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Abstract

We address the question of numerically simulating the coupling of diffusion, advection and
one-speed linear transport with the specific objective of handling increases of the amount,
the geometrical refinement and the accuracy level of input data. The computer graphics
research community has succeeded in designing Monte Carlo algorithms simulating linear
radiation transport in physically realistic scenes with numerical costs that are insensitive
to geometrical refinement: adding more details to the scene description does not affect
the computation time. The corresponding benefits in terms of engineering flexibility
are already fully integrated in the cinema industry and are gradually inherited by the
video game industry. We show here that the same insensitivity to the complexity of the
geometrical description can also be achieved when considering one-speed linear transport
not only alone but coupled with diffusion and advection. Pure linear-transport paths are
replaced with advection-diffusion/linear-transport paths constituted of subpaths, each
representing one of the three physical phenomena in a recursive manner. Illustration is
made with a porous medium involving up to 10000 pores, the computation time being
strictly independent of the number of pores.

Introduction

Applicative contexts are numerous where diffusion, advection and linear transport
physics interact within systems that require quite refined geometric descriptions. Engi-
neers attempting to closely understand and optimize the transfer of heat by conduction,
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convection and radiation in electronics and electric engines of increasing powers and de-
creasing sizes is among the most highlighted examples, but complexifying the geometric
description is also a major requirement in domains such as housing insulation, energy
reception in concentrated-solar plants, process optimization in steel industry, etc. Out-
side heat transfer, similar needs are associated to many types of transport physics, e.g.
neutron transport for design and operation of nuclear reactors, charge carriers transport
in solar cells, etc. In all such contexts numerical simulation imposes constraints in terms
of geometrical description that engineers translate into trade-offs between accuracy and
computer time or computer power. There is therefore a strong demand for numerical
approaches that would face no limit as far as geometrical refinement is concerned.

When only linear transport is considered it can be stated that the problem is at least
partly solved: thanks to two decades of research on acceleration techniques for path-
tracing Monte Carlo algorithms, the film industry now renders highly complex scenes
with such an ease that they free the artists of all previous constraints. The scenes can
be conceived without any care about how the rendering algorithms will behave: it is
acted that there is very little impact of geometry on accuracy and computation times.
Physicists have successfully adapted and even upgraded these tools for the handling of
other types of linear transport questions, e.g. for solar and infrared radiative heat transfer
in planetary atmospheres where the simulation of 3D multiple scattering in cloudy scenes
is now strictly insensitive to the level of detailed description of both the cloud volume
and the ground surface [25].

We address the very same need for one-speed linear transport coupled with diffusion
and advection. This implies that

1. new paths are defined to account for the coupling of these three physics;

2. these paths preserve the features that allow path-tracing acceleration in computer
graphics.

For pure linear transport, path-sampling Monte Carlo algorithms are designed via
the available path-integral formulation of the general solution of the linear Boltzmann
equation, which is possible whatever the geometry. It is indeed quite straightforward to
switch from this specific partial differential equation (PDE) to an integral over particle-
paths that are successions of continuous lines (straight lines for linear transport in the
absence of external force, or for radiation in the absence of refraction effect) interrupted
at collision events (absorption and scattering within the volume, absorption and reflection
at the boundary). These paths will here be called linear-transport paths.

Advecto-reacto-diffusive PDEs can be handled similarly using the Feynmann-Kac
formula [10], which gives the exact solution as an expectation of an Itô process driven by
a stochastic differential equation (SDE) [9]. The Itô process being Markovian, Monte-
Carlo techniques can be used to solve these PDEs by simulating random paths of the
stochastic process, the same way linear-transport paths are sampled to solve the linear
Boltzmann equation. Feynmann-Kac formula already handles a first level of coupling:
the physics of advection, reaction and diffusion within a unique geometrical domain are
handled using paths that will here be called advecto-diffusive paths (or shifted-brownian
paths). The name of these paths does not include reaction because reaction occurs
either at all location along the path, or at the beginning and the end of each path
(depending on the formulation): the paths themselves translate advection and diffusion
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only. In our case, if the Boltzmann equation solution were known at all location within the
volume and at the boundary, then linear transport would enter the description via such a
reactive term and the advecto-diffusive paths would transport the corresponding sources
throughout the domain as expected along Feynamnn’s vision of propagative processes,
in strict correspondence with Green formalism.

In the applicative contexts listed above, the coupling goes further in three directions:

• in the advecto-reacto-diffusive equation, sources that obey Boltzmann equation are
unknown,

• these sources depend on the solution of the advecto-reacto-diffusive equation it-
self, since Boltzmann equation includes source terms obeying the advecto-reacto-
diffusive equation;

• the domain is typically divided into subdomains where there is no advection and
no contribution of linear transport physics (solids in the following) and subdomains
with all three physics interacting (fluids in the following).

We therefore need a formalism in which advecto-diffusive paths interact with linear-
transport paths, and also advecto-diffusive paths interact with pure diffusive paths at
the interface between subdomains (depending on the retained physics, typically ensuring
continuity of the flux density when combining solid-diffusion on one side, fluid-diffusion
on the other, and linear transport particles emission/absorption at the interface itself).
This question was already addressed by several authors with the objective of simulating
the transfer of heat in 3D porous media. [24], [5] and [21] dealt with thermal diffusion
inside opaque solids interacting via radiation, with also convective heat transfer along
the solid surfaces for a fluid at a known temperature: advection and diffusion within the
fluid is not part of the simulation. [17] adds the simulation of convection within fluid
cells that are assumed perfectly mixed, which means that all three heat transfer modes
are coupled but with a simple fluid modeling in which no advection is required. Among
these researches, [8] started to formulate the corresponding path integrals, using a double-
randomization approach, introducing paths that are recursively defined as successions of
sub-path corresponding to each of the three heat transfer modes, still with a convection
model requiring no advection, and only at the stationary limit. The theoretical founda-
tions that make this coupling possible are fully exposed in [23]. We will here make use
of this very same formalism for problems involving pure diffusion in some parts of the
geometry (solids), advecto-diffusion in the remaining part (fluid) and one-speed linear
transport within the fluid and between the solid-fluid interfaces (exchanges between fluid
volumes, between a fluid volume and the solid surfaces, and between the solid surfaces
through the absorbing and scattering fluid). This will allow us to test the corresponding
advection-diffusion/linear-transport path-sampling Monte Carlo algorithms on realistic
configurations inspired from solid-fluid porous heat exchangers.

As far as preserving the features that make path-tracing acceleration efficient in com-
puter graphics, one-speed linear transport can be handled exactly as radiative transfer
in computer graphics and the recursive switching from one sub-path to the other is in-
dependent of the detail of the geometrical description. The question reduces therefore
to accelerating advecto-diffusive paths inside a geometrical domain defined using a very
large number of geometric primitives. A very extensive amount of work is reported
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concerning the fast sampling of diffusive or advecto-diffusive paths for Monte Carlo algo-
rithms based on Feynmann-Kac formula. They are essentially gathered around the walk
on sphere denomination [20] (and recently walk on rectangular parallelepipeds [7]). We
put a great deal of efforts into the implementation and testing of these solutions together
with the computer-graphics acceleration techniques, but at the present stage we could not
reach convincing performances and were led to make other choices1. The main reason is
that walk on sphere requires the knowledge of the closest distance to the boundary, which
is typically a missing information when making use of the data structuring and access
choices behind today advanced acceleration strategies (hierarchical grids added on top of
unstructured sets of geometrical primitives). This remains a very open field of research
[26] and may lead to significant further acceleration potentials, but this point will not be
further addressed here: we will construct an advecto-diffusive path sampling procedure
as successions of straight-line jumps that may not be the best choice for long-term per-
spectives but are perfectly suited to available accelerators and will allow us to illustrate
how such path-sampling Monte Carlo strategies have the same features as for pure linear
transport: computation time is insensitive to the number of geometrical primitives.

In order to prepare this illustration, Sec. 1 introduces the physical model and Sec. 2
shows how the coupling of two physics is translated into the recursive sampling of sub-
paths, each dedicated to a single physics. An approximate brownian walk is then intro-
duced in Sec. 3 that recovers all the features of linear-transport paths as far as tracking
acceleration is concerned. Finally Sec. 5 provides simulation examples for a configura-
tion emblematic of the heat transfer literature: a porous heat exchanger composed of an
increasing number of kelvin cells.

