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Abstract: Within the framework of the Density Functional Theory, the elastic, dielectric, and piezo-
electric coefficients of w-ScxAl1−xN material were investigated for scandium (Sc) concentrations
x = 0 to 0.375. The electro-acoustic properties are used to investigate the frequency response of the
SAW delay line, based on the tilt θ◦ of the normal c-axis of the w-ScxAl1−xN piezoelectric thin film.
We found that the piezoelectric response is improved as the Sc concentration increases, which is
consistent with existing works in the literature. A 2D-phononic crystal pillars was then grafted on
top of the surface, and the dependence of the acoustic band gaps is investigated with the help of the
finite element method as a function of the Sc concentration and the tilted angle of w-Sc0.375Al0.625N.
It was found that the two first band gaps exhibit a shift toward low frequencies with increasing Sc
concentration. Moreover, the second acoustic bandgap is more sensitive to the inclination angle than
the first. Furthermore, the insertion loss (S21) of w-Sc0.375Al0.625N is improved by 22 dB at θ◦ = 60◦.
The c-axis tilted Sc0.375Al0.625N-SAW delay line coupled with 2D-phononic crystals is a promising
structure for low-loss and high-frequency SAW devices.

Keywords: w-ScxAl1-xN compound; electro-acoustic properties; Density Functional Theory; finite
element analysis; PnC-based SAW delay line

1. Introduction

Surface acoustic wave (SAW) devices are among the most attractive candidates for
modern electronic devices because of their low cost, low losses, and great sensitivity and
integrability. These devices have become crucial for mobile telecommunication systems that
require high-frequency and low-loss sensing components. In SAW devices, piezoelectric
materials are required to convert the incoming electric signal to an acoustic one and then
back to electric. One of the most challenging features in producing high-performance SAW
devices is to select an appropriate piezoelectric material in combination with a suitable
substrate [1,2].

The interest in piezoelectric thin films for electromechanical systems increased after
the discovery of aluminum nitride (AlN) with, in particular, the commercial success of the
SAW sensors. Most conventional SAW devices made of silicon have been reproduced with
enhanced performance using AlN thin-film piezoelectric technology [3].

Unlike other widely used piezoelectric materials such as zinc oxide (ZnO) [4] and
lead zirconate titanate (PZT) [5], AlN has good chemical properties, thermal stability, high

Crystals 2022, 12, 1431. https://doi.org/10.3390/cryst12101431 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12101431
https://doi.org/10.3390/cryst12101431
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-3237-662X
https://orcid.org/0000-0001-5029-7576
https://doi.org/10.3390/cryst12101431
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12101431?type=check_update&version=2


Crystals 2022, 12, 1431 2 of 22

hardness, and high surface wave velocity, and is compatible with conventional CMOS
technology on silicon [6–8]. Conversely, AlN piezoelectric thin film has a lower effective
piezoelectric constant, which can be improved using specific transition metals as dopants.

Recently, a number of works have been devoted to the AlN doping of scandium (Sc),
yttrium (Y), ytterbium (Yb), and other elements to increase the piezoelectric properties
and improve the efficiency of SAW devices [9–14]. Compared to other transition metals,
scandium as a dopant exhibits a structural transition from the wurtzite phase to the rocky
phase, which occurs at low alloying concentrations, leading to easily synthesized and more
stable alloys. Second, the piezoelectric coefficients are much higher in AlScN than in pure
AlN. This can be explained by the fact that, in the growth process of the AlScN thin film, a
competition between Al3+ and Sc3+ for coordination with nitrogen is introduced, which
weakens the resistance to nitrogen displacement in the crystal structure and increases
the volume of the unit cell. Due to this remarkable piezoelectricity property, scandium
(Sc)-doped AlN (ScAlN) is extensively used in high-frequency filters, sensors, and micro-
electromechanical devices [15–18]. Basically, the high piezoelectric constant of ScAlN
leads to a significant increase in the electro-mechanical coupling factor, thus resulting in
a significant improvement in the performance of SAW devices. ScxAl1-xN alloy thin films
may represent an alternative material to replace AlN.

M. Akiyama et al. [19,20] found that the piezoelectric coefficient d33 increases from
6 pC/N for pure AlN to 27.6 pC/N for Sc0.43Al0.57N, i.e., at least 500% larger than for AlN.
They showed that the piezoelectric response is strongly dependent on the growth tempera-
ture. Furthermore, W. Gunilla et al. [21] showed that the electromechanical coupling (kt

2),
influenced by the Sc concentration, increases from 7% in AlN to 15% in Al0.7Sc0.3N. As an
example, Konno Akira et al. [22] reported that, when using a 40% Sc-doped AlN film, the
piezoelectric characteristic of Lamb wave resonators is approximately five times higher
than in pure AlN.

