Quentin Bertrand
email: quentin.bertrand@mila.quebec

Quentin Klopfenstein

Pierre-Antoine Bannier

Gauthier Gidel

Mathurin Massias

Beyond L1: Faster and Better Sparse Models with skglm

We propose a new fast algorithm to estimate any sparse generalized linear model with convex or non-convex separable penalties. Our algorithm is able to solve problems with millions of samples and features in seconds, by relying on coordinate descent, working sets and Anderson acceleration. It handles previously unaddressed models, and is extensively shown to improve state-of-art algorithms. We release skglm, a flexible, scikit-learn compatible package, which easily handles customized datafits and penalties.

Introduction

Sparse generalized linear models play a central role in modern machine learning and signal processing. The Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] and its derivatives (Zou and Hastie, 2005;[START_REF] Ng | Feature selection, l1 vs. l2 regularization, and rotational invariance[END_REF][START_REF] Candes | Enhancing sparsity by reweighted 1 minimization[END_REF][START_REF] Simon | A sparse-group lasso[END_REF] have found numerous successful applications to large scale tasks in genomics [START_REF] Ghosh | Classification and selection of biomarkers in genomic data using lasso[END_REF], vision [START_REF]Sparse coding for machine learning, image processing and computer vision[END_REF], or neurosciences [START_REF] Strohmeier | The iterative reweighted mixed-norm estimate for spatio-temporal MEG/EEG source reconstruction[END_REF]. This impact was made possible by two key factors: efficient algorithms and software implementations.

State-of-the-art algorithms for "smooth + non-smooth separable" problems predominantly rely on coordinate descent (CD, [START_REF] Tseng | A coordinate gradient descent method for nonsmooth separable minimization[END_REF][START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF], which, when it can be applied, is more efficient than full gradient methods (Richtárik and Takáč, 2014, Sec. 6.1). Coordinate descent can even be improved with Nesterov-like acceleration, to obtain improved convergence rates [START_REF] Lin | An accelerated proximal coordinate gradient method[END_REF][START_REF] Fercoq | Accelerated, parallel, and proximal coordinate descent[END_REF]. However, these better rates may fail to reflect in practical accelerations. On the contrary, [START_REF] Bertrand | Anderson acceleration of coordinate descent[END_REF] relied on Anderson acceleration [START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF] to provide both better rates and practical acceleration for coordinate descent.

Even with efficient algorithms such as coordinate descent, the practical use of sparsity hits a computational barrier for problems with more than millions of features [START_REF] Le Morvan | WHInter: A working set algorithm for high-dimensional sparse second order interaction models[END_REF]. Multiple techniques have been proposed to make coordinate descent scale to huge problems. Notably, algorithms can be accelerated by reducing the number of variables to optimize over, using screening rules or working sets. Screening rules discard features from the problem in advance [START_REF] Ghaoui | Safe feature elimination for the lasso and sparse supervised learning problems[END_REF][START_REF] Bonnefoy | Dynamic screening: accelerating first-order algorithms for the Lasso and Group-Lasso[END_REF] or dynamically (Fercoq et al., 2015;[START_REF] Ndiaye | Gap safe screening rules for sparsity enforcing penalties[END_REF]. On the other side, working sets [START_REF] Johnson | Blitz: A principled meta-algorithm for scaling sparse optimization[END_REF][START_REF] Massias | Celer: a fast solver for the lasso with dual extrapolation[END_REF] iteratively solve larger subproblems and progressively include variables identified as relevant.

For the Lasso and a few convex models, coordinate descent has been broadly disseminated to practitioners in off-the-shelf packages such as glmnet [START_REF] Friedman | Pathwise coordinate optimization[END_REF] Non-convex sparse penalties behave better than the L1 norm. Due to their lower bias, they achieve perfect support recovery, lower prediction error and their optimal regularization strength λ in estimation (top) and prediction (bottom) correspond. [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. More recently, celer, a state-of-the-art convex working set algorithm [START_REF] Massias | Dual extrapolation for sparse generalized linear models[END_REF] allowed for successful applications of the Lasso in large scale problems in medicine [START_REF] Reidenbach | Gepsi: A python library to simulate gwas phenotype data[END_REF][START_REF] Kim | Nonlinear decoding of natural images from large-scale primate retinal ganglion recordings[END_REF] or seismology [START_REF] Muir | Seismic wavefield reconstruction using a pre-conditioned wavelet-curvelet compressive sensing approach[END_REF]).

Yet the Lasso is limited: non-convex sparse models enjoy better theoretical and empirical properties [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF][START_REF] Soubies | A continuous exact 0 penalty (cel0) for least squares regularized problem[END_REF]. As illustrated in Figure 1, they yield sparser solutions than convex penalties and mitigate the intrinsic Lasso bias. Yet, they have not so often been applied to huge scale applications. This is mostly an algorithmic barrier: while coordinate descent can be applied to non-convex penalties [START_REF] Breheny | Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[END_REF][START_REF] Mazumder | Sparsenet: Coordinate descent with nonconvex penalties[END_REF][START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF], screening rules and working sets are heavily dependent on convexity or quadratic datafits [START_REF] Rakotomamonjy | Screening rules for lasso with non-convex sparse regularizers[END_REF][START_REF] Rakotomamonjy | Provably convergent working set algorithm for non-convex regularized regression[END_REF].

In this work, we solve this issue by designing a state-of-the-art generic algorithm to solve a wide range of sparse generalized linear models. The contributions are the following:

• We propose a non-convex converging working set algorithm relying on Anderson accelerated coordinate descent. For a specific class of non-convex penalties, we show: (a) Convergence of the proposed working set algorithm (Proposition 5).

(b) Support identification of coordinate descent (Proposition 10). (c) Local convergence rates for the Anderson extrapolation (Proposition 13). • We provide an extensive experimental comparison and we show state-of-the-art improvements on a wide range of convex and non-convex problems. In addition we release an efficient and modular python implementation, with a scikit-learn API, for practitioners to apply non-convex penalties to large scale problems.

2 Framework and proposed algorithm

Problem setting

In this paper, we consider problems of the form:

β ∈ argmin β∈R p Φ(β) F (Xβ) f (β) + p j=1 g j (β j) , (1)
where F is smooth, and the functions g j are proper and lower semicontinuous but not necessarily convex, whose proximal operator can be computed exactly. We write g = j g j . Instances of Problem (1) include convex estimators: the Lasso, the elastic net, the sparse logistic regression, the dual of SVM with hinge loss. They also include non-convex penalties: 0.5 and 2/3 penalties [START_REF] Foucart | Sparsest solutions of underdetermined linear systems via q -minimization for 0 < q ≤ 1[END_REF], the minimax concave penalty (MCP, Zhang 2010) or SCAD (Zhang, 2010), both with regression and classification losses. Formally, the assumptions are the following.

