 3.3. We note that the decay rate γ decreases when the upper bound M of the delay $\tau(t)$ increases, as shown in the estimation of the decay rate (31). We can also observe the same phenomenom when d tends to 1 .

Proof: Note that the function V is equivalent to the energy E. More precisely, for every $t>0$,

$$
\begin{equation*}
E(t) \leq V(t) \leq\left(1+\max \left\{L \mu_{1}, \frac{2 \mu_{2}}{|\beta|}\right\}\right) E(t) \tag{34}
\end{equation*}
$$

Thus, it suffices to show that V decays exponentially. Let $\gamma>0$ to fix later, we are going to prove that $\dot{V}(t)+2 \gamma V(t) \leq$ 0 . Let y solution of (1) with $\left(y_{0}, z_{0}\right)^{T} \in D(\mathcal{A}(0))$ such that $\left\|\left(y_{0}, z_{0}\right)\right\|_{0} \leq r$ with $r>0$ chosen later. First, we differentiate V_{1} and use integration by parts to have

$$
\begin{gather*}
\dot{V}_{1}(t)=L \alpha^{2} y_{x}^{2}(0, t)+2 L \alpha \beta y_{x}(0, t) y_{x}(0, t-\tau(t)) \\
+L \beta^{2} y_{x}^{2}(0, t-\tau(t))-3 \int_{0}^{L} y_{x}^{2} d x+\int_{0}^{L} y^{2} d x \tag{35}\\
+\frac{2}{3} \int_{0}^{L} y^{3} d x
\end{gather*}
$$

Similarly, we differentiate V_{2} :

$$
\begin{gathered}
\dot{V}_{2}(t)=\dot{\tau}(t) \int_{0}^{1}(1-\rho) y_{x}^{2}(0, t-\tau(t) \rho) d \rho \\
+2 \tau(t) \int_{0}^{1}(1-\rho) y_{x}(0, t-\tau(t) \rho) \partial_{t} y_{x}(0, t-\tau(t) \rho) d \rho
\end{gathered}
$$

Noting that $-\tau(t) \partial_{t} y_{x}(0, t-\tau(t) \rho)=(1-\dot{\tau}(t) \rho) \partial_{\rho} y_{x}(0, t-$ $\tau(t) \rho)$ and performing integration by parts, we get

$$
\begin{equation*}
\dot{V}_{2}(t)=-\int_{0}^{1}(1-\dot{\tau}(t) \rho) y_{x}^{2}(0, t-\tau(t) \rho) d \rho+y_{x}^{2}(0, t) \tag{36}
\end{equation*}
$$

Joining (26), (35) and (36) we have

$$
\begin{aligned}
& \dot{V}(t)+2 \gamma V(t) \leq Y^{T}\left[\frac{1}{2} \Phi_{\alpha, \beta}+\Psi_{\alpha, \beta}\right] Y-3 \mu_{1} \int_{0}^{L} y_{x}^{2} d x \\
& +\frac{2}{3} \mu_{1} \int_{0}^{L} y^{3} d x+\left(\mu_{1}+\gamma+2 L \mu_{1} \gamma\right) \int_{0}^{L} y^{2} d x \\
& +\left(\gamma|\beta| M+2 \mu_{2} \gamma M-\mu_{2}(1-d)\right) \int_{0}^{1} y_{x}^{2}(0, t-\tau(t) \rho) d \rho
\end{aligned}
$$

where the matrix $\Psi_{\alpha, \beta}$ is defined by

$$
\Psi_{\alpha, \beta}=\left(\begin{array}{cc}
L \mu_{1} \alpha^{2}+\mu_{2} & \mu_{1} \alpha \beta L \\
\mu_{1} \alpha \beta L & \mu_{1} \beta^{2} L
\end{array}\right)
$$