From the perspective of different applications, ScxAl1-xN thin films have been de-
posited on several substrates such as Si [23], 6H-SiC [24], diamond [25], and sapphire [26].
In each case, the structures enhance the SAW velocity and the electro-mechanical coupling
factor k2. Some examples of SAW devices properties based on ScxAl1-xN/sapphire structures
have been investigated using experiments [27] and theories [13,14,28], showing relatively
high insertion losses. By comparison, ScxAl1-xN/sapphire structures are promising SAW
devices for high-temperature sensor applications [16,29,30].

Additionally, highly c-axis-oriented thin films are useful for surface acoustic device
fabrication, as evidenced by the rising electromechanical coupling coefficient of c-axis tilted
ScAlN thin films. Many studies witness that the direction of wave propagation and the
c-axis tilt angle of scandium-doped aluminum nitride piezoelectric thin films have a major
impact on the electromechanical properties of SAW devices [25,31]. Theoretical analysis of
the Rayleigh SAW mode showed that (k2), in a tilted ScAlN film on the R-sapphire, is 3.9%
at a tilt angle of 90◦ and 3.7% at a tilt angle of 54◦ [32]. By comparison, the insertion loss
of fabricated IDT/ScAlN tilted at 33◦/R-sapphire structure is 34.4 dB, demonstrating that
higher electromechanical coupling factor k2 improves the crystal orientation of ScAlN films.
The c-axis-tilted ScAlN films with a Sc concentration of 40%, prepared on a silicon substrate
via RF magnetron sputtering based on the self-shadowing effect, reach a maximum c-axis
tilt angle of 57.4◦. In this structure, the electromechanical coupling coefficient (k2) has been
increased because of the c-axis tilt angle [33,34].

Furthermore, recent studies have shown that surface acoustic waves (SAWs) have
a significant interest in phononic crystals (PnCs) [35–38], in particular to generate and
detect SAW using interdigital transducers [39–41]. In such structures, the well-known
band gap, in which acoustic waves cannot propagate in any direction of the piezoelectric
phononic crystals [42], plays an important role in the design of applications such as de-
multiplexers [43], filters, and waveguides [44–46]. The insertion loss can be improved by
−7 dB with PnCs used as reflected gratings [47]. Similarly, as grating sizes are reduced, a
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novel proposed structure may provide a new idea for resonator, filter, or other possible
application designs [48].

We also mention the development of highly sensitive SAW sensors, using nano- or
micro-pillar structures, attached like a cantilever between the fingers of the IDT and used
as a sensing medium [49]. The interaction of surface elastic waves with 2D phononic
crystal (PnCs) on top of piezoelectric substrate has been studied to control the central
frequency and the opening of acoustic band gaps [50,51]. Phononic crystals have been
recently proposed as a platform for the investigation of the acoustic velocity and/or the
density of the liquid filling parts of the structure. The sensing phenomena are based on
the high sensitivity to external stimuli (temperature, pressure, nature of the liquid, etc.) of
localized modes, associated with defects, appearing inside absolute phononic band gaps.
Shaped and pillar-based phononic crystal anchors have recently been used in the field of
micro-electromechanical system (MEMS) resonators to reduce anchor losses and improve
the quality factor (Q) [52–55]. It is demonstrated that using pillar-based PnC anchors in
AlN lamb wave resonators can reduce the anchor loss and boost the Q factor by 24 times
compared to the conventional resonators [55]. Recently, SAW-PnC-based devices with
non-metallic pillars have been designed on Si substrate for wide ultrahigh frequency range
applications, such as wirelesses communications, filters, and duplexers [56–58].

Despite the large number of studies on SAW-PnCs, none of them have examined the
effect of ScxAl1-xN or c-tilted ScxAl1-xN on PnCs band gaps. For this purpose, because of the
dependence of the elastic properties due to scandium concentration and c-axis tilted angle,
we first studied the influence of Sc concentration on elastic, piezoelectric, and dielectric
properties using the Density Functional Theory (DFT). Then, we used the calculated values
of the elastic parameters to investigate the influence of Sc concentration and c-axis tilt angle
of ScxAl1-xN thin films on both the acoustic band gap generated by the pillars structuration,
and the insertion loss of the SAW device, i.e., the S21(dB)-scattering parameter.

2. Computational Methods

Density Functional Theory (DFT), in combination with generalized gradient approxi-
mation GGA-PBE [59], is used to predict the structural characteristics and elastic coefficients
of w-ScxAl1-xN Wurtzite crystals. A Monkhorst–Pack mesh of 5 × 5 × 5 k-points in the
Brillouin-zone integral was used with a cutoff energy of 500 eV and total energy conver-
gence threshold of 10−6 eV [60]. The Density Functional Theory Perturbation (DFTP) [61]
was used to determine both piezoelectric and dielectric constants of w-ScxAl1-xN in the
range of x = 0, 0.125, 0.25, and 0.375, and then, the elastic constants (Cij), the piezoelectric
coefficients (eij), and the permittivity tensor (εij) of w-ScxAl1-xN. The physical parameters
were introduced in the Finite Element model (COMSOL) to obtain the acoustic band gaps
of the 2D ScxAl1-xN pillar-based phononic crystals (PnCs), the mechanical transmission,
and the transmission loss S21(dB) of the SAW delay line. The results were compared with
the non-structured surface. The same methodology was used in the case of the c-axis tilt
angle of w-ScxAl1-xN [62] (see diagram in Figure 1).
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Figure 1. Diagram of the calculation methodology.

