

The benefits and trade-offs of agricultural diversity for food security in low- and middle-income countries: A review of existing knowledge and evidence

Katharina Waha, Francesco Accatino, Cecile Godde, Cyrille Rigolot, Jessica Bogard, João Pedro Domingues Santos, Elisabetta Gotor, Mario Herrero, Guillaume Martin, Daniel Mason-D'croz, et al.

▶ To cite this version:

Katharina Waha, Francesco Accatino, Cecile Godde, Cyrille Rigolot, Jessica Bogard, et al.. The benefits and trade-offs of agricultural diversity for food security in low- and middle-income countries: A review of existing knowledge and evidence. Global Food Security, 2022, 33, 10.1016/j.gfs.2022.100645. hal-03818575

HAL Id: hal-03818575

https://hal.science/hal-03818575

Submitted on 10 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The benefits and trade-offs of agricultural diversity for food security in low-and middle-income countries: A review of existing knowledge and evidence. Katharina Waha¹, Francesco Accatino², Cecile Godde¹, Cyrille Rigolot³, Jessica Bogard¹, Joao Pedro Domingues², Elisabetta Gotor⁴, Mario Herrero^{1,5}, Guillaume Martin⁶, Daniel Mason-D'Croz¹, Francesco Tacconi^{1,7}, Mark van Wijk⁸ 1 CSIRO, Agriculture & Food, 306 Carmody Rd, St Lucia, QLD, Australia 2 UMR SADAPT, INRAE, AgroParisTech, Université Paris-Saclay, 16 rue Claude Bernard, 75005 Paris, France 3 INRAE, Université Clermont Auvergne, AgroParisTech, Irstea, Vetagrosup, UMR Territoires, 63122 Saint-Genès Champanelle, France 4 Bioversity International, Rome, Italy 5 Department of Global Development, College of Agricultural and Lifesciences and Cornell Atkinson Centre for Sustainability, Cornell University, Warren Hall, Ithaca, NY 14853 USA 6 Université de Toulouse, INPT, INP-PURPAN, INRAE, AGIR, 31320 Auzeville, France 7 Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay Campus, Hobart, Tasmania 7005, Australia 8 International Livestock Research Institute (ILRI), Nairobi 00100, Kenya * Correspondence and requests for materials should be addressed to katharina.waha@csiro.au Keywords: food security, farming diversity, production diversity, agrobiodiversity, agricultural biodiversity, literature review, low-income countries, middle income countries Abstract Diversity in agricultural systems is often presented as having benefits for multiple purposes like food and nutrition security in low- and middle-income countries. Our review aims to give an overview of the strength and direction of the diversity-food security relationship as presented in research conducted in in low- and middle-income countries and published since 2010, based on a

comprehensive search in Web of Science. We present an overview and synthesize results for different spatial scales and units of observation, from individual to global and for the four dimensions of food security: availability, access, stability and utilisation. Eighty-eight of the 924 surveyed publications meet the inclusion criteria and report the direction and magnitude of 314 individual diversity-food security relationships. In almost two thirds of all cases, agricultural diversity had a positive effect on food security. In about one third of the relationships there was no effect of agricultural diversity on food security, or the results were mixed. These numbers hold for the availability, access and utilisation dimensions of food security and at individual, household and farm scales, but the number of studies was too small to draw robust conclusions on the stability dimension and at global scale. Diversity can be an important driver of food security, but the magnitude of the contribution depends on the broader socio-economic and biophysical characteristics of the local farming system. We conclude that diversification can be a potential strategy to improve food and nutrition security. Yet, it is not a necessary characteristic of all agricultural systems at all costs especially in the presence of other strategies that can potentially achieve similar outcomes. We make several recommendations to strengthen future studies that can help identify how strongly related agricultural diversity and food security are.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

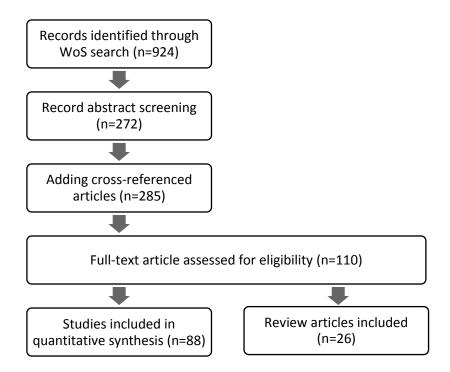
51

52

Table of Contents

55	Abs	tract	1
56	1.	Introduction	
57	2.	Search criteria and methods	5
58	3.	Indicators of agricultural diversity and food security	6
59	4.	Previous reviews and meta-analysis	10
60	5.	Diversity and food availability	13
61	6.	Diversity and stability of food security	19
62	7.	Diversity and food access	21
63	8.	Diversity and food utilisation	34
64	9.	Diversity and food security at the global scale	43
65	10.	Synthesis and Recommendations	44
66	Ref	erences	48

1. Introduction


- 70 Diversification, the process of becoming more diverse, is studied in many scientific disciplines. At its
- 71 core it is opposed to specialization, uniformity, and homogeneity and as such it is often seen as
- beneficial for the stability and productivity of any natural or human-made system (Gaba et al., 2015;
- 73 Lin, 2011; Markowitz, 1952; Naeem and Li, 1997; Yachi and Loreau, 1999).
- 74 In food systems, diversification, defined often as an increase in crop, livestock, production or farming
- diversity (i.e. agrobiodiversity), has been considered as a key strategy for improving the productivity
- and stability of many socio-economic and ecological aspects of agricultural systems. It is a central
- element for example in three areas. Firstly, in sustainable intensification (Foley et al., 2011; Tilman
- et al., 2011), ecological intensification (Bommarco et al., 2013; Cassman, 1999), conservation
- 79 agriculture (FAO, 2002) and more recently regenerative agriculture (Schreefel et al., 2020). For
- 80 example, mixed farming and crop rotations can support pest, nutrient and water management (Gaba
- 81 et al., 2015), reduce external inputs and improve soil biodiversity. Secondly, in rural development
- 82 and sustainable livelihoods (Chambers and Conway, 1992; Ellis, 1998) as livelihood diversification
- has often been highlighted as contributing to reduced poverty. And thirdly, in nutrition-sensitive
- 84 agriculture describing pathways from agriculture to nutrition security where diversification can
- 85 increase the diversity of foods produced and of potential income sources (De Jager et al., 2018;
- 86 Herforth and Harris, 2014; Ruel and Alderman, 2013).
- 87 While diversification is often presented by the scientific and policy community as socially and
- 88 environmentally beneficial, evidence from the literature warns about too broad generalizations. The
- 89 outcomes of agricultural diversity can vary across spatial scales, from the genetic and species level to
- 90 the ecosystem, landscape, national and global levels. While, for example, food security in
- 91 subsistence farming can be achieved at the farm scale by producing a wide variety of foods, the
- 92 same can be achieved at the landscape scale by having a number of specialised farms producing a
- 93 single food type and trading the surplus with others (Renard et al., 2016). However, a subsistence
- 94 farming system that produces large variety of food types that are nutritionally similar for own
- 95 consumption will not ensure a balanced and healthy diet for the household, so a consideration of
- 96 the functions added to the system along with the species is important (Remans et al., 2011).
- 97 Another potential limitation of agricultural diversification as a key leverage for food security is that
- 98 diversity can be difficult to manage and can increase the workload for members of the household
- 99 (Bendahan et al., 2018). Specialization, on the other hand, can reduce costs, increase efficiency
- through economies of scale and give farmers a comparative advantage for selling their produce at
- markets (Govereh and Jayne, 2003; Kurosaki, 2003). Moreover, diversification is not the only
- strategy to increase resilience, as farmers might favour other risk management strategies. While
- diversification can be an agricultural intervention for improved nutrition and health outcomes, other
- pathways can be as effective. For example, bio-fortification to increase nutritional quality of existing
- 105 crops or increasing incomes through improvements to cash crop production if the income is spent on
- purchasing healthy foods. The latter, however, depends on appropriate market access and requires
- that the household prioritises the purchase of healthy foods over other competing food or non-food
- 108 purchases (Fiorella et al., 2016).
- 109 In this review, we aim at synthesising the evidence on the relationship between agricultural diversity
- and all four dimensions of food security as defined in the FAO's conceptual framework availability,
- stability, access, and utilisation. Food security is a major concern in low- and middle-income
- countries and has been enacted as one of the United Nations Sustainable Development Goals. Our

- review also explores the interactions at different spatial scales. While many measures of food
- security relate to individuals, such as meeting dietary energy needs, the challenge to secure healthy
- and diverse diets is also global in its extent and in that scale often analysed with respect to food
- availability and stability. A final section provides a synthesis and conclusions.

2. Search criteria and methods

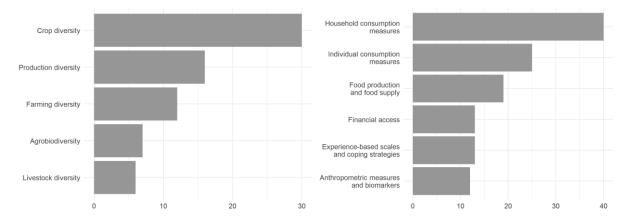
- 118 The review is based on an exhaustive, comprehensive search in Web of Science (v.5.32). We
- searched with the objective of presenting evidence from original scientific studies, define eligibility
- 120 criteria and attempt to identify all studies meeting them. We assess the validity of findings in the
- reviewed studies and present the results in a systematic way (Moher et al., 2015). We include
- articles and reviews that use at least one measure of both agricultural diversity and food security,
- were written in English and were published between 2010 and February 2020. Key words used in the
- search included a combination of terms associated with agricultural diversity (e.g. crop, farming or
- production diversity, agricultural biodiversity) and food security (e.g. child nutrition, dietary
- diversity, food availability, food access, stability, food production, income). The search on 25
- 127 February 2020 resulted in 924 articles. The Web of Science search syntax is:
- 128 (TS=((on-farm OR "on farm" OR crop OR farming OR production) near/1 divers*) AND TS=("food
- security" OR "food and nutrition security" OR "child nutrition" OR "diet* diversity" OR "food
- availab*" OR "food access*" or "food product*" OR "income")) OR (TS=("agricultural biodivers*" OR
- "agro-biological divers*") AND TS=("food security" OR "food and nutrition security" OR "child
- nutrition" OR "diet* diversity" OR "food availab*" OR "food access*" or "food product*" OR
- 133 "income"))

- 134 In the next step the abstracts of these articles were screened on whether they: (1) used a study area
- in a low- to middle income country as per the World Bank 2021 country classification; (2) evaluated
- at least one metric of diversity at farm-, regional-, or global-level as specified within the search
- terms; (3) evaluated at least one measure of a food security dimension, and (4) presented original
- work quantifying the diversity-food security relationship which goes beyond qualitatively describing
- drivers and trends in agricultural diversity. Articles describing theoretical frameworks were also
- included to inform the broader context and to link to existing literature. We excluded studies on
- nonfarm diversification although we are aware that they can be critical strategies to increasing food
- security (e.g. Ampaw et al., 2017; Barrett et al., 2001) but we consider studies on agricultural
- activities that increase farmer's income as a component of food access. We also exclude studies that
- discuss benefits of specific crops without also clearly stating that agricultural diversity increases
- overall, for example high-value or wild crops (Mavengahama et al., 2013) or crops perceived as being
- underutilized or neglected (Kahane et al., 2015; Mabhaudhi et al., 2017, 2016). Applying these
- criteria in the abstract screening leads to a shorter list of 272 publications to which we added 13
- publications that were cross-referenced or otherwise known to the authors (Figure 1). After reading
- the full manuscripts, 110 publications were identified as relevant to the purpose of our study, 88
- articles and 26 reviews. In terms of geographical spread, about two thirds of all publications have a
- study area in sub-Saharan Africa, and the remaining in Asia or South America. Some African
- 152 countries are studied more than others, for example Malawi (14 publications) and Kenya (10
- publications) while other countries with high levels of food insecurity were not found in the
- literature search, for example Chad and Madagascar.

Figure 1 Publication selection process used in this review.

Articles were grouped by unit of observation and level of analysis into individual, household, farm, landscape, national or global scale. The landscape scale publications focused on discussing interaction of multiple farming households with each other or a local market that in turn influences individuals and landscape environmental or economic indicators. An example of a national scale analysis is one that uses a nationally representative agricultural and nutrition census or survey, even with households as the unit of observation. A large sample size alone is not necessarily indicative of representativeness at the national scale. Finally, the global scale publications include multi-countries studies and studies analysing global data sets such as those collated by the Food and Agriculture Organization, the World Bank or the World Health Organization.

The relationship between agricultural diversity and food security was categorized in a synthesis table according to two dimensions: the direction, i.e. positive, negative or neutral and the level of agreement, i.e. high, medium or low agreement. The synthesis table allows to put together relevant quantitative figures which helps to identify knowledge gaps and controversies.


3. Indicators of agricultural diversity and food security

3.1 Agricultural diversity

Diversity can be defined for different types of agricultural commodities, plant species for food or fodder, or domesticated animals raised for food or for labour. The categories used here follow a hierarchy from including 1) cultivated plant species (crop diversity), 2) raised livestock species (livestock diversity), 3) cultivated plant and raised livestock species (farming diversity), 4) food products derived from plant and animal species (production diversity), to 5) the full diversity of organisms living in landscapes that are under agricultural management, beyond cultivated species and foods produced (agrobiodiversity or agricultural biodiversity).

Production diversity refers to the different food products, while farming diversity refers to the plant and animal species. For example, a farm raising chickens for meat and eggs and cultivating maize for corn would have a production diversity of three (chicken meat, chicken eggs, corn) and a farming diversity of two (chickens, maize) if measured as richness. Crop diversity can sometimes be measured as "crop group diversity" where crops are grouped together by similar characteristics, for example ecological functions in the agricultural system, nutrient content or importance for creating income from crop sales. Agricultural biodiversity is a broader characterisation that encompasses for example genetic resources, edible plants and crops including traditional varieties, and other genetic material, livestock and freshwater fish, soil organism vital to soil fertility, naturally occurring insects, bacteria and fungi that control insect pests and diseases, and wild resources or natural habitats which can provide ecosystem functions and services (Thrupp, 2000). Throughout the paper agricultural biodiversity and agrobiodiversity are used interchangeably.

Several indicators can be used to measure agricultural diversity, integrating different aspects of diversity, richness and evenness. Richness is the number of species or agricultural products in a sample. Some studies express this by comparing characteristics of cropping systems with different numbers of crops cultivated or creating a binary variable to distinguish between adopters and non-adopters of diversification (Birthal et al., 2015; Boedecker et al., 2014). Measures of evenness consider relative dominance or concentration of species or products in the sample by measuring also the abundance of each species (Whittaker, 1972). Examples of measures of evenness are the Simpson diversity index (SDI) and the Shannon diversity index (H'). They differ slightly by expressing dominance of the first few species in the sample (Simpson index) or relative evenness across the whole sample (Shannon diversity index) (Whittaker, 1972). Abundance can be measured as area used for each species, weight of produce, nutrient or energy content of each product or monetary value of products. Using area can be challenging when including livestock (Sibhatu and Qaim, 2018a), as livestock can source feed from outside the farm, graze on public land or be fed purchased feed.

Figure 2 Number of studies using different measures of diversity (left) and different food security indicators (right) used in reviewed publications (N=88). Studies that use multiple metrics are counted multiple times accordingly.

3.2 Food security

The FAO's conceptual framework for food security distinguishes between four dimensions, physical availability to food, economic and physical access to food, food utilization and stability. This framework, and national level indicators to measure progress on each dimension, are used in the

annual reports on the 'The State of Food Security and Nutrition in the World' published since 1999 by FAO, IFAD, UNICEF, WFP and WHO (until 2015 as 'The State of Food Insecurity in the World') (FAO, 2019). In addition to these national level indicators, this literature review identified indicators to measure food security status of an individual or a household. The full list of indicators considered in this review is shown in Table 1.

Table 1 Indicators of food security used in the reviewed literature.

213

214215

216

217

218

Availability	Access	Utilization	Stability
Food production and food supply	Financial access and affordability	Individual consumption measures	Crop yield skewness, temporal yield variability,
Crop yield, livestock production, household food supply adequacy, crop production, productivity	Income from agriculture, wealth, poverty status of a household	Infant and Young Child Dietary Diversity (IYCDDS), Minimum Dietary Diversity for Women (MDD-W), Women's Dietary Diversity Score (WDDS), Infant and Child Feeding Index (IFCI), Individual Dietary Diversity Score (IDDS), Mean Probability of Adequacy of Micronutrient Intake (MPA), Nutrient Adequacy Ratio (NAR), Dietary Species Richness (DSR)	spatial yield variability
	Household consumption measures Household dietary diversity score (HDDS), food consumption score (FSC), food variety score (FVS), food expenditure, household per capita energy intake, household per capita protein intake, household food self-sufficiency, household food quantity intake, household nutrient intake, household	Anthropometric measures and biomarkers Vitamin A deficiency, haemoglobin status, prevalence of anaemia among women, weight-forage z-score (WAZ), height-for-age z-score (HAZ), weight-for-height z score (WHZ), prevalence of stunting, prevalence of wasting, body mass index (BMI), middle upper arm circumference for age z score (MUAC)	

Experience-based scales and index scores

Household Food Insecurity Access Scale (HFIAS), Household Hunger Scale (HHS), Coping Strategies Index (CSI), Months of Adequate Household Food Provisioning (MAHFP)

219 For food availability, yield is a frequently used indicator. A special case is nutritional yield when yield 220 expressed in weight is multiplied with the content of a certain nutrient or converted to calories. The 221 unit change is not to be confused with a change in the food security dimension. It is still a measure 222 of availability and it is unclear how the product is used, for self-consumption, markets, or livestock 223 feed and if consumed within the household who is eating what. An example of a household food 224 supply adequacy indicator is the food availability indicator used in some studies and calculated as a 225 ratio of energy produced and bought to the physiological requirements for energy (Douxchamps et 226 al., 2016; Frelat et al., 2016; Paul et al., 2017; Rufino et al., 2013; Waha et al., 2018).

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

Food access indicators are very diverse, but some standard indicators have been developed by the Food and Agriculture Organization of the United Nations (FAO), the Food and Nutrition Technical Assistance Project (FANTA) and the World Food Programme (WFP). Within the food access domain, we identify two groups of indicators. The first group are indicators reflecting the financial dimension and affordability of food access and the second group are indicators pertaining to consumption patterns measured at the household level. The household dietary diversity score (HDDS) is the most frequently used indicator to measure food access. HDDS is constructed based on consumption of 12 food groups and ranges from 0 (no food group consumed) to 12 (all 12 food groups consumed) with a recall period of 24 hours (FAO, 2013) but many studies reviewed here modified the recall period to be seven days. The food consumption score (FSC) is a similar, but composite score ranging between 0 (food insecure) and 16 (food secure) and measures the frequency of consumption of different food groups by a household during the seven days before the survey. HDDS has been validated as a good indicator of diet quantity i.e. energy consumption (Hoddinott and Yohannes, 2002) but not of diet quality i.e nutrient adequacy (Leroy et al., 2015). One reason for that is that HDDS measures also the consumption of three food groups (sweets; oils and fats; spices, condiments and beverages) that do not necessarily contribute positively micronutrient intake which weakens any potential association with micronutrient adequacy and diet quality.