Assumption 1. f : R p → R is convex and differentiable and for all j ∈ [p], the restriction of ∇ j f to the j-th coordinate is L j -Lipschitz: for all

(x, h) ∈ R p × R, |∇ j f (x + he j) -∇ j f (x)| ≤ L j |h|.
Assumption 2. For any j ∈ [p], g j : R → R is proper, closed, and lower bounded.

Following [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF][START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF] we focus on finding a critical point of Φ.

Definition 3. Using the Fréchet subdifferential [START_REF] Kruger | On Fréchet subdifferentials[END_REF], a critical point x ∈ R p is a point which satisfies -∇f (x) ∈ ∂g(x).

Assumptions 1 and 2 are usual, and, under boundedness of the iterates, ensure convergence of forward-backward and coordinate descent algorithms to a critical point [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF], Thm 5.1, Bolte et al. 2014, Thm. 3.1). In addition, our work focuses on the case where g j 's present non-differentiability points, leading to the following extended notion of sparsity.

Definition 4 (Generalized support). The generalized support of β ∈ R p is the set of indices j ∈ [p] such that g j is differentiable at

β j : gsupp(β) = {j ∈ [p] : ∂g j (β j) is a singleton}.
Penalties such as 1 , q (0 < q < 1), MCP or SCAD are only not differentiable at 0, and this corresponds to the usual notion of sparsity. But Definition 4 goes beyond sparsity and extends to estimators such as SVM, where g j = ι [0,C] and the generalized support is the complement of the support vectors' set {j ∈ [p] : β j = 0 or β j = C}. The generalized support of a critical point is usually of cardinality much smaller than p, and its knowledge makes the problem easier and faster to solve. Our working set algorithm exploits this structure in order to converge faster.

Proposed algorithm

The proposed algorithm exploits two main ideas:

• A working set strategy, able to handle a large class of convex and non-convex penalties (Algorithm 1).

• An Anderson accelerated coordinate descent for non-convex problems (Algorithm 2). The building blocks of Algorithm 2, coordinate descent (CD, Algorithm 3) and Anderson extrapolation (Anderson,Algorithm 4), can be found in Appendix A.

To avoid wasting computation on features outside the generalized support, working set algorithms iteratively select a subset of coordinates deemed important (the working set), and solve Problem (1) restricted to them. The key question is thus the notion of important features. Stemming from Definition 3, we rank features by their violation of the optimality condition: score ∂ j = dist(-∇ j f (β), ∂g j (β)) . For example, the MCP Fréchet subdifferential at 0 is ∂g j (0) = [-λ, λ], and the proposed score reads

score ∂ j = max{0, |∇ j f (β)| -λ} if β j = 0 , |∇ j f (β) + ∇g j (β j)| otherwise . (2
)
To control the working set growth, we use score ∂ j to rank the features. Then, with n k = max(n k-1 , 2 | gsupp(β (t))|) we take the n k largest of them in the working set, while retaining features currently in the working set. This growth quickly rises to the unknown size of the generalized support while avoiding overshooting, as backed up by recent theory in [START_REF] Ndiaye | Continuation path with linear convergence rate[END_REF].

Proposition 5. Let W t be the t-th working set. Suppose that Algorithm 2 converges toward a critical point, and for all t ≥ 0, W t ⊂ W t+1 , then the iterates of Algorithm 1 converges towards a critical point of Problem (1).

Algorithm 1 skglm (proposed) input : X, β ∈ R p , n out ∈ N, n in ∈ N, ws_size ∈ N, > 0 for t = 1, . . . , n out do score = dist (-∇ j f (β), ∂g j (β j)) j∈[p] ws_size = max(ws_size, 2 × | gsupp(β)|)
// ws_size features with largest scores ws = arg_topK(score, K = ws_size)

if max j∈[p] dist (-∇ j f (β), ∂g j (β j)) ≤ then stop else // accelerated CD on working set β ← inner_solver(X, β, ws, n in ,) return β Algorithm 2 inner_solver input :X, β (0) ∈ R p , ws ⊂ [p], n in , , M = 5 1 for k = 1, . . . , n in do 2 β (k) ← CD(X, β (k-1) , Xβ, ws) // Algo. (3) 3 if k mod M = 0 then //

Anderson accelerated coordinate descent analysis for α-semi-convex penalties

We now turn to our main technical contributions: we show that Algorithm 2 achieves finite time support identification (Proposition 10) of the generalized support (Definition 4) for specific class of non-smooth non-convex penalties (Assumption 6), which includes the MCP (Proposition 7). Based on Proposition 10, we are able to derive convergence rates for Anderson acceleration (Proposition 13).

We study our inner solver (Algorithm 2); for convenience we still refer to β and X for their counterparts restricted to the working set. The following assumptions are required. Assumption 6 (α-semi-convex). For all j ∈ [p] g j /L j is α-semi-convex, i.e., g j /L j + α • 2 /2 is convex, with α < 1.

Note that in statistics, the admissible value range of hyperparameters for MCP and SCAD are datafitdependent, (see Breheny and Huang 2011, Sec. 2.1, normalized columns and γ > 1 = 1/ X :j = 1/L j or Soubies et al. 2015, Eq. 4.2) and yields α-semi-convexity for MCP and SCAD1 .

Proposition 7 (α-semi-convexity of MCP). Let MCP λ,γ (x) λ|x| -x 2 2γ , if |x| ≤ γλ , 1 2 γλ 2 , if |x| > γλ . If γ > 1/L j , then MCP λ,γ /L j is α-semi-convex (i.e.

, Assumption 6 holds).

Note that Assumption 6 does not hold for the q -penalties (0 < q < 1), for which we propose an alternative in Appendix C. Assumption 8 (Existence). Problem (1) admits at least one critical point.

In Proposition 10, convergence of Algorithm 2 toward a critical point β is assumed, and the following assumption is made on this critical point.

Assumption 9 (Non degeneracy). The considered critical point β ∈ R p is non-degenerated: for all j / ∈ gsupp(β), -∇f j (β) ∈ interior(∂g j (βj)).