3. Results and Discussion

In the first step, we determined the equilibrium geometries, including the lattice pa-
rameters (a, c) of w-AlN for a structural optimization. The equilibrium structural parameters
were obtained at zero pressure and under the temperatures gathered in Table 1. Our results
are in good agreement with both experimental data [63], with an error of about 0.70%, and
theoretical values [9,64] (see Table 1).
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Table 1. Comparison of equilibrium lattice parameters (a, c) (Å) and elastic constants Cij (GPa) for
w-ScxAl1-xN compound (x = 0%, 12.5%, 25% and 37.5%) between our results (*) and the literature.

Material
Constants

w-AlN w-ScxAl1-xN

Th. Exp. x 12.5% 25% 37.5%

a (Å)
3.128 *

3.1163 3.1842* 3.2426 * 3.3136 *
3.13164

c (Å)
5.015 *

4.9863 5.0489* 5.0696 * 5.065*
5.01864

C11 (GPa)

376 * 402.5 ± 0.569 332.91 * 302.56 282.64 *

43264 37465 412.6 ± 0.0570 336.3765 305.6865 282.03665

378.867 34568 394 71

C12 (GPa)

123 * 135.6 ± 0.569

126.86 * 130.82 * 121.45 *
17064 12965 126.6 ± 0.570

128.967 12568 134 71 121.9565 116.0365 110.4465

C13 (GPa)

91* 101 ± 269 104.84 104.86 * 112.06 *

14764 10165 118.8 ± 0.970 91.1165 83.4365 77.2565

96.167 12068 9571

C33 (GPa)

354* 387.6 ± 169 293.99 * 251.91* 220.94 *

39064 35165 386.1 ± 4.570 302.1165 255.3365 211.3765

357.567 39568 40271

C44 (GPa)

116* 122.9 ± 0.569 103.47 * 96.09* 87.29 *

15564 11265 127.4 ± 0.970 102.1565 97.48965 97.5965

11267 11868 12171

*: Our calculations.

We then examined the effect of the proportion of Sc on the properties of aluminum
scandium nitrite (w-ScxAl1−xN). For this study, we substituted the concentrations of two,
four, and six Al by the Sc atoms in a supercell of (2 × 2 × 1) constructed from a w-AlN
Wurtzite structure containing 16 atoms, then representing 12.5%, 25%, and 37.5%. In all
concentrations (x = 0, 0.125, 0.25, and 0.375), the predicted lattice parameters of w-ScxAl1-xN
agree with the experimental [9] and theoretical results [65] (see Table 1).

Furthermore, when the Sc concentration increased, the lattice constants (a and c)
increased respectively by 5.6% and 1%, while the c/a ratio decreased by 4.6%. This effect
may be due to changes in the bond lengths and angles of the AlN4 tetrahedron, which
deforms when Al atoms are replaced by Sc atoms [19,65]. This effect can then be estimated
geometrically from the determination of the lattice constants a and c [9]. Theoretical and
experimental details of the impact of scandium concentration on bond length can be found
in several papers [9,19,65,66]. Again, these results agree with the experimental [19] and
theoretical data [65] obtained from the Quantum Expresso (QE) software package with a
(3 × 3 × 1) super cell.

Table 1 also compares the single-crystal elastic constants for w-ScxAl1−xN obtained
from the proposed functional GGA-PBE for various concentrations x = 0, 0.125, 0.25, 0.375,
theoretically [64,65,67,68] and experimentally [69–71]. Our result agrees with most of the
accessible data, indicating the accuracy of our calculation. The elastic stiffness constants
Cij should respect the mechanical stability criteria for hexagonal symmetry, as described
below [72]:

(C11−C12) > 0 and C44 > 0 (C11 + C12) C33−2C2
13 > 0 (1)

The elastic constants of w-ScxAl1-xN satisfy the above criteria in all compositions
over the considered range, indicating that the compounds are mechanically stable. From
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Figure 2a, we observe that, when the Sc concentration increases, C33 and C11 present
an almost linear variation, decreasing from 354 to 220 GPa and from 376 to 282 GPa,
respectively, corresponding to a relative decrease of 38 and 25%. Similarly, C44 decreases as
a function of the Sc concentration with a relative reduction of 25%. By comparison, doping
AlN with Sc increases the mixed compression/shear C12 and C13 elastic constants. This
behavior is similar with the observed theoretical [66,73,74] and experimental [9] works. We
can therefore conclude that, as the concentration of Sc increases, the material softens along
the c-axis, and hardens in the basal plane.
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3.1. Piezoelectric and Dielectric Constants