1. Model

We consider a motionless solid domain ΩS of boundary ∂ΩS (only diffusion, no ad-
vection, no linear transport) and an adjacent absorbing and scattering fluid domain ΩF
of boundary ∂ΩF (all three processes active at all locations). The physical properties
are uniform within each part, the velocity v ≡ v(x) is known at each location x within
the fluid, and we act on the geometrical refinement of the geometry by increasing the
characteristic scale ratios of ∂ΩS and ∂ΩF (smallest physically significant scale divided
by system scale), typically by increasing the number of pores in a porous geometry.

For the pure diffusion part and the advection-diffusion part of the model, the physical
observable is noted ηS ≡ ηS(x) for each location x within the solid (x ∈ ΩS) and
ηF ≡ ηF (x) for each location within the fluid (x ∈ ΩF ). For the one-speed linear
transport part, the physical observable is noted f ≡ f(x,u) at each location x ∈ ΩF
and each direction u of the unit sphere (noted ”4π”). In pure theoretical terms η and f
can be interpreted as the density and the distribution function of two interacting species.
The interaction between the two species is compatible with an equilibrium state where
f is isotropic:

• the emission direction is isotropically distributed; the corresponding emission rate
is 1

4π times the diffusing species absorption (or reaction) rate νa ηF ,

1By leaving aside walk on sphere algorithms, we lose there remarkable convergence features when
reducing the boundary thickness to zero.
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Figure 1: Illustration of the advection, diffusion and linear transport configuration studied in the article.
The solid domain ΩS is shown in gray, the fluid domain ΩF is shown in light blue. The model is: pure
diffusion in the solid; advection-diffusion in the fluid; linear transport in the absorbing and scattering
fluid. The boundary B = BD ∪ BR of the system is the union of BD, shown in grey, where Dirichlet
boundary condition are formulated (the density η is prescribed), and BR, shown in red, where the
diffusion flux is null. The incident distribution function f obeying linear transport is prescribed over the
whole boundary B. See a practical implementation of this general configuration in Figures 5 and 6.

• the absorption (or reaction) frequency νa is equal for both the diffusing species and
the linear transport species.

An example translation of this model for heat-transfer applications is provided in Ap-
pendix F.

The boundary of the system is noted B, i.e. B = (∂ΩS∪∂ΩF )−(∂ΩS∩∂ΩF ). At each
location y on B the incoming distribution function fi is known, i.e. f(y,u) = fi(y,u) for
all u.n(y) > 0 where n(y) is the inward normal to the boundary at y. For the diffusive
species at the boundary we note ηB(y) the value of η at each boundary location and B
is split in two parts, B = BD ∪ BR: on BD we use a Dirichlet boundary condition (ηB
is known), on BR the diffusion flux is null (∇η.n = 0). At the interface ∂ΩS ∩ ∂ΩF
between the solid and the fluid, we write the flux continuity for the two species: the
diffusion flux on the solid side, −DS∇ηS .n, equals the diffusion flux on the fluid side,
−DF∇ηF .n, plus the linear-transport flux, jT .n where jT =

∫
4π
fcu du. There is no

advective flux because velocity is assumed null at the solid-fluid interface and density is
assumed continuous through the interface.

Altogether the model is
∆ηS = 0, x ∈ ΩS

DF∆ηF −∇.(ηFv)−∇.jT = 0, x ∈ ΩF

cu.∇f = −νa
(
f − ηF

4π

)
− νs

(
f −

∫
4π

ps(u|u′)f ′ du′
)
, x ∈ ΩF ; u ∈ 4π

(1)

(2)

(3)

where DS and DF are the solid and fluid diffusion coefficients, c is the particles speed
in the linear transport model, νa is the absorption frequency, νs is the single-scattering
frequency, ps is the single-scattering phase function and f ′ ≡ f(x,u′). Still within the

5



system, at the solid-fluid interface,
−DS∇ηS(y).n(y) = −DF∇ηF (y).n(y) + jT (y).n(y), y ∈ ∂ΩS ∩ ∂ΩF

ηS(y) = ηF (y), y ∈ ∂ΩS ∩ ∂ΩF

f(y,u) = α
ηS(y)

4π
+

∫
u′.n(y)<0

(1− α)f ′pr(u|u′)du′, y ∈ ∂ΩS ∩ ∂ΩF ; u.n(y) > 0

(4)

(5)

(6)

where α is the surface absorptivity (i.e. one minus reflectivity) and pr the probability
density of the direction after surface reflection. At the boundary of the system,

f(y,u) = fi(y,u), y ∈ ∂ΩF ∩ B; u.n(y) > 0

ηS(y) = ηB(y), y ∈ ∂ΩS ∩ BD
ηF (y) = ηB(y), y ∈ ∂ΩF ∩ BD

∇ηS(y).n(y) = 0, y ∈ ∂ΩS ∩ BR
∇ηF (y).n(y) = 0, y ∈ ∂ΩF ∩ BR

(7)

(8)

(9)

(10)

(11)

Note that Robin boundary conditions would make no difference as far as the present
numerical discussion is concerned.

2. Interacting random walks

Monte Carlo algorithms solving Eqs. 1, 2 and 3, each separately, are well established.
They all start with the definition of a random process, the solution of the addressed
model being shown to be the expectation of this process. For Eq. 1 (pure diffusion)
the process is brownian motion. For Eq. 2 (diffusion-advection-reaction2), in accordance
with Feynmann-Kac theory, the process is an exponentially interrupted brownian motion
with drift. For Eq. 3 (linear Boltzmann equation), the process is a backward multiple-
scattering and reflection walk. The remaining question is therefore coupling.

When coupling is linear, the main idea behind the combined use of two Monte Carlo
algorithms is double randomization [14, 3]. If

• a Monte Carlo algorithm is available for solving problem 1 with N samples of
process 1,

• sampling process 1 requires the solution of problem 2,

• a Monte Carlo algorithm is available for solving problem 2 with N samples of
process 2,

2From Equation 3, −∇.jT = −νa
(
ηF −

∫
f du

)
which has the form of a standard reaction term

provided that Eq. 2 is decoupled, i.e. provided that f is known.
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then there is no need to sample N times process 2 each time it is needed for process 1,
which would imply N × N samples: it suffices to use only one sample of process 2. If
for instance process 1 is an interrupted brownian motion that requires the solution of
process 2 at the interruption location, and if process 2 is a backward multiple-scattering
walk, then the overall process, representing the coupling of the two underlying physics, is
simply the following: a brownian motion that, when interrupted, switches to a multiple-
scattering path. This remains meaningful when the coupling is both ways, i.e. sampling
process 2 requires the solution of problem 1. This is the case when addressing the coupling
of Eq. 2 and Eq. 3: when interrupted, the brownian motion switches to a multiple-
scattering path (because the reaction term involves f that is unknown), and when this
multiple-scattering path is interrupted at an absorption/emission location, it switches
back to brownian motion (because the emission term involves ηF that is unknown).

Figure 2 illustrates the practice of such a combination of brownian paths and multiple-
scattering linear-transport paths in the simplified case of an infinite uniform static fluid.
The resulting Monte Carlo algorithm evaluates ηF (xobs) at a given location xobs assuming
that ηF is known at a given distance from xobs. It starts with the brownian walk by
setting the initial location xB to xobs and the initial time tB to tobs. The first step is then
the sampling of an exponentially distributed duration δtB for the brownian walk before
interruption by emission. The expectation of this exponential distribution is 1

νa
. Then

the location of the brownian walker at tB+δtB is sampled according to a three-dimension
gaussian distribution centered on xB of standard deviation σ =

√
6DδtB . At this new

location xT a linear-transport path is initiated, which starts with the isotropic sampling
of a direction u. Then the algorithm is a standard multiple-scattering algorithm:

• a free-flight duration δtT is sampled according to an exponential distribution of
expectation 1

νa+νs

• the multiple-scattering path is started with a straight line from xT to xT + cδtTu

• at this collision location a test is made to decide between absorption and scattering

• if scattering is retained a new direction us is sampled according to ps and the
linear-transport path is continued in this new direction.

The linear-transport path ends when absorption is retained, and at this absorption lo-
cation a new brownian walk is started. This creates a succession of a brownian walk,
a multiple-scattering path, a brownian walk, etc, until one of the multiple-scattering
path is interrupted at a location xB,i where ηF is known. The Monte Carlo weight w
is w = ηF (xB,i) and the Monte Carlo estimate is the average of N such weights. In
this simple configuration, both the brownian and linear-transport walks can be sampled
exactly and the Monte Carlo estimate is strictly unbiased.