Then, as $\Phi_{\alpha, \beta}$ is definite negative and by the continuity of the trace and the determinant, we find that for μ_{1} and μ_{2} small enough, the matrix $\frac{1}{2} \Phi_{\alpha, \beta}+\Psi_{\alpha, \beta}$ is negative definite. More precisely, following (Baudouin et al., 2019, Remark 5), we can take μ_{1} and μ_{2} as in (32)-(33). For the term involving $\int_{0}^{L} y^{3} d x$, note that

$$
\begin{aligned}
\int_{0}^{L} y^{3} d x & \leq\|y\|_{L^{\infty}(0, L)}^{2} \int_{0}^{L}|y| d x \\
& \leq\|y\|_{L^{\infty}(0, L)}^{2}\|y\|_{L^{2}(0, L)} \sqrt{L}
\end{aligned}
$$

By the injection of $H_{0}^{1}(0, L)$ into $L^{\infty}(0, L)$ we know that $\|y\|_{L^{\infty}(0, L)} \leq \sqrt{L}\left\|y_{x}\right\|_{L^{2}(0, L)}$, then

$$
\int_{0}^{L} y^{3} d x \leq L^{3 / 2}\left\|y_{x}\right\|_{L^{2}(0, L)}^{2}\|y\|_{L^{2}(0, L)}
$$

Finally, using Proposition 3.1 we can obtain $\|y\|_{L^{2}(0, L)} \leq r$ and hence invoking Poincaré's inequality

$$
\begin{aligned}
& \dot{V}(t)+2 \gamma V(t) \\
& \leq\left(\frac{L^{2}}{\pi^{2}}\left(\mu_{1}+\gamma+2 L \mu_{1} \gamma\right)+\frac{2}{3} L^{3 / 2} r \mu_{1}-3 \mu_{1}\right) \int_{0}^{L} y_{x}^{2} d x \\
& +\left(\gamma|\beta| M+2 \mu_{2} \gamma M-\mu_{2}(1-d)\right) \int_{0}^{1} y_{x}^{2}(0, t-\tau(t) \rho) d \rho .
\end{aligned}
$$

Now, following Baudouin et al. (2019), as $L<\pi \sqrt{3}$, it is possible to choose r small enough to have $r<\frac{3\left(3 \pi^{2}-L^{2}\right)}{2 L^{3 / 2} \pi^{2}}$. Then, we can choose $\gamma>0$ such that

$$
\begin{aligned}
& \frac{L^{2}}{\pi^{2}}\left(\mu_{1}+\gamma+2 L \mu_{1} \gamma\right)+\frac{2}{3} L^{3 / 2} r \mu_{1}-3 \mu_{1} \leq 0 \\
& \gamma|\beta| M+2 \mu_{2} \gamma M-\mu_{2}(1-d)<0 .
\end{aligned}
$$

Thus, we can easily obtain (31). Therefore, we have $\dot{V}(t)+$ $2 \gamma V(t) \leq 0$ and hence $V(t) \leq V(0) e^{-2 \gamma t}$ for all $t>0$. Using (34) we obtain (30). Since $D(\mathcal{A}(0))$ is dense in H, we can take $\left(y_{0}, z_{0}\right) \in H$.

3.2. Internal stability result

In this section, we will study the local stability of (2) using some Lyapunov functional. We consider the following definition of the energy of the nonlinear system (2)

$$
\begin{gather*}
E(t)=\frac{1}{2} \int_{0}^{L} y^{2}(x, t) d x \\
+\frac{\tau(t)}{2} \int_{\omega} \int_{0}^{1} \xi(x) y^{2}(x, t-\tau(t) \rho) d \rho d x \tag{37}
\end{gather*}
$$

where ξ is defined by (22). In the following proposition, we will prove the decay of the energy of the nonlinear system (2).