The piezoelectric coefficients eij explain the piezoelectric properties of the material,
through the piezoelectric moduli dik and the elastic constants Cij as follows [75]:

eij = ∑k dikCkj, where = 1, 2, 3 j = 1, . . . 6 and k = 1, . . . 6 (2)

For the hexagonal material, the tensor eij is given by:

eij =

 0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

 (3)

dik =

 0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0

 (4)

Cij =



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)

 (5)

The dielectric tensor is symmetric and respects all the symmetry operations of the
corresponding point group. This limits the number of independent elements in the tensor to
a minimum of 1 and a maximum of 6 depending on the crystal symmetry. For a hexagonal
crystal it only has two components (ε11, ε33) different from zero, expressed as:

εij=

ε11 0 0
0 ε11 0
0 0 ε33

 (6)
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DFTP is used to calculate the piezoelectric and dielectric tensors of w-ScxAl1-xN, which
are the sum of the ionic and electronic contributions. Table 2 reports our calculated values,
which are in good agreement with other theoretical data and measured values.

Table 2. Comparison of calculated piezoelectric (e15, e31, e33) and dielectric constants (ε11, ε33) for
w-ScxAl1-xN compound between our results (*) and the literature.

Material
Coefficient

w-AlN w-ScxAl1-xN

Th. Exp. x 12.5% 25% 37.5%

e31 (C/m2)

−0.58 * −0.54 ± 0.059 −0.624 * −0.660 * −0.686 *

−0.5564–0.59365 −0.6 ± 0.269 −0.62565 −0.67565 −0.74365

–0.42467–0.5868 −0.47 ± 0.270

e33 (C/m2)

1.45 * 1.52 ± 0.439 1.705 * 2.026 * 2.421 *

1.3964 1.47165 1.34 ± 0.169 1.7065 2.14265 2.78865

1.44967 1.5568 2.09 ± 0.470

e15 (C/m2)

−0.29 * −0.30 ± 0.229 −0.311* −0.306 * −0.282 *

−0.3064–0.31365 −0.32 ± 0.0569 −0.29365 −0.25665 −0.20465

–0.36767−0.4868 −0.24 ± 0.0570

ε11 (10−11 F/m) 8.3 * 868

9.8 ± 07 9

9.03 * 9.75 * 10.47 *9 ± 0.0169

8.44 ± 0.170

ε33 (10−11 F/m) 9.75 * 9.568

9.1 ± 0.3 9

10.72 * 11.96 * 13.50 *9.5 ± 0.0169

10.51 ± 0.170

*: Our calculations.

Figure 2b depicts the evolution of the piezoelectric coefficients (e15, e31, e33) as a
function of the Sc concentration. The most striking feature of this graph is the quick
evolution of e33, which increases by 67%. By comparison, the two coefficients e15 and e31
show a relative increase of 18 and 2.75%, respectively. This result indicates that the addition
of a trivalent dopant (Sc3+) constrains the displacement along the c-axis. Moreover, because
the electronegativity of the Sc atom is lower than that of the Al atom, the w-ScxAl1-xN
material is more electrovalent, which improves the piezoelectric properties [19].

The dependence of the piezoelectric coefficients e15, e31, and e33 with increasing Sc
content is consistent and follows the general trend obtained from previous theoretical
results [64,65,67,68] and experimental measurements [9,69,70].

Table 2 shows that our calculated dielectric constants ε11 and ε33 at x = 0% are in good
agreement with previous data [68–70]. Then, as seen in Figure 3, the two components ε33
and ε11 increase almost linearly with the concentration of Sc [21]. Obviously, ε33 is more
sensitive than ε11, increasing by 38% compared to 26%. This is mainly due to the strong
lattice polarization induced by the out-of-plane (c-axis) Sc atom.

These results indicate an increasing charge and polarization binding capacity of the
compound w-ScxAl1-xN. All these results show an enhanced electromechanical coupling
(k2), which justify the selection of w-Sc0.375Al0.625N material for SAW devices.
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3.2. Dependence on Electro-Acoustic Parameters of w-Sc0.375Al0.625N with tilted
c-Axis Orientation

The description of the dependence of the tilted c-axis orientation angle on the electro-
acoustic properties is a very important issue for the growth of films with oriented struc-
ture. In order to investigate the inclination angle on the electro-acoustic properties of
Sc0.375Al0.625N, a rotation following a clockwise angle θ against the y-axis was considered.
The original coordinates (x, y, z) were changed to a set of new coordinates (x

′
, y
′
, z
′
). It was

found that the elastic stiffness Cij, the piezoelectric stress eij coefficient, and the dielectric
permittivity εij can be computed through properties in original coordinate system (x

′
, y
′
, z
′
)

with the help of matrix algebra [76].
According to Euler’s laws on the rotation, all physical matrices in a new orientation

are obtained by a transformation matrices methodology [77]. Figure 4a illustrates the
dependence of Cij against the inclination angle θ. It is clearly seen that, when changing θ

from −90◦ to 90
◦
, a symmetric behavior for all Cij is observed at θ = 0◦. The increase in

θ leads to decreases in C11, C12, and C13. An opposite dependence is observed between
C33 and C11 due to the c-axis inclination angle, as these two elements are related to the
out-of-plane and in-plane component. It should be mentioned that C44 does not depend
on the inclination angle, which can be explained by the fact that x2 and x2

′
present the

same axis.
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Figure 4. (a) Elastic constants, (b) piezoelectric coefficient, and (c) dielectric constants in (10−11 F/m)
of tilted w-Sc0.375Al0.625N.

