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Hi-C is a powerful technology for exploring 3D genome organization on a genome-wide scale, yet it can be
financially and computationally challenging. In a recent issue of Molecular Cell, Wei et al.1 introduce HiCAR,
which simplifies Hi-C by targeting the 3D interactions of accessible regions only.
Hi-C (high-throughput chromosome con-

formation capture) has rapidly become

the gold standard for the exploration of

3D genome organization.2 The capacity

of this assay to analyze genome-wide

3D organization at high resolution has un-

earthed different levels of chromosome

organization, which notably include Hi-C

compartments (compartment A/B) and

TADs (topologically associating doma-

ins).2–4 Although instrumental, high-reso-

lution Hi-C studies require excessively

large numbers of sequencing reads (i.e.,

many billions to generate sub-kb interac-

tion maps), making Hi-C studies expen-

sive and computationally challenging. To

circumvent these limitations, diverse de-

rivatives of Hi-C have emerged that focus

the analysis on sites with specific charac-

teristics. Examples include pre-selected

sites in the genome (capture Hi-C) and

sites bound by specific proteins or his-

tone modifications (HiChIP and PLAC-

seq). In a recent issue of Molecular Cell,

Wei et al.1 expand the Hi-C toolbox by

developing the HiCAR assay (Hi-C on

accessible regulatory DNA), which ex-

plores the 3D interactions of accessible

regions in the genome, thereby preferen-

tially targeting regulatory regions.1

HiCAR uses a sophisticated library

preparation protocol that incorporates

the Tn5 transposase to target accessible

DNA within crosslinked chromatin, where

it will insert a complex DNA adaptor with a

50-TA overhang (Figure 1A, tagmentation

in step 1). Next, the material is digested

without preference for accessible chro-

matin by the frequent cutting CviQI

restriction enzyme. The resulting 50-TA
This is an open access ar
overhangs permit proximity ligation be-

tween tagmented fragments and the

CviQI-digested sites (Figure 1A, step 2;

‘‘open-versus-all’’ ligation). After removal

of crosslinks and DNA repair, short linear

DNA fragments are generated using the

frequent cutting NlaIII enzyme. Because

of the tagmentation strategy, only junc-

tions between an accessible region and

a captured partner will contain the Illu-

mina adaptor sequences, separated by a

recognition site for the infrequent cutting

PmeI restriction enzyme (Figure 1A, step

3). The short fragments are again ligated

(step 4) and digested using PmeI, which

results in the selective linearization of

fragments containing open-versus-all

ligation junctions (Figure 1A, step 5). The

presence of Illumina adaptors at both ex-

tremities next permits library amplification

and paired-end sequencing, with R2

reads representing accessible (tag-

mented) fragments and R1 reads corre-

sponding to their interactions. Using this

setup, HiCAR data enabled robust detec-

tion of Hi-C compartments, TADs, and

chromatin loops with similar sensitivity

as Hi-C despite considerably fewer reads.

In recent years, four other Hi-C deriva-

tives have been developed to target 3D in-

teractions of accessible regions in the

genome (Figure 1B). These assays can

be divided into two categories, based on

their method for enrichment of accessible

DNA. A first strategy, similar to HiCAR,

uses enzymes that specifically fragment

accessible chromatin. In the Trac-looping

assay, the Tn5 transposase—here ass-

embled as a tetramer—is used to link

two accessible regions in the genome,
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thereby circumventing the need for prox-

imity ligation (Figure 1B).5 Alternatively,

the NicE-C assay uses the Nt.CviPII nick-

ing enzyme to fragment accessible chro-

matin, followed by conventional proximity

ligation (Figure 1B).6 The second general

strategy is based on the preferential

enrichment of accessible DNA in two-

phase separation systems. By subjecting

a proximity-ligated Hi-C library, prior

to de-crosslinking, to either a phenol-

chloroform DNA extraction (OCEAN-C)

or silica-gel adsorption (HiCoP), acces-

sible ligation junctions are enriched

(Figure 1B).7,8 These four assays strongly

favor the capture of interactions between

two accessible regions (‘‘open-versus-

open’’). In contrast, the sophisticated

use of dedicated adaptor sequences

and the multiple rounds of DNA digestion

in the HiCAR assay uniquely allow the

exploration of open-versus-all interac-

tions. HiCAR thus provides more compre-

hensive views of genome organization of

accessible regions in the genome.