Proposition 3.4. Assume (3)-(5) and that a and b are nonnegative functions belonging to $L^{\infty}(0, L)$ satisfying (7) and (8). Then, for any regular solution of (2), the energy E defined by (37) is non-increasing and satisfies

$$
\begin{aligned}
& \dot{E}(t) \leq-\frac{1}{2} y_{x}^{2}(0, t)-\int_{(0, L) \backslash \omega} a(x) y^{2}(x, t) d x \\
& -\frac{1}{2} \int_{\omega}(2 a(x)-b(x)-\xi(x)) y^{2}(x, t) d x \\
& \quad-\frac{1}{2} \int_{\omega}(\xi(x)(1-d)-b(x)) y^{2}(x, t-\tau(t)) d x \leq 0 .
\end{aligned}
$$

Proof: The proof is similar to the proof of the dissipativity of $\mathcal{A}_{2}(t)$, noting that $\int_{0}^{L} y^{2} y_{x} d x=0$ (see also the proof of

Proposition 2.4).

Now we take the following Lyapunov functional

$$
\begin{equation*}
V(t)=E(t)+\mu_{1} V_{1}(t)+\mu_{2} V_{3}(t) \tag{38}
\end{equation*}
$$

where $\mu_{1}>0$ and $\mu_{2}>0$ are fixed constants taken small enough, E is the energy defined by (37), V_{1} by (28) and V_{3} is defined by

$$
\begin{equation*}
V_{3}(t)=\tau(t) \int_{\omega} \int_{0}^{1}(1-\rho) y^{2}(x, t-\tau(t) \rho) d \rho d x \tag{39}
\end{equation*}
$$

From the definition of $V(t)$ and $E(t)$, we have for any $t>0$,

$$
\begin{equation*}
E(t) \leq V(t) \leq\left(1+\max \left\{L \mu_{1}, \frac{\mu_{2}}{b_{0}}\right\}\right) E(t) \tag{40}
\end{equation*}
$$

In the following theorem, we will prove that the energy of the nonlinear system (2) decays exponentially.

Theorem 3.5. Assume (3)-(5) and that a and b are nonnegative functions belonging to $L^{\infty}(0, L)$ that satisfy (7) and (8), and assume that the length L satisfies $L<\pi \sqrt{3}$. Then, there exists $r>0$ small enough, such that, for every $\left(y_{0}, z_{0}\right) \in H$ satisfying $\left\|\left(y_{0}, z_{0}\right)\right\|_{0} \leq r$, the energy of the nonlinear system (2) decays exponentially. More precisely, there exist two positive constants γ and C such that

$$
E(t) \leq C e^{-2 \gamma t} E(0), \forall t>0
$$

with

$$
\begin{gather*}
\gamma \leq \min \left\{\frac{\left(9 \pi^{2}-3 L^{2}-2 L^{3 / 2} r \pi^{2}\right) \mu_{1}}{3 L^{2}\left(1+2 L \mu_{1}\right)}, \frac{(1-d) \mu_{2}}{M\left(2 \mu_{2}+\|\xi\|_{L^{\infty}(0, L)}\right)}\right\}, \tag{41}\\
C \leq 1+\max \left\{L \mu_{1}, \frac{2 \mu_{2}}{b_{0}}\right\},
\end{gather*}
$$

where, μ_{1} and μ_{2} are taken such that

$$
\begin{align*}
& \mu_{1} \leq \inf _{x \in \omega}\left\{\frac{2 a(x)-b(x)-\xi(x)}{2 L b(x)}, \frac{(1-d) \xi(x)-b(x)}{2 L b(x)}\right\}, \tag{42}\\
& \mu_{2} \leq \inf _{x \in \omega}\left\{\frac{2 a(x)-b(x)-\xi(x)-2 \mu_{1} L b(x)}{2}\right\} . \tag{43}
\end{align*}
$$

Remark 3.6. We note that the decay rate γ decreases when the upper bound M of the delay $\tau(t)$ increases, as shown in the estimation of the decay rate (41). We can also observe the same phenomenon when d tends to 1 .