The fact that the estimate is strictly unbiased in this example will not be preserved
in the rest of this article. This is due to the interface and boundary conditions that will
lead to brownian walks in confined domains: we will handle these confined walks via a
numerical approximation that will introduce a bias. But appart from this approximation
(that reduces to zero when lowering the numerical parameter to zero), the exact same
approach will be used hereafter for the coupling of linear transport with diffusion and
advection. In particular, the computation times indicated in Table A.1 illustrate a well
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Figure 2: A diffusive/linear-transport path in an infinite uniform static fluid for which the density
ηF is known outside a rectangular cuboid. N such paths are sampled to estimate ηF (xobs). Each
path produces a Monte Carlo weight equal to the value ηF at the location of the first brownian-walk
interruption occurring outside the parallelepiped. ηF (xobs) is estimated as the average of these N
weights. Blue sub-paths are brownian walks. Red sub-paths are multiple-scattering linear-transport
paths. All algorithmic details are provided in the text of Sec. 2. Simulation examples are provided in
Appendix A and Table A.1.

known feature of Monte Carlo simulations that we will also observe in all the forthcom-
ing simulation examples: in the low Knudsen number regime (or high optical thickness
regime), i.e. when scattering widely dominates absorption and the mean free path is very
small compared to the dimension of the system, then a large number of scattering events
are required before either the linear-transport walk is interrupted to initiate a brownian
walk, or it reaches the limit of the domain. This feature will not vanish with the fol-
lowing developments: when we will illustrate an insensitivity to the complexification of
geometry, this will only mean that the refinement of the geometrical description has no
impact on the computation time requirements, but these requirements will remain direct
functions of the single-scattering albedo and the Knudsen number.

3. Brownian walks in confined domains

The work of Feynmann and Kac in the 50’s [10] plays a key role in establishing the
links between parabolic partial differential equations and random processes. Feynmann-
Kac’s formula settles indeed that the solutions of advection-diffusion-reaction equations
(Eqs. 1 and 2 in our context) can be rewritten as expectation of stochastic processes.
Together with the usual translation of linear transport theory in statistical terms (for
Eq. 3), this is all the theoretical basis required to justify Monte Carlo algorithms such
as the one illustrated in the preceding section. However, this statement leaves aside the
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huge amount of theoretical and numerical work that was required to deal with boundary
conditions, before such algorithms became practical.

The family of Random Walk on Sphere (RWS) algorithms dominates the correspond-
ing literature. The starting point is the observation that exact sampling of confined
brownian walks is only possible for simple geometries and then the question becomes the
following: how is it possible to cover any geometry using simple patterns such as spheres,
sample exact brownian paths inside these patterns in a computationally efficient way,
make numerical approximations in the vicinity of the boundaries (any boundary cannot
be adjusted exactly with a sphere for instance), and ensuring that the parameters of
these approximations can be tuned to reach the required accuracy (ensuring convergence
with computational costs remaining satisfactory)?

The historic RWS method proposed by Brown in [4], and rigorously justified by Muler
in [15], makes use of the distribution of first passages at the sphere, for a brownian motion
starting from the center of the sphere: this distribution is uniform. Using the same logic
as in the preceding section, this allows to write the solution of the stationary diffusion
equation as the expectation of the density at random locations on the sphere (which is
also the harmonicity property of the laplacian operator). In the present context, this
solves Eq. 1 at the center of any sphere as soon as ηS is known at all locations on the
sphere:

ηS(x) =

∫
4π

1

4π
du ηS(x + δu), x ∈ ΩS , δ 6 max

δ̃
({S(x, δ̃) ∩ ∂ΩS} = ∅) (12)

where S(x, δ̃) is the sphere of radius δ̃ centered at x. If ηS is not known at the location
x + δu sampled on the sphere, then double randomization is used with a new sphere
centered on this new location, etc. The system boundary is then handled the following
way:

• the sphere is chosen as the largest sphere entirely within the domain (the radius
is the closest distance to the boundary, i.e. δ = maxδ̃({S(x, δ̃) ∩ ∂ΩS} = ∅)) and
when the location sampled on the sphere is at a distance lower than a numerical
parameter ε, then the random walk is considered to have reached the boundary;

• the corresponding approximation was very deeply investigated and convergence is
satisfied, the number of successive spheres required to reach the boundary increas-
ing only as the logarithm of 1

ε when reducing ε.

The corresponding algorithm used to evaluate the density at any probe position xobs is
showcased in figure 3.a.

This proposition has been extended in very numerous directions, notably with walks
on rectangular parallelepipeds [7]. Considering the present context we can briefly high-
light the fact that drifted brownian walks can be handled very similarly. For instance,
Sabelfeld [19] used first passage statistics of drifted brownian motion in a sphere to ex-
tend the RWS method to coupled advection and diffusion for cathodoluminescence and
electron beam induced current imaging. At the stationary state, for a homogeneous
velocity field, it was proven that the distribution of first passage positions in a sphere
corresponds to the von Mises-Fisher distribution. Equation 13 shows how this distribu-
tion can be applied to equation 2. It can be noted that in the case of a zero velocity field,
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Figure 3: Sampling of confined brownian walks to estimate the density η at point x. (a) Using the RWS
method. In order to end the algorithm, the studied domain’s surface is thickened by a small value ε in
which the position is projected on the border. (b) Using the proposition made here, that is compatible
with ray tracing. All the spheres have the same radius δS and are distorted when getting close to the
boundary.

this expression leads to equation 12, and to a Dirac distribution centered in v = u|v|
at the limit of an infinite local Peclet number. For Eq. 2 without coupling with linear
transport,

ηF (x) =

∫
4π

pMF (u|v)du ηF (x + δu), x ∈ ΩF , δ 6 max
δ̃

({S(x, δ̃) ∩ ∂ΩF } = ∅)

(13)
with the probability density of von Mises-Fisher distribution

pMF (u|v) =
1

4π

Pe
2

sinh
(
Pe
2

) exp

(
−Pe

2

v.u

|v|

)
where Pe = δ|v|

DF
.

When refining the geometrical description, the main point in Eqs. 12 and 13 is the
fact that each step requires the computation of the local closest distance to the boundary
(to ensure δ = maxδ̃({S(x, δ̃)∩∂ΩS} = ∅) and accessing this information can be compu-
tationally very expensive. At least, although very significant research efforts are devoted
to this question of accessing the shortest sphere-surface intersection [26, 22], the costs of
today’s available algorithms remain much higher than those of the algorithms accessing
the shortest intersection with the geometry for a straight line in a given direction (line-
surface intersection). So we can state that, at the present stage of these researches, the
insensitivity to geometrical refinement illustrated in [25] for radiative transfer, is directly
connected to the fact that accessing the geometry is reduced to finding line-surface in-
tersections for which computer graphics research has produced acceleration techniques
based on precomputed recursive grids that are now very practically available for common
usage by numerical scientists [18, 11].

In brief, before sphere-surface intersection algorithms reach a similar maturity, RWS
algorithms must be adapted to match this requirement of only accessing information
about the geometry via line-surface intersections.
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4. An example proposition compatible with ray-tracing

We make here a proposition for an algorithm inspired of the RWS literature, but
with the constraint of using no sphere-surface intersection, only line-surface intersections.
Then the acceleration techniques described for instance in [25] will be directly available
for a numerical implementation handling highly refined geometries. This is only one
example proposition. Many alternatives could be formulated, aiming for instance at
increasing the convergence order or reducing the computation time associated to the
computation of line-surface intersections in the vicinity of the boundary, but they would
all lead to the same conclusion as far as the objective of the present article is concerned:
insensitivity to geometrical refinement can still be achieved when introducing brownian
motion in a confined domain. Each of the following algorithms are detailed in Appendix
D. They are validated against available analytical solutions in Appendix E and against
numerical solutions in Appendix F.3 and Appendix F.4.

4.1. A finite difference scheme for pure diffusion in the solid

For the handling of geometrical confinement with only line-surface intersections, we
made the choice of designing approximate brownian walks as direct statistical translations
of standard finite difference or finite volume approaches to advection-diffusion-reaction
partial differential equations. Regarding pure diffusion, the formulation of equation 12 is
kept unchanged, but with a fixed step δS (instead of the closest distance to the boundary).
Therefore, at each step, given a sampled direction u on the unit sphere (noted 4π), the
walk should shift to the position x + δSu. However, in order to account for boundaries,
the rays defined by (x,u) and (x,−u) are traced; let δu and δ−u be the distances
between x and the boundary in the directions u and −u respectively. Then, the walk
is only shifted by the minimum of δS , δu, and δ−u, which leads to a position in ΩS or
directly on its boundary ∂ΩS . This algorithm corresponds to equation 14 (see figure 3.b
and Algorithm 2 in Appendix D).