(3) Assumption 9 is a generalization of qualification constraints (Hare and Lewis, 2007, Sec. 1), and is usual in the machine learning literature (Zhao and Yu, 2006;[START_REF] Bach | Consistency of the group Lasso and multiple kernel learning[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF]. For the 1 -norm, if the entries of the design matrix X are drawn from an i.i.d normal distribution, then Assumption 9 holds with high probability [START_REF] Candes | Decoding by linear programming[END_REF][START_REF] Rudelson | On sparse reconstruction from fourier and gaussian measurements[END_REF].

Equipped with the previous assumptions we show that coordinate descent achieves model identification for this class of non-convex problems.

Proposition 10 (Model identification of CD). Suppose 1. Assumptions 1, 2, 6 and8 hold. 2. The sequence (β (k)) k≥0 generated by coordinate descent (Algorithm 2 without extrapolation) converges toward a critical point β.

3. Assumption 9 holds for β.

Then, Algorithm 2 (without extrapolation) identifies the model in finitely many iterations: there exists

K > 0 such that for all k ≥ K, β (k)
S c = βS c .
In other words, for k large enough, β (k) shares the generalized support of β. The identification property was proved for a proximal gradient descent algorithm in the non-convex case [START_REF] Liang | A multi-step inertial forward-backward splitting method for non-convex optimization[END_REF] under the assumption that the non-smooth function g is partly smooth [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF]. For ourselves, Proposition 10 not rely on the partly smooth assumption to ensure identification property.

Authors are not aware of previous identification results for coordinate descent in the non-convex case.

In addition, if f and g are locally regular on the generalized support at the considered critical point, our algorithm enjoys local acceleration when combined with Anderson extrapolation (Proposition 13).

Assumption 11 (Locally C 3). For all j ∈ S gsupp(β), g j is locally C 3 around βj , and f is locally

C 3 around β.
Assumption 11 on the function f is mild and holds for usual machine learning datafitting terms. Assumption 11 on the functions g j , j ∈ S, is stronger: for instance, for the MCP, it implies βj = γλ for all j ∈ S. However this assumption is standard in the literature, see Liang et al. 2016, Sec. 3.3 Assumption 12. (Local strong convexity) The Hessian of f at the considered critical point β ∈ R p , restricted to its generalized support S, is positive definite, i.e., ∇ 2 S,S f (β) + ∇ 2 S,S g(β) 0.

Assumption 12 requires local strong convexity restricted to the generalized support S, which is standard in the MCP / SCAD literature (Breheny and Huang 2011, Section 4.1) and is usual to derive local linear rates of convergence (Liang et al., 2016, Section 3.3). For instance, for the Lasso, if the entries of the design matrix X are drawn from a continuous distribution, then Assumption 12 holds with probability one (Tibshirani, 2013, Lemma 4).

Proposition 13. Consider a critical point β and suppose 1. Assumptions 1, 2 and 8 hold.

2. The functions f and g j , j ∈ [p] are piecewise quadratic (which is the case for the MCP regression). 3. The sequence (β (k)) k≥0 generated by anderson accelerated coordinate descent with updates from 1 to p and p to 1 (Algorithm 2 with extrapolation) converges to a critical point β.

4. Assumptions 9, 11 and 12 hold for β.

Then there exists K ∈ N, and a

C 1 function ψ : R |S| → R |S| such that, for all k ∈ N, k ≥ K: β (k) j = βj , for all j ∈ S c , (4)
Let T J ψ(β), H ∇ 2 S,S f (β) + ∇ 2 S,S g(β), ζ (1 -1 -ρ(T))/(1 + 1 -ρ(T)) and B (T -Id) (T -Id).
Then ρ(T) < 1 and the iterates of Anderson extrapolation enjoy local accelerated convergence rate:

β (k-K) S -βS B ≤ κ(H) 2ζ M -1 1+ζ 2(M -1) (k-K)/M β (K) S -βS B . (5)
The proof can be found in Appendix B.5. [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] (Fortran) scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] (Cython) lightning [START_REF] Blondel | Lightning: large-scale linear classification, regression and ranking in python[END_REF] (Cython) celer [START_REF] Massias | Celer: a fast solver for the lasso with dual extrapolation[END_REF] (Cython) picasso [START_REF] Ge | Picasso: A sparse learning library for high dimensional data analysis in r and python[END_REF] (C++) pyGLMnet [START_REF] Jas | Pyglmnet: Python implementation of elastic-net regularized generalized linear models[END_REF] (Python) fireworks [START_REF] Rakotomamonjy | Provably convergent working set algorithm for non-convex regularized regression[END_REF] N.A. (Python) skglm (ours) (Python)

Related work. Most Anderson acceleration convergence results are shown for quadratic objectives for specific algorithms: gradient descent [START_REF] Golub | Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order richardson iterative methods[END_REF][START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF], ADMM [START_REF] Poon | Trajectory of alternating direction method of multipliers and adaptive acceleration[END_REF], coordinate descent [START_REF] Bertrand | Implicit differentiation of lasso-type models for hyperparameter optimization[END_REF]. Outside of the quadratic case, convergence results are usually significantly weaker [START_REF] Scieur | Regularized nonlinear acceleration[END_REF][START_REF] Sidi | Vector extrapolation methods with applications[END_REF][START_REF] Brezinski | Shanks sequence transformations and anderson acceleration[END_REF][START_REF] Mai | Anderson acceleration of proximal gradient methods[END_REF][START_REF] Ouyang | Anderson acceleration for nonconvex ADMM based on Douglas-Rachford splitting[END_REF]

Comparison with existing work

In this section we compare our contribution to existing algorithms and implementations, which are summarized in Table 1. Huge scale refers to the fact that the algorithm can run on problems with millions of variables. Non-convex tells if the algorithm handles non-convex penalties. Modular indicates that it is easy to add a new model, through a different datafitting term or penalty.

The packages glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] and lightning [START_REF] Blondel | Lightning: large-scale linear classification, regression and ranking in python[END_REF] implement coordinate descent (cyclic or random). They rely on compiled code such as Fortran or Cython, making it very difficult to implement new models2 or faster algorithms like working set3 . They do not handle non-convex penalties.

