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The demonstration of isotropic pressure at a point in fluid mechanics

Postulated before 1950 the classic demonstration of the isotropic pressure at a point in fluid mechanics -commonly called as the wedged-shaped particle demonstration had become part of international textbook in fluid mechanics.However, the problem in such demonstration is that if true this will result into an apparent hydrostatic paradox. The flaw behind lies in the attempt to demonstrate the isotropic pressure using the physics of a continuous media when in reality the isotropic pressure at a point is the dimensional limit in which the treatment of a continuous media is no longer valid and statistical fluctuations start to play an important role. Using the laws of statistic physics, not only the apparent paradox with the current demonstration is eliminated but actually, the ambiguity in the dimension of what we call point is also wiped off and some estimation of its dimension is provided.

Introduction

Since the beginning of the second half of the 20th century a particular demonstration of the hydrostatic isotropic pressure at a point -commonly referred as the -wedged-shaped particle demonstration, has spread throughout many of the most popular academic books in fluid mechanics, see for example, fluid mechanics by [START_REF] Streeter | Fluid Mechanics[END_REF] as one of the earliest apparition of this demonstration as far as the author knows. Since then the wedged-shaped particle demonstration has become almost ubiquitous in many of the most popular academics books in the field by several authors and different editorials, see for example, [START_REF] Shames | Mechanics of Fluids[END_REF]; Douglas (1979), [START_REF] Gerhart | Fundamentals of Fluid Mechanics[END_REF], [START_REF] White | Fluid Mechanics. 8th edition[END_REF], [START_REF] Cimbala | Essentials of Fluid Mechanics: Fundamentals and Applications[END_REF]; just to name a few, and today it is widely taught in universities. Nevertheless a closest view of this apparent demonstration reveals that if true it leads to an apparent hydrostatic paradox (see Appendix).

The statistical demonstration

Like many other thermodynamic physical quantities, the pressure, temperature, density or entropy are macroscopic quantities which appear as a result of purely statistical laws and they lose their meaning when applied to non-macroscopic systems. This fact was demonstrated more than a century ago by Einstein with the explanation of the Brownian motion, Einstein † Email address for correspondence: francisco.javier.arias@upc.edu (1905) in which when the dimension of a particle suspended in a medium (gas or liquid) are small enough, there will be not pressure as such, and if so, it will be anything but fluctuant.

By aforementioned the law of isotropic pressure at a point in fluid mechanics -likewise than the Brownian motion, only can be justified from a statistical point of view and by no means can be explained from a continuous mechanical model as proposed with the current wedgedshaped particle demonstration otherwise, as showed in the appendix, paradoxes are popping up all over.

An estimation for the dimensions of the point in which the isotropic pressure postulate is valid

Statistics laws allow us not only eliminate the apparent paradox from the classic approach (see Appendix), but actually eliminate the ambiguity in the dimension of what we call a point providing some estimation of the dimension of the point in which the isotropic law is valid. According with laws of statistics the fluctuations relatives to a quantity 𝑓 is given by

(Δ 𝑓 ) 2 = 𝑓 √ 𝑁 (2.1)
where 𝑓 is the mean value of the quantity (at the point of measurement), and 𝑁 is the number of particles considered in the statistics data. It follows that, as 𝑁 decreases, the mean square (Δ 𝑓 ) 2 increases in proportion to 1 √ 𝑁

. Therefore, the fluctuations of concentration of particles (density), temperature, or its pressure, for example, are proportional to 1 √ 𝑁

. For the case of pressure we have

(Δ𝑝) 2 = 𝑝 √ 𝑁 (2.2)
The mean value of the pressure is given by 𝑝 = 𝜌𝑘 𝐵 𝑇 𝑚 𝑝 , where 𝜌 and 𝑇 are the mean density and temperature of fluid; 𝑘 𝐵 the Boltzmann constant; and 𝑚 𝑝 the mass of a molecule of the fluid. On the other hand, if we assume a cubic region with size, say, 𝑙, then, the number of particles occupied by this volume will be in the order of 𝑁 = 𝜌𝑙 3 𝑚 𝑝 where 𝑚 𝑝 is the mass of a molecule of fluid. In this way, the fluctuation of pressure given by Eq.(2.2) may be rewritten as