Figure 4b shows the variation of direct piezoelectric constants eij with the c-axis tilted
angle. We observed that e15 and e31 are negative at 0◦ and behave as a sinus. With the
increase of the inclination angle θ, e15 and e31 reach a maximum at 56◦ and 58◦ respectively.
This dependence was also observed in c-axis-tilted AlN with the same trends [78]. In
addition, e33 reaches a maximum at θ = 0◦, a minimum at θ = 70◦, then becomes zero at 90◦,
in addition to e15 and e33.

In Figure 4c, we plot the dielectric constants ε11 and ε33 as a function of the c-axis
tilted angle θ

◦
. The dielectric constants ε11 and ε33 present an opposite trend with equal

values at (θ = 45◦). Indeed, the absolute value of ε11 is maximum at θ = 90◦, while ε33
component has a maximum at θ = 0◦, equivalent to the behavior of undoped AlN [78].
This is attributed to the fact that the x1

′
axis becomes x3, and x3

′
coincides with negative

x1 when θ is equal to 90◦, and is a direct consequence of the Wurtzite crystal structure of
group III-Nitrides [79,80].

3.3. FEM Simulation of PnCs Unit Cell Dispersion Modes

In this study, we define a phononic crystal (PnC) made of AlN cylindrical pillars, de-
posited on a semi-infinite AlN/Al2O3 substrate, arranged in a square lattice. The elementary
unit cell, shown in Figure 5a, is repeated periodically in the (x, y) plane with the pillar axis
oriented along the z-axis. The filling factor is defined by f = π.r2/a2, where a is the lattice
parameter of the phononic crystal and r the radius of the cylindrical pillar. The pillar height
is h1, h2 is the thickness of the AlN layer, and h3 is the thickness of the bulk material (Al2O3),
chosen to be five times the lattice constant of the PnCs unit cell (h3 = 5 × a) [81].
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In the elementary unit cell, we applied, on the upper surface, free mechanical dis-
placement as boundary conditions, whereas the bottom surface of the substrate has fixed
boundary conditions (i.e., zero mechanical displacement). On the lateral sides of the unit
cell, we applied Bloch–Floquet periodic boundary conditions (PBCs). The Bloch wave
vector components (kB) (in the x and y directions) are swept between the high symmetry
points of the first irreducible Brillouin zone (Γ-X-M-Γ) represented Figure 5b.

The dispersion curves were computed by plotting the calculated eigenfrequency values
versus the wave vector magnitude, swept in the first irreducible Brillouin zone (Figure 5b).
The eigenfrequencies and the corresponding vibration modes of the PnC unit cell structure
were computed by solving the dispersion relation using the Finite Element Method (FEM),
in the COMSOL Multiphysics software. The FEM has been proven to be an efficient tool to
obtain dispersion curves and mechanical displacement fields in phononic structures [82].
All calculations were performed with the physical parameters reported in Table 3.

Table 3. Physical parameters used in the calculations.

Material Constants w-AlN Al2O3

C11 (GPa) 376 452
C12 (GPa) 123 150
C13 (GPa) 91 107
C33 (GPa) 354 454
C44 (GPa) 116 132
e15 (C/m2) 0.29
e31 (C/m2) −0.58
e33 (C/m2) 1.45

ε11/ε0 (C/m2) 8.31 11.07
ε33/ε0 9.75 9.48

Young Modulus 109 [Pa] 364.05
Poisson’s ratio 0.24

ρ (kg/m3) 3214.21 3870

Figure 6 depicts the computed acoustic band structure in the first irreducible Brillouin
zone, along the high symmetry directions, for pillars with a relative height h/a, and radius
r/a of 30% and 37.5% respectively. The sound line delimits the bulk modes (gray area) from
the surface coupled modes, below the line. The latter correspond to SAW modes with an
acoustic energy localized at the surface and/or in the pillars. Under those conditions, the
blue area represents an acoustic bandgap, extending from 313 to 350 MHz, with an 11%
relative bandwidth, generated by local resonances of pillars interacting with the SAW [58].
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3.3.1. Effect of the Structural Parameters