η(x) =

∫
4π

1

4π
du η(x + δ(x,u)u), x ∈ ΩS , δ = min(δS , δu, δ−u) (14)

Under the assumption that the density field is locally trilinear within S(x, δS), this
equation exactly solves equation 1 (see a demonstration in Appendix B).

4.2. A Patankar’s scheme for coupling diffusion with advection and linear transport in
the fluid

Regarding coupled advection and diffusion, Patankar’s work [16] suggests a numerical
scheme based on the analytical solution of equation 2 in a 1D homogeneous media. By in-
terpreting the coefficients in Patankar’s scheme as probabilities, we propose in this section
an approximate random walk with drift for advection-diffusion. As in Sec. 2, coupling
with linear transport will be handled thanks to an interruption time at which brownian
motion switches to a linear-transport walk. In the present context, this interruption time
must preserve all the numerical features inspired by Patankar work, ensuring that for
a uniform velocity field the walk recovers the available exact solution of an exponential
density profile in the velocity direction and a linear profile in the orthogonal plane. This
is achieved by introducing a probability pT to switch to linear transport at each Patankar
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step. We give all the details of the formal developments leading to these probabilities in
Appendix C. In a local orthonormal basis (O, e1, e2, e3) chosen such that v = e1|v|, it
leads to equation 15 where δ is a fixed step and ui = (−1)ieb i+1

2 c (b c being the floor

function, so that u1 = −e1 = −v/|v| and u2 = e1 = −u1).

η(x) = pT ηT (x) + (1− pT )

6∑
i=1

piη(x + δui), x ∈ ΩF (15)

with 

pT =
δ2 νa
DF

4 + Pe(1+ePe)
ePe−1 + δ2 νa

DF

p1 =
Pe ePe

Pe (ePe + 1) + 4 (ePe − 1)

p2 =
Pe

Pe (ePe + 1) + 4 (ePe − 1)

p3 = p4 = p5 = p6 =
(ePe − 1)

Pe (ePe + 1) + 4 (ePe − 1)

(16)

where ηT =
∫
f du is the density of the linear-transport species described by equation 3

and Pe = δ v
DF

.
This equation can be directly interpreted as a random walk, which has the probability

1 − pT to move in 6 directions according to their 6 respective probabilities, and the
probability pT to switch to a linear-transport walk (see Algorithm 3 in Appendix D). The
above expression is valid for any orientation of the local orthonormal basis around e1 =
v/|v|. Therefore, equation 15 can be averaged over the direction e2 (and subsequently
u3,4,5,6), leading to equation 17. In the algorithmic translation of this equation, at each
step of the walk a diffusion direction u is uniformly sampled on the unit circle C(v) in
the plane perpendicular to v. This way, when dealing with the boundaries, the diffusion
directions can be treated exactly as in section 4.1. Following the same guidelines as
previously, each step now requires 4 ray tracing to evaluate the length of the next step
: 2 in the diffusion direction to compute δu and δ−u, and 2 in the velocity direction to
compute the distances δv and δ−v between x and the first surface in the directions v
and −v respectively (see Fig. 4). Those 4 distances δv, δ−v, δu, δ−u are then compared
to the fixed step δF (that is equivalent to δS in the solid).

η(x) =pT ηT (x) + (1− pT )

(
p1 η

(
x− δ v(x)

||v(x)||

)
+ p2 η

(
x + δ

v(x)

||v(x)||

)
+4 p3

∫
C(v)

1

2π
du η(x + δu)

)
, x ∈ ΩF , δ = min(δF , δv, δ−v, δu, δ−u)

(17)

where pT , p1, p2, and p3 are defined as mentioned for equation 16 (but with an updated
value of δ = min(δF , δv, δ−v, δu, δ−u)).
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Figure 4: Example of ray tracing to evaluate the length of the next step in the approximate random
walk based on Patankar scheme: starting from the current location, two rays are drawn in the velocity
direction v and its opposite, and two others in a random diffusion direction u (and its opposite) in the
plane orthogonal to v. These four rays enable to compute δ = min(δF , δv , δ−v , δu, δ−u).

4.3. Boundary and interface conditions

Using the same approach as in [13] for the solid-fluid interface, the density gradients
in Eq. 4 can be approximated by finite differences using the same small steps δS and δF
as in the previous sections. The source term jT (y) · n(y) in Eq. 4 can be expressed as
the difference between the incident and emitted flux densities in the hemisphere around
the surface normal n(y):

jT (y) · n(y) =
α

4
c η(y)− α

4
c

∫
2π

u · n(y)

π
4πf(y,−u) du (18)

which leads to

η(y) = pSηS(y−δSn)+pF ηF (y+δFn)+pTi

∫
2π

u · n(y)

π
4πf(y,−u) du, y ∈ ∂ΩS∩∂ΩF

(19)
where 

pS =
δFDS

δFDS + δSDF + δSδF
α
4 c

pF =
δSDF

δFDS + δSDF + δSδF
α
4 c

pTi
=

δSδF
α
4 c

δFDS + δSDF + δSδF
α
4 c

(20)

Again, in Monte Carlo terms, these probabilities are to be understood using the
double-randomization concept leading to successive sub-paths, as in Sec. 2. When a
random walk hits a solid-fluid interface Eq. 19 makes the walk switch to a diffusive walk
starting in the solid at (y−δSn) with a probability pS (see Sec. 4.1), an advecto-diffusive
walk starting in the fluid at (y + δFn) with a probability pF (see Sec. 4.2), or a linear-
transport walk starting at the point y in a direction −u toward the fluid, distributed
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according to the Lambertian law of surface emission (or according to an other law if
surface emissivity depends on direction).

The same approach is used when dealing with boundary conditions involving a diffu-
sion flux, i.e. Eq. 10 and 11, which leads to a normal reinjection:{

η(y) = ηS(y − δSn(y)), y ∈ ∂ΩS ∩ BR
η(y) = ηF (y + δFn(y)), y ∈ ∂ΩF ∩ BR

(21)

(22)

In practice, even if the lengths δS and δF are supposed small enough, another surface
might be present between y and its point of re-injection in the solid or fluid (e.g. in sharp
corners). To avoid this problem, two rays are traced from the point y in directions n
and −n to redefine the lengths δS and δF for this one step only : if a surface is detected
between y and its point of re-injection, the length is reduced so that the re-injection
point ends up strictly in the midpoint between the initial surface and the detected one,
ensuring the reinjection occurs in the expected domain. Those corrected lengths can be
formally written as δSc and δFc:

δSc = min

(
δS ,

δ−n
2

)
δFc = min

(
δF ,

δn
2

)
where δn and δ−n are the distances between y and the next surface in direction n and
−n respectively. These values of δSc and δFc are finally used instead of δS and δF to
compute the probabilities pS , pF and pTi

with Eq. 20 (see Algorithm 5 in Appendix D).

5. Insensitivity to geometrical refinement

Before discussing the computation times, we need to describe how we make use of
computer graphic tools for accelerating the line-surface intersections when geometrical
description involves large numbers of geometrical primitives (triangles as far as we are
concerned). We will be very brief because the very same approach is implemented, with
the same libraries, in [25]. All required references and technical details can therefore
be found in this reference. In short, before the simulation is launched the geometry is
processed (all the triangles defining the system boundary and solid-fluid interface) and
a recursive grid is constructed that will be used each time a line-surface intersection is
computed. This grid has no impact on the final result: it is only meant to improve
the computation times. The main ideas are that the grid is locally refined so that the
final elements include only a limited number of geometrical primitives (only a limited
number of intersections need to be computed when entering these final elements), and
the structure of the grid is designed to optimize data access in memory and to allow
efficient out-of-core procedures when needed (when facing large geometrical data sets).
The open-source libraries implementing these acceleration tools are star-engine [2] and
embree [1].

A brief summary at this stage:

• thanks to double randomization, coupling is handled with simple successions of
sub-paths dedicated to each physics (Sec. 2),
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• brownian walk algorithms are available that deal with confined domains with line-
surface intersections only (Sec. 3),

• and acceleration tool are available so that the computation of line-surface intersec-
tion will take approximately the same time for small or large numbers of geometrical
primitives [25].

