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Abstract. The Fiat-Shamir with Aborts paradigm of Lyubashevsky has given rise to efficient
lattice-based signature schemes. One popular implementation is Dilithium which is a finalist
in an ongoing standardization process run by the NIST. Informally, it can be seen as a
lattice analogue of the well-known discrete-logarithm-based Schnorr signature. An interesting
research question is whether it is possible to combine several unrelated signatures, issued from
different signing parties on different messages, into one single aggregated signature. Of course,
its size should be significantly smaller than the trivial concatenation of all signatures. Ideally,
the aggregation can be done offline by a third party, called public aggregation. Previous works
have shown that it is possible to half-aggregate Schnorr signatures, but it was left unclear if
the underlying techniques can be adapted to the lattice setting.
In this work, we show that, indeed, we can use similar strategies to obtain a signature
scheme allowing for public aggregation whose hardness is proven assuming the intractability
of two well-studied problems on module lattices: The Module Learning With Errors prob-
lem (M-LWE) and the Module Short Integer Solution problem (M-SIS).

� Failure: Unfortunately, our scheme produces aggregated signatures that are larger
than the trivial solution of concatenating. This is due to peculiarities that seem inherent
to lattice-based cryptography. Its motivation is thus mainly pedagogical, as we explain
the subtleties when designing lattice-based aggregate signatures that are supported by
a proper security proof.
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1 Introduction

For a long time, the main focus of cryptology was on secure encryption. With the invention of public
key cryptology in the 1970s and the spread of the internet, the need of secure key exchange and
authentication of data became more and more important. This is why nowadays the focus of public
key cryptology increasingly shifts towards digital signatures. A digital signature scheme ΠS with
message spaceM is composed of three algorithms KGen,Sig and Vf. The algorithm KGen generates
a key pair (sk, vk) for a given user, who can then use their3 secret key sk to generate a signature σ
on a given message m ∈ M by running Sig(sk,m). Afterwards, this signature can be verified by
anyone using the verification key vk, which is publicly available, by running {0, 1} ← Vf(vk,m, σ).
If the verification procedure outputs 1, the signature passes validation.
3 Throughout the paper, the neutral singular pronouns they/their are used in order to keep the language
as inclusive as possible. See also https://www.acm.org/diversity-inclusion/words-matter
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An interesting research question is whether it is possible to define an additional algorithm σagg ←
AggSig(VK,M,Σ) which takes as input a vector of N ∈ Z verification keys VK = (vkj)j∈[N ], a vector
of N messages M = (mj)j∈[N ] and a vector of N signatures Σ = (σj)j∈[N ], that were generated by
the N different signing parties with corresponding verification keys vkj , and outputs a single signa-
ture σagg. We further require a way for others to verify that σagg is indeed an aggregation of valid
signatures. Thus, we need to provide a second additional algorithm {0, 1} ← AggVf(VK,M, σagg),
that outputs 1 if σagg is a valid aggregation of N valid signatures. All five algorithms define a
so-called aggregate signature scheme ΠAS = (KGen,Sig,Vf,AggSig,AggVf), where we require that
it must satisfy correctness and unforgeability properties. A trivial solution is to set σagg as the
concatenation of all the N different signatures and verify one after the other. In the following we
are searching for an aggregate scheme that produces a σagg which is significantly shorter than
this trivial solution. Ideally, the aggregation algorithm AggSig can be performed by a third, even
untrusted party without needing to communicate with the N signing parties. We call this public
aggregation. The concept and a first realization of aggregate signatures with public aggregation
were given by Boneh et al. [Bon+03] by using bilinear maps constructed over elliptic curves in the
generic group model. Aggregate signatures are a useful tool to save communication costs in settings
where different users have to authenticate their communication, for instance in consensus protocols
or certificate chains. More recently, they attracted increased interest as they help to reduce the size
of blockchains such as the Bitcoin blockchain.

Constructing aggregate signature schemes based on the discrete logarithm problem (without
bilinear maps) turned out to be much harder, and so far, only solutions that partly aggregate the
signatures are known. Chalkias et al. [Cha+21] build a half-aggregate scheme for the well-known
Schnorr signature [Sch91]. It produces aggregate signatures of half the size compared to the trivial
solution of concatenating. Its security is proven in the Random Oracle Model (ROM) assuming the
hardness of the discrete logarithm problem. It was left unclear if the underlying techniques can be
adapted to the lattice setting.