(Δ𝑝) 2 = 𝜌 𝑚 𝑝 𝑙 3 𝑘 𝐵 𝑇 (2.3)
On the other hand the magnitude of hydrostatic pressure-variation owing to gravity surrounding the cubic region is in the order of

Δ𝑝 𝑔 = 𝜌𝑔𝑙 (2.4)
It is evident, that when the statistical fluctuations of pressure given by Eq.(2.3) start to be in the order or larger than that given by Eq.(2.4) the law of hydrostatic pressure loss its meaning, and the pressure surrounding the region is governed by statistical fluctuations, i.e., (Δ𝑝) 2 𝜌𝑔𝑙 (2.5)

The above equation gives us the dimension for the point in which the isotropic pressure law is valid. When the dimensions of the region or point are very small and then

(Δ𝑝) 2 𝜌𝑔𝑙 (2.6)
the law of isotropic pressure also is not longer valid and then the pressure, if we can talk of pressure this microscopic level, is anything but random, we have the Brownian motion.

Inserting Eq.( 2.3) and Eq.(2.4) into Eq.(2.5), one obtains

𝑙 1 𝜌𝑚 𝑝 1 5 𝑘 𝐵 𝑇 𝑔 2 5
(2.7)

Which give us the dimension of the region in which the isotropic pressure law stat to be valid and the hydrostatic law is losing its meaning.

• Discussion

To obtain some idea of the dimension predicted by Eq.(2.7) in which the isotropic pressure law is valid, we assume some typical values of the parameters for water: 𝜌 = 10 3 kg/(m 3 );

𝑚 𝑝 = 2.988 × 10 -26 kg; 𝑘 𝐵 = 1.380649 × 10 -23 m 2 kg/(s 2 K); 𝑔 = 9.8 m/(s 2 ); 𝑇 = 300 K.

we obtain. 𝑙 0.1 mm. On the other hand, Brownian motion is observed experimentally for particles about 0.001 mm in diameter, and then the region in which is valid the isotropic pressure law must be in the interval 0.001 mm < 𝑙 < 0.1 mm. particles with smaller sizes will feature Brownian motion and particles with larger sizes the hydrostatic law start to be applicable. Needless to say that the classical wedged-shaped particle demonstration does not predict the Brownian motion.

Finally, it is interesting to mention two additional important differences between the statistical approach here presented and that provided by the classical continuous model, viz.

First, in the statistical approach the isotropic law actually requires a real point contrariwise to the classical demonstration in which the point is just a geometrical abstraction. The consequence of this geometrical abstraction is, as mentioned in the appendix, the possibility to pilling up several of such points and then macroscopically homogenizing the pressure field in clear violation of the hydrostatic law. With the statistical demonstration this is not possible because the join of two real points result into a new region with a new dimension which is doubled than a single point and then the fluctuations of this new region are calculated with the new dimension and then eliminating the possibility to homogenize the full macroscopic pressure field.

Appendix

• The wedged-shaped particle demonstration

The demonstration of the isotropic pressure at a point in fluid mechanics is commonly derived using a wedged-shaped particle, [START_REF] Streeter | Fluid Mechanics[END_REF]Wylie (1950)-Cimbala (2019) and with some mild modifications between books, however, all of them are similar as provided by [START_REF] Streeter | Fluid Mechanics[END_REF], which without further ado, goes like this, [START_REF] Streeter | Fluid Mechanics[END_REF]:

Let us consider a small wedge-shaped free body of unit width taken at the point (𝑥, 𝑦) in a fluid at rest as depicted in Fig. 1. Since there can be no shear forces, the only forces are the normal surface forces and gravity. Then, the equation of motion in the 𝑥 and 𝑦 directions are, respectively,