More recent algorithms such as blitz [START_REF] Johnson | Blitz: A principled meta-algorithm for scaling sparse optimization[END_REF], celer [START_REF] Massias | Celer: a fast solver for the lasso with dual extrapolation[END_REF], picasso [START_REF] Ge | Picasso: A sparse learning library for high dimensional data analysis in r and python[END_REF] or fireworks [START_REF] Rakotomamonjy | Provably convergent working set algorithm for non-convex regularized regression[END_REF] use working set strategies. celer and blitz are state-of-the-art algorithms for the Lasso, but their score to prioritize features relies on duality. fireworks extends blitz to some non-convex penalties (writing as difference of convex functions), with score fireworks j = dist(-∇ j f (β), ∂g j (0)). Yet this rule does not consider the subdifferential of g at the current point, but at 0, which is a coarse information. Finally, fireworks does not provide accelerated convergence rates and does not come with a public implementation. picasso [START_REF] Ge | Picasso: A sparse learning library for high dimensional data analysis in r and python[END_REF] lacks modularity (penalties are hardcoded), and the solver is not suited for huge scale (it does not support large sparse matrices). [START_REF] Deng | Efficiency of coordinate descent methods for structured nonconvex optimization[END_REF] proposed an algorithm based on inertially accelerated coordinate descent, which fails to provide practical speedups according to [START_REF] Bertrand | Anderson acceleration of coordinate descent[END_REF].

Contrary to these algorithms, ours is generic and relies only on the knowledge of ∇f and prox g . For any new penalty, this information can be written in a few lines of Python code, compiled with numba [START_REF] Lam | Numba: A llvm-based python jit compiler[END_REF] for speed efficiency. We therefore improve state-of-the-art algorithms in the convex case, and generalize to virtually any datafit and penalty, even nonconvex.

Experiments

Our package relying on numpy and numba [START_REF] Lam | Numba: A llvm-based python jit compiler[END_REF][START_REF] Harris | Array programming with numpy[END_REF] found at https://github.com/scikit-learn-contrib/skglm. We use datasets from libsvm4 [START_REF] Fan | Liblinear: A library for large linear classification[END_REF], see table 2).

We compare multiple algorithms to solve popular Machine Learning and inverse problems: Lasso, Elastic net, multitask sparse regression, MCP regression. The compared algorithms are the following:

• scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF], which implements coordinate descent in Cython, • celer [START_REF] Massias | Dual extrapolation for sparse generalized linear models[END_REF], which combines working sets, screening rules, coordinate descent, and Anderson acceleration in the dual, in Cython, • blitz [START_REF] Johnson | Blitz: A principled meta-algorithm for scaling sparse optimization[END_REF], which combines working sets with prox-Newton iterations [START_REF] Lee | Proximal Newton-type methods for convex optimization[END_REF] in C++, • coordinate descent (CD, Tseng and S.Yun 2009),

• skglm (Algorithm 1, ours), using M = 5 iterates for the Anderson extrapolation.

Other solvers. Experiment per experiment, there exist niche solvers (such as aggressive Gap Safe Rules, [START_REF] Ndiaye | Screening rules and its complexity for active set identification[END_REF]. Since our goal is a general purpose algorithm able to deal with many models, we do not include them in the comparison. In addition, we focus on solving a single instance of Problem (1), rather than a regularization path (i.e., a sequence of problems for multiple regularization strengths). As glmnet is designed to compute regularization paths, we could not include it in the comparison. The reader can refer to Johnson and Guestrin (2015, Fig. 4) or Figure 8 in Appendix E for comparisons on single optimization problems with glmnet; glmnet and additional algorithms are discussed in Appendix E.

How to do a fair comparison between solvers? To plot the convergence curves, we use the benchopt5 benchmarking package [START_REF] Moreau | Benchopt: Reproducible, efficient and collaborative optimization benchmarks[END_REF]. In order to automate and reproduce optimization benchmarks it treats solvers as black boxes. It launches them several times with increasing maximum number of iterations, and stores the resulting objective values and times to reach it. As each point on a solver curve is obtained in a different run, the curves are not monotonic, and there may be several points corresponding to the same time. This merely reflects the variability in solvers running time across runs; we refer to Figure 10 in Appendix E.6 for the inevitability of this phenomenon with black box solvers.

Convex problems

Lasso. In Figure 2 we compare solvers for the Lasso:

(f = 1 2n y -X• 2 , g j = λ|•|).
We parametrize λ as a fraction of λ max = X y ∞ /n, smallest regularization strength for which β = 0.

For large scale datasets (rcv1, news20), skglm yields performances better or similar to the state-ofthe-art algorithms blitz and celer. For huge scale datasets (kdda and url), skglm yields significant speedups over them. The improvement over the popular scikit-learn can be of two orders of magnitude. Thus, while dealing with many more models, our algorithm still yields state-of-the-art speed for basic ones.

Elastic net. Our approach easily generalizes to other problems, such as the elastic net (f =

1 2n y -X• 2 , g j = λ(ρ|•| + 1-ρ 2 (•) 2)).
Figure 3 shows the duality gap as a function of time for skglm (ours), sklearn, and our numba implementation of coordinate descent. The proposed algorithm is orders of magnitude faster than scikit-learn and vanilla coordinate descent, in particular for large datasets and low regularization parameter values (finance, λ max /1000). Note that blitz does not implement a solver for the elastic net. Many Lasso solvers would easily handle the elastic net, but relying on Cython/C++ code makes the implementation time-consuming. By contrast, it takes 40 lines of code to define an 1 + 2 -squared penalty with our implementation. An additional experiment on the dual of SVM with hinge loss is in Appendix E.4.

Non-convex problems

In this subsection we propose a comparison on two non convex problems.

MCP regression. MCP regression is Problem (1) with

f = 1 2n y -X• 2 , g j = MCP λ,γ for γ > 1.
As usual for this problem, we scale the columns of X to have norm √ n. On Figure 5, we compare our algorithm to picasso on a dense dataset (n = 1000, p = 5000); as this package does not support large sparse design matrices, for the rcv1 dataset we use an iterative reweighted L1 algorithm [START_REF] Candes | Enhancing sparsity by reweighted 1 minimization[END_REF]. Since the derivative of the MCP vanishes for values bigger than λγ, this approach requires solving weighted Lassos with some 0 weights. Up to our knowledge, our algorithm is the only efficient one with such a property. Our algorithm handles problems of large size, converges to a critical point, and, due to its progressive inclusion of features, is able to reach a sparser critical point than it competitors.