The band gaps can be characterized by two key indicators, namely the center frequency
f c and the bandgap width Bw. These two indicators determine the operating parameters of
the PnCs and are defined as [55]:

fc = ( fu + fl)/2, Bw = fu − fl (7)

where f u and f l represent respectively the upper and lower frequency limits of the band
gap. The band gaps operating parameters have been investigated as a function of the
geometrical parameters, namely the pillar’s height (h) and radius (r). Figure 7a–c show
the phononic crystal band structure for three different characteristic values of (h), i.e., 4,
6, and 8 µm, with a fixed radius value of r = 3 µm and a = 8 µm. The dependence of the
forbidden band according to the height of the pillars is highlighted. The absolute band
gap of the SAWs is limited to the domain below the sound line. When h = 4 µm, only one
absolute band gap is observed (Figure 7a), whereas two band gaps occur for 6 µm, then
three for 8 µm. Additionally, when the height of the pillars h increases, the band gaps
downshift toward low frequencies and new band gaps appear. According to [58,83], they
can be attributed to local resonance bandgaps.
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Figure 7. PnC band structures of lattice parameter a = 8 µm for AlN pillars of radius r = 3 µm and
different values of h: (a) h = 4 µm, (b) h = 6 µm and (c) h = 8 µm.

Figure 8a outlines the evolution of the first and second acoustic band gaps with the
aspect ratio h/a in the range [0.3, 1]. We find that the height of the pillars plays an important
effect on both the width and the frequency position of the gaps. Increasing h shifts the band
gaps down toward low frequencies. By comparison, the second acoustic bandgap does not
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exist until h/a = 0.7. For h/a = 0.7, the first and second acoustic bandgaps now extend from
136 to 225 MHz and from 309 to 352 MHz, respectively. Figure 8b shows, as an example, the
variation in fc and Bw of the first and second bandgap as a function of h, keeping constant
a = 8 µm and r = 2.6 µm. For the first (resp. second) band gap, the width Bw decreases from
98 MHz (resp. 45 MHz) to 78 MHz (resp. 24 MHz) when h increases from 4 µm (resp. 6µm)
to h = 8 µm. Furthermore, as shown in Figure 8b, the center frequency fc1 decreases almost
linearly from 339 to 121 MHz when h changes from 2.4 to 8 µm, and fc2 decreases from 331
to 252 MHz when h changes from 5.6 to 8 µm.
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Figure 8. (a) Evolution of the acoustic bandgaps (gaps map) as a function of the aspect ratio (h/a).
(b) Evolution of the center frequency fc and the bandgap width Bw of the first and second bandgaps
as a function of the height of the pillars of radius r = 2.6 µm.

By comparison, the influence of the radius r, even if optimized, on the two bandgaps
indicators, is low (see Figures S1 and S2, Supplementary Materials). Therefore, h = 6 µm
and r = 2.6 µm represent an appropriate choice to obtain the largest acoustic gap openings
for SAW-coupled PnCs applications. It is worth noting that modifying the geometrical
characteristics of the pillars can modulate the acoustic band gaps of pillar-based PnCs over
a large frequency range.
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3.3.2. Effect of AlN Doping on the Acoustic Band Gaps

As mentioned in Section 1, the elastic, dielectric, and piezoelectric coefficients of AlN
are affected by the doping concentration in Sc which, in consequence, has the potential to
affect the acoustic bandgap characteristics, i.e., the frequency position fc and the bandwidth
Bw. Indeed, as seen Figure 9a, when the Sc concentration increases, both first and second
band gaps exhibit a consequent shift down toward low frequencies, while their widths
are slightly modified. This is confirmed by a representation of fc and Bw as a function of
the Sc concentration (Figure 9b). From this figure, we notice that the center frequencies
vary linearly from 161 to 131 MHz and from 321 to 259 MHz when the Sc concentration
increases from 0 to 37.5% for the first and second acoustic band gaps, respectively. Such a
variation is due to the acoustic velocity which is modified by the elastic constant Cij and
density ρ (g/cm3) of w-ScxAl1-xN. For the two band gaps, the bandgap width (Bw) has been
slightly modified, with a variation of −10% for the first gap and +7% for the second.
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of the first and second bandgaps with Sc concentration (x).

Finally, we studied the dependence of the acoustic bandgaps on a tilted c-axis ori-
entation angle of a w-Sc0.375Al0.625N PnC-based structure. From the results shown in
Figure 10a,b, it is clear that when θ changes from −90◦ to 90◦, a symmetric behavior with
respect to θ = 0◦ is observed for the two acoustic bandgaps, due to the dependence of Cij on
the angle of inclination. Additionally, we can see that the second gap is more sensitive to
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c-axis inclination angle (see Figure 10b). All the modification of the physical parameters
can provide a new perspective for controlling SAW-coupled PnC devices and applications.
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3.3.3. Analysis of Surface Phononic Modes in the SAW-PnCs