Food utilization is commonly measured as individual dietary consumption or nutritional status based on anthropometry or biomarkers. It therefore describes a dimension of food security as well as the outcome linked to nutritional status (Coates, 2013). Around 8% of all studies reviewed use a measure of anthropometric status such as height-for-age, weight-for-height and weight-for-age. Height-for-age below two standard deviations of the mean for healthy children indicates stunting which implies insufficient nutrient intake and/or poor health over a longer time period. Weight-forheight indicates wasting which implies acute significant food shortage and/or disease. Weight-forage indicates underweight which implies both acute and chronic malnutrition (WHO, 1995). All three are sometimes used as validation measures for indicators of food utilisation. This can however result in mixed conclusions as anthropometric status is not only evidence for nutrient or energy deficits but also for the occurrence of diseases that lead to impaired nutrient absorption or increased rate of nutrient utilization (WHO, 1995). We group food consumption indicators within the utilisation domain when measured at the individual level, and within the food access domain when measured at the household level. This is consistent with the evidence that various individual consumption indicators such as Infant and Young Child Dietary Diversity (IYCDDS), Minimum Dietary Diversity for Women (MDD-W) and Women's Dietary Diversity Score (WDDS) are validated measures of nutrient adequacy (Jones, 2017a; Leroy et al., 2015; Martin-Prevel et al., 2015; Working Group on Infant and Young Child Feeding Indicators, 2007). IYCDDS and WDDS include seven and nine food groups, respectively that are directly related to micronutrient intake. WDDS has been further developed to the MDD-W indicator, sometimes also referred to as the 10-food group women's dietary diversity

- indicator, which is used to define women as having an adequate diet diversity if consuming at least five of the ten food groups included.
- 266 Stability includes the time aspect of the other three dimensions. Stability has several meanings and
- is often related to the concepts of resilience, robustness, resistance, vulnerability, and variability.
- 268 While a natural ecosystem might be considered stable if the system variables return to the initial
- 269 equilibrium after a perturbation (Pimm, 1984), a more useful definition for agricultural systems
- 270 might be related to low fluctuation or constancy in a system faced with perturbations as the
- 271 definition of equilibrium state as such is more difficult. Perturbations are then shocks external to the
- 272 system and ranging from short-term to long-term or chronic (Bullock et al., 2017). In the reviewed
- literature, stability is often measured as the spatial or temporal variability of production or income.
- 274 Experience-based indicators such as the Household Food Insecurity Access Scale (HFIAS), the
- 275 Household Hunger Scale (HHS), Coping Strategies Index (CSI) and Months of Adequate Household
- Food Provisioning (MAHFP) are grouped separately in Table 1 because they are composite scores
- based on information that span the four dimensions of food security. For example, the CSI reflects all
- 278 possible answers to one single question, namely "what do you do when you do not have enough
- food and don't have the money to buy?" (Maxwell and Caldwell, 2008). This is in contrast to some
- 280 studies which consider HFIAS to be an indicator of food access (Leroy et al., 2015), food stability
- (Coates, 2013) or food availability (Lele et al., 2016). HFIAS can be seen as a good measure of both
- quantity and quality, in that there is no need to adopt coping strategies that lead to cheaper, less
- appealing and less micronutrient dense foods (Leroy et al., 2015) but not in the sense of
- 284 micronutrient adequacy. We group experience-based indicators together with food access indicators
- in the respective results section.

4. Previous reviews and meta-analysis

- 287 Previous reviews and meta-analyses are listed here for completeness and as reference. They can
- 288 provide a systematic overview of a specific group of literature that is outside the scope of this
- review, such as intercropping systems or agroforestry. Some reviews were considering both
- 290 indicators of food access and utilisation, so they are described here together in one section.

291 4.1 Food availability

- 292 In the context of food availability, eight review articles and meta-analyses discuss the benefits of
- crop and agrobiodiversity for productivity (Delaquis et al., 2018; Droppelmann et al., 2017; Frison et
- al., 2011; Gaba et al., 2015; Kremen and Miles, 2012; Nagothu and Tesfai, 2018; Ponisio et al., 2015;
- 295 Schroth and Ruf, 2014). For cassava intercropping, Delaquis et al. (2018) found a positive
- 296 relationship between intercropping and system productivity in most studies reviewed which was
- 297 evidenced by land equivalent ratios above 1. Other reviews for specific crops are provided in
- 298 Nagothu and Tesfai (2018) for pulses-millet crop diversification and Schroth and Ruf (2014) for tree
- 299 crop diversification in the humid tropics. In another review based on 17 studies on sustainable
- intensification practices in maize small-scale farms in sub-Saharan Africa, Droppelmann et al. (2017)
- 301 show that the addition of a grain legume increased maize response to fertilizer but reduced
- 302 annualized maize grain yields. Other benefits of intercropping and multiple cropping include
- 303 improved soil and water regulation, reduced consumption of fertilizers and pesticide, reduced soil
- 304 erosion and nitrate leaching, increased biodiversity and pest and disease suppression (Frison et al.,
- 305 2011; Gaba et al., 2015). In a meta-analysis using 115 studies, Ponisio et al. (2014) find that multi-

cropping and crop rotations can improve yields in organic systems. According to Gaba et al. (2015) the co-existence of multiple species can be beneficial if the species are carefully selected to provide resources for one another or to use a resource in different forms or at different times or in different places. Otherwise resource competition can result in lower system yields compared to monocultures (Gaba et al., 2015). Kremen and Miles (2012) compared ecosystem services such as food production and environmental performance in biologically diversified, including organic, versus chemically based simplified farming systems, relying on monoculture, inorganic fertilizers, and synthetic pesticide input. They found that conclusions on yield gaps varied widely in previously published articles.

4.2 Food access and utilisation

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346347

348

We find four previous literature reviews published between 2011 and 2015 that give a systematic overview of agricultural diversity, dietary intake and consumption associations (Jones, 2017a; Penafiel et al., 2011; Powell et al., 2015; Sibhatu and Qaim, 2018b). On the basis of a meta-analysis reviewing 45 studies from 26 countries, Sibhatu and Qaim, (2018b) found that farming diversity is positively associated with dietary diversity and nutritional status in some but not in all cases and that this association depended on the indicator used to measure dietary quality and nutrition outcomes and the level of production diversity. Twenty-nine studies had mixed results with positive association in some cases and insignificant or negative associations in others, eleven studies found no association and five studies found only positive associations between production and dietary diversity or nutrition. The mean marginal effect of increasing farming diversity by one crop or livestock species increases the number of food groups consumed by 0.062 (N observations = 160, standard error 0.027) and the number of foods consumed by 0.716 (N observations = 25, standard error = 0.327) (Sibhatu and Qaim, 2018b). Reasons for small effects include production diversity being already high with further diversification efforts hindering development opportunities through other pathways. In a previous literature review with 23 studies, of which 21 were also later included in Sibhatu and Qaim (2018b), Jones (2017b) found a consistent, but small, positive relationship between production diversity and dietary diversity and in addition, a very small positive relationship between production diversity and nutritional status in least developed countries. Interestingly, the conclusions are different in both reviews. While Sibhatu and Qaim (2018b) conclude that there is little evidence to support policies for increasing production diversity as a strategy for improved smallholder diets and nutrition, Jones (2017b) concludes that agricultural diversification may contribute to diversified diets and may be an important strategy for improving nutrition outcomes. Similarly to Jones 2017b, Powell et al. (2015) concluded that the relationship between crop diversity or agrobiodiversity and dietary diversity or nutrition outcomes is overall positive in most of the 12 reviewed studies. Altogether, Powell et al. (2015), Jones (2017b) and Sibhatu and Qaim (2018b) reviewed 50 studies, of which 19 are included in our review as well as the remaining did not match our selection criteria. Publications were excluded because of publication year, or because they are not peer-reviewed research articles or review articles or because of a lack of a measure of agricultural diversity as defined in this study.

4.3 Stability

A meta-analysis of 37 studies showed that cereal-grain legume intercropping significantly increased temporal and spatial yield stability (CV =22.1) compared with the respective grain legume sole crops (CV= 31.7). Temporal yield variability in cereal-grain legume intercropping was 58% lower than for

grain legume sole crop but not significantly lower than for the cereal sole crop. Spatial yield variability in cereal-grain legume intercropping was 14-19% lower than grain legume and cereal sole crops (Raseduzzaman and Jensen, 2017). Hansen et al. (2019) reviewed 12 articles that describe benefits of diversified farming systems including agroforestry. They concluded that interventions that encouraged diversification showed moderately positive effects on stabilizing production and consumption, as well as improving livelihoods and welfare. Crop diversification can also contribute to stabilizing income, because some crops like rubber and oil palm can provide revenue throughout the year and the mix of perennial with annual crops can secure a more regular income from harvests in different months (Schroth and Ruf, 2014)

Five qualitative reviews give examples of studies that present empirical evidence on differences in stability and resilience between diversified and non-diversified agricultural systems (Altieri et al., 2015; Di Falco, 2012; Frison et al., 2011; Lin, 2011; Urruty et al., 2016). Between them they cite 31 studies but none of them provide a systematic overview of the empirical evidence which we attempt to show in Table 2. We select the 11 studies for low- and middle-income countries that were cited before and published as research articles or peer-reviewed book sections, written in English and reporting original data on a relevant measure of stability and summarise their main findings in Table 2. The most common measure of stability in the cited studies was variability of crop yield and income and resistance. For resistance there are two types of studies, one that attempts to assess the resistance of a diversified vs non-diversified system after a major perturbation, a hurricane or a drought, and one that assesses resistance to pest infestation, or heat and water stress without studying the system variables before or after an external shock.

Table 2 Summary of studies on agricultural diversity and stability cited in previous reviews.

Measure of stability	Finding	Reference*
Variability of crop yield and income	Crop variety richness reduces the within-household variance of yields above a certain diversity level	Di Falco et al. 2007 (Ethiopia), Di Falco & Chavas 2009 (Ethiopia), Smale et al. 1998 (Pakistan), Widawsky & Rozelle 1998 (China) cited in Di Falco 2012
Resistance to water stress after a short-term external shock (water shortage)	Landraces yield higher than modern cultivars in water stress conditions and have less yield variability between stress and no stress conditions; Grain yield decrease in stress condition was smaller in replacement intercropping system than in sole crops	Ceccarelli 1996 (Syria) cited in Frison et al. 2011; Natarajan and Willey 1996 (India) cited in Altieri et al. 2015
Resistance to erosion after a short-term external shock (hurricane)	Fewer arable land loss due to landslides in agroecological plots compared to conventionally managed plots	Holt-Giménez 2002 (Nicaragua), Philpott et al. 2009 (Mexico) cited in Altieri et al. 2015

Resistance to pest infestation through biological control	Within-field crop genetic diversity reduces pest infestation and disease severity	Zhu et al. 2000 (China), Kahn et al. 1998 (Kenya) cited in Altieri et al. 2015
Resistance to heat and water stress through shade control	Shade trees in agroforestry reduce water stress for coffee plants compared to systems with fewer shade trees.	Lin 2007 (Mexico) cited in Altieri et al. 2015

^{*} These are selected references fulfilling the criteria of this literature review except for year of publication and cited in section 6 in Altieri et al. 2015 on agrobiodiversity and vulnerability, section 2 in Frison et al. 2011 on productivity and stability, Table 1 in Di Falco 2012 and Table 1 in Lin 2011.

5. Diversity and food availability

Of the 88 studies evaluated, 19 studies reported 26 separate diversity-food security relationships using a measure of food availability. Most relationships were positive (17 cases, 65%) and only a few were negative (2 cases, 8%), neutral or ambiguous (7 cases, 27%) (Table 3). Most of the studies on food availability conducted field experiments to measure the effect of crop diversity on crop yield or crop production. The field experiments include growing crops in intercropping or rotation systems without making any other changes or embedding crop diversity as one strategy of alternative land use management systems such as agroforestry or conservation agriculture. The second experimental design makes it more difficult to assess the effect of diversification separately from other changes but also highlights the linkages between crop and soil management. In any case, the effect of crop diversity tends to be positive when an additional crop adds an additional function to the system, for example because it is a nitrogen-fixing crop, provides shade for the companion crop, can be commercialised as an additional product or adds specific nutrients to a household's diet. The direction of the relationship between diversity and food availability often depends on the crop studied, the row arrangement in intercropping and the type of crop mix.

For example, Isaacs et al. (2016) report that when grown as sole crop, beans exhibited yields that were often more than twice that of beans intercropped with maize in Rwanda which can be related to reduced resource competition for light and nutrients in the monoculture. In another experiment in Bangladesh Islam et al. (2018) found that a four crop pattern performed better than a three crop pattern which is mostly related to the introduction of maize as a relay crop for onion. In a country-wide trial in Malawi with 991 observations, Snapp et al. (2010) found a positive effect on crop yield when diversifying maize with legumes when compared with an unfertilized maize monoculture.

All three conservation agriculture studies included here found a positive effect of crop diversity on crop yield in India and Bangladesh (Ladha et al., 2016; Pradhan et al., 2018; Samal et al., 2017). In the context of agroforestry systems, we find four publications for rubber, cocoa and coffee cultivation (Hondrade et al., 2017; Jessy et al., 2017; Schneider et al., 2017; Souza et al., 2010). The results are mixed and depend on the year of the experiment, resource competition between crops, the amount of mutual benefits created by the crop mix and the method for measuring benefits. For example, the results from a 13- year experiment comparing three agroforestry systems with traditional rubber cultivation in India indicate that a range of crops can be integrated with rubber

402 without any adverse effect on growth and yield of rubber. Crop diversification increased rubber yield 403 but only in the first year, after which the effect was not significant (Jessy et al., 2017). In Brazil, a 404 diversified agroforestry system for coffee cultivation allowed more products from a larger range of 405 food crops to be harvested and commercialized leading to a lower cost/benefit ratio than in the 406 coffee monoculture (Souza et al., 2010). 407 Other data sources used are surveys and farmer interviews which also allows studying effects on 408 farm or household scale (Douxchamps et al., 2016; Dzanku and Sarpong, 2011; Makate et al., 2016). 409 We cannot compare the studies to each other but each of them highlights the context in which 410 diversity can be beneficial. For example, Douxchamps et al. (2016) found that crop diversity 411 positively influenced land productivity in Burkina Faso, Senegal and Ghana, but only for a specific 412 type of household practicing intensified farming with strong market orientation and a high 413 proportion of income from growing pulses. Dzanku and Sarpong (2013) find a positive relationship 414 between more diverse non-staple crop production and household food supply in one region only 415 and the authors suggest that this is due to regional differences associated with better market 416 conditions rather than crop diversity. They concluded that a more diverse crop portfolio did not 417 necessarily lead to a higher probability of household level food security, with other important 418 predictors being household composition, education, wealth, age, and other non-farm sources of 419 income. In a multi-country study with 28,000 farming households in sub-Saharan Africa, Waha et al. 420 (2018) found that median food availability increased with farming diversity. The farming households 421 with highest farming diversity also had significantly more cropland than others, which partly explains 422 this result. This study also find that increasing farming diversity can result in diminished returns, with 423 food availability increasing until diversity levels reach seven species per hectare cropland, and then 424 decreasing beyond this level.

Table 3 Summary of studies examining the association between diversity and food availability.

Reference	Country	Sample size	Method	Indicator of diversity	Indicator of food availability	Description of relationship*
			Cropping system,	farm or household scale		
Chimonyo et al., 2019	Malawi	6 field experiments, 5 seasons, 6	Field experiments	Crop diversity (SC) – maize intercropped compared to maize sole crop	Crop yield (maize grown in sequence with soybeans, peanut or peanut-pigeon pea)	Positive
		cropping systems			Crop yield (maize intercropped with pigeonpea)	Negative
Douxchamps et al., 2016	Burkina Faso, Ghana, Senegal	600 hh	Stepwise multiple linear regression	Crop diversity (SC)	Land productivity (type IV intensified farming)	Positive (β=0.812)
					Land productivity (type I subsistence farming)	Neutral (ns)
					Land productivity (type II diversified farming)	Neutral (ns)
					Land productivity (type III extensive farming)	Neutral (ns)
Dzanku and Sarpong, 2011	Ghana	416 hh	Random effects model	Crop diversity (SID)	Household food supply adequacy	Neutral (ns)
Hondrade et al., 2017	Philippines	6 farmers' fields in 3 seasons and 8 cropping treatments	Field experiments	Crop diversity (SC) - rice- mungbean intercropping compared to rice monoculture	Crop yield	Mixed depending on year and proportion of intercropped rows
Isaacs et al., 2016	Rwanda	2 cropping systems planted by 13 farmers association	Field experiments	Crop diversity (SC) - maize- bean intercropping compared to sole bean crop	Crop yield	Negative (d = 0.9-1.7 t/ha)
Islam et al.,	Bangladesh	2 seasons, 4	Field experiment	Crop diversity (SC) - four crops	Crop yield	Positive (d =

Reference	Country	Sample size	Method	Indicator of diversity	Indicator of food availability	Description of relationship*
2018		crops in 2 crop patterns		intercropping compared to three crops intercropping maize/rice systems		7.45-8.94 t/ha)
Jessy et al., 2017	India	4 years	Field experiment	Crop diversity (SC) – agroforestry system with rubber	Crop yield	Positive in first year (d=6.8 g/tree/tap), not significant in subsequent years
Kassie et al., 2015	Malawi	1,925 hh	Multinomial endogenous switching treatment regression using survey data	Crop diversity (SC) – maize- legume rotation or intercropping compared to no diversification	Crop yield	Positive (ATT = 505 kg/ha)
Ladha et al., 2016	India, Bangladesh	4 locations, 6 seasons, 2 years	Field experiment	Crop diversity (CI)	Crop yield	Positive (d = 73 GJ/ha)
Limbu et al., 2017	Tanzania	6 vegetable plots, 4 fish ponds	Field experiment	Production diversity (SC) – integrated fish-vegetable system compared to non- integrated system	Net yield of fish	Positive (d = 9.13 t/ha)
				Production diversity (SC) – integrated fish-vegetable system compared to non- integrated system	Net yield of vegetables	Positive (d = 3.95 t/ha)
Makate et al., 2016	Zimbabwe	~600 hh	Multiple linear regression	Crop diversity (SDI-b)	Crop yield (cereals)	Positive (β=1.181)
					Crop yield (legumes)	Neutral (ns)
Perdoná and Soratto, 2015	Brazil	4 cropping systems, 5 years	Field experiment	Crop diversity (coffee monoculture vs coffee-macadamia intercropping)	Crop production (hulled green-bean, rainfed)	Positive (difference = 15 - 196 g per

Reference	Country	Sample size	Method	Indicator of diversity	Indicator of food availability	Description of relationship*
						plant)
					Crop production (irrigated)	Neutral (ns)
Pradhan et al., 2018	India	3 years experiment	Field experiment	Crop diversity (SC) - additive crop rotation design	Crop yield	Positive (d = 6,550-7,098 kg/ha)
Samal et al., 2017	India	7 years experiment	Field experiment	Crop diversity (SC) – introduction of a third crop in wheat-rice rotation	Crop yield	Positive (d = 5.4-6.1 t/ha)
Schneider et al., 2017	Bolivia	6 cropping systems, 3 years	Field experiment	Crop diversity (SC) - agroforestry system	Crop yield (all marketable crops)	Positive (d = 7,471 kg/ha)
				compared to cocoa monoculture	Crop yield (cocoa)	Negative (d = - 414 kg/ha)
Souza et al., 2010	Brazil	Trials on 17 family farms	Field experiment	Crop diversity (SC) – agroforestry system compared to coffee monoculture	Cost/benefit ratio	Positive (d=0.32 %)
			Landscape	to national scale		
Löw et al., 2017	Uzbekistan, Kyrgyzstan, Tajikistan	~54,000 fields covering an area of ~ 400,000 ha	Remote sensing, Conditional Random Forests	Crop diversity (SDI)	Crop yield (spatial variability, rotation diversity)	Positive (variable importance rank = 1-6 for cotton and wheat, 1-9 for rice out of 23)
Snapp et al., 2010	Malawi	> 1,000 farm sites	Field experiment	Crop diversity (SC) - maize- legume rotation compared to unfertilized maize monoculture	Crop yield	Positive (d = 1.014-1.21 t/ha)
Waha et al., 2018	Ethiopia, Tanzania, Niger, Uganda,	28,361 hh	Kruskal-Wallis test for difference in	Farming diversity (C)	Household food supply adequacy (supply / required)	Positive (d = 1.2)

Reference	Country	Sample size	Method	Indicator of diversity	Indicator of food availability	Description of relationship*
	Kenya, Burkina		medians			
	Faso, Ghana, Mali,					
	Malawi, Rwanda,					
	Zambia, Senegal,					
	Mozambique, DR					
	Congo, Congo,					
	Nigeria, Zimbabwe					

^{*} The magnitude of the relationships cannot be compared directly across studies as the methods and indicators used differ. Some indicators such as the Shannon diversity index cannot be compared across different locations as they depend on the total number of species. The type of regression model, number and types of crops and livestock species for example will all influence the result. The table shows selected results from each study as assumed relevant to the topic of this review.