Application to neuroscience To demonstrate the usefulness of our algorithm for practitioners, we apply it to the magneto-/electroencephalographic (M/EEG) inverse problem. It consists in reconstructing the spatial cortical current density at the origin of M/EEG measurements made at the surface of the scalp. Non-convex penalties [START_REF] Strohmeier | MEG/EEG source imaging with a non-convex penalty in the time-frequency domain[END_REF] exhibit several advantages over convex ones [START_REF] Gramfort | Time-frequency mixednorm estimates: Sparse M/EEG imaging with non-stationary source activations[END_REF]: they yield sparser physiologically-plausible solutions and mitigate the 1 amplitude bias. Here the setting is multitask: Y ∈ R n×T and thus we use block penalties (details in Appendix D). We use real data from the mne software [START_REF] Gramfort | MNE software for processing MEG and EEG data[END_REF]; the experiment is a right auditory stimulation, with two expected neural sources to recover in each auditory cortex. In Figure 4, while the 2,1 penalty fails at localizing one source in each hemisphere, the non-convex penalties recover the correct locations. This emphasizes on the critical need for fast solvers for non-convex sparse penalties as well as our algorithm's ability to handle the latter. In this work we focused on optimization-based estimators to solve the inverse problem, note that one could have resort to other techniques, such as Bayesian techniques [START_REF] Ghosh | Model selection in bayesian neural networks via horseshoe priors[END_REF][START_REF] Fang | Online bayesian sparse learning with spike and slab priors[END_REF].

Ablation study. To evaluate the influence of the two components of Algorithm 1, an ablation study (Figure 6) is performed. Four algorithms are compared: with/without working sets and with/without Anderson acceleration. Figure 6 represents the duality gap of the Lasso as a function of time for multiple datasets and values of the regularization parameters λ (parametrized as a fraction of λ max). First, Figure 6 shows that working sets always bring significant speedups. Then, when combined with working set, Anderson acceleration bring significant speed-ups, especially for hard problems with low regularization parameters. An interesting observation is that on large scale datasets (news20 and Conclusion and broader impact. In this paper, we have proposed an accelerated versatile algorithm for a specific class of non-smooth non-convex problems. Based on working sets, coordinate descent and Anderson acceleration, we have improved state of the art on convex problems, and handled previously out-of-reach problems. Thorough experiments demonstrated the speed and interest of our approach. A limitation of this work is the considered function class (α-semi-convex), which can be seen as restrictive. One possible extension would be weakly convex functions (Davis and Drusvyatskiy, 2019, Sec. 1). We deeply believe that the high quality code provided will benefit to practitioners, and ease the use of non-convex penalties for real world problems, from neuroimaging to genomics. We proposed an optimization algorithm and do not see potential negative societal impacts.

A Algorithms

Algorithm 3 Coordinate descent epoch input : Proof. Since W t ⊂ W t+1 after at most p iterations, the working set is made of all the p features. If Algorithm 1 stops when |W t | < p, then Bolte et al. (2014, Thm. 3.1) ensures that the inner solver converges towards a critical point of the restricted subproblem. Moreover, if the working set stops increasing, it means that for all j / ∈ W t , score ∂ j is smaller than a given tolerance, hence satisfying the critical point condition of the global optimization problem.

X ∈ R n×p , β ∈ R p , Xβ ∈ R n , L ∈ R p , ws ⊂ [p] 1 for j ∈ ws do 2 β old ← β j // O(1) 3 β j ← prox gj /Lj β j -1 Lj X :j ∇F (Xβ) // O(n) 4 Xβ += (β j -β old)X :j // O(n) 5 return β Algorithm 4 Anderson extrapolation init : β (0) , . . . , β (M) ∈ R |ws|×(M +1) 1 U = [β (1) -β (0) , . . . , β (M) -β (M -1)] ∈ R |ws|×M 2 c = (U U) -1 1 M ∈ R M // O(M 2 |ws| + M 3) 3 c /= 1 M c // O(M) 4 β extr = M i=1 c i β (i) ∈ R |ws| // O(M |ws|)
If |W t | = p, the inner solver is used on the full optimization problem and Bolte et al. (2014, Thm. 3.1) ensures convergence towards a critical point of the latter.

B.2 α-semi-convexity of MCP (Proposition 7) Proof. Let j ∈ [p], γ > min j 1/L j and g j MCP λ,γ : x → λ|x| -x 2 2γ , if |x| ≤ γλ 1 2 γλ 2 , if |x| > γλ , α = 1 2 1 + 1 γLj , and h j gj Lj + α 2 • 2 .
Since γ > min j 1/L j , α < 1. Moreover, for all x > 0 such that, |x| ≤ γλ,

h j (x) = λ|x| L j - x 2 2γL j + αx 2 2 , thus (6)
h j (x) = λ L j + 1 2 1 - 1 γL j x, thus . (7)
In addition, for all x > 0 such that, |x| > γλ

h j (x) = 1 2 γλ 2 + αx 2 2 , thus (8)
h j (x) = 1 2 1 + 1 γL j x . (9)
Hence h is an increasing function on]0, +∞[, and thus h is convex on]0, +∞[. In addition, h is increasing, symmetric, and continuous, thus h is convex on R, and MCP is α-semi-convex.

B.3 Support identification for coordinate descent (Proposition 10)

For exposition purposes, the proof is first provided for proximal gradient descent.

Proof. Proximal gradient descent. Here we generalize the results of Nutini (2018, Sec. 6.2.2) to semi-convex g j 's. The updates of proximal gradient descent read:

β (k+1) j = prox gj /L β (k) j - 1 L ∇ j f (β (k)) . (10)
Let S be the generalized support of β. Using Assumption 9, we have that for j / ∈ S, -∇ j f (β) ∈ interior(∂g j (βj)) .

Combining Equation (11) with the Lipschitz continuity of the gradient (Assumption 1) and the convergence of (β (k)) toward β yields that there exists k ∈ N such that

L(β (k) j -βj) -∇ j f (β (k)) ∈ ∂g j (βj) . (12)
Since g j /L is α-semi-convex with α < 1, Equation (12) is equivalent to

βj = prox gj /L β (k) j - 1 L ∇ j f (β (k)) . (13)
By uniqueness of the proximity operator (direct consequence of Assumption 6), Equations (10) and (13) yield that there exists K ∈ N such that for all k ≥ K, β

(k) j = βj .
The proof for coordinate descent is similar and can be found in Appendix B.3.

We prove the support identification for the coordinate descent algorithm Proposition 10.

Proof. Proximal coordinate descent. Let us denote by β (k,j) the update at the epoch k and changing the coordinate j with the convention that β (k,0) = β (k) and β (k,p) = β (k+1) . An update of proximal coordinate descent reads

β (k,j) = prox gj /Lj β (k,j-1) - 1 L j ∇ j f (β (k,j-1)) . (14)
Let S be the generalized support of β, a critical point of Problem (1).