Contributions. We propose an aggregate signature allowing public aggregation, whose security is
proven assuming simultaneously the hardness of Module Learning With Errors (M-LWE) and Mod-
ule Short Integer Solution (M-SIS) and thus based on worst-case module lattice problems [LS15].
Earlier proposals either only offered security based on (non-standard) average-case lattice problems,
or did not allow for public aggregation (cf. Related Works). From a high level perspective, we take
the practical signature from Güneysu et al. [GLP12] as a starting point. It follows the Fiat-Shamir
with Aborts (FSwA) paradigm for lattice-based schemes [Lyu12], which is also used in the signature
Dilithium [Duc+18], a finalist in the ongoing NIST standardization process4.

� Failure: Due to peculiarities that seem inherent to lattice-based cryptography, our scheme
produces aggregated signatures whose sizes are larger than the size of the trivial solution
(that is concatenating all the single signatures together). The motivation of our work thus
is pedagogical in order to demonstrate the subtleties when designing lattice-based aggregate
signatures that are supported by a proper security proof, in a security model we explain
below. We would like to remark that most issues we came across also apply to the MMSA(TK)
aggregate signature [Dor+20] (cf. Related Works).

4 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
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Technical Details. Let us quickly recall the FSwA paradigm for lattice-based signatures in the
module setting. In the following, all computations are done over the ring Rq = Zq[x]/〈xn + 1〉,
where n is a power of two and q is some prime modulus. A verification key is given as t = [A|Ik] ·s ∈
Rk

q , where s ∈ R`+k
q is a vector of small norm (defining sk), A ∈ Rk×`

q is a public uniform matrix
and Ik the identity matrix of order k. A signature is provided by σ = (u, z) ∈ Rk

q ×R`+k
q , where u

is a commitment that via some hash function Hc defines a challenge c, and z is the answer to this
challenge. The challenge c is a polynomial with coefficients in {−1, 0, 1}. For verification, one checks
that z is short and that [A|Ik] · z = t · c + u, where c = Hc(u, t,m) for the verification key t and
a message m. Adding t to the input of Hc is a simple countermeasure to prevent so-called rogue-
attacks [Bon+03, Sec. 3.2].

An intuitive way to aggregate N different signatures (σj)j∈[N ] with σj = (uj , zj) into one
signature σagg would be to compute the sum of all components (

∑
j uj ,

∑
j zj). However, we would

not be able to verify this aggregated signature as we cannot re-compute the different challenges cj

as we do not know the inputs uj to Hc, originally used by the signing parties. Thus, we can only
sum up the zj parts and still have to transmit all the uj , which produces an aggregate signature of
the form σagg = ((uj)j ,

∑
j zj).5 This is essentially how our half-aggregate signature looks like. In

order to prevent again rogue-type attacks, we use a linear combination (instead of the simple sum),
where the coefficients come from some random oracle (which was queried on all signatures that are
aggregated). This technique is also used in the Schnorr-analogue by Chalkias et al. [Cha+21]. We
formally present our aggregate signature scheme and the rogue-attack for the simple-sum solution
in the full version [BR21, Sec. 3+4.3].

� Failure: The size of a single signature can be significantly reduced by replacing the com-
mitment u ∈ Rk

q by the challenge c ∈ R. This does not only reduce the dimension of the vector
from k to 1, but also the total bit-length from nk log2 q to n log2 3, as u can be any vector
in Rk

q but c is a polynomial with ternary coefficients. Unfortunately, this cannot be done in
the aggregate setting, as we only have knowledge of the aggregated value of all zj ’s. This is
the main reason of our failure in constructing aggregate signatures schemes on lattices that
are shorter than the trivial concatenation. Note that in the discrete-logarithm setting of the
Schnorr aggregate signature in [Cha+21], the challenge c and the commitment u are elements
of the same space. This explains why there is a real improvement for Schnorr signatures, but
not for FSwA signatures.