C = count, SC = cropping system or farming typology, CI = multiple cropping index in %, SDI = Simpson diversity index, SDI-b = Simpson diversity index converted to binary variable, d = difference in means or medians, d = difference in means of d = difference in d = difference

6. Diversity and stability of food security

 We found only 3 studies focusing on this dimension of food security, reporting 7 separate diversity-stability relationships. Of these, 4 relationships were positive, 2 were negative and 1 mixed (Table 4). All three studies are for Malawi, two on the farm scale and one on the landscape scale (Chimonyo et al., 2019; Kassie et al., 2015; Snapp et al., 2010). They measure the magnitude of fluctuation in a cropping systems as spatial crop yield variability or inter-site crop yield variability, rather than temporal variability. Crop yield stability is a function of environment and crop. For example, crop yield variability in a maize-legume system compared to a fertilized sole crop was lower when maize was grown in rotation with soybean and peanut/pigeon pea intercropped, but not when grown in rotation with peanut or intercropped with pigeon pea only (Chimonyo et al., 2019). This is only partly confirmed by an extensive field experiment with more than 1,000 farm sites where crop yield variability of maize was lower compared to an unfertilized sole maize when grown in rotation with peanut but not when intercropped with pigeon pea (Snapp et al., 2010).

We also found an alternative method for understanding how agricultural diversity and stability of agricultural production are related in the literature we reviewed. Farm-scale adaptation strategies often include diversification and we identified six publications researching if farmers use diversification to mitigate risks from perceived changes in weather or climate (Antwi-Agyei et al., 2014a; Chengappa et al., 2017; Eludoyin et al., 2017; Fadina and Barjolle, 2018; Mavhura et al., 2015; Sanogo et al., 2017). These 'perception studies' rarely discuss the relationship to food security directly thus are not included in the summary table below but can help to understand farmer's coping or adaptation strategies when faced with short- or long-term environmental changes. The sample size is often small. The number of farmers interviewed in the six studies reviewed ranged from 120 to 400 farmers and it is mostly unclear to what extent the chosen adaptation strategy was effective. For example, if it increased production or stability over time. Also, it is not always clear if diversification was a hypothetically preferred or a practised adaptation strategy, to what extent farmers already practiced diversification in general and in response to perturbations. Although households might claim that they have diversified their cropping patterns in response to climate variability, such patterns might have been partly influenced by non-climatic factors such as economic shocks and opportunities (Antwi-Agyei et al., 2014b). However, this method can reveal farmer's motivation to adapt and preferring a specific strategy over others. The conclusions from the six studies suggest that diversification is practiced as a risk management strategy (Chengappa et al., 2017; Eludoyin et al., 2017; Fadina and Barjolle, 2018), to cope with climate shocks (Sanogo et al., 2017) and to take advantage of multiple growing seasons (Eludoyin et al., 2017). One perception study found that on-farm diversification was not an option for farmers in Zimbabwe faced with lower than average rainfall, and that they instead relied on food aid, income diversification and collecting wild food (Mavhura et al., 2015). This is perhaps an indication that major shocks cannot be compensated by diversifying as every agricultural activity is impacted severely.

To our knowledge no study has measured the relationship between diversification and stability of any food security indicator on the national scale. However, an interesting contribution is Sardos et al. (2016) who discuss changes to the agricultural systems and its resilience in Vanuatu since the introduction of root and tree crops such as white and Indian yam, cocoyam, cassava and sweet potato during European settlement in the 19th century. This seems to have neither compromised agricultural diversity nor changed the systems drastically which before consisted of local or naturalized root and tree crops such as wild yam and taro. Farmers instead used the new crops to

- increase the resilience of the system through increasing the farmer's ability to switch to alternative crops when facing an unforeseen change.
- 472 **Table 4** Summary of studies examining the association between diversity and stability.

Reference	Country	Sample size	Method	Indicator of diversity	Indicator of stability	Description of relationship*
Chimonyo et al., 2019	Malawi	6 field experiments, 5 seasons, 6 cropping systems with 6 maize cropping systems	Field experiments	Crop diversity (SC) –fertilized sole maize compared to (1) rotation with soybean and peanut- pigeon pea, (2) rotation	Inter-site CV of crop yield: (1) Inter-site CV of crop yield: (2)	Positive (d = - 0.98-4.87% compared to fertilized sole maize) Negative (d = +3.4% compared to fertilized sole maize)
				with peanut, (3) intercropped with pigeon pea	Inter-site CV of crop yield: (3)	Negative (d = +6% compared to fertilized sole maize)
Kassie et al., 2015	Malawi	1,925 hh with 2,937 maize plots	Multinomial endogenous switching treatment regression using	Crop diversity (SC) – maize- legume rotation or intercropping	Crop yield skewness as a proxy for risk exposure	Positive (adoption effect = 0.67
Snapp et al. 2010	Malawi	> 1,000 farm sites	Field experiment	Crop diversity (SC) – unfertilized sole maize compared to	Inter-site variability of system grain yield (CV): (1)	Positive (d = -1-2%)
				(1) rotationwith peanut,(2) rotationwith annualand semi-perennial	Inter-site variability of system grain yield (CV): (2)	Positive (d = -8- 14% compared to unfertilized sole maize)
				legumes, (3) intercropped with pigeon pea	Inter-site variability of system grain yield (CV): (3)	iviixeu

^{*} The magnitude of the relationships cannot be compared directly across studies as the methods and indicators used differ. The type of regression model, number and types of crops and livestock species for example will all influence the result. The table shows selected results from each study as assumed relevant to the topic of this review.

d = difference, SC =cropping system, CV = Coefficient of variation

7. Diversity and food access

- 474 Fifty-two studies reported 148 separate diversity-food security relationships used a measure of food
- access. Of these, the authors reported positive relationships in 96 cases (65%), no or ambiguous
- 476 relationships in 47 cases (32%) and negative relationships in only 5 cases (3%) (**Table 5**). Most of the
- 477 studies reviewed used at least one indicator of food access, either to describe household dietary
- diversity, average household energy and nutrient intake, household food consumption or financial
- 479 constraints to food security. We here include studies using measures for coping strategies at times
- 480 of food shortage or self-reported food insecurity using experience-based scales.
- 481 By far the most common indicators of food access were household consumption measures, for
- 482 example HDDS. Thirty-three studies used household dietary diversity as a measure for food access,
- sometimes modified by changing the recall period or number and types of food groups (M-HDDS).
- Where the relationship between a measure of agricultural diversity and HDDS or M-HDDS is positive
- the regression coefficients differ between different statistical methods (e.g. Ayenew et al., 2018;
- 486 Huluka and Wondimagegnhu, 2019; Jones, 2017b; Kissoly et al., 2018; Koppmair et al., 2017; Kumar
- 487 et al., 2015; Makate et al., 2016; Murendo et al., 2018; Romeo et al., 2016; Sibhatu et al., 2015a;
- 488 Sibhatu and Qaim, 2018a; Somé and Jones, 2018; Tesfaye and Tirivayi, 2020; Traoré et al., 2018).
- Sibhatu and Qaim (2018a) find that increasing agricultural diversity by one crop or livestock species
- 490 slightly increases the number of food groups consumed by 0.05-0.07 in Kenya, 0.16 in Indonesia and
- 491 0.2-0.33 in Uganda. Other explaining factors such as cultivated land area and educational level of the
- 492 household head also have a positive effect on M-HDDS but to a smaller extent than agricultural
- diversity. Murendo et al. (2018) also find a relatively small effect of increasing agricultural diversity.
- 494 Producing one additional crop or livestock species leads to a 3% increase in M-HDDS whereas market
- 495 participation results in a 6% increase in M-HDDS which indicates a reliance on purchased food. Other
- 496 studies found much larger effects of increased agricultural diversity on HDDS and M-HDDS (Makate
- 497 et al., 2016; Tesfaye and Tirivayi, 2020) where crop diversity was strongly associated with HDDS and
- 498 M-HDDS. A few studies also measure mean household nutrient and/or energy intake or adequacy
- and found positive associations with agricultural diversity for some indicators (Brüssow et al., 2017;
- 500 De Jager et al., 2018; Sibhatu and Qaim, 2018a).
- 501 Some studies examine the diversity-food access relationship differentiated by type of household. For
- 502 example, while the crop diversity and HDDS relationship was positive overall, it was not significant or
- very weak for poorer households which depend more on income growth for increasing dietary
- 504 diversity (Ecker, 2018). Somé and Jones (2018) found that in Burkina Faso seasonal differences
- between post-harvest, lean and harvest period in household dietary diversity was greater among
- households with greater crop production and value of crop sales but not with greater crop diversity.
- Nine of the twelve studies on the association between agricultural diversity and economic access
- found a positive association (Bellon et al., 2020; Das and Ganesh-Kumar, 2018; Kasem and Thapa,
- 2011; Ladha et al., 2003; Limbu et al., 2017; Makate et al., 2016; Mofya-Mukuka and Hichaambwa,
- 2018; Pradhan et al., 2018; Thapa et al., 2018). For example, in Thailand, diversifying rice mono-
- 511 cropping systems by including asparagus and okra for international markets lead to an increase in
- 512 net income (Kasem and Thapa, 2011). Crop diversification by adding high-value crops in Nepal
- reduced the probability of being poor (Thapa et al., 2018). However, marginal households must
- diversify more than one third of total agricultural production value into high-value crops to move
- above the poverty line. Also agricultural income was significantly higher if households shifted their

516 crop portfolio by substituting certain crops or cultivars for others instead of diversifying it by adding

517 crops (Brüssow et al., 2017).

518 Six of the ten studies using experience-based food insecurity scales or measuring the extent of

519 coping strategies find a positive association with diversity at least for one indicator studied (Brüssow

520 et al., 2017; KC et al., 2016; M'Kaibi et al., 2017, 2015; Nkomoki et al., 2018; Vanek et al., 2016). For

521 example, HFIAS, the Household Food Insecurity Access Scale was lower at higher levels of

agricultural diversity (M'Kaibi et al., 2017, 2015; Vanek et al., 2016). However, when HFIAS was 522

523 converted into a binary variable ("food secure" and "not food secure" households), the relationship

524 between HFIAS and agricultural diversity was not statistically significant (Bezner Kerr et al., 2019;

525 Makate et al., 2016). The results also differ between studies using the same indicator, for example

526 HHS, the Household Hunger Scale. Whereas Ng'Endo et al. (2015) find no association between HHS

527 and agrobiodiversity, Nkomoki et al. (2018) report that 82% of the households reporting to

528 experience little to no hunger practiced crop diversification.

529 Some studies used national agricultural, livelihoods or household surveys that present results across 530

a representative national sample including both diversified and non-diversified farming households.

531 For example, both Snapp and Fisher (2015) and Jones et al. (2014) use data from the 2010/11

532 Malawi Integrated Household Survey. For the same measures of diversity and food access, both

studies find a positive effect. Jones et al. (2014) highlight that the relationship may be further

534 influenced by gender and wealth as the effect of farming diversity on household dietary diversity

535 was stronger in women-headed households and in wealthier households. Snapp and Fisher (2015)

536 find a small positive effect on food security as growing one additional crop increased HDDS by only

2%. Similarly, in Nigeria the positive effect of agricultural diversity on HDDS is significant but small. A

10 per cent increase in agricultural diversity results in a 0.16-2.4 per cent increase in HDDS (Ayenew

539 et al., 2018; Dillon et al., 2015) which is still a larger effect then that from increasing agricultural

revenue by 10 per cent (Dillon et al., 2015). In some multi-country studies it was possible to compare

541 the results across countries and geographies (Fraval et al., 2019; Passarelli et al., 2018; Ritzema et

542 al., 2019; Sibhatu et al., 2015; Sibhatu and Qaim, 2018a; Tesfaye and Tirivayi, 2020) and some results

suggest that the association depends on geographic locations. In sub-Saharan Africa for example, the

544 effect of production diversity is positive in semi-arid zones but negative in the humid/sub-humid

zones (Fraval et al., 2019). In Malawi, HDDS increased with production diversity but in Ethiopia, with

546 almost double the average production diversity of Malawi, there is no association with household

547 dietary diversity (Sibhatu et al., 2015).

548 Five studies on food access have attempted to test whether the diversity-food access relationship is

549 linear or rather follows an inverted U-shape and to estimate an optimal level of agricultural diversity.

Sibhatu et al. (2015b) for example find that HDDS increases with production diversity initially, but

551 then declines with further increases in production diversity. This was evident from a negative

regression coefficient for squared production diversity which indicates that the effect on dietary

553 diversity declines. Similarly Parvathi (2018) and Das and Ganesh-Kumar (2018), find that the positive

554 effect of production diversity on FCS and agricultural income declines as household diversify more.

555 Das and Ganesh-Kumar (2018) find that most household already engage in the optimal number of

556 crops, two, but not in the optimal number of animal husbandry and non-farm activities. This is

confirmed by other studies (Islam et al., 2018; Mofya-Mukuka and Hichaambwa, 2018) that find that

HDDS, HDDS and FSC tended to decline with increasing diversification after a peak point which was

559 not further quantified in the studies.

557

558

533

537

538

540

543

545

550

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of access §	Description of relationship *					
	<u>Village to regional scale</u>										
Akerele and Shittu, 2017	Nigeria	1,148 hh	Fixed effects model	Farming diversity (C, BI, RE)	Share of expenditure of food item in the total food budget (BI)	Positive (β=0.0423-0.1187)					
				Farming diversity (C, BI, RE)	Share of expenditure of food item in the total food budget (RE)	Positive (β=0.0541-0.2354)					
KC et al., 2016	Nepal	1,466 hh	Probit model	Crop diversity (C)	More than or less/equal 12 mths food sufficiency	Positive (β=0.0525)					
				Livestock diversity (C)	More than or less/equal 12 mths food sufficiency	Positive (β=0.0910					
Brüssow et al.,	Tanzania	900 farms	Propensity Score	Crop diversity (C)	FCS	Positive (ATT=3.51)					
2017			(nearest neighbour) matching		Household per capita protein intake	Positive (ATT=103.3g)					
					MAHFP	Negative (ATT= -1.48)					
					CSI	Neutral (ns)					
					Household per capita energy intake	Neutral (ns)					
					Household net income from crop production	Neutral (ns)					
De Jager et al.,	Ghana	329 hh	Poisson regression	Crop diversity (C)	Household self-	Positive (β=0.1)					
2018			model	Crop diversity (H')	sufficiency (no. food groups)	Positive (β=0.7)					
			Linear mixed model	Crop diversity (C)	Household self-	Positive (β=6.2-6.4)					
				Crop diversity (H')	sufficiency (quantity	Positive (β=23.4-26.4)					

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of access §	Description of relationship *
					nutrients)	
Jones, 2017b	Malawi	2,526 hh	Generalized estimating equations	Crop diversity (C)	HDDS	Positive (β= 0.08-0.13)
Kasem and Thapa, 2011	Thailand	245 hh	Interviews, calculated income from farm gate prices and input prices	Crop diversity (SC) - diversified rice cropping system compared to rice monoculture	Net income from agriculture per hh	Positive (d = 55,447 Baht/year)
Kissoly et al., 2018	Tanzania	899 hh	Poisson regression model	Production diversity (C)	M-HDDS	Positive (β=0.022-0.030)
Koppmair et al., 2017	Malawi	408 hh	Simple linear regression	Production diversity (C)	HDDS	Positive (β=0.124)
			Linear regression with Poisson estimator	Crop diversity (C)	HDDS	Neutral (ns)
Kumar et al., 2015	Zambia	3,340 hh	Ordered logit model	Production diversity (C)	M-HDDS	Positive (β=0.387)
2013				Crop diversity (C)	M-HDDS	Positive (β=0.250)
				Farming diversity (C)	M-HDDS	Positive (β=0.451)
Ladha et al., 2016	India, Bangladesh	4 locations, six seasons, 2 years	Field experiment	Crop diversity (multiple cropping index in %)	Income from crop sales	Positive (d = 1,029 US\$/ha)
Limbu et al., 2017	Tanzania	6 vegetable plots, 4 fish ponds	Field experiment	Production diversity (SC) – integrated fish- vegetable system compared to non- integrated system Production diversity (SC)	Annual net cash flow	Positive (d = 57.43 USD) Neutral (ns)