Using Assumption 9, we have that for j / ∈ S,

-∇ j f (β) ∈ interior(∂g j (βj)) . (15)
Combining Equation (15) with the Lipschitz continuity of the gradient (Assumption 1) and the convergence of (β (k)) toward β yields that there exists k ∈ N such that

L j (β (k,j-1) j -βj) -∇ j f (β (k,j-1)) ∈ ∂g j (βj) . (16)
Since g j /L is α-semi-convex with α < 1, Equation (16) is equivalent to

βj = prox gj /Lj β (k,j-1) j - 1 L j ∇ j f (β (k,j-1)) . (17)
By uniqueness of the proximity operator (direct consequence of Assumption 6), Equations (14) and (17) yield that there exists K ∈ N such that for all k ≥ K, β

= βj .

B.4 Local linear convergence (Proposition 14)

Here we extend in the proof of local linear convergence of coordinate descent from [START_REF] Klopfenstein | Model identification and local linear convergence of coordinate descent[END_REF] to the α-semi-convex case. This property will be useful to show Proposition 13.

Proposition 14. Consider a critical point β and suppose 1. Assumptions 1, 2, 6 and 8 hold.

2. The sequence (β (k)) k≥0 generated by coordinate descent (Algorithm 2 without extrapolation) converges to a critical point β.

3. Suppose Assumptions 9, 11 and 12 hold for β. Then there exists K ∈ N, and a C 1 function ψ : R |S| → R |S| such that, for all k ∈ N, k ≥ K: β (k) j = βj , for all j ∈ S c , and

β (k+1) S -βS = J ψ(βS)(β (k) S -βS) + O(β (k) S -βS 2) ,
and ρ J ψ(βS) < 1 , where J ψ is the Jacobian of ψ, and ρ its spectral radius.

where v s = prox γj s gj s (ẑ js) e jsγ js ∇ 2 js,: f (β) and ẑj = βjγ j ∇ j f (β). This matrix can be rewritten J P (s) (βS) = Id |S| -e s e s + prox γj s gj s (ẑ js) e s e sγ js e s e s ∇ 2 f (β) = Id |S| -e s e s γ js 1 + γ js g j (βjs) ∇ S,S g(β) + ∇ 2 S,S f (β)

= Id |S| -e s e s γ js 1 + γ js g j (βjs)

M = M -1/2 Id |S| -M 1/2 e s e s γ js 1 + γ js g j (βjs) M 1/2 M 1/2 = M -1/2 Id |S| -B (s) M 1/2 ,
where

M ∇ 2 S,S f (β) + ∇ 2 S,S g(β) ∈ R |S|×|S| , and
B (s) M 1/2 :s γ js 1 + γ js g j (βjs) M 1/2 :s ∈ R |S|×|S| .
The chain rule yields J ψ(βS) = J P (|S|) (βS)J P (|S|-1) (βS) . . . J P (1) (βS

) = M -1/2 (Id -B (|S|))(Id -B (|S|-1)) . . . (Id -B (1)) A M 1/2 .
The following lemmas (Lemmas 16 i) to 16 iv)) aim at showing that the spectral radius of the Jacobian of the fixed-point operator ψ is strictly bounded by one (Lemma 16 v)).

Lemma 16.

i) The matrix M defined in Equation (20) is symmetric definite positive.

ii) For all s ∈ [|S|], the spectral radius of the matrix B (s) defined in Equation (21) is bounded by 1, i.e., B (s) 2 ≤ 1.

iii) For all s ∈ [|S|], B (s) / B (s) is an orthogonal projector onto Span(M

1/2 :s). iv) For all s ∈ [|S|] and for all u ∈ R S , if (Id -B (s))u = u then u ∈ Span(M 1/2 :s) ⊥ and (Id -B (s))u = u.
v) The spectral radius of the Jacobian J ψ(βS) of the fixed-point operator ψ is bounded by 1 ρ(J ψ(βS)) < 1 . Proof. Since Assumptions 1, 2, 8 and 9 hold, coordinate descent achieves finite time support identification (Proposition 10): there exists l 0 such that for all l ≥ l 0 , β (l0M +1) , . . . , β (l0M +M) shares the support of β. Since Anderson acceleration linearly combines iterates from β (l0M +1) to β (l0M +M) , it preserves the finite time identification property.

In addition, since Assumptions 9, 11 and 12 hold, and the functions f and g j , j ∈ [p] are piecewise quadratic (by hypothesis), then Proposition 14 yields that there exists K ∈ N such that, for all k ≥ K:

β (k) S c = βS c (18) β (k+1) S -βS = J ψ(βS)(β (k) S -βS) . (19
)
If the coordinate descent indices are picked from 1 to p and then form p to 1, then

T J ψ(βS) = M -1/2 (Id -B (1)) . . . (Id -B (|S|))(Id -B (|S|)) . . . (Id -B (1))M 1/2 . (20
)
Based on Equation (20) one can apply Bertrand and Massias (2021, Prop. 4), which yields ρ(T) < 1 and the iterates of Anderson extrapolation with parameter M enjoy local accelerated convergence rate:

β (k-K) S -βS B ≤ κ(H) 2ζ M -1 1+ζ 2(M -1) (k-K)/M β (K) S -βS B , (21)
with

H ∇ 2 S,S f (β) + ∇ 2 S,S g(β), ζ (1 -1 -ρ(T))/(1 + 1 -ρ(T)), B (T -Id) (T - Id). C Beyond α-semi-convex penalties C.1 Proposed score
When the g j 's are not convex, the distance to the subdifferential can yield uninformative priority scores. This is in particular the case for q -penalties, with 0 < q < 1. Example 1. The subdifferential of the 0.5 -norm at 0 is: ∂g(0) = R. Hence 0 p is a critical point for any f . For any β, dist(-∇ j f (β), ∂g j (0)) = 0 ,

Thus if β j = 0, no matter the value of ∇ j f (β), feature j is always assigned a score of 0, which is not relevant to discriminate important features.

A key observation to improve this rule is that, although 0 p is a critical point for any f , coordinate descent is able to escape it (Appendix C.2). Instead of considering critical point, we consider the more restrictive condition of being a fixed point of proximal coordinate descent:

βj = prox gj /Lj βj - 1 L j ∇ j f (β) . (23)
We propose to rely on the violation of the fixed-point equation:

score cd j = |β j -prox gj /Lj (βj -∇ j f (β)/L j)| . (24)
This is in a sense a restriction of the optimality conditions, since a fixed point is a critical point (while the converse may not be true).

Because this score only relies on ∇f and prox gj , which are known for the overwhelming majority of instances of Problem (1), our working set algorithm can address all of these, while being very simple to implement. This is in contrast with algorithm relying on duality, or on geometrical interpretations. Remark 17. Feature importance measures such as score ∂ j and score cd j have been considered in the convex case by Nutini et al. (2015, Sec. 8), while studying the Gauss-Southwell greedy coordinate descent selection rule. However, their approach is to compute the whole score vector (24), which requires a full gradient computation, in order to update a single coordinate: it is not a practical algorithm.