These are the three ideas that lead to the insensitivity that the present article aims to
illustrate. We make this illustration using the porous structure of Figures 5 and 6. An
elementary structure is set as a stack of four Kelvin cells in direction e1 and is deployed
in the two orthogonal directions e2 and e3 to form a solid foam that will be crossed
by a flow. At the inlet face the flow is uniform, parallel to e1. The three dimensional
velocity field inside the foam is obtained numerically using a standard fluid mechanics
solver. A symmetry condition is used for the lateral faces of the foam which allows that
the velocity field be computed only once using the elementary structure (see Figure 5):
the symmetry imposes that the flow remains the same in each stack of four Kelvin cells
whatever the number of time this structure was deployed. We therefore define a porous
geometry that can be enlarged by multiplying the number of pores as required, without
the need to recompute the internal flow for each new configuration. As far as solid/fluid
densities and the distribution function f are concerned, the same symmetry assumption
is made at the four lateral faces of the deployed foam: null diffusive and advecto-diffusive
fluxes, as well as specular reflection for linear transport. The inlet and outlet faces are
shifted away from the foam (once the strand thickness at the inlet, twice the Kelvin-
cell thickness at the outlet). At these two faces the required boundary conditions are
therefore only for the density in the fluid and the distribution function:

• the density ηF in the fluid is uniform at a known value ηB = 0 along the inlet face
∂ΩF ∩ BD,

• the diffusion flux in the fluid is null at the outlet and lateral faces ∂ΩF ∩BR (e.g. at
the outlet face, the gradient ∇ηF .e1 for the density ηF is null in the e1 direction),

• the distribution function f for incoming directions at the inlet face is isotropic at

fi = 1
4π exp

(
− ~y2

2σ2

)
where ~y is the 2D center position on inlet face and σ is five

times the size of a single pore (see Figure 6),

• incoming distribution function at the outlet is uniform and isotropic at fi = 0,

• incoming distribution function on the lateral faces is provided by specular reflection
boundary conditions,

• the diffusion flux in the solid is null at the lateral faces ∂ΩS ∩BR (there is no solid
at the inlet and outlet faces, viz. ∂ΩS ∩ BD = ∅).

Appendix F.4 provides an additional validation for the numerical schemes of Sec. 3
using one single stack of four Kelvin cells and comparing the Monte Carlo estimates to
a full simulation made with a standard deterministic solver. In Fig. 7 we display Monte
Carlo estimates that start from this four-cells configuration and increase the deployment
up to more than ten thousand cells, the problem being truly three-dimensional because of
the gaussian-shape incident distribution function fi at the inlet. Typical solving times for
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a one percent accuracy are 10s using a standard laptop, but as announced in introduction,
the main result here is the fact that this computation time remains the same whatever
the number of cells. Of course, as announced at the end of Sec. 2, the computation time
remains a decreasing function of the Knudsen number (or equivalently, an increasing
function of the optical thickness).

Figure 5: Stack of 4 kelvin cells and surface representation of the fluid flow for an homogeneous inlet fluid
flow on the bottom right face and an outlet at the top left face. Fluid velocity at inlet face is 0.35m/s;
maximum velocity is 1m.s−1. Pore size is 4mm and strand thickness is 0.7mm. This configuration
is an emblematic example to study heat transfer (see Appendix F for the correspondences with such
problems).

6. Conclusion

To be achievable, this insensitivity fundamentally requires each of the three items at
the begin of the above section. First, the coupled problem is addressed in the same Monte
Carlo terms as for a single physics : the solution of the problem is the expectancy of a
random variable attached to a single random path. Combining several physics (linearly)
preserves the main idea of starting from the observation location (starting from the
camera in computer graphics, starting from the outlet in previous example) and following
a random path that visits the system until it reaches the sources, constructing therefore
in a backward manner (with an adjoint approach) how the sources propagate throughout
the system to contribute to the observation. Of course, the path is more elaborate, with
sub-paths initiated the one after the other. We insisted on the computational costs of
multiple scattering in the low Knudsen number regime, but we could have also illustrated
an increase of the computational cost when increasing the number of Kelvin cells along
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Figure 6: a) Representation of the deployed porous media submitted to an incident isotropic distribution
function fi with gaussian spatial profile at the inlet face. b) Representation of a typical path in the 3D
geometry, which is constituted by three type of subpaths: advective subpaths are in green, conductive
subpaths in blue and linear transport subpaths in red.
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Figure 7: Evolution of the averaged outlet density η̄ and computation time for an increasing number of
kelvin cells. Loading time corresponds to the time required to generate and copy the geometry in the
RAM memory as well as to build the acceleration grid, whilst the solving time is the time required to
sample 104 coupled random paths in the system. Diffusion coefficients are DF = DS = 5 10−5, particles
speed is c = 0.05m/s, surface absorptivity is α = 1, single-scattering and absorption frequencies are
νs = νa = 12.5 s−1, the single-scattering phase function is isotropic, viz. ps = 1

4π
. Loading and

computation times are obtained with an Intel(R) Core(TM) i9-9880H CPU @ 2.30GHz CPU.

the foam thickness. This effect is moderated by the backward following of advection, that
tends to bring the paths back to the inlet, but we would still have shown that dealing
with 5 cells instead of 4 would have increased the computation times. There is something
like a ”coupling-Knudsen number” that plays a role similar to the Knudsen number and
that is intrinsic to today’s Monte Carlo simulations, but we would still have observed an
insensitivity to the transversal deployment of the foam.

This insensitivity means that if we leave aside the modification of the physics itself (i.e.
the paths have similar structures in each simulation) then the computation time is the
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same whatever the number of triangles. We insisted on the second item: this is because
we managed to design path-sampling algorithms for brownian walkers in confined spaces
using only the geometrical computation of line-triangle intersections. This could very well
be revisited if the ongoing computer graphics research on sphere-triangle intersections
reaches the same maturity as for line-triangle intersections. At present, we needed this
step of slightly revisiting brownian walks before we could benefit of the third essential
point: the use of acceleration structures that are such that once the geometry has been
loaded in memory, the computation times associated to the sampling of the path is
strictly identical with four or several thousand cells. Altogether, we reach the very
same conclusions as those of [25] concerning the handling of heavily detailed volume-
descriptions, only now the physics is not restricted to radiative transfer. In what we
have here presented, there is however a strong restriction associated to the linearity of
each of the considered phenomenologies and the linearity of their coupling: this is the
condition under which double randomization allows the definition of single paths dealing
with the coupled problem. We are exploring the possibilities of similar insensitivities
with nonlinear physics along the proposition of [6], but this will involve branching path
statistics.

Appendix A. Simulation examples involving diffusion/linear-transport paths

An infinite uniform static fluid is considered (no drift) for which the fluid density ηF
is known outside a rectangular cuboid. The addressed quantity is ηF at a given location
xobs inside the cuboid. The algorithm is the one from Sec. 2 (illustrated in Fig. 2): a
brownian walk starts at xobs and is interrupted exponentially in time; at this interruption
location a linear-transport path starts until absorption; at the absorption location a new
brownian walk is started, etc, until one of the brownian walks is interrupted outside the
rectangular cuboid where ηF is known; the Monte Carlo weight is the value of ηF at this
final location and ηF (xobs) is estimated as the average of N such weights. Table A.1
provides simulation examples for the following conditions:

• The faces of the cuboid are perpendicular to each of the unit vectors of an or-
thonormal basis (e1, e2, e3), the two extreme summits are (0, 0, 0) and (L, 2L, 3L),
and the observation location is xobs = (L/2, L/2, L/2).

• For x outside the cuboid ηF (x) = a · x + b with a = ( 2
3L4 ,

2
3L4 ,

2
3L4 ) and b = 1

L3 .

• The absorption Knudsen number c
νaL

is 1.

• The single scattering phase function is Heiney-Greenstein phase function with
asymmetry parameter g = 0.5.

• The scattering Knudsen number c
νsL

is varied from 0.01 to 100.

• The dimensionless diffusion coefficient DF

cL is varied from 0.01 to 100.

• The number of Monte Carlo samples is N = 105.

In this configuration, the exact solution is ηF,exact(xobs) = 2
L3 , independently of Knudsen

number c
νsL

and dimensionless diffusion coefficient DF

cL . On the other hand, both the
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number of required samples for a 1% accuracy and the computation time depend on these
parameters. The computation time is notably sensitive to the scattering Knudsen number
(each multiple-scattering path involve more scattering events when decreasing c

νsL
) and to

the dimensionless diffusion coefficient (when lowering DF

cL each diffusive/linear-transport
path involves more diffusion/linear-transport switches before exiting the cuboid).

c
νsL

DF

cL L3η̃F (xobs) L3σ T (s) N1% T1%(s)

100 0.01 2.001 0.004201 0.6247 4411 0.02756
100 1. 1.990 0.006390 0.6897 10207 0.07040
100 100. 1.927 0.05176 0.6919 669758 4.634

1. 0.01 1.999 0.003586 0.7919 3214 0.002546
1. 1. 1.993 0.006148 0.6196 9450 0.05855
1. 100. 1.927 0.05165 0.6028 666982 4.021

0.01 0.01 2.000 0.001850 99.04 855 0.8476
0.01 1. 2.004 0.005765 16.37 8309 1.360
0.01 100. 2.020 0.05145 13.16 661672 87.10

Table A.1: Simulation results for the diffusion/linear-transport algorithm of Sec. 2 with the parameters
of Appendix A. L3η̃F (xobs) is the estimation of L3ηF,exact(xobs) = 2 that is provided by N = 105

Monte Carlo samples and σ is its associated statistical uncertainty as provided by the standard error
(take 3σ for a 0.9995 confidence). T is the computation time recorded when performing the N = 105

Monte Carlo samples, N1% is the required number of Monte Carlo samples in order to reach σ =
0.01ηF,exact(xobs) and T1% is the associated computation time. Computations were made using a
x86i 64 Intel(R) Core(TM) i9-9880H CPU 2.30GHz.