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity ^f	Indicator of access §	Description of relationship *
				– integrated vegetable system compared to		
M'Kaibi et al., 2017	Kenya	525 hh	Spearman rank correlation, ANOVA	non-integrated system Agricultural biodiversity (C)	HDDS HFIAS	Positive (F = 14.791) Positive (rho= -0.136)
M'Kaibi et al., 2015	Kenya	525 hh	Spearman rank order correlations	Agricultural biodiversity (C)	HFIAS	Positive (rho= -0.136) Positive (rho= -0.10)
Makate et al.,	Zimbabwe	~600 hh	Multiple linear	Crop diversity (SID-	Income from agriculture	Positive (β=3.498)
2016			regression	binary)	FSC HDDS	Positive (β=0.638) Positive (β=3.545)
			Probit regression model		HFIAS (Binary)	Neutral (ns)
Murendo et al., 2018	Zimbabwe	2,815 hh	Multiple linear regression	Farming diversity (C)	M-HDDS	Positive (IRR=1.03)
				Crop diversity (C)	M-HDDS	Positive (IRR=1.04)
				Livestock diversity (C)	M-HDDS	Positive (IRR=1.03)
N'Danikou et al., 2017	Mali	180 hh	Correlation analysis	Agricultural biodiversity (C)	Food insecurity index based on CSI	Negative (r = - 0.22)
Ng'endo et al.,	Kenya	30 hh	Spearman rank order	Farming diversity (C)	HDDS	Neutral (ns)
2016			correlation	Farming diversity (H')		Neutral (ns)
				Farming diversity (SID)		Neutral (ns)
				Farming diversity (NFD)		Neutral (ns)
				Farming diversity (C)	FSC	Neutral (ns)
				Farming diversity (H')		Neutral (ns)
				Farming diversity (SID)		Neutral (ns)
				Farming diversity (NFD)		Neutral (ns)
Ng'Endo et al.,	Kenya	30 hh	Pearson correlation	Agrobiodiversity (C)	HHS	Neutral (ns)

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of access §	Description of relationship *
2015				Agrobiodiversity (H')		Neutral (ns)
				Agrobiodiversity (SID)		Neutral (ns)
Nkomoki et al.,	Zambia	400 hh	Correlation analysis	Crop diversity (Binary)	FCS	Positive
2018					HHS	Positive
Parvathi, 2018	Laos	556 hh	Fixed effects regression	Farming diversity (C)	FSC	Mixed: Positive (β=6.59);
			model			Negative (β=0.145) for squared
						farm diversity
Passarelli et al.,	Ethiopia	373 hh	Simultaneous equation	Production diversity (C)	HDDS	Neutral (ns)
2018			models		Income from agriculture	Negative (β=-0.838)
	Tanzania	402 hh			HDDS	Neutral (ns)
					Income from agriculture	Neutral (ns)
Pradhan et al., 2018	India	3 years experiment	Field experiment	Crop diversity (SC) - Additive crop rotation design with maize	Profit	Positive (d = 359-527 USD/ha)
Romeo et al.,	Kenya	1,353 hh	Ordinary Least Squares	Farming diversity, incl.	M-HDDS	Positive (β=0.195-0.317)
2016			multivariate regression	purchased and gifted food (C)	Share of food expenditure (SID)	Positive (β=0.006-0.01)
					Share of food expenditure (H')	Positive (β=0.025-0.039)
Sibhatu et al.,	Indonesia	674 hh	Multivariate regression	Farming diversity (C)	M-HDDS	Positive (β=0.054)
2015a	Kenya	397 hh	with Poisson estimator			Neutral (ns)
Sibhatu and	Indonesia	672 hh	Regression model with	Production diversity (C)	M-HDDS	Neutral (ns)
Qaim, 2018a			Probit estimator for M-		Household per capita	Neutral (ns)
			HDDS, regression model		energy consumption	
			with ordinary least		Household	Neutral (ns)
			squares for others		micronutrient	
					adequacy-mean, zinc,	
					iron, VitA	

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of access §	Description of relationship *
				Farming diversity (C)	M-HDDS	Positive (ME=0.155)
					Household per capita	Positive (ME=300.4)
					energy consumption,	
					Household calorie	Positive (ME=0.078)
					adequacy	
					Household	Positive (ME=0.067)
					micronutrient	
					adequacy-mean	
					Household nutrient	Positive (ME=0.065)
					adequacy - zinc	
					Household nutrient	Positive (ME=0.065)
					adequacy - iron	
					Household nutrient	Positive (ME=0.071)
					adequacy - VitA	
	Kenya	393 hh		Production diversity (C)	M-HDDS	Positive (ME=0.067-0.070)
					Household per capita	Neutral (ns)
					energy consumption,	
					Household	Neutral (ns)
					micronutrient	
					adequacy-mean, zinc,	
					iron, VitA	
				Farming diversity (C)	M-HDDS	Positive (ME=0.045)
					Household per capita	Neutral (ns)
					energy consumption	
					Household	Neutral (ns)
					micronutrient adequacy	
	Uganda	417 hh		Production diversity (C)	HDDS	Positive (ME=0.316-0.334)
					Household per capita	Neutral (ns)

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of access §	Description of relationship *
					energy consumption	
					Household	Neutral (ns)
					micronutrient	
					adequacy-mean, zinc,	
					iron, VitA	
				Farming diversity (C)	HDDS	Positive (ME=0.194-0.198)
					Household per capita	Positive (ME=83.035)
					energy consumption	
					Household calorie	Positive (ME=0.030)
					adequacy	
					Household mean	Positive (ME=0.025)
					nutrient adequacy	
					Household zinc	Positive (ME=0.024)
					adequacy	
					Household - VitA	Positive (ME=0.030)
					adequacy	
					Household - iron	Neutral (ns)
					adequacy	
Traoré et al.,	Mali	258 hh	Linear mixed model	Crop diversity (C)	FSC	Positive (β=1.47)
2018					HDDS	Positive (β=0.29)
Valencia et al., 2019	Brazil	75 farmers	Correlation analysis	Farming diversity (C)	HDDS	Positive (r2=0.06)
Vanek et al.,	Bolivia	297 hh	Stepwise multiple linear	Crop diversity (C)	HFIAS	Positive (β= -0.584)
2016			regression		HDDS	Neutral (ns)
Whitney et al.,	Uganda	102 hh	Projection to Latent	Agrobiodiversity (H')	HDDS	Neutral (uncorrelated)

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of access §	Description of relationship *
2018			Structures (PLS) regression analysis	Agrobiodiversity (C)		Positively correlated
Williams et al., 2018	Sri Lanka	50 hh	Bivariate tests	Agrobiodiversity (H')	FCS	Neutral (ns)
Ritzema et al.,	Cambodia	631 hh	Multivariate stepwise	Crop diversity (C)	M-HDDS	Neutral (ns)
2019			regression	Livestock diversity (C)		Neutral (ns)
		365 hh 310 hh		Crop diversity (C)		Neutral (ns)
			_	Livestock diversity (C)		Positive (β=0.049)
				Crop diversity (C)		Neutral (ns)
				Livestock diversity (C)		Positive (β=0.068)
Bellon et al.,	Ghana	637 hh	Linear regression	Crop diversity (SID)	Income from agriculture	Positive (β=0.425)
2020					Value of products for	Positive (β=0.175)
					own consumption	
Tesfaye and Tirivayi, 2020	Uganda	4,523 hh	Fixed-effects instrumental variable	Crop diversity (C)	M-HDDS	Positive (β=0.153-0.158, IRR=1.008)
			regressions, Fixed- effects Poisson model,	Crop diversity (H')		Positive (β=0.619-1.317, IRR=1.051)
			Ordinary least squares regression	Crop diversity (CE)		Positive (β=1.195-4.682, IRR=1.135)
				Crop diversity (BP)		Positive (β=0.162-0.648, IRR=1.012)
Bezner Kerr et	Malawi	425 hh	Multivariate regression	Crop diversity (C)	HFIAS (binary)	Neutral (ns)
al., 2019			Ĭ		M-HDDS	Neutral (ns)
Huluka and Wondimagegnhu, 2019	Ethiopia	306 hh	Probit and simple linear regression	Crop diversity (C)	HDDS	Positive (β=0.2921-0.3132)

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity ^f	Indicator of access §	Description of relationship *
				<u>National scale</u>		
Asfaw et al., 2018	Niger	Niger 3,344 hh	344 hh Quantile regression	Crop diversity (C)	Household per capita energy intake	Positive (β=0.0209-0.0337)
				Crop diversity (BP)	Household per capita energy intake	Positive (β=0.0504-0.0263)
				Crop diversity (H')	Household per capita energy intake	Positive (β=0.0604-0.0249)
Ayenew et al., 2018	Nigeria	6,089 hh	Fixed effect model (FE), Random effect model (RE)	Farming diversity (C)	M-HDDS	Positive (β=0.016 for FE and 0.025 for RE)
Birthal et al., 2015	India	51,770 h	Multiple linear regression, Instrumental variable (IV) regression	Crop diversity (SC) – system with or without high-value crops	Likelihood of being under the poverty line	Negative (β= -0.0691 - 0.0282)
Das and Ganesh- Kumar, 2018	India	26,951 hh	Multivariate regression	Crop diversity (C)	Income from agriculture	Positive (β =0.290-0.293); Negative for squared counts (β =-0.07)
				Livestock diversity (C)	Income from agriculture	Positive (β =1.232); Negative for squared counts (β =-0.27)
Dillon et al., 2015	Nigeria	~5,000 hh	Ordinary least squares (OLS) regression and Instrumental variables (IV) regression	Crop diversity (C)	M-HDDS	Positive (β =0.037 for OLS and β =0.24 for IV)
Ecker, 2018	Ghana	11,217 hh	Fixed effect model	Crop diversity (C)	M-HDDS	Mixed: Positive (β =0.111-0.178 for all hh, β =0.148 for non-poor hh); Neutral (ns) for poor hh
				Crop diversity (SID)		Mixed: Positive (β =0.309-0.551 for all hh, β =0.396 for non-poor

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of access §	Description of relationship *
						hh); Neutral (ns) for poor hh
Islam et al., 2018	Bangladesh	6,040 hh	Pooled and random effects model, Poisson regression	Crop diversity (C)	HDDS	Positive (β=0.019)
Jones et al., 2014	Malawi	6,623 hh	Multiple linear	Crop diversity (C)	M-HDDS	Positive (β=0.23)
			regression		FSC	Positive (β =0.81)
				Crop diversity (SID)	M-HDDS	Positive (β=0.68)
					FSC	Neutral (ns)
				Farming diversity (C)	M-HDDS	Positive (β=0.20)
					FSC	Positive (β=0.71)
Mofya-Mukuka	Zambia	14,212 hh	Poisson regression and	Crop diversity (SID)	Farm income	Positive (β=0.9142)
and			Ordinary least squares		FSC	Positive (β=0.646-0.702)
Hichaambwa,			regression		MAHFP	Positive (β=0.727-0.741)
2018			Poisson regression		HDDS	Positive (β=0.284)
Sauer et al., 2018	Zambia	5,381 hh	Two-stage least squares	Crop diversity (SC) –	MAHFP	Neutral (ns)
			regression	cereal-legume intercropping yes/no	HDDS	Positive (β=9.918)
Sibhatu et al., 2015a	Indonesia, Kenya, Ethiopia, Malawi	8,230 hh	Multivariate regression with Poisson estimator	Farming diversity (C)	M-HDDS	Positive (β=0.009)
	Ethiopia	2,045 hh				Neutral (ns)
	Malawi	5,114 hh				Positive (β=0.015); Negative (β=-
						3.2e-04) for squared C
Snapp and Fisher,	Malawi	9,291 hh	Poisson regression,	Crop diversity (C) –	M-HDDS	Positive (IRR=1.019)
2015			Ordinary least squares regression	crops intercropped with maize	FSC	Negative(β=-0.189)
				Crop diversity (C) – non-	M-HDDS	Positive (IRR=1.019)

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of access §	Description of relationship *
				maize crops	FSC	Positive (β=0.333)
Somé and Jones, 2018	Burkina Faso	10,860 hh	Mixed linear regression model	Crop diversity (C)	HDDS	Positive (β=0.085)
Thapa et al., 2018	Nepal	8,066 hh	Ordinary least squares regression, two-stage least squares regression	Crop diversity (value share of high-value crops cultivated)	Probability of being poor	Positive (β=-0.002 – -0.004)
				Crop diversity (binary) - growers and non- growers of high-value crops	Poverty head-count ratio	Positive (d = 9.18 %)
Fraval et al., 2019	Burkina 7,708 hh Faso;	7,708 hh	Logistic regression model	Crop production diversity (C)	M-HFIAP	Positive (β=0.10)
	Democratic Republic of			Livestock production diversity (C)		Positive (β=0.32)
·	Congo Ethiopia; Kenya;	Ethiopia;	Negative binomial regression	Crop production diversity (C)	M-HDDS	Mixed: Positive (β=0.03); Neutral for M-HDDS and crop diversity in best period (ns)
	Malawi; Mali; Tanzania; Uganda; Zambia			Livestock production diversity (C)		Positive (β=0.05)
Zanello et al.,	Afghanistan	14,079 hh	Ordinary least squares	Crop diversity (C)	FSC	Positive (β=0.862-1.852)
2019			(OLS) regression, Instrumental variable (IV) regression	Livestock diversity (C)		Positive (β=2.322-3.144)

£ C = count, BP = Berger Parker index, H' = Shannon Diversity index, SID = Simpson Diversity index, BI = Berry index, RE = Relative Entropy, NFD = Nutritional Functional Diversity, SC = cropping system or farming typology, CE = Composite Entropy Index

Table 5 Summary of studies examining the association between diversity and food access.

Reference	Country	Sample	Method	Indicator of diversity ^f	Indicator of access §	Description of relationship *
		size				

§ CSI = Coping Strategy Index, DSR = Dietary Species Richness, FCS = Food consumption score, FVS = Food Variety Score, HDDS = Household Dietary Diversity Score, HFIAS = Household Food Insecurity Access Scale, HHS = Household Hunger Scale, MAHFP = Months of Adequate Household Food Provisioning, M-HDDS = Modified Household Dietary Diversity Score (recall period and/or number and type of food groups modified), M-HFIAP = Modified Household Food Insecurity of Access Prevalence.

^{*} ATT = average treatment effect, ns = not significant (p-value > 0.05); β = regression coefficient; IRR = incidence rate ratios; VIP = variable importance in projection statistic; DID = difference-in-difference estimator, OR = Odds ratio, d = difference in means or median, r/r2 = Pearson correlation coefficient, rho = Spearman rank order correlation coefficient, F = ANOVA F statistic, ME = marginal effects, ns = not significant at the 95% level. The magnitude of the relationships cannot be compared directly across studies as the methods and indicators used differ. Some indicators such as the Shannon diversity index cannot be compared across different locations as they depend on the total number of species. The type of regression model, number and types of crops and livestock species for example will all influence the result. The table shows selected results from each study as assumed relevant to the topic of this review.

8. Diversity and food utilisation

Finally, 29 studies reported 125 separate diversity-food security relationships focused on food utilisation. Of these, the authors reported, positive relationships in 65 cases (52%), no or ambiguous relationships in 49 cases (40%) and negative relationships in 11 cases (8%) (Table 6).

There are mixed results for different measures of food utilisation and for different age groups. The indicators either measure individual food consumption or anthropometric status. We found eleven studies that assess the association between agricultural diversity and anthropometric status of children and/or their mothers. The results differ for different age groups, for example between children aged 2 years or younger and 3 years or older (Gelli et al., 2018). Even if the same age group is studied, there are mixed results for different countries. For example, crop diversity measured as species richness and HAZ of children aged 6-24 months has a positive relationship in Malawi (Gelli et al., 2018) but a negative relationship in Zambia (Kumar et al. 2015). The negative relationship with HAZ of children in Zambia is strongest for children with HAZ scores 0 or higher. The relationship between crop diversity and HAZ and crop diversity and WAZ of children aged 6-60 months is neutral in Guatemala (Luna-González and Sorensen, 2018) but positive in Ethiopia (Yigrem et al., 2015). Where there is no significant association between diversity and nutritional status of children, other explanatory variables associated with nutritional status are socio-economic status such as housing conditions, assets ownership, household wealth and income, water, sanitation and hygiene, access to clean drinking water, maternal education, maternal age and child morbidity which indicates that improved nutrition can be achieved through multiple pathways in addition to diets (Luna-González and Sorensen, 2018; M'Kaibi et al., 2017).

The results depend also on the anthropometric measure used. Malapit et al. (2015), analysing data from three agro-ecological zones in Nepal, found a positive relationship between production diversity and some anthropometric scores but not all. While production diversity is positively correlated with WHZ, it is not with maternal body mass index and HAZ. While stunting and wasting indicated by low HAZ and WHZ scores share common risk factors, and both indicate impaired growth and development from poor nutrition it is possible that only one of them (stunting) is associated with production diversity. This is because stunting indicates chronic malnutrition and wasting indicates acute malnutrition and is moderated by the age of the child (Saaka et al., 2017).

Another twenty-three studies measured nutrient intake or a validated proxy for nutrient intake or adequacy, MDD-W or WDDS for women and IYCDDS, IDDS or MDD-C for children. Fifteen studies used adequacy of diet diversity of children as a measure of nutrient intake, and nine of them find a positive association with agricultural diversity (e.g. Gelli et al., 2018; Koppmair et al., 2017; Malapit et al., 2015; Saaka et al., 2017). The results differ by age group (Mulmi et al., 2017), the measure of agricultural diversity used, and are mediated by other fators such as access to nutrition education on child feeding and care practices market participation (Murendo et al., 2018) and other characteristics such as household size and wealth (Saaka et al., 2017). Another consideration is that instead of having to increase the number of food groups a child consumes it is important to reach a certain cut off point when their diet can be considered adequately diverse, i.e. consuming four or more different food groups according to the World Health Organization (2008). The prevalence of children aged 6-23 months with MDD-C, minimum dietary diversity was found to be positively (Kumar et al., 2015; Mitchodigni et al., 2017) or not (Mulmi et al., 2017) associated with agricultural diversity. However, diet quality of children older than 18 months improved with diversification of

farm production whereas other strategies such as improved market access to purchase complementary foods may benefit younger children (Mulmi et al., 2017).

Positive associations between agricultural diversity and MDD-W or WDDS were found in seven studies (Adubra et al., 2019; Bellon et al., 2016; Bellows et al., 2020; Boedecker et al., 2014; Jones et al., 2018; Murendo et al., 2018; Whitney et al., 2018). For MDD-W the regression coefficients are 0.036-0.23 with odds ratios of 1.08-1.38. For WDDS the regression coefficients are smaller, 0.10 in a logistic regression and odds ratio of 1.03-1.05 in a multiple linear regression. In Mali, Adubra et al. (2019) evaluate the impact of a 3 years nutrition-sensitive intervention targeting women and their children during the first 1000 days of each child's life. In a large sample with more than 5,000 women they found a positive relationship between production diversity and MDD-W and WDDS, regardless of household's overall food security and wealth status. Specifically, one more food crop or livestock group on the farm resulted in a 10% increase in WDDS-10 and a better chance of attaining the minimally needed MDD-W score. In contrast, Gitagia et al. (2019) find no relationship between agrobiodiversity and the quality of women's diets in central Kenya but an important relationship between education and diet quality.