C.2 Coordinate descent escapes 0 p

Let f be a generic function satisfying Assumption 1. Suppose that coordinate descent is run on

min f (β) + λ p 1 |β j | , (25)
initialized at 0 p (a critical point, as seen in Example 1). We show that if λ is low enough, coordinate descent escapes this point. As coordinate descent is a descent method (f is convex: the objective decreases strictly every time a coordinate's value changes), it is sufficient to show that at least one coordinate is updated.

Let j = argmax |∇ j f (0 p)|. When comes the time for coordinate j to be updated, if some coordinate's value has already changed, coordinate descent has escaped the origin. Otherwise, since the proximal

operator of x → λ Lj √ x is 0-valued exactly on [-3 2 λ Lj 2/3 , 3 2 λ Lj 2/3] (Wen et al., 2018, Table 1), if 1 L j |∇ j f (0 p)| > 3 2 λ L j 2/3 , (26)
then the value of β j changes. Thus, for λ < 2

3 |∇j f (0p)| L 1/3 j 3/2
, coordinate descent escapes the origin.

D Proximal operator of penalties in the multitask setting

In this section we consider a penalty on rows of matrices, i.e. letting φ be a 1 dimensional penalty, which is even, the whole penalty on W ∈ R p×d is

g(W) = p j=1 φ(W j:) (27)
Since this penalty is separable, this brings us to solving:

argmin y∈R d 1 2 y -x 2 + φ(y) . (28)
Proposition 18. The proximal operator of y → φ(y) is given by:

prox φ(•) (x) = prox φ (x) x x (29)
Proof. Notice that the minimum is necessarily attained at a point equal to tx, with t ≥ 0: indeed, for any y, y x x yields φ(y x x) = φ(y), and since:

y x x -x 2 = y 2 -2 y x + x 2 ≤ y 2 -2 y, x + x 2 = y -x 2 , (30)
it achieves lower objective value in (28) than y. Hence the problem transforms into a 1 dimensional one:

argmin y∈R d 1 2 y -x 2 + φ(y) = argmin t≥0 1 2 (t -1) 2 x 2 + φ(|t| x)) x = argmin t∈R 1 2 (t -

E.2 ADMM comparison

ADMM can solve a larger range of optimization problems than CD (Boyd et al., 2011, Eq. 3.1). Yet, for the Lasso, ADMM requires solving a p × p linear system at each primal iteration. This is too costly: ADMM is usually not included in Lasso benchmarks (e.g. [START_REF] Johnson | Blitz: A principled meta-algorithm for scaling sparse optimization[END_REF]. Our algorithm outperforms the implementation of [START_REF] Poon | Trajectory of alternating direction method of multipliers and adaptive acceleration[END_REF] as visible on Figure 7. glmnet uses a combination of coordinate descent and strong rules to solve the Lasso, elastic net and other L1 + L2 regularized convex problems. By design of the strong rules [START_REF] Tibshirani | Strong rules for discarding predictors in lasso-type problems[END_REF], glmnet is only usable when a sequence of problems must be solved, with decreasing regularization strength λ: the so-called homotopy/continuation path setting. In addition, even prompted to solve a given path, the implementation of glmnet does no go up to the smallest λ if some statistical criterion stops improving from one λ to the other. Thus, in practice it is nearly impossible to get glmnet to solve a single instance of Problem (1) for a given value of λ.

estimators is still far better than the global minimizer of the Lasso. We see that the non-convex penalties are better at recovering the support. The time to compute the regularization paths is similar for the 4 models, around 1 s. Thanks to our flexible library, we intend to bring these improvements to practitioners at a large scale. By design of the benchopt library that we used for reproducible experiments, solvers are treated as black boxes, for which one only controls the number of iteration performed. It is thus not possible to monitor the time and losses in a single run of a given solver. Instead, the solver is run for 1 iteration, then 2 (starting again from 0), then 3, etc. This allows to obtain a convergence curve for a solver without interfering with its inner mechanisms. One drawback is that, because of variability in code execution time, it may happen that the run with K + 1 iterations takes less time than the run with K iterations, for example in Figure 10 -although it performs more iterations and thus usually decreases the objective more. Then, the curves seem to go back in time. The variability can be damped by running the experiment several times and averaging the results, which we did when the total running time allowed it. Otherwise, these variations should indicate that, as all measurements, convergence curves as a function of time are noisy.

Figure 1 :

 1 Figure1: Regularization paths computed with our algorithm. Non-convex sparse penalties behave better than the L1 norm. Due to their lower bias, they achieve perfect support recovery, lower prediction error and their optimal regularization strength λ in estimation (top) and prediction (bottom) correspond.

 is attached in the supplementary material. An open source, fully tested and documented version of the code can be

Figure 2 :

 2 Figure 2: Lasso, duality gap. Normalized duality gap as a function of time for the Lasso on multiple datasets, for multiple values of λ.

Figure 3 :

 3 Figure 3: Elastic net, duality gap. Normalized duality gap as a function of time for the elastic net for multiple values of λ, ρ = 0.5.

 (a) 2,1. (b) 2,0.5. (c) Block MCP.

Figure 4 :

 4 Figure 4: Real data, brain source locations recovered by convex and non-convex penalties after a right auditory stimulation. 4(a) shows that a convex penalty fails at identifying one source in each hemisphere, while 4(b) and 4(c) demonstrates the capability of non-convex penalties to recover the correct solution.

Figure 5 :

 5 Figure 5: MCP, objective value and violation of first order condition. Objective value and violation of optimality condition of the iterates, dist(-∇f (β (k)), ∂g(β (k))), as a function of time for the MCP for multiple values of λ (γ = 3) on a simulated dense dataset (top) and the rcv1 dataset (normalized columns).

Figure 6 :

 6 Figure 6: Lasso, duality gap. Normalized duality gap as a function of time for the Lasso.

 Lemma 16 i). Using Equation (20) yieldsM = ∇ 2 S,S f (β) + ∇ 2 S,S g(β) 0 (using Assumption 12) .(15)B.5 Local acceleration (Proposition 13)

Figure 7 :

 7 Figure 7: ADMM, duality gap. Duality gap as a function of time for the elastic net on a synthetic dataset.

Figure 8 :

 8 Figure 8: Elastic net, duality gap. Duality gap as a function of time for the elastic net on a synthetic dataset, for multiple values of λ.