Appendix B. Trilinear profile

Let the trilinear profile η(x′) = a ·x′+ b be the local expression of the density inside
a sphere S(x, δS) of radius δS around x and check that Equation 14 gives exactly the
density at x when using the adaptative step δ(x,u) defined in section 4.1 (thanks to
symmetry):∫

4π

1

4π
du η(x + δ(x,u)u) =

∫
2π

1

2π
du

[
1

2
η(x + δ(x,u)u) +

1

2
η(x− δ(x,−u)u)

]
=

∫
2π

1

2π
du

1

2
(a.(x + δ(x,u)u) + b+ a.(x− δ(x,−u)u) + b)

=

∫
2π

1

2π
du

1

2
(2a.x + 2b+ a.u(δ(x,u)− δ(x,−u)︸ ︷︷ ︸

=0

))

=

∫
2π

1

2π
du η(x)

= η(x)

where the unit sphere is noted 4π and 2π is any hemisphere of that sphere.
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Appendix C. A Patankar scheme including sources due to linear transport

In Sec. 4.2 we proposed an approximate random walk with drift inspired of Patankar
work for advection diffusion in confined domains, with a probability to switch to lin-
ear transport at each Patankar step. This appendix provides the developments leading
to this set of probability. The resulting path-sampling algorithm is presented in the
appendix Appendix D (see algorithm 3).

We address the following advection-diffusion equation with a source due to the cou-
pling with linear transport (see equation 2 where −∇.jT = −νa

(
η −

∫
f du

)
according

to equation 3; we note ηT =
∫
f du as in section 4.2):

∇ · j + νa(η − ηT ) = 0 (C.1)

where the flux density vector is

j = −DF∇η + vη (C.2)

Using a finite volume approach, the balance on a cubic volume element of edge δ centered
at x writes

6∑
k=1

Jk + δ3νa(η(x)− ηT (x)) = 0 (C.3)

where the densities η and ηT in the source term of Eq C.1 have been taken uniform and
equal to the densities η(x) and ηT (x) at the center of the volume element.

The fluxes Jk=1,2,3,4,5,6 through the 6 faces of the cube are approximated according
to Patankar approach, that uses the analytic solution of one dimensional advection-
diffusion equations −∇.j = 0. 6 independent one-dimensional equations are constructed
by projecting the flux density vector on the outward-pointing normals uk=1,2,3,4,5,6 on
each face of the cube:

−∇ · (j · uk) · uk = 0 (C.4)

with Dirichlet boundary conditions at x and x + δuk (η is known). The solution of this
equation is

η(x + σuk) = η(x) +
exp

(
Pek

σ
δ

)
− 1

exp(Pek)− 1
(η(x + δuk)− η(x)), σ ∈ [0, δ] (C.5)

with the Peclet numbers Pek = v.uk δ
DF

. The projections j · uk of the flux density vector
(see Eq C.2) are obtained by differentiating Eq C.5 with respect to σ to write the diffusion
term −DF∇η ·uk = −DF

∂η
∂σ and by substituting Eq C.5 into the advection term v ·ukη:

j · uk = v · uk

(
η(x)− η(x + δuk)− η(x)

exp(Pek)− 1

)
(C.6)

This expression is used in the balance Eq C.3, assuming uniform flux densities on each
face of the cubic volume element equal to the flux density at the center of the face
(Jk = δ2j · uk):

6∑
k=1

[
Pek

(
η(x)− η(x + δuk)− η(x)

exp (Pek)− 1

)]
+
δ2νa
DF

(η(x)− ηT (x)) = 0 (C.7)
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Finaly, we choose to orient the cubic volume element such that u1 = −v/|v| and u2 =
v/|v|, leading to :

Pe1 = −Pe (C.8)

Pe2 = Pe (C.9)

Pe3 = Pe4 = Pe5 = Pe6 = 0 (C.10)

where Pe = ||v|| δ
DF

. Doing so (and using lim
Pe→0

Pe
exp (Pe)−1 = 1) we obtain the following

expression for η(x):

η(x) = pT ηT (x) + (1− pT )

6∑
i=1

pi η(x + δui) (C.11)

with

pT =
δ2νa
DF

4 + Pe
exp(Pe)−1 + Pe

1−exp(−Pe) + δ2νa
DF

(C.12)

p1 =

Pe
1−exp (−Pe)

4 + Pe
exp (Pe)−1 + Pe

1−exp (−Pe)

(C.13)

p2 =

Pe
exp (Pe)−1

4 + Pe
exp (Pe)−1 + Pe

1−exp (−Pe)

(C.14)

p3 = p4 = p5 = p6 =
1

4 + Pe
exp (Pe)−1 + Pe

1−exp (−Pe)

(C.15)

Working on the ratios of exponential functions, those probabilities can be reformulated
as in Eq. 16.

Appendix D. Algorithms

This appendix gathers all the propositions of Sec. 4 under an algorithmic form. These
algorithms are those used in Sec. 5.
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Algorithm 1: Monte Carlo algorithm used to evaluate η(x)

for k ← 1 to N do
if x ∈ ΩS\∂ΩS then // inside the solid

Call algorithm 2
else if x ∈ ΩF \∂ΩF then// inside the fluid

Call algorithm 3
else // on the boundaries or interfaces

Call algorithm 5
end
Store weight Wi = η(yend)

end

η(x) ≈ 1
N

∑N
k=1Wi

σ = 1√
N

√
1
N

∑N
k=1Wi

2 −
(

1
N

∑N
k=1Wi

)2

Algorithm 2: Random walk for diffusion starting from point x in ΩS\∂ΩS (see
Sec. 4.1)

while x ∈ ΩS\∂ΩS do // inside the solid (see Eq. 14)

Uniformly sample a random direction u
Evaluate lengths δu and δ−u with ray tracing
Update local step length δ ← min(δS , δu, δ−u)
Update position x← x + δu

end
Current position y ← x is on ∂ΩS // on the solid boundary

Call algorithm 5 at point y
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Algorithm 3: Random walk for advection-diffusion coupled with linear trans-
port, starting from point x in ΩF \∂ΩF (see Sec. 4.2)

while x ∈ ΩF \∂ΩF do // inside the fluid (see Eq. 17)
Uniform sampling of a random direction u on the unit circle C(v) orthogonal
to the direction of v(x)

Evaluate lengths δv, δ−v, δu, and δ−u with ray tracing (see Fig. 4)
Update local step length δ ← min(δF , δv, δ−v, δu, δ−u)
Evaluate probabilities pT , p1, p2 and p3 according to equation 16
Canonically sample a random number rT in [0,1]
if rT < pT then // switch to linear transport

Isotropic sampling of u
Interrupt algorithm 3 and call algorithm 4 at point x in direction u

else // advection-diffusion

Canonically sample a random number r in [0,1]
if r < p1 then

Update position x← x− δ v(x)
||v(x)||

else if r < p1 + p2 then

Update position x← x + δ v(x)
||v(x)||

else
Update position x← x + δu

end

end

end
Current position y ← x is on ∂ΩF // on the fluid boundary

Call algorithm 5 at point y
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Algorithm 4: Random walk for linear transport starting from point x in ΩF ∪
∂ΩF , in direction u

while x ∈ ΩF ∪ ∂ΩF do // inside the fluid or on its boundary
Evaluate distance δ between x and the boundary in the direction u with ray
tracing

Sample extinction length l according to Beer law νa+νs
c exp(−(νa+νs

c )l)
if l < δ then // inside the fluid

x← x + lu
Canonically sample a random number r in [0,1]
if r < νs

νa+νs
then // scattering

Sample scattering direction us according to the phase function
ps(us|u)

u← us

else // absorption

Stop algorithm 4 and call algorithm 3 at point x
end

else // on the fluid boundary

y ← x + δu
if y ∈ ∂ΩF ∩ ∂ΩS then // solid/fluid interface (see Eq. 6)