Four studies used household data from nationally representative surveys for single country or multicountry studies (Hirvonen and Hoddinott, 2017; Islam et al., 2018; Lovo and Veronesi, 2019; Tobin et al., 2019) (Table 6). The association between agricultural diversity and food utilization was mostly positive irrespective of the food utilization and diversity indicator, except for some associations presented in Tobin et al. 2019. In this study, the authors find a positive association between the Simpson diversity index and HAZ but a small negative association between crop species richness and HAZ. This indicates that crop diversity has a benefit only if proportional presence is considered in addition to total number of species (Tobin et al., 2019). HAZ increased by 0.26-0.30 with each one-unit increase in the Simpson diversity index but decreased by 0.015 with each one-unit increase in crop richness.

Table 6 Summary of studies examining the association between diversity and utilization.

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of utilization §	Description of relationship *
			<u>V</u>	illage to regional scale		
Adubra et al., 2019	Mali	4,790 hh, 5,046 mother- child pairs	Logistic regression, simple linear regression	Production diversity (C)	MDD-W WDDS-10	Positive (OR = 1.12) Positive (β=0.10)
Azupogo et al., 2019	Ghana	642 children aged 6-17 years	Multiple linear regression	Farming diversity (C)	Haemoglobin concentration (6-9 yrs) Haemoglobin concentration (6-17 yrs)	Positive (β=0.59) Neutral (ns)
Bellon et al., 2016	Benin	880 hh	Generalized method of moments for parameter estimation	Agrobiodiversity (C)	MDD-W	Positive (β=0.036)
Boedecker et al., 2014	Benin	120 women	ANOVA	Agrobiodiversity (Binary)	WDDS Individual's nutrient consumption	Positive (d=0.6) Neutral (ns)
De Jager et al., 2018	Ghana	329 hh	Linear mixed model, quasi-binomial regression	Crop diversity (C) Crop diversity (H')	IYCDDS MPA IYCDDS	Neutral (ns) Neutral (ns) Neutral (ns)
Gelli et al., 2018	Malawi	1,199 hh, 304 children aged 6-24 mths, 1,248 children 36-72 mths)	Multilevel regression models using difference- in-difference estimator	Crop diversity (C)	MPA HAZ (6-24 mths) Prevalence of stunting (6-24 mths) 10 other relationships with HAZ, WHZ, WAZ, prevalence of stunting, prevalence of wasting, prevalence of underweight	Neutral (ns) Positive (DID=0.44) Negative (DID=-17%) Neutral (ns)

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of utilization §	Description of relationship *
				Production diversity (C)	Food quantity intake	Positive (DID=153 g)
					Energy intake	Positive (DID=294 kcal)
					Protein intake	Positive (DID=8.12 g)
					Iron intake	Positive (DID=1.64 mg)
					Zinc intake	Positive (DID=1.09 mg)
					VitB12 intake	Positive (DID=0.21 μg)
					VitB6 intake	Positive (DID=0.26 mg)
					IDDS (children)	Positive (DID=0.36)
					VitA intake	Neutral (ns)
Gitagia et	Kenya	384 women	Logistic regression model	Crop diversity (C)	MDD-W	Neutral (ns)
al., 2019				Crop diversity (H')		Neutral (ns)
				Production diversity (C)		Neutral (ns)
Jones, 2015	Bolivia	Bolivia 331 hh with	Multivariate regression	Crop diversity (C)	IFCI	Positive (β=0.25-0.46) for high elevation
		children aged 0-23 mths		Livestock diversity (C)		Positive (β=0.02-0.03)
Jones et al.,	Peru	600 hh	Poisson regression	Crop diversity (C)	WDDS-10	Positive (IRR=1.03)
2018			Logistic regression		MDD-W	Positive (OR=1.17)
			Poisson regression		DSR	Neutral (ns)
			Ordinary least squares regression		МРА	Mixed; Positive (OR=1.21 for MPA > 60%), Neutral (ns) for all MPA
			Poisson regression	Farming diversity (C)	WDDS-10	Neutral (ns)
			Logistic regression		MDD-W	Positive (OR=1.08)
			Poisson regression		DSR	Neutral (ns)
			Ordinary least squares regression		МРА	Mixed; Positive (OR=1.16= for MPA > 60%, Neutral (ns) for all MPA
Koppmair	Malawi	408 hh, 519	Simple linear regression	Production diversity (C)	IDDS (children)	Positive (β=0.168)
et al., 2017		children			IDDS (mother)	Positive (β=0.144)

Reference	Country	Sample	Method	Indicator of diversity [£]	Indicator of utilization §	Description of relationship *
		size aged 6	Linear regression with	Crop diversity (C)	IDDS (children)	Positive (β=0.073)
		mths to 5	Poisson estimator		IDDS (mother)	Neutral (ns)
Kumar et al., 2015	Zambia	3,340 hh, 1,153	Marginal probit model	Production diversity (C)	Prevalence of wasting (6-23 mths)	Negative (β=-0.011)
		children aged 6-23		Production diversity (C)	Prevalence of stunting (24-59 mths)	Negative (β=-0.015)
		mths, 2,385 children		Crop diversity (C)	Prevalence of wasting (6-23 mths)	Negative (β=-0.010)
		aged 24-59 mths		Farming diversity (C)	Prevalence of stunting (24-59 mths)	Negative (β=-0.022)
			Ordinary least squares	Crop diversity (C)	HAZ (6-23 mths)	Negative (β=-0.083)
			regression	Farming diversity (C)	HAZ (6-23 mths)	Negative (β=-0.097)
				Farming diversity (C)	HAZ (24-59 mths)	Positive (β=0.084)
			Marginal probit model for	Production diversity,	17 other relationships	Neutral (ns)
			stunting and wasting,	farming diversity, crop	with HAZ, WHZ,	
			Ordinary least squares	diversity (C)	prevalence of stunting,	
			regression		prevalence of wasting	
			Ordered logit model	Production diversity (C)	IDDS (children)	Positive (β=0.263)
					MDD-C	Positive (β=0.067)
				Crop diversity (C)	IDDS (children)	Positive (β=0.217)
					MDD-C	Positive (β=0.053)
				Farming diversity (C)	IDDS (children)	Positive (β=0.294)
					MDD-C	Positive (β=0.075)
Luna-	Guatemala	154	Pearson correlation	Crop diversity (C)	HAZ	Neutral (ns)
González		children			WAZ	Neutral (ns)
and		aged 6-60			IYCDDS	Positive (r2=0.26)
Sorensen,		mths			IDDS (children)	Positive (r2=0.39)
2018				Crop diversity (NFD)	IYCDDS	Neutral (ns)
					IDDS (children)	Positive (r2=0.32)

Reference	Country	Sample size	Method	Indicator of diversity ^f	Indicator of utilization §	Description of relationship *
M'Kaibi et	Kenya	525	Correlation analysis	Agricultural biodiversity	WHZ	Neutral (ns)
al., 2017		children		(C)	HAZ	Neutral (ns)
		aged 24-59 mths			WAZ	Neutral (ns)
M'Kaibi et	Kenya	525 hh	Spearman rank order	Agricultural biodiversity	NAR-mean	Positive (rho=0.194)
al., 2015			correlations	(C)	NAR-protein, iron, zinc, vit B12, vit B6, vit C, folate, riboflavin	Positive (rho=0.091-0.193)
					NAR-energy	Neutral (ns)
Malapit et	Nepal	3,332 hh	Ordinary least squares	Production diversity (C)	WAZ	Positive (β=0.033)
al., 2015		with	regression		WHZ	Positive (β=0.034)
		children			Maternal BMI, HAZ	Neutral (ns)
		aged 6-59			IDDS (children)	Positive (β=0.058-0.059)
		mths			IDDS (mother)	Positive (β=0.089-0.096)
Mitchodign i et al., 2017	Benin	1,225 hh, 1,182 children aged 6-23 mths	Multilevel logistic regression	Production diversity (C)	MDD-C	Positive (β=0.16, OR=1.17)
Mulmi et	Nepal	5,978 hh,	Logit regression models	Production diversity (C)	MDD-C, 6-11 mths	Neutral (ns)
al., 2017	-	2,989			MDD-C, 12-17 mth	Neutral (ns)
		children			MDD-C, 18-23 mths	Positive (β=0.43)
		aged 6-59			MDD-C, 6-23 mths	Neutral (ns)
		mths)			MDD-C, 25-59 mths	Positive (β=0.253)
Murendo	Zimbabwe	2,815 hh,	Multiple linear regression	Farming diversity (C)	WDDS	Positive (IRR=1.04)
et al., 2018		499			IDDS (children)	Neutral (ns)
		children		Crop diversity (C)	WDDS	Positive (IRR=1.05)
		aged 6-23			IDDS (children)	Neutral (ns)
		mths		Livestock diversity (C)	WDDS	Positive (IRR=1.03)
					IDDS (children)	Positive (IRR=1.04)

Reference	Country	Sample size	Method	Indicator of diversity [£]	Indicator of utilization §	Description of relationship *
Rammohan et al., 2018	Myanmar	1,037 children aged 7-60	Ordered probit model	Farming diversity (Categorical)	Prevalence of stunting, prevalence of underweight	Neutral (ns)
		mths			Prevalence of wasting	Mixed; negative (β =-0.041) only for hh with highest farming diversity score and children 7-18 mths
Saaka et al., 2017	Ghana	1,200 children aged 6-36 mths	Correlation analysis, Three-step moderated hierarchical multiple regression	Farming diversity (C)	IDDS (children)	Positive (β=0.09-0.10, rho=0.12)
Termote et	DR Congo	184 hh and	ANOVA for difference in	Agricultural biodiversity	Total carbohydrate intake	Neutral (ns)
al., 2012		129 women	means	(Binary) – consumers and non-consumers of wild edible plants	Thiamine intake	Neutral (ns)
					Niacin intake	Neutral (ns)
					Folate intake	Neutral (ns)
					VitB12 intake	Neutral (ns)
					Iron intake	Neutral (ns)
					Zinc intake	Neutral (ns)
					Dietary intake	Positive (d = 125 g)
					Energy intake	Positive (d = 214 kcal)
					Fibre intake	Positive (d = 6.1 g)
					VitA intake	Positive (d = 64 μg RE)
					VitC intake	Positive (d = 28.7mg)
					VitB6 intake	Positive (d = 0.45mg)
					Calcium intake	Positive (d = 141.3 mg)
					Riboflavin intake	Negative (d = -0.36 mg)
Vanek et	Bolivia	297 hh	Stepwise multiple linear	Crop diversity (C)	HAZ	Positive (β=0.102)
al., 2016		with children < 2 yrs	regression		ICFI	Neutral (ns)

Reference	Country	Sample size	Method	Indicator of diversity ^f	Indicator of utilization §	Description of relationship *
Whitney et	Uganda	102 hh, 325	Projection to Latent	Production diversity (H')	WHZ	Positive (VIP>1) for WHZ
al., 2018		individuals,	Structures (PLS)		BMI, HAZ, % underweight	Neutral (VIP<1)
		children	regression analysis	Production diversity (C)	HAZ	Positive (VIP>1)
		aged 2-5.9			BMI, HAZ, % underweight	Neutral (VIP < 1)
		yrs		Agrobiodiversity (H')	MDD-W	Neutral (uncorrelated)
					IDDS (children)	Neutral (uncorrelated)
					IDDS (toddler)	Neutral (uncorrelated)
				Agrobiodiversity (C)	MDD-W	Positively correlated
					IDDS (children)	Neutral (uncorrelated)
					IDDS (toddler)	Negatively correlated
Yigrem et	Ethiopia	270 hh, 225	Canonical correlation	Crop diversity (C)	WAZ	Positive (CC=0.2601, β=0.320)
al., 2015		children	analysis		HAZ	Positive (CC=0.0940)
		aged 6-60			MUAC	Positive (CC=0.0308)
		mths			WHZ	Negative for WHZ (CC=0.0111)
Bellows et	Tanzania	1,006 hh	Generalized linear mixed	Production diversity (C)	MDD-W	Positive (β=0.16-0.23, OR=1.24-
al., 2020			effects models			1.38)
				Crop diversity		Neutral (ns)
				<u>National scale</u>		
Hirvonen and Hoddinott, 2017	Ethiopia	7,011 hh, 3,448 children aged 6-59 mths	Regression models (OLS, Poisson, Linear)	Crop diversity (C)	IDDS (children)	Positive (β=0.092-0.62)
Islam et al., 2018	Bangladesh	6,040 hh	Pooled and random effects model, Poisson regression	Crop diversity (C)	WDDS	Positive (β=0.009)
Lovo and Veronesi, 2019	Tanzania	6,361 hh, 2,771 children	Endogenous regressor models	Crop diversity (C)	HAZ	Positive (β=0.023-0.025)

Reference	Country	Sample size	Method	Indicator of diversity ^f	Indicator of utilization §	Description of relationship *
Tobin et al., 2019	Burkina children Faso, aged ≤	36,542 children	regression red ≤ 36	Crop diversity (SID)	HAZ	Positive (β=0.260-0.2921)
				Crop diversity (C)	HAZ	Negative (β=-0.015)
	Ethiopia, Ghana, Guinea, Malawi, Nigeria, Tanzania,	, mths	Poisson regression	Crop diversity (SID) Crop diversity (C)	IDDS (children)	Mixed: Positive (β=9.061-0.139) for SID; Neutral for high-protein crops Neutral (ns)
	Uganda, Zimbabwe					

£ C = count; H' = Shannon diversity index, SID = Simpson diversity index, β = regression coefficient

§ WAZ = weight-for-age z-score, HAZ = height-for-age z-score, WHZ = weight-for-height z score, MUAC= middle upper arm circumference for age z score, BMI = Body mass index, IDDS = Individual Dietary Diversity Score, IFCI = Infant and Child Feeding Index, IYCDDS = Infant and Young Child Dietary Diversity, MDD = Minimum dietary diversity, MDD-C=Minimum Dietary Diversity of Children, MDD-W = Minimum Dietary Diversity for Women, MPA = Mean Probability of Adequacy of Micronutrient Intake, NAR = Nutrient Adequacy Ratio, NAR-mean = mean nutrient adequacy ratio, WDDS = Women's Dietary Diversity Score, WDDS-10 = 10-Food Group Women's Dietary Diversity Score. Prevalence of stunting and wasting is defined as the percentage of children with HAZ and WHZ, respectively, of more than 2 standard deviations below median. IDDS (children) differs from IYCDDS in the number of food groups used and/or the age group which is 6-23 months for IYCDDS. MDD-C differs from IYCDDS in that it measures the prevalence of children consuming at least four of the seven food groups included. IDDS (mother) differs from WDDS in the number of food groups considered

^{*} CC = Canonical correlation coefficient, β = regression coefficient, DID = difference-in-difference estimator, VIP = variable importance in the projection. The magnitude of the relationships cannot be compared directly across studies as the methods and indicators used differ. Some indicators such as the Shannon diversity index cannot be compared across different locations as they depend on the total number of species. The type of regression model, number and types of crops and livestock species for example will all influence the result. The table shows selected results from each study as assumed relevant to the topic of this review.

9. Diversity and food security at the global scale

1

39

40

2 We found five studies study the relation of agricultural diversity to food security on the global scale. 3 Because of the low sample size, results are summarized in this separate section for all four food 4 security dimensions together. Since 1961, global crop diversity increased which may have influenced 5 national food supply overall. Crop diversity (H') increased by about 20% between 1961 and 2016 and 6 crop species richness increased more strongly than evenness in two studies using different national 7 agricultural data (Aizen et al., 2019; Khoury et al., 2014). In contrast to species richness, the results 8 for evenness were mixed between different world regions with Europe being the only region with a 9 decline in evenness but increase in richness. Dominance of the most abundant crop commodities 10 declined and agricultural production is increasingly homogeneous (Aizen et al., 2019; Khoury et al., 2014). Going back even further in time, Nabhan et al. (2012) analysed how agrobiodiversity has 11 changed over time by comparing late 19th-c. to early 20th-c. records with their own fieldwork in 2005 12 13 in three regions of Tajikistan, Egypt, and the United States. They find that farmers adopt and 14 abandon crop varieties for different reasons in the three locations and that local and global factors 15 influence the conservation of agrobiodiversity. While for example diversity in the Tajikistan study 16 area remained roughly the same over time and only certain species changed their distribution in 17 space or time, diversity declined in the study area in the United States (northern Arizona). The 18 reason is that water scarcity led to a loss of varieties, and livelihoods shifted away from farming. 19 To our knowledge, only one study relates national food supply diversity with food utilisation and 20 finds a negative relationship between national food supply diversity (H') and the national prevalence 21 of child stunting (β = -3.1), wasting (β = -1.15) and being underweight (β = -2.39) across 113 22 countries (Remans et al., 2014). Functional diversity (MFAD) has a significant relation only to the 23 prevalence of wasting (β = -1.90) and being underweight (β = -3.10). Income per capita has a strong 24 influence on nutritional outcomes too (Remans et al. 2014, Table 2). For low-income countries, 25 agrobiodiversity was a good predictor of national food diversity, because their national food supply 26 tends to be that which they produce. Middle- to high income countries are less dependent on own 27 production and have greater access to international markets to increase and diversify their food 28 supply. 29 The diversity-stability hypothesis was tested for national crop yield between 1961 and 2010 across 30 the 100 most populous countries (Renard and Tilman, 2019). Crop diversity at the national level 31 (exp(H')) is statistically associated with increased temporal stability of crop yield, irrespective of 32 aggregation to crop groups (R2 = 0.32 - 0.37), and this stabilizing effect is similar in magnitude than 33 the destabilizing effect of rainfall variability. The study did not find any crop group contributing more 34 to yield stability than others. Troell et al. (2014) shows price indices for individual food sectors and 35 for food in the aggregate during the period 1990–2013. Cereal and oilseed prices have shown much 36 stronger variation than have price indices for meat, aquaculture, and capture fisheries. The 37 coefficient of variation for food in the aggregate is 0.33 over the entire period — substantially higher 38 than that of aquaculture (0.16), fisheries, and meat (0.21) but below that of grains and oils (0.4).

Lower volatility in the meat and fish sectors suggests a significant share of substitution possibilities

between various animal protein products and various feed ingredients.

10. Synthesis and Recommendations

We performed a survey of 924 studies that yielded 88 studies meeting the inclusion requirements and giving 314 individual diversity-food security relationships across low- and middle-income countries. In almost two thirds of all cases, agricultural diversity had a positive effect on food security (Table 7). In about one third of the relationships there was no effect of agricultural diversity on food security, or the results were mixed. In very few cases food security declined when agricultural diversity increased (6%). Food access was the dimension of food security most assessed with 59% of all studies and 47% of all relationships. Thirty-three studies used household dietary diversity as a measure of food access and twenty-two studies used at least one food utilisation indicator validated as a proxy for nutrient adequacy. Studies for food utilization are more common than for food availability, 34% and 22% respectively and for both dimensions agricultural diversity had a positive effect in about 55% to 65% of all cases. For food utilization, of the 47 neutral or mixed relationships, 13 times a measure of anthropometric and nutritional status is used and 34 times a measure of individual consumption is used. The most common spatial scale of the analysis was the household and farm scale. Crop species richness was the most common indicator of agricultural diversity.

Table 7 Synthesis table summarizing the diversity-food security relationships found in literature on three levels of data collection.