Proof: Since E and V are equivalent from (40), we will prove that V decays exponentially, so we will prove that $\dot{V}(t)+2 \gamma V(t) \leq 0$ for all $t>0$. Assume that y is a solution of (2) with $\left(y_{0}, z_{0}(.,-\tau(0) .)\right)^{T} \in D\left(\mathcal{A}_{2}(0)\right)$ satisfying $\left\|\left(y_{0}, z_{0}(.,-\tau(0) .)\right)\right\|_{0} \leq r$. We start by differentiating V_{1} and integrating by parts, we get

$$
\begin{aligned}
& \dot{V}_{1}(t)=-3 \int_{0}^{L} y_{x}^{2}(x, t) d x+\int_{0}^{L} y^{2}(x, t) d x \\
& +\frac{2}{3} \int_{0}^{L} y^{3}(x, t) d x-2 \int_{0}^{L} x a(x) y^{2}(x, t) d x \\
& \quad-2 \int_{0}^{L} x b(x) y(x, t) y(x, t-\tau(t)) d x
\end{aligned}
$$

Now, we differentiate V_{3} and integrating by parts, we get, using $-\tau(t) \partial_{t} y(x, t-\tau(t) \rho)=(1-\dot{\tau}(t) \rho) \partial_{\rho} y(x, t-\tau(t) \rho)$,
$\dot{V}_{3}(t)=\int_{\omega} y^{2}(x, t) d x-\int_{\omega} \int_{0}^{1}(1-\dot{\tau}(t) \rho) y^{2}(x, t-\tau(t) \rho) d \rho d x$.
Then

$$
\begin{gathered}
\dot{V}(t)+2 \gamma V(t) \\
\leq \frac{1}{2} \int_{\omega}\left(-2 a(x)+b(x)+\xi(x)+2 \mu_{1} L b(x)+2 \mu_{2}\right) y^{2}(x, t) d x \\
+\frac{1}{2} \int_{\omega}\left(b(x)-(1-d) \xi(x)+2 \mu_{1} L b(x)\right) y^{2}(x, t-\tau(t)) d x \\
-\int_{(0, L) \backslash \omega} a(x) y^{2}(x, t) d x+\left(\mu_{1}+\gamma+2 \gamma \mu_{1} L\right) \int_{0}^{L} y^{2}(x, t) d x \\
\quad-3 \mu_{1} \int_{0}^{L} y_{x}^{2}(x, t) d x+\frac{2}{3} \mu_{1} \int_{0}^{L} y^{3}(x, t) d x \\
+\int_{\omega} \int_{0}^{1}\left(\gamma \xi(x) \tau(t)+2 \gamma \mu_{2} \tau(t)-\mu_{2}(1-d)\right) y^{2}(x, t-\tau(t) \rho) d \rho d x .
\end{gathered}
$$

Using Poincaré's inequality, we obtain

$$
\begin{gathered}
\dot{V}(t)+2 \gamma V(t) \\
\leq \frac{1}{2} \int_{\omega}\left(-2 a(x)+b(x)+\xi(x)+2 \mu_{1} L b(x)+2 \mu_{2}\right) y^{2}(x, t) d x \\
+\frac{1}{2} \int_{\omega}\left(b(x)-(1-d) \xi(x)+2 \mu_{1} L b(x)\right) y^{2}(x, t-\tau(t)) d x \\
+\left(\frac{L^{2}\left(\mu_{1}+\gamma+2 \gamma \mu_{1} L\right)}{\pi^{2}}-3 \mu_{1}\right) \int_{0}^{L} y_{x}^{2}(x, t) d x+\frac{2}{3} \mu_{1} \int_{0}^{L} y^{3}(x, t) d x \\
+\int_{\omega} \int_{0}^{1}\left(\gamma \xi(x) M+2 \gamma \mu_{2} M-(1-d) \mu_{2}\right) y^{2}(x, t-\tau(t) \rho) d \rho d x .
\end{gathered}
$$