𝐹 𝑥 = 𝑝 𝑥 𝛿 𝑦 -𝑝 𝑠 𝛿 𝑠 sin 𝜃 = 𝛿 𝑥 𝛿 𝑦 2 𝜌𝑎 𝑥 = 0 ; (3.1) 𝐹 𝑦 = 𝑝 𝑦 𝛿 𝑥 -𝑝 𝑠 𝛿 𝑠 cos 𝜃 -𝛾 𝛿 𝑥 𝛿 𝑦 2 = 𝛿 𝑥 𝛿 𝑦 2 𝜌𝑎 𝑦 = 0 (3.2)
where 𝑝 𝑥 , 𝑝 𝑦 and 𝑝 𝑠 are the average pressures on three faces, 𝛾 is the unit gravity force of the fluid, 𝜌 is its density, and 𝑎 𝑥 and 𝑎 𝑦 are the accelerations. Then the limit is taken as the free body is reduced to zero size by allowing the inclined face to approach (𝑥, 𝑦) while maintaining the same angle 𝜃, and using the geometric relations

𝛿 𝑠 sin 𝜃 = 𝛿 𝑦 ; 𝛿 𝑠 cos 𝜃 = 𝛿 𝑥 (3.3)
Thus Eq.(3.1) and Eq.(3.2) for a fluid at rest, 𝑎 𝑥 = 𝑎 𝑦 = 0 simplify to

𝑝 𝑥 𝛿 𝑦 -𝑝 𝑠 𝛿 𝑦 = 0 (3.4) 𝑝 𝑦 𝛿 𝑥 -𝑝 𝑠 𝛿 𝑥 -𝛾 𝛿 𝑥 𝛿 𝑦 2 = 0 (3.5)
The last term of Eq.(3.5) is an infinitesimal of higher order of smallness and may be neglected. When divided by 𝛿 𝑦 and 𝛿 𝑥 , respectively, the equations can be combined:

𝑝 𝑠 = 𝑝 𝑥 = 𝑝 𝑦 (3.6)
Since 𝜃 is any arbitrary angle, this equation proves (apparently, as we will immediately see) that the pressure is the same in all directions at a point in a static fluid.

• Discussion

Apparently, there is nothing wrong in the above wedged-shaped particle demonstration, however, there is. Let us take a closer look at this demonstration. To begin with, nothing from the above demonstration prevent us to "construct" a second wedged-shaped particle with one of his face being shared with our previous wedged-shaped particle. Let us construct such a second body as depicted in Fig. 2 but now with respective pressures 𝑝´𝑥 and 𝑝´𝑦 and sharing one of his face -and then his pressure, with our previous one, i.e., 𝑝´𝑠 = 𝑝 𝑠 . Now, it is evident that something is wrong with the wedged-shaped particle demonstration, because if true, we will have

𝑝 𝑠 = 𝑝´𝑥 = 𝑝´𝑦 (3.7)
and then

𝑝´𝑦 = 𝑝 𝑦 (3.8)
and because nothing is prevent us to repeat this process infinitively, the above demonstration actually provides a mechanism to homogenizing the pressure field throughout the fluid which is a clear violation of the hydrostatic law. Actually the fallacy of the above demonstration is mathematically easily identified without the need for recourse to imaginary constructions of wedged-shaped particles. Indeed, the above demonstration is telling us that a continuous function (the pressure) with a gradient ∇ 𝑧 𝑝 = -𝛾 becomes zero when 𝑑𝑧 → 0 which is clearly wrong. The weight of an element may be as small as desired by making their dimensions a close to zero as desired, but its gradient will be always = -𝛾, no matter how small are the dimensions showing that is impossible to denitrate the law of isotropic pressure using the mechanic of continuous media.

Summary of Results and Conclusions

A statistical alternative demonstration for the isotropic pressure at a point in fluid mechanics is proposed which eliminate the apparent paradox from the classical continuous approach.

Some interesting/important conclusions are resulting as follows:

(a) The law of isotropic pressure at a point in fluid mechanics is a statistical consequence as is the Brownian motion and it cannot be derived from a mechanical continuous model and cannot be the Brownian motion.

(b) The law of isotropic pressure at a point in fluid mechanics represent the limit when fluctuations start to overcome hydrostatic gravitational pressure.

(c) Statistical approach eliminate the ambiguity in the dimension of what is call a point and provide an estimation of its dimension, Eq.(2.7).

(d) From a statistical point of view, the isotropic pressure law surrounding a point in a fluid doesn't exist until the object of measurement, i.e., the point, is introduced in other words the point is not an abstraction -as the classical demonstration pretends, but actually introduces a definitive boundary. 

Figure 2 :

 2 Figure 2: Two wedge-shaped particles sharing a same face.