			Food securit	y dimension	
		Availability	Access	Stability	Utilisation
	Household / Farm	++	++	<	++
	/ Village / Region	16 studies with	35 studies with	2 studies with	25 studies with 118
Ē		23 relationships:	109 relationships:	4	relationships: 61
ij		14 positive, 7	65 positive, 41	relationships:	positive, 47 neutral
		neutral or mixed,	neutral or mixed,	2 positive, 2	or mixed, 10
00		2 negatives	3 negatives	negatives	negatives
Spatial scale of data collection	National	<	++	<	<
		3 studies with 3	17 studies with	1 study with 3	4 studies with 7
		positive	40 relationships:	relationships:	relationships: 4
al s		relationships	31 positive, 6	2 positive, 1	positive, 1
ati			neutral or mixed,	mixed	negative, 2 neutral
Sp			3 negatives		or mixed
	Global	/	/	<	<
		No studies found	No studies found	1 study with 1	1 study with 6
				positive	relationships: 5
				relationship	positive, 1 neutral

Code for symbols: ++ more than half of relationships are positive; < small sample size

Common reasons for positive and negative relationships

61

86

87

88

89

90

91

92

93

94

95

96

97

98

99

102

103

104

62 There is no food security dimension that would primarily have a negative or neutral relationship with 63 agricultural diversity. However, for each food security dimension studied there is a considerable 64 number of relationships that are found to be neutral or ambiguous. An often-stated reason for a 65 neutral relationship between agricultural diversity and food security is that households sourced 66 significant proportions of their food from markets. Hence, a positive relationship between 67 agricultural diversity at the farm scale and food security is plausible, particularly when farming 68 households produce most of what they consume. The direction of the relationship between diversity 69 and food availability often depends on the crop studied, the row arrangement in intercropping and 70 the type of crop mix. The effect of crop diversity tends to be positive when a crop has an additional 71 function for the system, for example because it is a nitrogen-fixing crop, provides shade for the 72 companion crop or contain specific nutrients. Functional diversity can also exist in a different 73 context, for example where a new crop or animal type increases farm income or nutrition. On the 74 other hand, a simple coexistence of species might benefit income or nutrition but not ecosystem 75 functioning. Other factors cited to have had a stronger influence on food security are socio-76 economic status such as housing conditions, assets ownership, income and education, farm 77 characteristics such as access to improved management strategies and farmland size, and other 78 characteristics such as household composition and size, sanitation and hygiene, access to clean 79 drinking water, and child morbidity (Dzanku and Sarpong, 2011; Luna-González and Sorensen, 2018; 80 M'Kaibi et al., 2017; Passarelli et al., 2018; Saaka et al., 2017; Yigrem et al., 2015). Also, the benefits 81 of diversification are context specific and there exist potentially other solutions to improve food 82 security. Sometimes diversity is only beneficial in conjunction with other changes in the system, for 83 example increasing market participation or soil conservation systems. In other situations, it might be 84 the primary coping strategy, for example, when due to limited market access households are more 85 reliant on own food production.

The different branches of literature

The articles reviewed can be broadly grouped into three clusters, similar to Glamann's clusters of literature analysing the food security-biodiversity association (Glamann et al., 2017). Each cluster tends to be more closely related to one of the food security dimensions. One cluster is dominated by the natural sciences focusing on the production and ecological aspects of food security (e.g. Samal et al., 2017; Snapp et al., 2010). A second cluster is dominated by the social sciences and emphasize for example economic dimensions of food security (Das and Ganesh-Kumar, 2018; Parvathi, 2018). Less studies consider broader aspects of sustainability, social-ecological development and empowerment (Jones et al., 2014; Malapit et al., 2015). A third cluster is dominated by nutrient science emphasizing human nutrition and health aspects of food security (Gelli et al., 2018; Tobin et al., 2019). As Glamann et al. (2017) explained, each group has specific approaches and conceptual basis for investigating the relationship, using specific measures of food security and including or excluding particular themes.

Recommendations for future research on diversity and food security

- Based on our observations from the literature review, some methodological recommendations for future research can be made.
 - The food dimension and indicators representing that dimension should be clearly stated and explained. Where possible researchers should use established indicators. They have often been tested or validated in several case studies and were developed and discussed by a commission of

- experts. If new indicators are introduced, they should be validated and compared with existing ones.
- Some studies speak of "diversifying into" and it is important to clarify the nature of diversification studied in this case. A new crop can be an addition to the existing crop portfolio or a replacement for another crop. Specific crops such as cash crops can have benefits to farmers also in the absence of overall diversification of the system.
- When measuring the diversity-stability relationship, future studies should consider that the relationship might be always positive for some measures of stability, but not for others. From a statistical point of view the mean of variables is more stable as more variables and their fluctuations are averaged (Doak et al., 1998).
- When choosing a measure of diversity, consider that evenness in the distribution of different food items or food groups is not necessarily desired from a nutritional perspective. A high score only indicates health benefits if calculated from a list of healthy foods. Even then it is not necessary to consume equal quantities of everything, but the amount required for a specific age and sex group.
- An element of scale-dependency should be introduced into diversity frameworks. Conclusions on the benefits of agricultural diversity on the national or global scale might not be scalable to the field scale and vice versa. The effect might be explained by a certain combination of production / agroecological zones on a larger scale that cannot be reproduced on the field scale and vice versa.
- Several alternative strategies for increasing food security should be studied along with
 diversification to compare the relative importance of each strategy for similar outcomes.
- Several research questions are understudied in the reviewed literature and constitute interesting challenges for future research.
- 129 An interesting question is related to thresholds in achieving benefits from diversification. There 130 are three considerations here. Firstly, such a threshold is a probably a relative, rather than 131 absolute threshold, depending on the ecological and economic context of the farm and potential 132 benefits from diversification. High diversity in one context might be average in another. Secondly, there might be a minimum requirement to achieve gains from diversification. 133 134 Achieving minimum dietary diversity of children through increasing agricultural diversity is a good example. Thirdly, from a certain point, the benefits of diversity might diminish, which 135 136 suggests a challenge of "optimal" level of diversity.
- 137 The relationship between diversity, a characteristic of a farming system, and diversification, the 138 process of increasing diversity in a farming system, should be explored further. Existing diversity 139 can limit or enable further diversification. Already diversified systems might have characteristics 140 such as high level of flexibility in allocating resources, that enable even more diversification. On 141 the other hand, at already high levels of diversity there might be no further benefit from 142 diversification, or only at high costs, that may be diminishing returns. In some reviewed articles 143 80% of the farmers already practiced diversification so further diversification might not be their 144 priority.
 - The question of complementarity and redundancy between several species of crops for example is understudied. This means that the benefits of diversification are not necessarily proportional

145

- to the increase in diversity and relevant functions can on the other hand be maintained at lower levels of diversity. Drought resilience for example can be achieved through the right species composition irrespective of diversity (Dardonville et al., 2020).
- Apart from modelling and quantifying the diversity-food security relationships, more focus on the pathways from diversification to food security should be researched. The most researched pathway is perhaps through consumption of own production but there might also be marketbased agricultural diversification (Bellon et al., 2020). Consumption versus income-generating pathways are for example discussed for India in Gillespie et al. (2012).
- There are noticeable gaps in understanding the relationship between diversity and food security; on the national / global scale. On a national scale for example it would be interesting to know if the prevalence of mal- or undernutrition change when the country decreased the number of commodities produced nationally?
- In conclusion agricultural diversity can be beneficial for food security, but it is not the only available strategy to promote food security. Where diversification is also the cheapest strategy in terms of monetary and labour costs it can be an appealing and effective option to improve agricultural practices and profits. Therefore, holistic study designs considering the natural, social and economic aspects of agricultural and food systems are best suited to represent interactions between them and understand the complex effects of diversification.

Author contribution and acknowledgements

165

166

167

168

169170

171

172173

174

KW, FA, CG and CR had the idea for this review article and were supported by the CSIRO-INRA Linkage scheme. KW designed the search syntax and pre-selected publications based on the initial abstract screening. All authors either reviewed the pre-selected publications, extracted data from the included publications and/or wrote parts of the manuscript with KW. KW and JPD reviewed and cleaned data for the synthesis tables describing the magnitude of the observed effects and details of methods. All authors read and reviewed the full articles included in the review after initial screening to assess their relevance and contributed to revising the manuscript multiple times before submission.

175	References
176 177 178 179	Adubra, L., Savy, M., Fortin, S., Kameli, Y., Kodjo, N.E., Fainke, K., Mahamadou, T., Le Port, A., Martin-Prevel, Y., 2019. The Minimum Dietary Diversity for Women of Reproductive Age (MDD-W) Indicator Is Related to Household Food Insecurity and Farm Production Diversity: Evidence from Rural Mali. Curr. Dev. Nutr. 3, 1–9. https://doi.org/10.1093/cdn/nzz002
180 181 182 183 184	Aizen, M.A., Aguiar, S., Biesmeijer, J.C., Garibaldi, L.A., Inouye, D.W., Jung, C., Martins, D.J., Medel, R., Morales, C.L., Ngo, H., Pauw, A., Paxton, R.J., Sáez, A., Seymour, C.L., 2019. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Chang. Biol. 25, 3516–3527. https://doi.org/10.1111/gcb.14736
185 186 187	Akerele, D., Shittu, A.M., 2017. Can food production diversity influence farm households' f dietary diversity? An appraisal from two-dimensional food diversity measures. Int. J. Soc. Econ. 44, 1597–1608. https://doi.org/10.1108/IJSE-03-2016-0080
188 189 190	Altieri, M.A., Nicholls, C.I., Henao, A., Lana, M.A., 2015. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 35, 869–890. https://doi.org/10.1007/s13593-015-0285-2
191 192 193	Ampaw, S., Nketiah-Amponsah, E., Senadza, B., 2017. Urban Farm-Nonfarm Diversification, Household Income and Food Expenditure in Ghana. Stud. Bus. Econ. 12, 6–19. https://doi.org/10.1515/sbe-2017-0017
194 195 196	Antwi-Agyei, P., Stringer, L.C., Dougill, A.J., 2014a. Livelihood adaptations to climate variability: insights from farming households in Ghana. Reg. Environ. Chang. 14, 1615–1626. https://doi.org/10.1007/s10113-014-0597-9
197 198 199	Antwi-Agyei, P., Stringer, L.C., Dougill, A.J., 2014b. Livelihood adaptations to climate variability: insights from farming households in Ghana. Reg. Environ. Chang. 14, 1615–1626. https://doi.org/10.1007/s10113-014-0597-9
200 201 202	Asfaw, S., Pallante, G., Palma, A., 2018. Diversification Strategies and Adaptation Deficit: Evidence from Rural Communities in Niger. World Dev. 101, 219–234. https://doi.org/10.1016/j.worlddev.2017.09.004
203 204 205	Ayenew, H.Y., Biadigilign, S., Schickramm, L., Abate-Kassa, G., Sauer, J., 2018. Production diversification, dietary diversity and consumption seasonality: Panel data evidence from Nigeria. BMC Public Health 18, 1–9. https://doi.org/10.1186/s12889-018-5887-6
206 207 208 209	Azupogo, F., Aurino, E., Gelli, A., Bosompem, K.M., Ayi, I., Osendarp, S.J.M., Brouwer, I.D., Folson, G., 2019. Agro-ecological zone and farm diversity are factors associated with haemoglobin and anaemia among rural school-aged children and adolescents in Ghana. Matern. Child Nutr. 15, 1–11. https://doi.org/10.1111/mcn.12643
210 211 212	Barrett, C.B., Reardon, T., Webb, P., 2001. Nonfarm income diversification and household livelihood strategies in rural Africa: concepts, dynamics, and policy implications. Food Policy 26, 315–331.
213 214 215	Bellon, M.R., Kotu, B.H., Azzarri, C., Caracciolo, F., 2020. To diversify or not to diversify, that is the question. Pursuing agricultural development for smallholder farmers in marginal areas of Ghana. World Dev. 125, 104682. https://doi.org/10.1016/j.worlddev.2019.104682
216	Rellon M.R. Ntandou-Rouzitou, G.D. Caracciolo, F. 2016, On-Farm Diversity and Market

Participation Are Positively Associated with Dietary Diversity of Rural Mothers in Southern

218	Benin, West Africa. PLoS One 11, e0162535. https://doi.org/10.1371/journal.pone.0162535
219 220 221 222	Bellows, A.L., Canavan, C.R., Blakstad, M.M., Mosha, D., Noor, R.A., Webb, P., Kinabo, J., Masanja, H., Fawzi, W.W., 2020. The Relationship Between Dietary Diversity Among Women of Reproductive Age and Agricultural Diversity in Rural Tanzania. Food Nutr. Bull. 41, 50–60. https://doi.org/10.1177/0379572119892405
223224225	Bendahan, A.B., Poccard-Chapuis, R., De Medeiros, R.D., De Lucena Costa, N., Tourrand, J.F., 2018. Management and labour in an integrated crop-livestock-forestry system in Roraima, Brazilian Amazonia. Cah. Agric. 27. https://doi.org/10.1051/cagri/2018014
226 227 228 229 230	Bezner Kerr, R., Kangmennaang, J., Dakishoni, L., Nyantakyi-Frimpong, H., Lupafya, E., Shumba, L., Msachi, R., Boateng, G.O., Snapp, S.S., Chitaya, A., Maona, E., Gondwe, T., Nkhonjera, P., Luginaah, I., 2019. Participatory agroecological research on climate change adaptation improves smallholder farmer household food security and dietary diversity in Malawi. Agric. Ecosyst. Environ. 279, 109–121. https://doi.org/10.1016/j.agee.2019.04.004
231 232	Birthal, P.S., Roy, D., Negi, D.S., 2015. Assessing the impact of crop diversification on farm poverty in India. World Dev. 72, 70–92. https://doi.org/10.1016/j.worlddev.2015.02.015
233234235	Boedecker, J., Termote, C., Assogbadjo, A.E., Van Damme, P., Lachat, C., 2014. Dietary contribution of Wild Edible Plants to women's diets in the buffer zone around the Lama forest, Benin – an underutilized potential. Food Secur. 6, 833–849. https://doi.org/10.1007/s12571-014-0396-7
236 237	Bommarco, R., Kleijn, D., Potts, S.G., 2013. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238. https://doi.org/10.1016/j.tree.2012.10.012
238 239 240	Brüssow, K., Faße, A., Grote, U., 2017. Implications of climate-smart strategy adoption by farm households for food security in Tanzania. Food Secur. 9, 1203–1218. https://doi.org/10.1007/s12571-017-0694-y
241 242 243	Bullock, J.M., Dhanjal-Adams, K.L., Milne, A., Oliver, T.H., Todman, L.C., Whitmore, A.P., Pywell, R.F., 2017. Resilience and food security: rethinking an ecological concept. J. Ecol. 105, 880–884. https://doi.org/10.1111/1365-2745.12791
244 245 246	Cassman, K.G., 1999. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. U. S. A. 96, 5952–5959. https://doi.org/10.1073/pnas.96.11.5952
247 248	Chambers, R., Conway, G.R., 1992. Sustainable rural livelihoods: practical concepts for the 21st century. IDS Discuss. Pap. 296.
249 250 251	Chengappa, P.G., Devika, C.M., Rudragouda, C.S., 2017. Climate variability and mitigation: perceptions and strategies adopted by traditional coffee growers in India. Clim. Dev. 9, 593–604. https://doi.org/10.1080/17565529.2017.1318740
252 253 254	Chimonyo, V.G.P., Snapp, S.S., Chikowo, R., 2019. Grain Legumes Increase Yield Stability in Maize Based Cropping Systems. Crop Sci. 59, 1222–1235. https://doi.org/10.2135/cropsci2018.09.0532
255 256	Coates, J., 2013. Build it back better: Deconstructing food security for improved measurement and action. Glob. Food Sec. 2, 188–194. https://doi.org/10.1016/j.gfs.2013.05.002
257 258 259	Dardonville, M., Urruty, N., Bockstaller, C., Therond, O., 2020. Influence of diversity and intensification level on vulnerability, resilience and robustness of agricultural systems. Agric. Syst. 184. https://doi.org/10.1016/j.agsy.2020.102913
260	Das, V.K., Ganesh-Kumar, A., 2018. Farm size, livelihood diversification and farmer 's income in

261	India. DECISION 45, 185-201. https://doi.org/10.1007/s40622-018-0177-9
262 263 264	De Jager, I., Giller, K.E., Brouwer, I.D., 2018. Food and nutrient gaps in rural Northern Ghana: Does production of smallholder farming households support adoption of food-based dietary guidelines? PLoS One 13, 1–26. https://doi.org/10.1371/journal.pone.0204014
265 266 267	Delaquis, E., de Haan, S., Wyckhuys, K.A.G., 2018. On-farm diversity offsets environmental pressures in tropical agro-ecosystems: A synthetic review for cassava-based systems. Agric. Ecosyst. Environ. 251, 226–235. https://doi.org/10.1016/j.agee.2017.09.037
268 269	Di Falco, S., 2012. On the Value of Agricultural Biodiversity. Annu. Rev. Resour. Econ. 4, 207–223. https://doi.org/10.1146/annurev-resource-110811-114543
270 271	Dillon, A., McGee, K., Oseni, G., 2015. Agricultural Production, Dietary Diversity and Climate Variability. J. Dev. Stud. 51, 976–995. https://doi.org/10.1080/00220388.2015.1018902
272 273 274	Doak, D.F., Bigger, D., Harding, E.K., Marvier, M.A., O'Malley, R.E., Thomson, D., 1998. The Statistical Inevitability of Stability-Diversity Relationships in Community Ecology. Am. Nat. 151, 264–276. https://doi.org/10.1086/286117
275 276 277 278 279	Douxchamps, S., Van Wijk, M.T., Silvestri, S., Moussa, A.S., Quiros, C., Ndour, N.Y.B., Buah, S., Somé, L., Herrero, M., Kristjanson, P., Ouedraogo, M., Thornton, P.K., Van Asten, P., Zougmoré, R., Rufino, M.C., 2016. Linking agricultural adaptation strategies, food security and vulnerability: evidence from West Africa. Reg. Environ. Chang. 16, 1305–1317. https://doi.org/10.1007/s10113-015-0838-6
280 281 282	Droppelmann, K.J., Snapp, S.S., Waddington, S.R., 2017. Sustainable intensification options for smallholder maize-based farming systems in sub-Saharan Africa. Food Secur. 9, 133–150. https://doi.org/10.1007/s12571-016-0636-0
283 284 285 286	Dzanku, F.M., Sarpong, D.B., 2011. Agricultural diversification, food self-sufficiency and food security in Ghana: The role of infrastructure and institutions, in: Djurfeldt, G., Aryeetey, E., Isinika, A.C. (Eds.), African Smallholders: Food Crops, Markets and Policy. CAB International, Wallingford, UK, pp. 189–213.
287 288 289	Ecker, O., 2018. Agricultural transformation and food and nutrition security in Ghana: Does farm production diversity (still) matter for household dietary diversity? Food Policy 79, 271–282. https://doi.org/10.1016/j.foodpol.2018.08.002
290 291	Ellis, F., 1998. Household strategies and rural livelihood diversification. J. Dev. Stud. 35, 1–38. https://doi.org/10.1080/00220389808422553
292 293 294	Eludoyin, A.O., Nevo, A.O., Abuloye, P.A., Eludoyin, O.M., Awotoye, O.O., 2017. Climate events and impact on cropping activities of small-scale farmers in a part of Southwest Nigeria. Weather. Clim. Soc. 9, 235–253. https://doi.org/10.1175/WCAS-D-16-0032.1
295 296 297	Fadina, A.M.R., Barjolle, D., 2018. Farmers' Adaptation Strategies to Climate Change and Their Implications in the Zou Department of South Benin. Environments 5, 15. https://doi.org/10.3390/environments5010015
298 299	FAO, 2019. Food security indicators [WWW Document]. URL http://www.fao.org/economic/ess/ess-fs/ess-fadata

FAO, 2013. Guidelines for measuring household and individual dietary diversity, Fao. https://doi.org/613.2KEN

FAO, 2002. Conservation agriculture. Case studies in Latin America and Africa.