From (22), we can choose μ_{1} and μ_{2} small enough to get $-2 a(x)+b(x)+\xi(x)+2 \mu_{1} L b(x)+2 \mu_{2} \leq 0$ and $b(x)-(1-$ $d) \xi(x)+2 \mu_{1} L b(x) \leq 0$ in ω. More precisely, by (22), we can take μ_{1} and μ_{2} as in (42)-(43). From the Cauchy-Schwarz inequality and Proposition 3.4, we get, as in the proof of Theorem 3.2,

$$
\int_{0}^{L} y^{3}(x, t) d x \leq L \sqrt{L} r\left\|y_{x}(., t)\right\|_{L^{2}(0, L)}^{2}
$$

Finally, we obtain
$\dot{V}(t)+2 \gamma V(t) \leq\left(\frac{L^{2}\left(\mu_{1}+\gamma+2 \gamma \mu_{1} L\right)}{\pi^{2}}-3 \mu_{1}+\frac{2 r L^{3 / 2} \mu_{1}}{3}\right) \int_{0}^{L} y_{x}^{2}(x, t) d x$

$$
+\int_{\omega} \int_{0}^{1}\left(\gamma \xi(x) M+2 \gamma \mu_{2} M-(1-d) \mu_{2}\right) y^{2}(x, t-\tau(t) \rho) d \rho d x .
$$

It is sufficient to have $\frac{L^{2}\left(\mu_{1}+\gamma+2 \gamma \mu_{1} L\right)}{\pi^{2}}-3 \mu_{1}+\frac{2 r L^{3 / 2} \mu_{1}}{3} \leq 0$ and $\gamma \xi(x) M+2 \gamma \mu_{2} M-(1-d) \mu_{2} \leq 0$. Hence, we take γ as in (41) where r can be chosen such that $9 \pi^{2}-3 L^{2}-2 L^{3 / 2} r \pi^{2}>$ 0 which means that $0<r<\frac{9 \pi^{2}-3 L^{2}}{2 L^{3 / 2} \pi^{2}}$, and which is possible since $0<L<\sqrt{3} \pi$.
Finally, we integrate $\dot{V}(t)+2 \gamma V(t) \leq 0$ over $(0, t)$ to obtain $V(t) \leq V(0) e^{-2 \gamma t}$, for all $t>0$. From (40), we obtain

$$
E(t) \leq E(0)\left(1+\max \left\{L \mu_{1}, \frac{2 \mu_{2}}{b_{0}}\right\}\right) e^{-2 \gamma t}, \forall t>0
$$

Since $D\left(\mathcal{A}_{2}(0)\right)$ is dense in H, we can take $\left(y_{0}, z_{0}(.,-\tau(0)).\right) \in$ H.

4. Numerical simulations

The aim of this section is to illustrate the stability results obtained in this work with some numerical simulations that adapt the schemes used in Baudouin et al. (2019); Colin and Gisclon (2001); Parada et al. (2022a). We choose a final time T and build a uniform spatial and time discretization of $N_{x}+1$ and $N_{t}+1$ points, respectively, separated by the steps $\Delta x=L / N_{x}$ and $\Delta t=T / N_{t}$. We present now the numerical scheme in the case of boundary delay. The internal case follows similar ideas, (see Parada et al. (2022a) for a similar scheme in the case of constant delay in a network). We choose the delay step $\Delta \rho=1 / N_{\rho}$. Now we introduce the notation $y(i \Delta x, n \Delta t)=y_{i}^{n}$ and $z(k \Delta \rho, n \Delta t)=z_{k}^{n}$ for $i=0, \cdots, N_{x}, k=0, \cdots, N_{\rho}$ and $n=0, \cdots, N_{t}$. We use the following approximation for the derivatives:

$$
\begin{aligned}
& \mathrm{D}_{x}^{+} y_{i}=\frac{y_{i+1}-y_{i}}{\Delta x}, \quad \mathrm{D}_{x}^{-} y_{i}=\frac{y_{i}-y_{i-1}}{\Delta x}, \\
& \mathrm{D}_{x} y_{i}=\frac{y_{i+1}-y_{i-1}}{2 \Delta x}, \quad \mathrm{D}_{\rho}^{+} z_{k}=\frac{z_{k+1}-z_{k}}{\Delta \rho} .
\end{aligned}
$$