Using HiCAR in human cells, Wei et al.

find that up to 75% of tagmented (R2)

reads overlap known accessible sites

(as previously detected by ATAC-seq).1

Around 60% of these reads overlap sites

with regulatory characteristics (promoters

and enhancers) or binding sites of the

CTCF protein (a protein associated with

TAD structuration3). In contrast, the R1

reads are essentially not enriched for

overlap with ATAC-seq peaks, thus con-

firming the capacity of HiCAR to detect in-

teractions anywhere in the genome.

By focusing on HiCAR interactions that

overlap with regulatory regions, the
0121, April 13, 2022 ª 2022 The Authors. 1
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Figure 1. The open-versus-all HiCAR method and its identification of repressive promoter-promoter contacts
(A) Outline of the experimental steps in the HiCAR assay to target interactions between accessible DNA and other sites in the genome. HiCAR is based on amulti-
step protocol that permits the detection of contacts between accessible regions, which are specifically enriched by Tn5 transposition, and any other site in the
genome (open-versus-all). The engineered transposed linker contains the Illumina adaptor sequences (orange and pink) separated by a PmeI restriction site. In
the HiCAR sequencing output, tagmented fragments will be in the R2 reads (blue) and their interacting fragments in the R1 reads (red).
(B) Principle of enrichment for accessible chromatin in other open-versus-open assays. Enrichment is either achieved by using DNA fragmenting enzymes that
favor accessible chromatin (Trac-looping and NicE-C) or by using preferential enrichment of accessible DNA in a two-phase separation system (OCEAN-C and
HiCop).
(C) Top: HiCAR identifies hundreds of contacts between inactive promoters that are bound by repressive Polycomb group proteins (and the associated
H3K27me3 histonemodification). Bottom: Targeting of CRISPRa to a repressed gene also activates its interacting partners, possibly due to their co-occupancy of
a shared Polycomb nuclear condensate.
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authors make a number of interesting ob-

servations. In the human GM12878 B-

lymphoblastoid cell line, most significant

interactions involve active regulatory re-

gions (H3K27ac-marked), although 2%

of interactions incorporate poised or

bivalent regions (H3K27me3-marked). In

human H1 embryonic stem cells, these in-

teractions are markedly more diverse,

with both large numbers of active (28%)

and poised or bivalent (19%) regions

captured. Interactions involving genes

are strongly enriched for eQTLs (expres-

sion quantitative trait loci), indicating that

HiCAR is capable of identifying pro-

moter-enhancer loops. Interestingly, in

both cell types, HiCAR identifies several

hundreds of interactions between pairs

of inactive gene promoters as well. These
2 Cell Genomics 2, 100121, April 13, 2022
inactive promoters are enriched for the

binding of repressive Polycomb group

proteins, extending previous observa-

tions in mouse cells that facultatively

repressed genes frequently interact.9 Us-

ing in vivo CRISPRa experiments, the au-

thors confirm that Polycomb-repressed

promoters can silence their interacting

promoters over distance. The application

of HiCAR has therefore revealed a new

level of transcriptional regulation medi-

ated by the network of long-range Poly-

comb interactions, potentially through

the creation of nuclear condensates dedi-

cated to repression (Figure 1C).10

The technical advantage of HiCAR is

further supported by its application on

30,000 primary human muscle stem cells,

which allowed the detection of muscle-
specific 3D structures at two key regula-

tors of myogenesis. This demonstrates

that HiCAR is compatible with clinical bi-

opsies or other material for which cell

numbers are limiting. Moreover, the Hi-

CAR protocol allows the extraction of

cytoplasmic and nuclear RNA, thus allow-

ing RNA-seq from the same, potentially

precious, cellular samples.

Altogether, HiCAR makes for an inter-

esting new addition to the toolbox of

Hi-C derivatives, allowing a unique and

efficient exploration of open-versus-all

interactions. Its improved capacity to

comprehensively target accessible DNA,

as compared to other assays that require

either the pre-selection of loci (Capture

Hi-C) or interacting proteins (HiChIP

and PLAC-seq), or that are limited to
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open-versus-open contacts (Figure 1B),

allows for more inclusive studies of 3D

genome organization and its connections

to gene regulation, as confirmed by the

identification of a new layer of repressive

promoter-promoter interactions.
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