300 301

- Foley, J. a, Ramankutty, N., Brauman, K. a, Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D.,
 O'Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda,
 C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M., 2011. Solutions
- for a cultivated planet. Nature 478, 337–42. https://doi.org/10.1038/nature10452
- Fraval, S., Hammond, J., Bogard, J.R., Ng'endo, M., van Etten, J., Herrero, M., Oosting, S.J., de Boer,
- 308 I.J.M., Lannerstad, M., Teufel, N., Lamanna, C., Rosenstock, T.S., Pagella, T., Vanlauwe, B.,
- Dontsop-Nguezet, P.M., Baines, D., Carpena, P., Njingulula, P., Okafor, C., Wichern, J.,
- 310 Ayantunde, A., Bosire, C., Chesterman, S., Kihoro, E., Rao, E.J.O., Skirrow, T., Steinke, J., Stirling,
- 311 C.M., Yameogo, V., van Wijk, M.T., 2019. Food Access Deficiencies in Sub-saharan Africa:
- 312 Prevalence and Implications for Agricultural Interventions. Front. Sustain. Food Syst. 3.
- 313 https://doi.org/10.3389/fsufs.2019.00104
- Frelat, R., Lopez-Ridaura, S., Giller, K.E., Herrero, M., Douxchamps, S., Djurfeldt, A.A., Erenstein, O.,
- Henderson, B., Kassie, M., Paul, B.K., Rigolot, C., Ritzema, R.S., Rodriguez, D., van Asten, P.J. a,
- van Wijk, M.T., 2016. Drivers of household food availability in sub-Saharan Africa based on big
- data from small farms. Proc. Natl. Acad. Sci. U. S. A. 113, 458–463.
- 318 https://doi.org/10.1073/pnas.1518384112
- Frison, E.A., Cherfas, J., Hodgkin, T., 2011. Agricultural Biodiversity Is Essential for a Sustainable
- 320 Improvement in Food and Nutrition Security. Sustainability 3, 238–253.
- 321 https://doi.org/10.3390/su3010238
- Gaba, S., Lescourret, F., Boudsocq, S., Enjalbert, J., Hinsinger, P., Journet, E.P., Navas, M.L., Wery, J.,
- Louarn, G., Malézieux, E., Pelzer, E., Prudent, M., Ozier-Lafontaine, H., 2015. Multiple cropping
- 324 systems as drivers for providing multiple ecosystem services: from concepts to design. Agron.
- 325 Sustain. Dev. 35, 607–623. https://doi.org/10.1007/s13593-014-0272-z
- 326 Gelli, A., Margolies, A., Santacroce, M., Roschnik, N., Twalibu, A., Katundu, M., Moestue, H.,
- 327 Alderman, H., Ruel, M., 2018. Using a Community-Based Early Childhood Development Center
- as a Platform to Promote Production and Consumption Diversity Increases Children's Dietary
- Intake and Reduces Stunting in Malawi: A Cluster-Randomized Trial. J. Nutr. 148, 1587–1597.
- 330 https://doi.org/10.1093/jn/nxy148
- 331 Gillespie, S., Harris, J., Kadiyala, S., 2012. The Agriculture-Nutrition Disconnect in India What Do We Know? IFPRI Discuss. Pap. 1187 1–56.
- 333 Gitagia, M.W., Ramkat, R.C., Mituki, D.M., Termote, C., Covic, N., Cheserek, M.J., 2019. Determinants
- of dietary diversity among women of reproductive age in two different agro-ecological zones of
- rongai sub-county, nakuru, Kenya. Food Nutr. Res. 63, 1–12.
- 336 https://doi.org/10.29219/fnr.v63.1553
- 337 Glamann, J., Hanspach, J., Abson, D.J., Collier, N., 2017. The intersection of food security and
- biodiversity conservation: a review. Reg. Environ. Chang. 17, 1303–1313.
- 339 https://doi.org/10.1007/s10113-015-0873-3
- Govereh, J., Jayne, T.S., 2003. Cash cropping and food crop productivity: Synergies or trade-offs?
- 341 Agric. Econ. 28, 39–50. https://doi.org/10.1016/S0169-5150(02)00066-X
- Hansen, J., Hellin, J., Rosenstock, T., Fisher, E., Cairns, J., Stirling, C., Lamanna, C., van Etten, J., Rose,
- A., Campbell, B., 2019. Climate risk management and rural poverty reduction. Agric. Syst. 172,
- 344 28–46. https://doi.org/10.1016/j.agsy.2018.01.019
- Herforth, A., Harris, J., 2014. Linking Agriculture and Nutrition: Understanding and Applying Primary
- Pathways and Principles. Br. #1. Improv. Nutr. through Agric. Tech. Br. Ser.

- 347 Hirvonen, K., Hoddinott, J., 2017. Agricultural production and children's diets: evidence from rural 348 Ethiopia. Agric. Econ. 48, 469–480. https://doi.org/10.1111/agec.12348 349 Hoddinott, J., Yohannes, Y., 2002. Dietary Diversity as a Household Food Security Indicator. 350 Washington D.C. 351 Hondrade, R.F., Hondrade, E., Zheng, L., Elazegui, F., Duque, J.A.L.J.E., Mundt, C.C., Vera Cruz, C.M., 352 Garrett, K.A., 2017. Cropping system diversification for food production in Mindanao rubber 353 plantations: A rice cultivar mixture and rice intercropped with mungbean. PeerJ 2017, 1–20. 354 https://doi.org/10.7717/peerj.2975 Huluka, A.T., Wondimagegnhu, B.A., 2019. Determinants of household dietary diversity in the Yayo 355 356 biosphere reserve of Ethiopia: An empirical analysis using sustainable livelihood framework. 357 Cogent Food Agric. 5, 1–29. https://doi.org/10.1080/23311932.2019.1690829 358 Isaacs, K.B., Snapp, S.S., Kelly, J.D., Chung, K.R., 2016. Farmer knowledge identifies a competitive 359 bean ideotype for maize-bean intercrop systems in Rwanda. Agric. Food Secur. 5, 1–18. 360 https://doi.org/10.1186/s40066-016-0062-8 361 Islam, A.H.M.S., von Braun, J., Thorne-Lyman, A.L., Ahmed, A.U., 2018. Farm diversification and food and nutrition security in Bangladesh: empirical evidence from nationally representative 362 363 household panel data. Food Secur. 10, 701-720. https://doi.org/10.1007/s12571-018-0806-3 364 Islam, M.A., Islam, M.J., Akkas Ali, M., Mahbubur Rahman Khan, A.S.M., Faruque Hossain, M., 365 Moniruzzaman, M., 2018. Transforming Triple Cropping System to Four Crops Pattern: An 366 Approach of Enhancing System Productivity through Intensifying Land Use System in Bangladesh. Hindawi Int. J. Agron. 2018, 1-7. 367 Jessy, M.D., Joseph, P., George, S., 2017. Possibilities of diverse rubber based agroforestry systems 368 369 for smallholdings in India. Agrofor. Syst. 91, 515-526. https://doi.org/10.1007/s10457-016-370 9953-8 371 Jones, A.D., 2017a. Critical review of the emerging research evidence on agricultural biodiversity, 372 diet diversity, and nutritional status in low- and middle-income countries. Nutr. Rev. 75, 769-373 782. https://doi.org/10.1093/nutrit/nux040 374 Jones, A.D., 2017b. On-Farm Crop Species Richness Is Associated with Household Diet Diversity and 375 Quality in Subsistence- and Market-Oriented Farming Households in Malawi 1 – 3. J. Nutr. 376 https://doi.org/10.3945/jn.116.235879.substituting 377 Jones, A.D., 2015. The production diversity of subsistence farms in the Bolivian Andes is associated 378 with the quality of child feeding practices as measured by a validated summary feeding index. 379 Public Health Nutr. 18, 329–342. https://doi.org/10.1017/S1368980014000123 380 Jones, A.D., Creed-Kanashiro, H., Zimmerer, K.S., De Haan, S., Carrasco, M., Meza, K., Cruz-Garcia, 381 G.S., Tello, M., Plasencia Amaya, F., Marin, R.M., Ganoza, L., 2018. Farm-Level Agricultural 382 Biodiversity in the Peruvian Andes Is Associated with Greater Odds of Women Achieving a 383 Minimally Diverse and Micronutrient Adequate Diet. J. Nutr. 148, 1625–1637. 384 https://doi.org/10.1093/jn/nxy166 385 Jones, A.D., Shrinivas, A., Bezner-kerr, R., 2014. Farm production diversity is associated with greater 386 household dietary diversity in Malawi: Findings from nationally representative data. J. FOOD
- Kahane, R., Hodgkin, T., Jaenicke, H., Hoogendoorn, C., Hermann, M., Keatinge, J., Hughes, J.D.,
 Looney, N., Kahane, R., Hodgkin, T., Jaenicke, H., Hoogendoorn, C., Hermann, M., Kahane, R.,
 Hodgkin, T., Jaenicke, H., 2015. Agrobiodiversity for food security, health and income To cite

POLICY 46, 1–12. https://doi.org/10.1016/j.foodpol.2014.02.001

- 391 this version: HAL Id: hal-01201396. Agron. Sustain. Dev. 33, 671–693. 392 https://doi.org/10.1007/s13593-013-0147-8 393 Kasem, S., Thapa, G.B., 2011. Crop diversification in Thailand: Status, determinants, and effects on 394 income and use of inputs. Land use policy 28, 618-628. 395 https://doi.org/10.1016/j.landusepol.2010.12.001 396 Kassie, M., Teklewold, H., Marenya, P., Jaleta, M., Erenstein, O., 2015. Production Risks and Food 397 Security under Alternative Technology Choices in Malawi: Application of a Multinomial 398 Endogenous Switching Regression. J. Agric. Econ. 66, 640-659. https://doi.org/10.1111/1477-399 9552.12099 400 KC, K.B., Pant, L.P., Fraser, E.D.G., Shrestha, P.K., Shrestha, D., Lama, A., 2016. Assessing links 401 between crop diversity and food self-sufficiency in three agroecological regions of Nepal. Reg. 402 Environ. Chang. 16, 1239–1251. https://doi.org/10.1007/s10113-015-0851-9 403 Khoury, C.K., Bjorkman, A.D., Dempewolf, H., Ramirez-villegas, J., Guarino, L., 2014. Increasing 404 homogeneity in global food supplies and the implications for food security. PNAS 111, 4001– 405 4006. https://doi.org/10.1073/pnas.1313490111 406 Kissoly, L., Faße, A., Grote, U., 2018. Implications of smallholder farm production diversity for 407 household food consumption diversity: Insights from diverse agro-ecological and market access 408 contexts in rural tanzania. Horticulturae 4, 7-11. 409 https://doi.org/10.3390/horticulturae4030014 410 Koppmair, S., Kassie, M., Qaim, M., 2017. Farm production, market access and dietary diversity in 411 Malawi. Public Health Nutr. 20, 325–335. https://doi.org/10.1017/S1368980016002135 Kremen, C., Miles, A., 2012. Ecosystem Services in Biologically Diversified versus Conventional 412 413 Farming Systems: Benefits, Externalities, and Trade-Offs. Ecol. Soc. 17, 40. 414 Kumar, N., Harris, J., Rawat, R., 2015. If They Grow It, Will They Eat and Grow? Evidence from Zambia 415 on Agricultural Diversity and Child Undernutrition. J. Dev. Stud. 51, 1060–1077. 416 https://doi.org/10.1080/00220388.2015.1018901 417 Kurosaki, T., 2003. Specialization and Diversification in Agricultural Transformation: The Case of West 418 Punjab, 1903–92. Am. J. Agric. Econ. 85, 372–386. https://doi.org/10.1111/1467-8276.00126 419 Ladha, J.K., Dawe, D., Pathak, H., Padre, A.T., Yadav, R.L., Singh, B., Singh, Yadvinder, Singh, Y., Singh, 420 P., Kundu, A.L., Sakal, R., Ram, N., Regmi, A.P., Gami, S.K., Bhandari, A.L., Amin, R., Yadav, C.R., Bhattarai, E.M., Das, S., Aggarwal, H.P., Gupta, R.K., Hobbs, P.R., 2003. How extensive are yield 421 422 declines in long-term rice-wheat experiments in Asia? F. Crop. Res. 81, 159-180. 423 https://doi.org/10.1016/S0378-4290(02)00219-8 424 Ladha, J.K., Rao, A.N., Raman, A.K., Padre, A.T., Dobermann, A., Gathala, M., Kumar, V., Saharawat, 425 Y., Sharma, S., Piepho, H.P., Alam, M.M., Liak, R., Rajendran, R., Reddy, C.K., Parsad, R., Sharma, 426 P.C., Singh, S.S., Saha, A., Noor, S., 2016. Agronomic improvements can make future cereal 427 systems in South Asia far more productive and result in a lower environmental footprint. Glob. 428 Chang. Biol. 22, 1054–1074. https://doi.org/10.1111/gcb.13143 429 Lele, U., Masters, W.A., Kinabo, J., Meenakshi, J. V, Ramaswami, B., Tagwireyi, J., Goswami, S., 2016. 430 Measuring Food and Nutrition Security: An Independent Technical Assessment and User's Guide for Existing Indicators, Measuring Food and Nutrition Security: An Independent Technical 431
- Leroy, J.L., Ruel, M., Frongillo, E.A., Harris, J., Ballard, T.J., 2015. Measuring the Food Access

 Dimension of Food Security: A Critical Review and Mapping of Indicators. Food Nutr. Bull. 36,

Assessment and User's Guide for Existing Indicators. Rome, Italy.

435	167-195. https://doi.org/10.1177/0379572115587274
436 437 438 439	Limbu, S.M., Shoko, A.P., Lamtane, H.A., Kishe-Machumu, M.A., Joram, M.C., Mbonde, A.S., Mgana, H.F., Mgaya, Y.D., 2017. Fish polyculture system integrated with vegetable farming improves yield and economic benefits of small-scale farmers. Aquac. Res. 48, 3631–3644. https://doi.org/10.1111/are.13188
440 441	Lin, B.B., 2011. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. Bioscience 61, 183–193. https://doi.org/10.1525/bio.2011.61.3.4
442 443	Lovo, S., Veronesi, M., 2019. Crop Diversification and Child Health: Empirical Evidence From Tanzania. Ecol. Econ. 158, 168–179. https://doi.org/10.1016/j.ecolecon.2019.01.005
444 445 446 447	Löw, F., Biradar, C., Fliemann, E., Lamers, J.P.A., Conrad, C., 2017. Assessing gaps in irrigated agricultural productivity through satellite earth observations—A case study of the Fergana Valley, Central Asia. Int. J. Appl. Earth Obs. Geoinf. 59, 118–134. https://doi.org/10.1016/j.jag.2017.02.014
448 449 450	Luna-González, D. V., Sorensen, M., 2018. Higher agrobiodiversity is associated with improved dietary diversity, but not child anthropometric status, of mayan achí people of Guatemala. Public Health Nutr. 21, 2128–2141. https://doi.org/10.1017/S1368980018000617
451 452 453	M'Kaibi, F.K., Steyn, N.P., Ochola, S., Du Plessis, L., 2015. Effects of agricultural biodiversity and seasonal rain on dietary adequacy and household food security in rural areas of Kenya. BMC Public Health 15, 1–11. https://doi.org/10.1186/s12889-015-1755-9
454 455 456	M'Kaibi, F.K., Steyn, N.P., Ochola, S.A., Du Plessis, L., 2017. The relationship between agricultural biodiversity, dietary diversity, household food security, and stunting of children in rural Kenya. Food Sci. Nutr. 5, 243–254. https://doi.org/10.1002/fsn3.387
457 458	Mabhaudhi, T., Chimonyo, V.G.P., Modi, A.T., 2017. Status of underutilised crops in South Africa: Opportunities for developing research capacity. Sustain. 9. https://doi.org/10.3390/su9091569
459 460 461	Mabhaudhi, T., O'Reilly, P., Walker, S., Mwale, S., 2016. Opportunities for underutilised crops in Southern Africa's post-2015 development agenda. Sustain. 8, 1–16. https://doi.org/10.3390/su8040302
462 463 464	Makate, C., Wang, R., Makate, M., Mango, N., 2016. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change. Springerplus 5, 18. https://doi.org/10.1186/s40064-016-2802-4
465 466 467 468	Malapit, H.J.L., Kadiyala, S., Quisumbing, A.R., Cunningham, K., Tyagi, P., 2015. Women's Empowerment Mitigates the Negative Effects of Low Production Diversity on Maternal and Child Nutrition in Nepal. J. Dev. Stud. 51, 1097–1123. https://doi.org/10.1080/00220388.2015.1018904
469 470	Markowitz, H., 1952. Portfolio selection. J. Finance 7, 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
471 472 473	Martin-Prevel, Y., Allemand, P., Wiesmann, D., Arimond, M., Ballard, T., Deitchler, M., Dop, MC., Kennedy, G., Lee, W.T.K., Moursi, M., 2015. Moving forward. On choosing a standard operational indicator of women's dietary diversity. Rome, Italy.
474 475 476	Mavengahama, S., McLachlan, M., de Clercq, W., 2013. The role of wild vegetable species in household food security in maize based subsistence cropping systems. Food Secur. 5, 227–233. https://doi.org/10.1007/s12571-013-0243-2
477	Mavhura, E., Manatsa, D., Mushore, T., 2015. Adaptation to drought in arid and semi-arid