To approximate the term of third order ∂_{x}^{3}, we use $\mathrm{D}_{x}^{+} \mathrm{D}_{x}^{+} \mathrm{D}_{x}^{-}$. To approximate the nonlinear term, we use explicit approximation $y_{i}^{n} \mathrm{D}_{x}^{+} y_{i}^{n}$. Note now that by the boundary conditions we have that $y_{N_{x}}^{n}=y_{0}^{n}=0, z_{0}^{n}=y_{1}^{n} / \Delta x$ and $y_{N_{x}-1}^{n}=$ $-\alpha y_{1}^{n}-\beta \Delta x z_{N_{\rho}}^{n}$ for all $n=0, \cdots, N_{t}$. Then, taking $C=$ $\mathrm{D}_{x}^{+} \mathrm{D}_{x}^{+} \mathrm{D}_{x}^{-}+\mathrm{D}_{x}, \tau^{n}=\tau(n \Delta t)$ and $\dot{\tau}^{n}=\dot{\tau}(n \Delta t)$, our scheme can be seen as

$$
\begin{aligned}
& \frac{y_{i}^{n+1}-y_{i}^{n}}{\Delta t}+\left(C y_{i}^{n+1}\right)_{i}+y_{i}^{n} \mathrm{D}_{x}^{+} y_{i}^{n}=0, \quad \begin{array}{l}
i=1, \cdots, N_{x}-1, \\
n=1, \cdots, N_{t}-1,
\end{array} \\
& \tau^{n+1}\left(\frac{z_{k}^{n+1}-z_{k}^{n}}{\Delta t}\right)+\left(1-i^{n+1} k \Delta \rho\right)\left(\mathrm{D}_{\rho}^{+} z_{k}^{n+1}\right)=0, \quad \begin{array}{l}
k=1, \cdots, N_{\rho}-1, \\
n=1, \cdots, N_{t}-1, \\
y_{N_{x}}^{n}=y_{0}^{n}=0, \quad n=1, \cdots, N_{t}, \\
z_{0}^{n}=y_{1}^{n} / \Delta x, \quad n=1, \cdots, N_{t}, \\
y_{N_{x}-1}^{n}=-\alpha y_{1}^{n}-\beta \Delta z_{N_{\rho}}^{n}, \quad n=1, \cdots, N_{t}, \\
y_{i}^{0}=y_{0}(i \Delta x), \quad i=1, \cdots, N_{x}, \\
z_{k}^{0}=z_{0}(-\tau(0) k \Delta \rho), \quad k=1, \cdots, N_{\rho} .
\end{array}
\end{aligned}
$$

Now, we use this scheme with the following parameters $L=1$ and $T=10$. For the discretization, we use $N_{x}=$ $100, N_{\rho}=100$ and $N_{t}=100$. The initial conditions are $y_{0}(x)=0.5(1-\cos (2 \pi x)), z_{0}(\rho)=-0.5 \sin (2 \pi \rho)$ and the delay is $\tau(t)=d(1.5+\sin (t))$.
For Figure 1 we use $\alpha=0.1$ and $\beta=0.1$. We can observe how the decay rate depends on the size of d, as mentioned in Remark 3.3. In particular, in the case $d=1.3$ which does not satisfy (4), the energy is not decreasing. For Figure 2 we consider the internal delay where the feedback terms are constant in their support supp $a=\operatorname{supp} b=(0, L / 2), a(x)=$ $2, b(x)=1$ and $\xi(x)=2.1$. The initial conditions are $y_{0}(x)=$ $1-\cos (2 \pi x), z_{0}(x, \rho)=(1-\cos (2 \pi x)) \cos (2 \pi \rho)$ and the delay is $\tau(t)=M+\frac{\sin (t)}{2}$. We can observe how the decay