To gains more insight into the involved phononic modes, we report in Figure 11a the
dispersion curves of w-Sc0.375Al0.625N pillars with a = 8 µm, h = 6 µm, and r = 2.6 µm, and in
Figure 11b the corresponding mechanical displacement field of the first modes, designated
by points A, B, C, D, and E. The acoustic branches, passing by A and D, are degenerated
because of the x and y polarization modes appearing at the same frequency.
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(b) Transmission through a finite PnC constituted of an 11-unit cell, with h = 6 µm, r = 2.6 µm, and
a = 8 µm (red solid line) compared to the SAW through a non-structured surface (dashed lines).
(c) Map of the mechanical displacement fields of modes (A, B, C, D, and E).
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The calculations of the displacement fields of modes A, B, C, and D show that the
elastic fields are mostly localized inside the pillars (see Figure 11c). Mode A, occurring at 88
MHz, corresponds to a first-order flexural oscillation of the pillar, either in the sagittal plane
(x, z) or in the (y, z) plane. Mode B, at 182 MHz, shows a radial oscillation. Mode C, at f = 205
MHz, is a compressional mode, exhibiting an axial elongation of the pillar in the direction z.
Finally, mode D at f = 282 MHz is associated with a second-order flexural mode of the pillar.
All these modes interact with the Rayleigh wave and generate dispersion branches of more
or less slow group velocity [84–87]. Mode E at 413 MHz is located over the sound cone, and
corresponds to a radiative mode in the substrate, for which the mechanical displacement
field penetrates into the bulk of the substrate (w-Sc0.375Al0.625N/Al2O3 structure).

To go further, we calculated the transmission spectra of the finite 3D PnC with h = 6 µm,
r = 2.6 µm, and a = 8 µm to understand the effect of the modes on the SAW propagation. To
achieve this objective, we built a super unit cell containing 11 pillars distributed along the
direction of propagation x, bounded with PML, and infinite along y by applying periodic
conditions. In this first calculation, the incident plane wave was generated roughly by
considering a displacement perpendicular to the surface along a line source in front of the
phononic crystal. The transmission coefficient, given by (uout/uin), was then recorded after
the phononic crystal (Figure 11b). The transmission spectrum presents zero transmissions
at frequencies 88, 205, and 282 MHz, which correspond to the frequencies of modes A, C,
and D, respectively. One can note that mode C is at the origin of a large band gap compared
to modes A and D, while mode B does not lead to any effect in the transmission curve. This
is due to the symmetry of mode B, which cannot be excited under the SAW.

We now turn to the study of the interaction of the elastic waves generated by the
interdigital transducers (IDTs). The Sc0.625Al0.375N phononic crystal was set between the
IDTs transmitter and receiver (see Figure 12a). To avoid time-consuming calculations and to
focus on the physical effects induced by the Sc concentration, we performed all the following
calculations based on a 2D model. In that case, the pillared structure will be transformed in
a phononic crystal made of ridges, oriented infinitely along y. Compared to the 3D pillared
crystal, it results eigenmodes A′, B′, and D′ operating now at the corresponding frequencies
89, 190, and 277 MHz, obtained by the calculation of dispersion curves and transmission
curves performed on the 2D model (see Supplementary Materials).

The input and output IDTs consist of 20 pairs of fingered aluminum (Al) electrodes
of thickness 0.2 µm and width λ/4. In the IDTs, the even electrodes are connected with
Vin = 1 V (input), while the odd ones are connected to the ground. In the output, Vout is
connected between the even electrodes and the odd ones as ground.

We first generated a SAW of wavelength λ equal to 16 µm through the ScxAl1-xN
piezoelectric layer of 2 µm thickness in the x direction. Figure 12b shows the insertion
loss (S21) for different values of Sc concentration, i.e., x = 0, 12.5, 25, and 37.5%. As seen
in Figure 12b, we were able to generate an acoustic surface pulse in the frequency range
(355 MHz, 385 MHz) for pure AlN (x = 0%). When now increasing the Sc concentration, the
maximum of the transmitted amplitude increases and shifts toward the low frequencies,
from 371 MHz (x = 0%) to 360 MHz (x = 37.5%). Under the same conditions of excitation
(λ = 16 µm) and for pure AlN (x = 0%), the deviation in the center frequency of the SAW
device from the experimental value of 355 MHz obtained by Ginlinger et al. [27] is 4.5%.
Moreover, their experimental work shows that doping the AlN (27% Sc) enhanced the
performance of ScxAl1-xN-based SAW devices.

The shift in the passing band toward the low frequencies when x increases comes
from the decrease of the phase velocity, given by vsaw = λ× f , where λ is the acoustic
wavelength equal to the spatial period of the IDTs and f is the center frequency.

Indeed, the phase velocities corresponding to x = 0, 12.5, 25, and 37.5% are respectively
5936, 5856, 5808, and 5760 m/s. The insertion loss (S21) of ScxAl1-xN-based delay line has
been increased from −34.52, −32.56, −30.56, and −28.81 dB for the respective concentra-
tions x = 0, 12.5, 25, and 37.5%. This behavior agrees the conclusion that the insertion loss
(S21) of pure AlN can be improved by a Sc concentration of 37.5%.
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We now turn to the interaction of the SAW generated by the interdigital transducers
(IDTs) with the phononic crystal made of parallel ridges. Figure 13 shows the scattering
parameters S21 of the Al/ScxAl1-xN/Sapphire for x = 37.5%, obtained with and without
the phononic crystal at different wavelengths. The wavelengths were chosen in order
to track the frequencies’ eigenmodes of the ridges, namely A′, C′, and D′. To define the
appropriated wavelengths, we used the expression f = vsaw/λ, where the surface wave
velocity results from the calculation at x = 37.5%. We found that the wavelengths λ = 64 µm,
λ = 30 µm, and λ = 20 µm cover respectively the eigenfrequencies A′, C′, and D′.