In our aggregate signature, we have to transmit all N vectors (uj)j (and the smallish linear
combination of all the zj), whereas in the trivial concatenation we transmit all N challenges (cj)j

(and the N small vectors zj). The size of the uj is so large that it annihilates the compressing
effect of combining all the zj . More concretely, taking the level III parameters of Dilithium [Duc+18]
and N = 1000 signatures to aggregate, then (u1, . . . ,uN ) ∈ (Rk

q )N is of size ca. 4400 KB.6 However,
simply concatenating N single Dilithium signatures produces an aggregate signature of a smaller
size of ca. 3300 KB. Note that in an earlier version of [BR21] we further compressed the aggregated
signature via some linear function T to obtain a solution that was indeed smaller than the trivial
concatenation. As we elaborate in [BR21, Sec. 3.3], this allowed for simple lattice attacks.
5 Chalkias et al. [Cha+21, Sec. 6] provide evidence that it is necessary to transmit all the commitments.
6 This calculation does not even take into account the fact that in our aggregate signature log2 q has to be
increased by some factor log2

√
N .



In the full version, we provide a rigorous security proof (Theorem 1), where the proof idea follows
the one of Damgård et al. [Dam+21] for their inter-active multi-signature (cf. Related Works). It is
composed of a sequence of indistinguishable games (assuming the hardness of M-LWE), where the
starting one is the security game of our aggregate signature. The game is specified by the aggregate
chosen key model, as introduced by Boneh et al. [Bon+03]. In the last game, the signing procedure
is simulated by some algorithm that doesn’t depend on the secret key and the verification key is
sampled uniformly at random. By applying (twice) the General Forking Lemma from Bellare and
Neven [BN06] we can use four different responses of a successful adversary against the scheme in the
last game to solve an instance of M-SIS. As we don’t need trapdoor commitment schemes, the proof
is less technical than the one in [Dam+21]. We use a Gaussian distribution for the masking vectors,
the rejection sampling and the linear combination as done in [Dam+21]. This leads to tighter norm
bounds of an aggregate signature.

Related Works. A first attempt to build lattice-based aggregate signatures with public aggregation
was made by Doröz et al. [Dor+20]. Their construction builds upon the signature scheme PASS Sign,
introduced by Hoffstein et al. [Hof+14]. As a warm-up, they introduce a simple linear half-aggregate
signature, which they call MMSA (multi-message, multi-user signature aggregation). However, in
this version, the aggregate signature is larger than the trivial concatenation of N different sig-
natures. In order to improve the efficiency, they first compress the signature, leading to MMSAT
(the T stands for a linear compression function T ), and then compress the verification keys, leading
to MMSATK. Unfortunately, their construction has several disadvantages: First, the linear compres-
sion used in MMSAT(K) is prone to simple forgery attacks (similar to [BR21, Sec. 3.3]), making
those constructions insecure. Second, they only provide a security proof for the first variant MMSA
by showing that it inherits the security of the underlying PASS Sign, and subsequently its security
can be based on the hardness of the Partial Fourier Recovery problem (PFR). The PFR asks to
recover a polynomial in the ring Z[x]/〈xn − 1〉 of small norm having access only to a partial list
of its Fourier transform. It can be formulated as a bounded distance decoding problem over some
ideal lattice. This may rise security concerns, as problems over ideal lattices have been shown to be
in specific parameter settings easier than their counterparts over arbitrary lattices, e.g., [CDW21].
Furthermore, up to today, there are no connections to worst-case lattice problems, which may be
seen as an additional security concern.

In a parallel line of research, aggregate signature schemes that only allow for private aggregation
have been proposed. In this setting, the different signing parties interact with each other to generate
an aggregated signature on one message, which can be the concatenation of different messages. Those
are also known as multi-signature schemes and there have been several recent protocols following the
FSwA paradigm providing lattice-based inter-active aggregate signatures, see for instance [Dam+21]
and references therein.

å Open Problem: We leave as an open problem the construction of an aggregate signa-
ture scheme based on standard lattice-problems which allows public aggregation, produces
aggregate signatures that are smaller than the simple concatenation and at the same time is
provably secure in the aggregate chosen-key security model.
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