Figure 1: Time-evolution of $t \mapsto \ln (E(t))$ for different values of d (boundary delay).
rate depends on how large M is, as explained in Remark 3.6. Finally, in Figure 3 we present a comparison between the

Figure 2: Time-evolution of $t \mapsto \ln (E(t))$ for different values of M (internal delay).
action of time-varying delay and constant delay for boundary and internal feedbacks. We take $\tau(t)=d(1.5+\sin (t))$, $\tau_{\max }=2.5 d$ and $\tau_{\min }=0.5 d$. In both figures, we see how the energy associates to time-varying delay is oscillating between the associated to $\tau_{\max }=2.5 d$ and $\tau_{\min }=0.5 d$.

Figure 3: Time-evolution of $t \mapsto \ln (E(t))$ in the case of constant and varying (up) boundary delay (down) internal delay.

5. Conclusion

In this paper, we presented some boundary and internal stability results for the nonlinear KdV equation with timevarying delay. We proved appropriate well-posedness results, and we studied the local stability using some Lyapunov functionals. Finally, numerical simulations were presented to illustrate the results obtained. We could improve this paper in the following directions: remove the assumption supp $b \subset \operatorname{supp} a$, consider the case L non critical (and not only $L<\sqrt{3} \pi$) and the case $\tau_{0}=0$ in (3). These questions remain open, since, for the two first, the system is not invariant by translation in time contrary to constant delay (see Capistrano-Filho and Gonzalez Martinez (2023); Valein (2022)), and for the last one, we need more regularity of the solutions (see Nicaise et al. (2011)). Moreover the condition $L<\sqrt{3} \pi$ is a technical one and comes from the choice of the multiplier x in the expression of V_{1}. To find a better multiplier is an open problem as far as we know.

We mention here some possible future research: the cases of mixed boundary and internal damping with time-varying delay, time- and spatially-varying delay as in Lhachemi, Prieur and Shorten (2021) or study the stabilization problem when the delay (constant or variable) is in the nonlinear term as in Liu (2002); Zhu (2014) for Burger's and KuramotoSivashinsky equations, respectively.

References

Abdallah, C., Dorato, P., Benites-Read, J., Byrne, R., 1993. Delayed positive feedback can stabilize oscillatory systems, in: 1993 American Control Conference, IEEE. pp. 3106-3107.
Baudouin, L., Crépeau, E., Valein, J., 2019. Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback. IEEE Trans. Automat. Control 64, 1403-1414.
Capistrano-Filho, R.A., Gonzalez Martinez, V.H., 2023. Stabilization results for delayed fifth order KdV-type equation in a bounded domain. Math. Control Relat. Fields To appear.
Cerpa, E., 2014. Control of a Korteweg-de Vries equation: a tutorial. Math. Control Relat. Fields 4, 45.
Chentouf, B., 2021. Qualitative analysis of the dynamic for the nonlinear Korteweg-de Vries equation with a boundary memory. Qualitative Theory of Dynamical Systems 20, 1-29.
Chentouf, B., Guesmia, A., 2022. Well-posedness and stability results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations with infinite memory: A history approach. Nonlinear Analysis: Real World Applications 65, 103508.
Colin, T., Gisclon, M., 2001. An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation. Nonlinear Analysis: Theory, Methods \& Applications 46, 869-892.
Datko, R., 1988. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26, 697-713.
Datko, R., Lagnese, J., Polis, M.P., 1986. An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24, 152-156.
Fridman, E., Nicaise, S., Valein, J., 2010. Stabilization of second order evolution equations with unbounded feedback with time-dependent delay. SIAM J. Control Optim. 48, 5028-5052.
Kato, T., 1970. Linear evolution equations of "hyperbolic" type. J. Fac. Sci. Univ. Tokyo Sect. I 17, 241-258.
Kato, T., 1975. Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral theory and differential
equations. Springer, pp. 25-70.
Kato, T., 1985. Abstract differential equations and nonlinear mixed problems. Lezioni Fermiane. Pisa: Accademie Nazionale dei Lincei. Scuola Normale Superiore. 87 p.
Kong, A., Nonato, C., Liu, W., Dos Santos, M., Raposo, C., An, Y., 2022. Exponential stability for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete Contin. Dyn. Syst., Ser. B
Korteweg, D.J., de Vries, G., 1895. On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave. Phil. Mag 39, 422-443.
Lhachemi, H., Prieur, C., Shorten, R., 2021. Robustness of constant-delay predictor feedback for in-domain stabilization of reaction-diffusion PDEs with time-and spatially-varying input delays. Automatica 123, 9.