Canonically sample a random number r in [0,1]
if r > α then // reflection

Sample reflection direction ur according to pr(ur|u)
u← ur

x← y

else // absorption

Stop algorithm 4 and call algorithm 5 at point y
end

else // on the system boundary ∂ΩF ∩ B (see Eq. 7)

yend ← y
Return to algorithm 1 to store weight Wi = 4π fi(yend,−u)

end

end

end
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Algorithm 5: Random walk for boundary conditions starting from point y on
∂ΩS ∪ ∂ΩF with normal n (see Sec. 4.3)

if y ∈ BD then // η is known (see Eqs. 8 and 9)

yend ← y
Return to algorithm 1 to store weight Wi = η(yend)

else
Evaluate lengths δn and δ−n with ray tracing

Compute local step lengths δSc = min(δS ,
δ−n

2 ) and δFc = min(δF ,
δn
2 )

if y ∈ ∂ΩS ∩ ∂ΩF then // solid/fluid interface (see Eq. 19)
Evaluate probabilities pS , pF and pTi

according to equation 20 with δSc
and δFc instead of δF and δF

Canonically sample a random number r in [0,1]
if r < pS then // switch to diffusion

Update position x← y − δScn
Call algorithm 2 at point x

else if r < pS + pF then// switch to advection-diffusion

Update position x← y + δFcn
Call algorithm 3 at point x

else // switch to linear transport

Lambertian sampling of a direction u around the normal n
Call algorithm 4 at point x = y in direction u

end

else // flux is null at y ∈ BR (see Eqs. 10 and 11)

if y ∈ ∂ΩS ∩ BR then // solid (see Eq. 21)
Update position x← y − δScn

else // fluid y ∈ ∂ΩF ∩ BR (see Eq. 22)
Update position x← y + δFcn

end

end

end

Appendix E. Validation

Appendix E.1. Validation of the proposed random path compatible with ray tracing against
an analytic solution for pure diffusion

Let us consider the following boundary value problem :

∆η(x) = 0, x ∈ Ω (E.1)

η(y) = (y.e1)2 + (y.e2)2 − 2(y.e3)2 + y.e1 + y.e2 + y.e3 + 1, y ∈ ∂Ω (E.2)

for which equation E.2 is solution everywhere in the field.
Results in table E.2 are obtained with algorithm 1, along with algorithms 2 and 5

(where we always have y ∈ BD here), in the case where Ω is the unit cube defined by
∀x ∈ Ω, 0 ≤ x.ei ≤ 1 where (O, e1, e2, e3) is an orthonormal basis.
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These results indicate good convergence even for step lengths as big as half of the
domain’s size (i.e. δS = 0.5). Such a good convergence is granted by the simplicity of
the geometry of the domain Ω along with relatively smooth Dirichlet conditions on ∂Ω.
In general, a step length of about 1/20th of the domain’s size should be retained in order
to ensure a minimum convergence (i.e. δS = 0.05).

δS x η(x) η̃(x) σ
0.5 0.1 1.3 1.297 0.0026
0.5 0.3 1.9 1.889 0.0077
0.5 0.5 2.5 2.479 0.0109
0.5 0.7 3.1 3.099 0.0104
0.5 0.9 3.7 3.706 0.0053

0.1 0.1 1.3 1.302 0.0025
0.1 0.3 1.9 1.895 0.0075
0.1 0.5 2.5 2.499 0.0105
0.1 0.7 3.1 3.097 0.0101
0.1 0.9 3.7 3.705 0.0051

0.05 0.1 1.3 1.301 0.0025
0.05 0.3 1.9 1.907 0.0075
0.05 0.5 2.5 2.503 0.0106
0.05 0.7 3.1 3.097 0.0101
0.05 0.9 3.7 3.702 0.0051

Table E.2: Results of algorithms 1, 2, and 5
for N = 10000 random samples on an analytic
boundary value problem η(x) in a unit cube
for various values of position x.e1 = x.e2 =

x.e3 = x =
||x||√

3
and step length δS . Monte

Carlo results are shown in column η̃ along with
their corresponding standard error σ.

δF x η(x) η̃(x) σ
0.5 0.1 1.12 1.123 0.0029
0.5 0.3 1.48 1.474 0.0077
0.5 0.5 2 2.005 0.0094
0.5 0.7 2.68 2.682 0.0082
0.5 0.9 3.52 3.533 0.0040

0.1 0.1 1.12 1.117 0.0028
0.1 0.3 1.48 1.476 0.0078
0.1 0.5 2 2.000 0.0098
0.1 0.7 2.68 2.675 0.0085
0.1 0.9 3.52 3.525 0.0040

0.05 0.1 1.12 1.116 0.0027
0.05 0.3 1.48 1.490 0.0078
0.05 0.5 2 2.005 0.0098
0.05 0.7 2.68 2.671 0.0085
0.05 0.9 3.52 3.522 0.0041

Table E.3: Results of algorithms 1, 3, and 5
for N = 10000 random samples on an analytic
boundary value problem η(x) in a unit cube
for various values of position x.e1 = x.e2 =

x.e3 = x =
||x||√

3
and step length δF . Monte

Carlo results are shown in column η̃ along with
their corresponding standard error σ.

Appendix E.2. Validation of the random path compatible with ray tracing against an
analytic solution for advection-diffusion

Let us consider the following boundary value problem :

∆η(x)− v(x).∇η(x) = 0, x ∈ Ω (E.3)

v(x) = ||v(x)|| e1 = −4 e1, x ∈ Ω (E.4)

η(y) = (y.e2)2 + (y.e3)2 − y.e1 + y.e2 + y.e3 + 1, y ∈ ∂Ω (E.5)

for which equation E.5 is solution everywhere in the field.
Results in table E.3 are obtained with algorithm 1, along with algorithms 3 and 5

(where we always have y ∈ BD here), in the case where Ω is the unit cube defined by
∀x ∈ Ω, 0 ≤ x.ei ≤ 1 where (O, e1, e2, e3) is an orthonormal basis.

By comparison with the pure diffusion example of section Appendix E.1, present re-
sults indicate good convergence but not for step lengths as big as half of the domain’s size

26



anymore (see result in red). δF plays therefore the role of standard numerical parameter
for which convergence must be specifically tested (the value of 1/20th of the domain’s
size suggested above for pure diffusion can not be retained as such).

Appendix F. Application to heat transfer

The model studied in the body of the article is quite general and can be applied to
different applicative fields, e.g. neutron transport, charge carrier transport in semicon-
ductors etc., as discussed in introduction. Among these potential applications, here we
detail how the present work can be directly used to address heat transfer problems.

The example in section 5 is directly inspired of an academic porous exchanger from
the heat transfer literature [12]. The main assumption in such standard heat transfer
applications is that radiative transfer can be linearized as function of temperature, which
imposes that the relative temperature differences remain limited. This assumption is de-
tailled in Appendix F.1. Appendix F.2 provides the resulting correspondences between
the model addressed in the body of the article and heat transfer. Appendix F.3 and
Appendix F.4 provide numerical solutions, obtained from standard heat transfer solvers,
that are used for validation.

Appendix F.1. Radiance temperatures

We start from the stationary radiative transfer equation formulated in terms of
monochromatic specific intensity Iν ≡ Iν(~x, ~u, t) at position ~x, in direction ~u at time t
and frequency ν :

~u.~∇Iν = −kνaIν + kνaI
eq
ν − kνs Iν + kνs

∫
4π

ps,ν(~u|~u′)I ′νdu′ (F.1)

where kνa is the absorption coefficient, kνs the scattering coefficient, ps,ν the scattering
phase function, I ′ν ≡ Iν(~x, ~u′, t) and Ieqν ≡ Ieqν (θ(~x, t)) the specific equilibrium intensity
at temperature θ(~x, t) within the medium. Although the radiative transfer is stationary,
Iν depends on t due to the evolution of the solid and fluid temperature.