In all cases, it is seen in Figure 13 that the electrical performances of S21 are affected in
the vicinity of the SAW central frequency. In other words, the propagation of the SAW is
disturbed by the presence of the ridged structure, resulting in a decrease in the mechanical
energy of the IDT receiver. S21 also presents a slight frequency shift toward low frequencies
because of the mass loading effect caused by the presence of the PnC [87,88]. S21 in the
delay line also shows small oscillations, which are induced by Fabry–Perot reflection from
the metallic IDT fingers [89].
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SAW device wavelengths, (a) λ = 64 µm, (b) λ = 30 µm, and (c) λ = 20 µm closed to the eigenmodes
A, C, and D.

Finally, using the values of the elastic constants Cij (Figure 4a), and the piezoelectric eij
(Figure 4b) and dielectric values εij (Figure 4c), the dependence of the insertion loss (S21) of
the SAW delay line without PnCs versus the c-axis tilted angle (θ◦) of Sc0.375Al0.625N was
examined for θ = 20◦, 40◦, 60◦ and 80◦, and compared to that when the c-axis is normally
oriented (θ = 0◦). The result is reported in Figure 14a, which shows that the insertion loss
(S21) is affected by the c-axis tilting. The variation in the insertion loss is directly linked to
the electromechanical coupling coefficient, which is very sensitive to the tilted angle [90].
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Figure 14b shows that the minimum value of insertion loss is found at the tilting angle
θ = 60◦. This is due to the coupling factor, whose value is maximum at this angle, which
also in good concordance with experimental data [33]. This maximum coupling factor is
due to the large piezoelectric constant e15 and e31 of Sc0.375Al0.625N thin films (see Figure 4b).
In addition, the variation om the resonances frequencies as a function of x behaves as the
calculated SAW velocities at λ= 20 µm (5531.4, 5473.2, 5495.6, 5466.4, and 5405 m/s).

In summary, we observed a significant improvement in the insertion loss at the 60◦

inclined Sc0.375Al0.625N SAW delay line compared to the pure AlN SAW delay line. The
same improvement was observed experimentally by A. Kochar et al. [26,30]. Moreover, the
passing frequency band of the SAW delay line based on 60◦ inclined pure AlN is shifted
down to the low frequencies compared to Sc0.375Al0.625N at the same angle. This is due to
the influence of the Sc concentration on the acoustic velocity [91].

4. Conclusions

In this work, the effects of Sc concentrations on electro-acoustic material properties
were theoretically investigated for w-ScxAl1-xN in the x range from 0 to 37.5% by means of
Density Functional Theory. The calculated elastic, piezoelectric, and dielectric properties
using the GGA-PBE function show very good agreement with experiments and theoretical
works. For all considered Sc contents, w-ScxAl1-xN material exhibits good mechanical
stability criteria. By increasing the Sc concentrations for pure AlN, the elastic constants
C11 and C33 decrease, whereas the piezoelectric (e33) and dielectric (ε33) constants increase,
enhancing the performance of the SAW devices based on w-Sc0.375Al0.625N.

Furthermore, the dependences of the electro-acoustic properties (Cij, eij, and εij) with
the tilted angle of w-Sc0.375Al0.625N was investigated. It is observed that all these properties
exhibit a symmetric behavior at a 0◦ tilted angle, whereas an opposite trend for both C11,
C33, ε11, and ε33 was found at the tilted angle of 45◦. The material becomes non-piezoelectric
at the tilted angle of 90◦.

The electro-acoustic properties of w-Sc0.375Al0.625N calculated by DFT were used to
calculate the dispersion curves of a pillared phononic crystal deposited on top of the
substrate. The effects of scandium (Sc) concentration and tilted angle θ

◦
of w-Sc0.375Al0.625N

on acoustic band gaps and S21 scattering parameters were studied for the first time. The
geometrical, (h = 6 µm and r = 2.6 µm), and physical (x = 37.5%) parameters were found to
be the appropriate choice to obtain a maximum bandwidth of 44.83 MHz. By comparison,
a symmetric behavior at a 0◦ tilted angle was also revealed for larger acoustic band gaps.
An improvement in the S21 intensity (in dB) of SAW delay lines is demonstrated when
x = 37.5% for a normally oriented c-axis. We found that 60

◦
is an optimal tilted angle to

improve the insertion loss (S21) from −19 dB for AlN to −12.8 dB for w-Sc0.375Al0.625N.
Ongoing work is dealing with AlScN-SAW devices coupled with 2D phononic crystal as a
highly sensitive micro-sensor for liquid property determination.
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