Linares, F., Pazoto, A., 2009. Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane. Journal of Differential Equations 246, 1342-1353.
Liu, W., 2002. Asymptotic behavior of solutions of time-delayed Burgers' equation. Discrete Contin. Dyn. Syst., Ser. B 2, 47.
Menzala, G.P., Vasconcellos, C.F., Zuazua, E., 2002. Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math. 60, 111-129.
Nicaise, S., Pignotti, C., 2011. Interior feedback stabilization of wave equations with time dependent delay. Electron. J. Differ. Equ. 2011, $1-20$.
Nicaise, S., Pignotti, C., Valein, J., 2011. Exponential stability of the wave equation with boundary time-varying delay. Discrete Contin. Dyn. Syst., Ser. S 4, 693-722.
Nicaise, S., Valein, J., Fridman, E., 2009. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete Contin. Dyn. Syst., Ser. S. 2, 559-581.
Parada, H., Crépeau, E., Prieur, C., 2022a. Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network. Mathematics of Control, Signals, and Systems , 1-47.
Parada, H., Crépeau, E., Prieur, C., 2022b. Global well-posedness of the KdV equation on a star-shaped network and stabilization by saturated controllers. SIAM J. Control Optim. 60, 2268-2296.
Park, S.H., 2014. Decay rate estimates for a weak viscoelastic beam equation with time-varying delay. Appl. Math. Lett. 31, 46-51.
Pazoto, A.F., 2005. Unique continuation and decay for the Korteweg-de Vries equation with localized damping. ESAIM Control Optim. Calc. Var. 11, 473-486.
Pazy, A., 1983. Semigroups of linear operators and applications to partial differential equations. volume 44 of Appl. Math. Sci. Springer, Cham.
Rosier, L., 1997. Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2, 33-55.
Rosier, L., Zhang, B.Y., 2009. Control and stabilization of the Kortewegde Vries equation: recent progresses. Journal of Systems Science and Complexity 22, 647-682.
Valein, J., 2022. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback. Math. Control Relat. Fields 12, 667-694.
Zhu, C., 2014. Asymptotic behavior of solutions for the time-delayed Kuramoto-Sivashinsky equation. Zeitschrift für Analysis und ihre Anwendungen 33, 429-439.

[^0]: * The first author was partially supported by the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02). The third author was partially supported by the ANR research projects TRECOS (ANR-20-CE40-0009) and ANR ODISSE (ANR-19-CE48-0004-01).
 *Corresponding author
 @ hugo.parada@univ-grenoble-alpes.fr (H. Parada); timimoun.chahnaz@univ-oran1.dz (C. Timimoun); julie.valein@univ-lorraine.fr (J. Valein)

 ORCID(s):