Assuming that for all times and positions, the solid and fluid temperature remains
close to a reference temperature θref , the temperature dependence of the specific equi-
librium intensity can be linearized:

Ieqν (θ) ≈ Ieqν (θref ) + ∂θI
eq
ν (θref )(θ − θref ) (F.2)

Moreover, equilibrium properties allow to write :

0 = −kνaIeqν + kνaI
eq
ν − kνs Ieqν + kνs

∫
4π

ps,ν(~u|~u′)Ieqν du′ (F.3)

Introducing the notation Ĩν = Iν − Ieqν (θref ) for the perturbations and subtracting equa-
tions (F.1) and (F.3), the radiative transfer equation under the assumption (F.2) can be
written as follows:

~u.~∇Ĩν ≈ −kνa Ĩν + kνa∂θI
eq
ν (θref )(θ − θref )− kνs Ĩν + kνs

∫
4π

ps,ν(~u|~u′)Ĩ ′νdu′ (F.4)
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We choose to rewrite this equation using the radiance temperature θνR,~u in the direc-
tion ~u. This radiance temperature is a spectral and directional quantity defined as the
temperature for which the equilibrium specific intensity is equal to the specific intensity:

Ieqν (θνR,~u(~x, t)) = Iν(~x, ~u, t) (F.5)

Using equation F.2 to express Ieqν (θνR,~u(~x, t)),

Iν ≈ Ieqν (θref ) + ∂θI
eq
ν (θref )(θνR,~u − θref ) (F.6)

and therefore,
Ĩν ≈ ∂θIeqν (θref )(θνR,~u − θref ) (F.7)

equation F.4 becomes :

~u.~∇θνR,~u ≈ −kνaθνR,~u + kνaθ − kνs θνR,~u + kνs

∫
4π

ps,ν(~u|~u′)θνR,~u′du′ (F.8)

For didactic reasons we here make the assumption of grey absorbing and scattering fluid
(there would be no difficulty associated to the full preserving of spectral dependancies),
which writes :

~u.~∇θR,~u ≈ −kaθR,~u + kaθ − ksθR,~u + ks

∫
4π

ps(~u|~u′)θR,~u′du′ (F.9)

with θR,~u ≡ θνR,~u at all frequencies ν.

Similarly at the boundary :

θR,~u = αθ + (1− α)

∫
u′.n(y)<0

pr(u|u′) θR,~u′ d~u′ (F.10)

where α is the surface absorptivity (or emissivity), θ the surface temperature and pr(u|u′)
the distribution for reflection directions.

Equation F.9 and F.10 define a closed system for θR,~u from wich the volumic radiative
power ψR and the surfacic radiative power ϕR write

ψR = −ζ
(
θ −

∫
4π

1

4π
θR,~udu

)
(F.11)

and

ϕR = −hR

(
θ −

∫
u′.n(y)<0

|~u.~n|
π

θR,~udu

)
(F.12)

with ζ = 16kaσθ
3
ref , hR = 4ασθ3

ref , α is the surface emissivity and σ the Stefan-
Boltzmann constant.
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Model in section 1 Heat transfer problems
η
ρC θ (temperature); We choose ρFCF = ρSCS = ρC for the

sake of simplicity (this is not a restriction of the approach)
4πf
ρC θR,~u (radiance temperature)
νa
c ka (absorption coefficient)
νs
c ks (scattering coefficient)(
ρCc
16σ

)1/3

θref (reference temperature for radiation linearisation); this
correspondence is of application for the definition of the
particles speed c.

D a = λ
ρC (thermal diffusivity), where λ is the thermal con-

ductivity.
Equation 1 Steady state heat equation for opaque solids.
Equation 2 Steady state advection-diffusion heat equation for semi-

transparent fluids.
Equation 3 Radiative transfer equation F.9

Table F.4: Correspondences between the model addressed in the body of the article and heat transfer
problems.

Appendix F.2. Correspondences of physical quantities

Table F.4 provides the correspondences between the model addressed in the body of
the article and heat transfer problems. Substituting these correspondences in the model
Eqs. 1-10 the resulting heat transfer model is:

∆θS = 0, x ∈ ΩS

aF∆θF −∇.(θFv) +
ζ

ρC

(
θ −

∫
4π

1

4π
θR,~udu

)
= 0, x ∈ ΩF

~u.~∇θR,~u = −kaθR,~u + kaθF − ksθR,~u + ks

∫
4π

ps(~u|~u′)θR,~u′du′, x ∈ ΩF ; u ∈ 4π

(F.13)

(F.14)

(F.15)
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where we used −∇.jT = ψR (see equation F.11); θS and θF are the temperatures within
the solid and the fluid respectively. At the solid-fluid interface,

−aS∇θS(y).n(y) = −aF∇θF (y).n(y)− hR
ρC

(
θ −

∫
u′.n(y)<0

|~u.~n|
π

θR,~udu

)
, y ∈ ∂ΩS ∩ ∂ΩF

θS(y) = θF (y), y ∈ ∂ΩS ∩ ∂ΩF

θR,~u = αθ + (1− α)

∫
u′.n(y)<0

pr(u|u′) θR,~u′ d~u′, y ∈ ∂ΩS ∩ ∂ΩF ; u.n(y) > 0

(F.16)

(F.17)

(F.18)

where we used jT (y).n(y) = ϕR (see equation F.11). At the boundary of the system,

θR,~u(y) = θR,~u,i(y), y ∈ ∂ΩF ∩ B; u.n(y) > 0

θS(y) = θB(y), y ∈ ∂ΩS ∩ BD
θF (y) = θB(y), y ∈ ∂ΩF ∩ BD

∇θS(y).n(y) = 0, y ∈ ∂ΩS ∩ BR
∇θF (y).n(y) = 0, y ∈ ∂ΩF ∩ BR

(F.19)

(F.20)

(F.21)

(F.22)

(F.23)

Note that using the definition of the particles speed c as a function of θref provided
in Table F.4, the probability set for path-switching at the boundaries in equation 20
becomes 

pS =
δFλS

δFλS + δSλF + δSδFhR

pF =
δSλF

δFλS + δSλF + δSδFhR

prad =
δSδFhR

δFλS + δSλF + δSδFhR

where hR = 4ασθ3
ref ; λS and λF are the thermal conductivity for the solid and fluid

respectively.

Appendix F.3. Poiseuille duct

Algorithm 5 along with algorithms 2 and 3 are used to solve the 2D configuration
presented in figure F.8 : a cold Poiseuille flow enters a 2D solid duct which is heated
by its external faces. In this configuration, no radiation is taken into account. Results
are compared with a Comsol Multiphysics simulation in figure F.9 for various positions
in the domain. The number of Monte Carlo samples are kept at 1000 so that error-bars
remain visible.
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Figure F.8: 2D-slice of an isolated duct structure used as a heat exchanger between a thermal source
at θhot and an incoming cold Poiseuille circulation at θcold. Retained values for the simulation are:
L
l

= 10, φ = 0.8, where φ is the ratio of inner duct radius over outer radius, λS
λF

= 10, where λS and

λF are the thermal conductivity for the solid and fluid respectively, and max
(
||v||l
aF

)
= 5, where aF is

the thermal diffusivity for the fluid.
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Figure F.9: Poiseillle duct results. Comparison of the temperature obtained with Comsol Multiphysics
and the Monte Algorithm for the configuration defined in figure F.8. In these simulations, δS = δF = l

100
.

Appendix F.4. Kelvin-cell porous heat exchanger

Algorithm 5 along with algorithms 2, 3 and 4 are used to solve the 3D configuration
presented in figure 5: a solid stack of 4 kelvin cells is heated by a radiative temperature
θhot set on the inlet face and cooled by the fluid at θcold which enters by the same face.
On the outlet face, the radiative temperature is set at θcold to represent the environment.
As in section 5, symmetry boundary conditions are used on the lateral faces. Radiative
transfer is here reduced to only direct exchange between surfaces (the fluid is perfectly
transparent, i.e. νa = νs = 0). Results are compared with an ANSYS Fluent simulation
in figure F.10.
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[8] Richard Fournier, Stéphane Blanco, Vincent Eymet, Mouna El Hafi, and Christophe Spiesser.
Radiative, conductive and convective heat-transfers in a single monte carlo algorithm. In Journal
of Physics: Conference Series, volume 676, pages art–012007, 2016.

[9] Carl Graham and Denis Talay. Stochastic simulation and Monte Carlo methods: mathematical
foundations of stochastic simulation, volume 68. Springer Science & Business Media, 2013.

[10] Mark Kac et al. On some connections between probability theory and differential and integral equa-
tions. In Proceedings of the second Berkeley symposium on mathematical statistics and probability.
The Regents of the University of California, 1951.

[11] James T Kajiya. The rendering equation. In Proceedings of the 13th annual conference on Computer
graphics and interactive techniques, pages 143–150, 1986.

[12] Prashant Kumar and Frederic Topin. Simultaneous determination of intrinsic solid phase conduc-
tivity and effective thermal conductivity of kelvin like foams. Applied Thermal Engineering, 71(1):
536–547, 2014. ISSN 1359-4311. doi: https://doi.org/10.1016/j.applthermaleng.2014.06.058.
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