478 environments: Case of the Zambezi Valley, Zimbabwe. Jàmbá J. Disaster Risk Stud. 7. 479 https://doi.org/10.4102/jamba.v7i1.144 480 Maxwell, D., Caldwell, R., 2008. The Coping Strategies Index. A tool for rapid measurement of 481 household food security and the impact of food aid programs in humanitarian emergency., 482 Educational and Psychological Measurement. https://doi.org/10.1177/0013164412465875 483 Mitchodigni, I.M., Amoussa Hounkpatin, W., Ntandou-Bouzitou, G., Avohou, H., Termote, C., 484 Kennedy, G., Hounhouigan, D.J., 2017. Complementary feeding practices: determinants of 485 dietary diversity and meal frequency among children aged 6-23 months in Southern Benin. 486 Food Secur. 9, 1117-1130. https://doi.org/10.1007/s12571-017-0722-y 487 Mofya-Mukuka, R., Hichaambwa, M., 2018. Livelihood effects of crop diversification: a panel data 488 analysis of rural farm households in Zambia. Food Secur. 10, 1449–1462. 489 https://doi.org/10.1007/s12571-018-0872-6 490 Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., 491 Group, P., 2015. Preferred reporting items for systematic review and meta-analysis protocols (492 PRISMA-P) 2015 statement. Syst. Rev. 4, 1–9. Mulmi, P., Masters, W.A., Ghosh, S., Namirembe, G., Rajbhandary, R., Manohar, S., Shrestha, B., 493 494 West, K.P., Webb, P., 2017. Household food production is positively associated with dietary 495 diversity and intake of nutrient-dense foods for older preschool children in poorer families: 496 Results from a nationally-representative survey in Nepal. PLoS One 12, 1–23. 497 https://doi.org/10.1371/journal.pone.0186765 Murendo, C., Nhau, B., Mazvimavi, K., Khanye, T., Gwara, S., 2018. Nutrition education, farm 498 499 production diversity, and commercialization on household and individual dietary diversity in 500 Zimbabwe. Food Nutr. Res. 62. https://doi.org/10.29219/fnr.v62.1276 501 N'Danikou, S., Vodouhe, R.S., Bellon, M.R., Sidibé, A., Coulibaly, H., 2017. Foraging is determinant to 502 improve smallholders' food security in rural areas in Mali, West Africa. Sustain. 9. 503 https://doi.org/10.3390/su9112074 504 Nabhan, G.P., Wilson, K., Aknazarov, O., Kassam, K., Monti, L., Cavagnaro, D., Kelly, S., Johnson, T., 505 Sekacucu, F., 2012. Agrobiodiversity Shifts on Three Continents Since Vavilov and Harlan: 506 Assessing Causes, Processes, and Implications for Food Security, in: Gepts, P., Famula, T.R., 507 Bettinger, R.L., Brush, S.B., Damania, A.B., McGuire, P.E., Qualset, C.O. (Eds.), Biodiversity in 508 Agriculture: Domestication, Evolution, and Sustainability. Cambridge University Press, pp. 407-509 435. 510 Naeem, S., Li, S., 1997. Biodiversity enhances ecosystem reliability. Nature 390, 507–509. 511 Nagothu, U.S., Tesfai, M., 2018. Pulses-millets crop diversification by smallholders and their 512 potential for sustainable food and nutrition security. Agric. Dev. Sustain. Intensif. 136–161. 513 https://doi.org/10.4324/9780203733301-6 514 Ng'endo, M., Bhagwat, S., Keding, G.B., 2016. Influence of Seasonal On-Farm Diversity on Dietary 515 Diversity: A Case Study of Smallholder Farming Households in Western Kenya. Ecol. Food Nutr. 516 55, 403–427. https://doi.org/10.1080/03670244.2016.1200037 517 Ng'Endo, M., Keding, G.B., Bhagwat, S., Kehlenbeck, K., 2015. Variability of on-farm food plant 518 diversity and its contribution to food security: A case study of smallholder farming households 519 in western Kenya. Agroecol. Sustain. Food Syst. 39, 1071–1103. 520 https://doi.org/10.1080/21683565.2015.1073206 521 Nkomoki, W., Bavorová, M., Banout, J., 2018. Adoption of sustainable agricultural practices and food

522 523	security threats: Effects of land tenure in Zambia. Land use policy 78, 532–538. https://doi.org/10.1016/j.landusepol.2018.07.021
524 525 526	Parvathi, P., 2018. Does mixed crop-livestock farming lead to less diversified diets among smallholders? Evidence from Laos. Agric. Econ. (United Kingdom) 49, 497–509. https://doi.org/10.1111/agec.12431
527 528 529	Passarelli, S., Mekonnen, D., Bryan, E., Ringler, C., 2018. Evaluating the pathways from small-scale irrigation to dietary diversity: evidence from Ethiopia and Tanzania. Food Secur. 10, 981–997. https://doi.org/10.1007/s12571-018-0812-5
530 531 532 533	Paul, B.K., Frelat, R., Birnholz, C., Ebong, C., Gahigi, A., Groot, J.C.J., Herrero, M., Kagabo, D.M., Notenbaert, A., Vanlauwe, B., Wijk, M.T. Van, 2017. Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs. Agric. Syst. in press. https://doi.org/10.1016/j.agsy.2017.02.007
534 535 536	Penafiel, D., Lachat, C., Espinel, R., Van Damme, P., Kolsteren, P., 2011. A Systematic Review on the Contributions of Edible Plant and Animal Biodiversity to Human Diets. Ecohealth 8, 381–399. https://doi.org/10.1007/s10393-011-0700-3
537 538 539	Perdoná, M.J., Soratto, R.P., 2015. Irrigation and intercropping with macadamia increase initial arabica coffee yield and profitability. Agron. J. 107, 615–626. https://doi.org/10.2134/agronj14.0246
540	Pimm, S.L., 1984. The complexity and stability of ecosystems.
541 542 543	Ponisio, L.C., M'Gonigle, L.K., Mace, K.C., Palomino, J., de Valpine, P., Kremen, C., 2015. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B Biol. Sci. 282, 20141396. https://doi.org/10.1098/rspb.2014.1396
544 545 546	Ponisio, L.C., M'Gonigle, L.K., Mace, K.C., Palomino, J., de Valpine, P., Kremen, C., 2014. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B Biol. Sci. 282, 20141396. https://doi.org/10.1098/rspb.2014.1396
547 548 549	Powell, B., Thilsted, S.H., Ickowitz, A., Termote, C., Sunderland, T., Herforth, A., 2015. Improving diets with wild and cultivated biodiversity from across the landscape. Food Secur. 7, 535–554. https://doi.org/10.1007/s12571-015-0466-5
550 551 552	Pradhan, A., Chan, C., Roul, P.K., Halbrendt, J., Sipes, B., 2018. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 163, 27–35. https://doi.org/10.1016/j.agsy.2017.01.002
553 554 555	Rammohan, A., Pritchard, B., Dibley, M., Vicol, M., 2018. The links between agricultural production and the nutritional status of children in rural Myanmar. Food Secur. 10, 1603–1614. https://doi.org/10.1007/s12571-018-0864-6
556 557 558	Raseduzzaman, M., Jensen, E.S., 2017. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 91, 25–33. https://doi.org/10.1016/j.eja.2017.09.009
559 560 561 562	Remans, R., Flynn, D.F.B., DeClerck, F., Diru, W., Fanzo, J., Gaynor, K., Lambrecht, I., Mudiope, J., Mutuo, P.K., Nkhoma, P., Siriri, D., Sullivan, C., Palm, C. a, 2011. Assessing nutritional diversity of cropping systems in African villages. PLoS One 6, e21235. https://doi.org/10.1371/journal.pone.0021235
563 564	Remans, R., Wood, S.A., Saha, N., Anderman, T.L., DeFries, R.S., 2014. Measuring nutritional diversity of national food supplies. Glob. Food Sec. 3, 174–182.

565	https://doi.org/10.1016/j.gfs.2014.07.001
566 567	Renard, D., Bennett, E.M., Rhemtulla, J.M., 2016. Agro-biodiversity has increased over a 95 year period at sub-regional and regional scales in southern Quebec, Canada. Environ. Res. Lett. 11.
568 569	Renard, D., Tilman, D., 2019. National food production stabilized by crop diversity. Nature 571, 257–260. https://doi.org/10.1038/s41586-019-1316-y
570 571 572 573	Ritzema, R.S., Douxchamps, S., Fraval, S., Bolliger, A., Hok, L., Phengsavanh, P., Long, C.T.M., Hammond, J., van Wijk, M.T., 2019. Household-level drivers of dietary diversity in transitioning agricultural systems: Evidence from the Greater Mekong Subregion. Agric. Syst. 176, 102657. https://doi.org/10.1016/j.agsy.2019.102657
574 575 576	Romeo, A., Meerman, J., Demeke, M., Scognamillo, A., Asfaw, S., 2016. Linking farm diversification to household diet diversification: evidence from a sample of Kenyan ultra-poor farmers. Food Secur. 8, 1069–1085. https://doi.org/10.1007/s12571-016-0617-3
577 578 579	Ruel, M.T., Alderman, H., 2013. Nutrition-sensitive interventions and programmes: How can they help to accelerate progress in improving maternal and child nutrition? Lancet 382, 536–551. https://doi.org/10.1016/S0140-6736(13)60843-0
580 581 582	Rufino, M.C., Thornton, P.K., Ng'ang'a, S.K., Mutie, I., Jones, P.G., van Wijk, M.T., Herrero, M., 2013. Transitions in agro-pastoralist systems of East Africa: Impacts on food security and poverty. Agric. Ecosyst. Environ. 179, 215–230. https://doi.org/10.1016/j.agee.2013.08.019
583 584 585	Saaka, M., Osman, S.M., Hoeschle-Zeledon, I., 2017. Relationship between agricultural biodiversity and dietary diversity of children aged 6-36 months in rural areas of northern Ghana. Food Nutr. Res. 61. https://doi.org/10.1080/16546628.2017.1391668
586 587 588 589 590	Samal, S.K., Rao, K.K., Poonia, S.P., Kumar, R., Mishra, J.S., Prakash, V., Mondal, S., Dwivedi, S.K., Bhatt, B.P., Naik, S.K., Choubey, A.K., Kumar, V., Malik, R.K., Mc Donald, A., 2017. Evaluation of long-term conservation agriculture and crop intensification in rice-wheat rotation of Indo-Gangetic Plains of South Asia: Carbon dynamics and productivity. Eur. J. Agron. 90, 198–208. https://doi.org/10.1016/j.eja.2017.08.006
591 592 593	Sanogo, K., Binam, J., Bayala, J., Villamor, G.B., Kalinganire, A., Dodiomon, S., 2017. Farmers' perceptions of climate change impacts on ecosystem services delivery of parklands in southern Mali. Agrofor. Syst. 91, 345–361. https://doi.org/10.1007/s10457-016-9933-z
594 595 596	Sardos, J., Muller, S., Duval, M.F., Noyer, J.L., Lebot, V., 2016. Root crops diversity and agricultural resilience: a case study of traditional agrosystems in Vanuatu (Oceania). Agric. Human Values 33, 721–736. https://doi.org/10.1007/s10460-015-9657-0
597 598 599 600	Sauer, C.M., Mason, N.M., Maredia, M.K., Mofya-Mukuka, R., 2018. Does adopting legume-based cropping practices improve the food security of small-scale farm households? Panel survey evidence from Zambia. Food Secur. 10, 1463–1478. https://doi.org/10.1007/s12571-018-0859-3
601 602 603	Schneider, M., Andres, C., Trujillo, G., Alcon, F., Amurrio, P., Perez, E., Weibel, F., Milz, J., 2017. Cocoa and total system yields of organic and conventional agroforestry vs. monoculture systems in a long-term field trial in Bolivia. Exp. Agric. 53, 351–374.

- https://doi.org/10.1017/S0014479716000417

 Schreefel, L., Schulte, R.P.O., de Boer, I.J.M., Schrijver, A.P., van Zanten, H.H.E., 2020. Regenerative agriculture the soil is the base. Glob. Food Sec. 26, 100404.
- 607 https://doi.org/10.1016/j.gfs.2020.100404

- 608 Schroth, G., Ruf, F., 2014. Farmer strategies for tree crop diversification in the humid tropics. A 609 review. Agron. Sustain. Dev. 34, 139–154. https://doi.org/10.1007/s13593-013-0175-4 610 Sibhatu, K.T., Krishna, V. V, Qaim, M., 2015. Production diversity and dietary diversity in smallholder 611 farm households. Proc. Natl. Acad. Sci. U. S. A. 112, 10657–10662. 612 https://doi.org/10.1073/pnas.1510982112 613 Sibhatu, K.T., Qaim, M., 2018a. Farm production diversity and dietary quality: linkages and measurement issues. Food Secur. 10, 47-59. https://doi.org/10.1007/s12571-017-0762-3 614 615 Sibhatu, K.T., Qaim, M., 2018b. Review: The association between production diversity, diets, and 616 nutrition in smallholder farm households. Food Policy 77, 1–18. 617 https://doi.org/10.1016/j.foodpol.2018.04.013 618 Snapp, S.S., Blackie, M.J., Gilbert, R.A., Bezner-Kerr, R., Kanyama-Phiri, G.Y., 2010. Biodiversity can 619 support a greener revolution in Africa. Proc. Natl. Acad. Sci. U. S. A. 107, 20840-20845. 620 https://doi.org/10.1073/pnas.1007199107 621 Snapp, S.S., Fisher, M., 2015. "Filling the maize basket" supports crop diversity and quality of 622 household diet in Malawi. Food Secur. 7, 83-96. https://doi.org/10.1007/s12571-014-0410-0 623 Somé, J.W., Jones, A.D., 2018. The influence of crop production and socioeconomic factors on 624 seasonal household dietary diversity in Burkina Faso. PLoS One 13, 1–16. 625 https://doi.org/10.1371/journal.pone.0195685 626 Souza, H.N., Cardoso, I.M., Fernandes, J.M., Garcia, F.C.P., Bonfim, V.R., Santos, A.C., Carvalho, A.F., 627 Mendonça, E.S., 2010. Selection of native trees for intercropping with coffee in the Atlantic 628 Rainforest biome. Agrofor. Syst. 80, 1-16. https://doi.org/10.1007/s10457-010-9340-9 Termote, C., Bwama Meyi, M., Dhed'a Djailo, B., Huybregts, L., Lachat, C., Kolsteren, P., van Damme, 629 630 P., 2012. A biodiverse rich environment does not contribute to a better diet: A case study from 631 DR Congo. PLoS One 7. https://doi.org/10.1371/journal.pone.0030533 Tesfaye, W., Tirivayi, N., 2020. Crop diversity, household welfare and consumption smoothing under 632 633 risk: Evidence from rural Uganda. World Dev. 125, 104686. 634 https://doi.org/10.1016/j.worlddev.2019.104686 635 Thapa, G., Kumar, A., Roy, D., Joshi, P.K., 2018. Impact of Crop Diversification on Rural Poverty in 636 Nepal. Can. J. Agric. Econ. Can. d'agroeconomie 66, 379-413. 637 https://doi.org/10.1111/cjag.12160 638 Thrupp, L.A.L.A., 2000. Linking Agricultural Biodiversity and Food Security: The Valuable Role of 639 Sustainable Agriculture Lori Ann Thrupp International Affairs. Int. Aff. 76, 265–281. 640 Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the sustainable 641 intensification of agriculture. Proc. Natl. Acad. Sci. U. S. A. 108, 20260-20264. 642 https://doi.org/10.1073/pnas.1116437108 Tobin, D., Jones, K., Thiede, B.C., 2019. Does crop diversity at the village level influence child 643 nutrition security? Evidence from 11 sub-Saharan African countries. Popul. Environ. 41, 74–97. 644 645 https://doi.org/10.1007/s11111-019-00327-4 Traoré, S.A., Reiber, C., Megersa, B., Zárate, A.V., 2018. Contribution of cattle of different breeds to 646
- Troell, M., Naylor, R.L., Metian, M., Beveridge, M., Tyedmers, P.H., Folke, C., Arrow, K.J., Barrett, S., Crépin, A.-S., Ehrlich, P.R., Gren, Å., Kautsky, N., Levin, S.A., Nyborg, K., Österblom, H., Polasky,

household food security in southern Mali. Food Secur. 10, 549–560.

https://doi.org/10.1007/s12571-018-0795-2

647

651 652 653	S., Scheffer, M., Walker, B.H., Xepapadeas, T., de Zeeuw, A., 2014. Does aquaculture add resilience to the global food system? Proc. Natl. Acad. Sci. 111, 13257–13263. https://doi.org/10.1073/pnas.1404067111
654 655 656	Urruty, N., Tailliez-lefebvre, D., Huyghe, C., Tailliez-lefebvre, D., 2016. Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agron. Sustain. Dev. https://doi.org/10.1007/s13593-015-0347-5
657 658	Valencia, V., Wittman, H., Blesh, J., 2019. Structuring Markets for Resilient Farming Systems. Agron. Sustain. Dev. 39, 1–14. https://doi.org/10.1007/s13593-019-0572-4
659 660 661	Vanek, S.J., Jones, A.D., Drinkwater, L.E., 2016. Coupling of soil regeneration, food security, and nutrition outcomes in Andean subsistence agroecosystems. Food Secur. 8, 727–742. https://doi.org/10.1007/s12571-016-0598-2
662 663 664	Waha, K., van Wijk, M.T.M.T., Fritz, S., See, L., Thornton, P.K.P.K., Wichern, J., Herrero, M., 2018. Agricultural diversification as an important strategy for achieving food security in Africa. Glob. Chang. Biol. 24, 3390–3400. https://doi.org/10.1111/gcb.14158
665 666 667	Whitney, C.W., Luedeling, E., Hensel, O., Tabuti, J.R.S., Krawinkel, M., Gebauer, J., Kehlenbeck, K., 2018. The Role of Homegardens for Food and Nutrition Security in Uganda. Hum. Ecol. 46, 497–514. https://doi.org/10.1007/s10745-018-0008-9
668 669	Whittaker, R.H., 1972. Evolution and Measurement of Species Diversity. Taxon 21, 213–251. https://doi.org/10.2307/1218190
670	WHO, 1995. Physical status: the use and interpretation of anthropometry.
671 672 673	Williams, N.E., Carrico, A.R., Edirisinghe, I., Jayamini Champika, P.A., 2018. Assessing the Impacts of Agrobiodiversity Maintenance on Food Security Among Farming Households in Sri Lanka's Dry Zone. Econ. Bot. 72, 196–206. https://doi.org/10.1007/s12231-018-9418-2
674 675 676	Working Group on Infant and Young Child Feeding Indicators, 2007. Developing and Validating Simple Indicators of Dietary Quality of Infants and Young Children in Developing Countries: Additional Analysis of 10 Data Sets. Washington D.C.
677 678	World Health Organization, 2008. Indicators for assessing infant and young child feeding practices. Part 1 Definitions. Geneva, Switzerland.
679 680 681	Yachi, S., Loreau, M., 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. 96, 1463–1468. https://doi.org/10.1073/pnas.96.4.1463
682 683 684	Yigrem, S., Markemann, A., Abebe, G., Ogutu, J.O., Piepho, HP., Zárate, A.V., 2015. Assessing the relative importance of dairy products to family nutrition in mixed crop-livestock production systems of Ethiopia. Food Secur. 7, 1003–1015. https://doi.org/10.1007/s12571-015-0487-0
685 686 687	Zanello, G., Shankar, B., Poole, N., 2019. Buy or make? Agricultural production diversity, markets and dietary diversity in Afghanistan. Food Policy 87, 101731. https://doi.org/10.1016/j.foodpol.2019.101731