Figure 10 :

 10 Figure 10: Typical curve aspect caused by variations in solver running time from one run to another (scikit-learn, Lasso problem).

 Algo. (4), O(M 2 |ws| + M 3)

	4	β extr ws ← Anderson(β // test objective O(n|ws|) (k-M) ws , . . . , β	(M) ws)
	5 6 7	if Φ(β extr ws) < Φ(β β (k) ws ← β extr ws ; Xβ ← X ws β extr (k) ws) then ws if max j∈ws dist (-∇ j f (β), ∂g j (β j)) ≤ then stop
	8 return β (k)	
	Proof of Proposition 5 can be found in Appendix B.1. The second key ingredient to our algorithm is to
	use state-of-the-art Anderson accelerated coordinate descent for non-convex problems. In Section 2.3
	we show that coordinate descent yields finite time support identification for a large class of non-
	convex problems (Proposition 10), which leads to acceleration (Proposition 13). As experiments
	demonstrate in Section 3, this rate allows our algorithm to surpass state-of-the-art solvers.	

Table 1 :

 1 Most popular packages for sparse generalized linear models.

	Name	Acceleration Huge scale Nncvx Modular
	glmnet	

 C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of statistics, 38(2):894-942, 2010. P. Zhao and B. Yu. On model selection consistency of lasso. J. Mach. Learn. Res., 7:2541-2563, 2006.

	H. Zou and T. J. Hastie. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser.
	B Stat. Methodol., 67(2):301-320, 2005.

Table 2 :

 2 Datasets characteristics.

				1) 2 x	2 + φ(t x)) x	(φ is even)
	= argmin t∈R	1 2	(t -x) 2 + φ(t))	x x
	= prox φ (x)	x x	.	(31)

However MCP and SCAD are not α-semiconvex for all hyperparameter values.

https://github.com/scikit-learn/scikit-learn/pull/10745 (4 years old)

https://github.com/scikit-learn/scikit-learn/pull/7853 (5 years old)

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://github.com/benchopt/benchopt

Acknowledgements

The experiments were ran on the CBP cluster of ENS de Lyon (Quemener and Corvellec, 2013). QB would like to thank Samsung Electronics Co., Ldt. for funding this research. GG is supported by an IVADO grant.

Note that under the hypothesis that Φ is 1/2-Łojasiewicz, local linear convergence can be provided by Bolte et al. (2014, Remark 3.4).

Proof. Let γ j = 1/L j . Let S be the generalized support. Its elements are numbered as follows: S = {j 1 , . . . , j |S| }. We also define π : R |S| → R p for all β S ∈ R |S| and all j ∈ S by

, and for all s ∈ [|S|], P (s) : R |S| → R |S| is defined for all u ∈ R |S| and all s ∈ [|S|] by

Once the model is identified (Proposition 10), we have that there exists K ≥ 0 such that for all

The proof of Proposition 14 follows three steps:

• First we show that the fixed-point operator ψ is differentiable at βS (Lemma 15).

• Then we show that the Jacobian spectral radius of ψ is strictly bounded by one (Lemma 16 v)).

Proof of Lemma 16 v) relies on Lemmas 16 i) to 16 iv).

• Finally we conclude by a seconder order Taylor expansion of the fixed-point operator ψ.

Lemma 15 (Differentiability of the fixed-point operator). The fixed-point operator ψ is twice differentiable at βS with Jacobian:

with

Lemma 15. Let j ∈ S, βj = prox γj gj (ẑ j), since g j is C 1 at βj (Assumption 11), we have z j = (Id +γ j g j)(βj) φ(βj), and βj = φ (-1) (ẑ j) Since j ∈ S, g j is of class C 3 at β (Assumption 11), φ is C 2 at βj . Moreover φ (βj) = 1 + γ j g j (βj) > 0 (using Assumption 6). Hence the inverse function theorem yields φ (-1) is C 1 at ẑj φ(βj), and

1 + γ j g j (βj) .

It follows that P (s) is C 2 at βS . For all s ∈ [|S|], P (s) is C 2 at βS . In addition, P (s) (βS) = βS , thus ψ P (|S|) • . . . • P (1) is also C 1 at βS . To compute, the Jacobian of P (s) at βS , let us first notice that J P (s) (βS) = e 1 . . . e s-1 v s e s+1 . . . e |S| , Lemma 16 ii). B (s) is a rank one matrix which is the product of

, its non-zeros eigenvalue is thus given by

Lemma 16 iv). Let s ∈ S,

We will prove Lemma 16 iv) with a proof by absurd. Suppose that there exists u / ∈ Span(M

Combining Equations (16) and (17) yields:

we have for all j ∈ S, (Id |S| -B (s))u = u . One can thus successively apply Lemma 16 iv)

Moreover A and J ψ(βS) are similar matrices (Equation (19)), then ρ(J ψ(βS)) = ρ(A) < 1.

E.4 Benchmark on SVM

Our proposed algorithm can be used with various datafits and penalties. The SVM primal optimization problem reads

The dual of Equation (32) falls in the framework encompassed by our algorithm, it writes:

where Q ij = y i y j X i: X j: . The datafit is then a quadratic function which we seek to minimize subject to the constraints that α i ∈ [0, C]. Equation (33) is equivalent to the minimization of the following problem:

where ι [0,C] is the indicator function of the set [0, C]. We also have that the equation link between Equation (32) and Problem (34) is given by

We solved Problem (34) on the real dataset real-sim. We compared our algorithm with a coordinate descent approach (CD), the scikit-learn solver based on liblinear, the l-BFGS [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF] algorithm, lightning, and the proposed algorithm (skglm). Figure 9 shows the suboptimality objective value as a function of the time for the different solvers. The optimization problem was solved for three different regularization values controlled by the parameter C which was set to 0.1, 1.0 and 10.0. As Figure 9 illustrates our algorithm is faster than its counter parts. The difference is larger as the optimization problem is more difficult to solve i.e., when C gets large.

E.5 Sparse recovery with non-convex penalties

In Figure 1, to demonstrate the versatility of our approach, we provide a short benchmark of sparse regression, using convex and non-convex penalties. The data is simulated, with n = 1000 samples and p = 2000 features with correlation between features j and j equal to 0.6 |j-j | . The true regression vector β * has 200 non zero entries, equal to 1. The observations are equal to y = Xβ * + ε where ε is centered Gaussian noise with variance such that Xβ * / ε = 5. On Figure 1 we show the regularization path (value of solution found for ever λ computed with our algorithm). Note that despite convergence being only guaranteed towards a local minima, the performance of non-convex