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ON THE EXISTENCE OF MONGE MAPS FOR THE GROMOV-WASSERSTEIN PROBLEM

In this work, we study the structure of minimizers of the quadratic Gromov-Wasserstein (GW) problem on Euclidean spaces for two different costs. The first one is the scalar product for which we prove that it is always possible to find optimizers as Monge maps and we detail the structure of such optimal maps. The second cost is the squared Euclidean distance for which we show that the worst case scenario is the existence of a bi-map structure. Both results are direct and indirect consequences of an existence result of optimal maps in the standard optimal transportation problem for costs that are defined by submersions. In dimension one for the squared Euclidean distance, we show numerical evidence for a negative answer to the existence of a Monge map under the conditions of Brenier's theorem, suggesting that our result cannot be improved in general. In addition, we show that a monotone map is optimal in some non-symmetric situations, thereby giving insight on why such a map often appears to be optimal in numerical experiments.

Introduction

Finding correspondences between objects that do not live in the same metric space is a problem of fundamental interest both in applications and in theory, in very different fields such as computer vision and shape analysis [Ume88, MS04, MS05, BBM05, Mém07, Mém11], mathematics [Stu12], biology [DSS + 20] and machine learning [START_REF] Redko | Co-optimal transport[END_REF]AMJ18]. Graph matching [ZDlT15] is a prominent example of such a problem. A usual situation is when the objects of interest are metric spaces themselves, whose comparison is of practical and theoretical importance [GKPS99]; in this context, the Gromov-Hausdorff distance has been used in different settings [START_REF] Mémoli | Gromov-hausdorff distances in euclidean spaces[END_REF]MSW21] and its relaxation to spaces, the Gromov-Wasserstein distance, has been explored in [GKPS99, Chap. 3 1 /2] as well as in [Stu06, [START_REF] Mémoli | On the use of gromov-hausdorff distances for shape comparison[END_REF][START_REF] Mémoli | Gromov-hausdorff distances in euclidean spaces[END_REF]. Following this line of research, comparing metric measure spaces (i.e. metric spaces endowed with probability measures) using Wasserstein-type distances has attracted a lot of interest [Mém11,Stu12]. Follow-up works over the past decade include for instance [START_REF] Séjourné | The unbalanced gromov wasserstein distance: Conic formulation and relaxation[END_REF][START_REF] De | Entropy-transport distances between unbalanced metric measure spaces[END_REF] which propose extensions to the case of metric spaces with positive measures (i.e. whose total volume is not normalized to 1). The Gromov-Wasserstein distance and its extensions are applied successfully in machine learning [GJB19, BAMKJ19, XLH + 20] and biology [DSC + 22].

Following [START_REF] Mémoli | On the use of gromov-hausdorff distances for shape comparison[END_REF], the Gromov-Wasserstein approach consists in seeking for a map between the two objects of interest that is of low distortion. In the case of measures that live in a metric space, this distortion is measured in terms of distances. To make it well-posed and symmetric, the problem is relaxed to a superposition of deterministic maps, such as in optimal transport where they are called plans or couplings [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]. However, in stark contrast to optimal transport which is a linear programming problem, the formulation of the problems mentioned above falls in the class of quadratic assignment problems [KB57], which are computationally harder. As a consequence, it is not surprising that fewer results are available in the literature, yet some particular instances can be computed in polynomial time [MSW21]. Our interest in this paper is the understanding of the structure of optimal plans for this problem, and in particular when their support is the graph of a map. This problem has been put forward by Sturm in [Stu12, Challenge 3.6] and by Mémoli and Needham in [MN22, Question 2.14].

In optimal transport, the fact that the optimization can under mild conditions be reduced to the space of maps has been developed a lot since Brenier's work [START_REF] Brenier | Décomposition polaire et réarrangement monotone des champs de vecteurs[END_REF] and further generalized by McCann [McC01]. Brenier's result essentially states that for the quadratic cost in Euclidean spaces, the optimal coupling is a map which is given by the gradient of a convex function. Such results on the structure of optimal plans/maps are of great interest in order to reduce the optimization set [MTOL20].

In optimal transport, the existence of optimal maps heavily depends on the choice of the cost functions. This is also the case for the Gromov-Wasserstein problem. In this work, we address the question of optimal maps for the Gromov-Wasserstein problem for two particular costs in Euclidean spaces. The first one is when the distortion is measured in terms of the scalar product; we show the existence of optimal maps and we detail their structure, under conditions similar to Brenier's theorem. The second case is the quadratic squared distance for which the problem seems to have less structure; we show that the worst case (but probably generic) situation is that optimal plans can always be chosen to be supported on the union of two graphs. We also study the one-dimensional case, which has attracted recent attention [Vay20, BHS22]. Indeed, in the latter article, a counter-example is given to the fact that the monotone (non-decreasing or non-increasing) mapping is optimal in the discrete case. We improve on these results in two directions. First by showing that this property is true under some specific conditions on the measures and second by providing numerical evidence for a counter-example to the existence of optimal maps between an arbitrary measure and a measure which is absolutely continuous w.r.t. the Lebesgue measure. We refer the reader to Section 1.3 for a detailed account of our contributions, while the background and state-of-the-art are presented respectively in Sections 1.1 and 1.2.

The Gromov-Wasserstein problem

1.1.1 Formulation. The Gromov-Wasserstein (GW) problem, initially introduced in [START_REF] Mémoli | On the use of gromov-hausdorff distances for shape comparison[END_REF], can be seen as an extension of the Gromov-Hausdorff distance [GKPS99], to the context of (probability) measure spaces ( , ) equipped with a cost function : × → R (typically, can be a distance on ). Given ( , ) and ( , ) equipped with costs , respectively, and random variables , ∼ and , ∼ , the GW problem seeks a correspondence (i.e. a joint law) between and that would make the distribution ( , ) as close as possible to ( , ), in a sense. Formally, it reads Definition 1. Let and be Polish spaces and ≥ 1. Given two probability measures ∈ ( ) and ∈ ( ), two continuous functions : × → R and : × → R, the -Gromov-Wasserstein problem aims at finding

GW ( , ) = inf ∈Π( , ) ∫ × ∫ × | ( , ) -( , )| d ( , ) d ( , ) 1/ , ( GW 
)
where Π( , ) denotes the subset of ( × ) of probability measures that admit (resp. ) as first (resp. second) marginal. Any ★ minimizing (GW) is said to be an optimal correspondence plan between and . If there exists a measurable map : → satisfying # ( ) ( -1 ( )) = ( ) for all Borel set and such that ★ can be written as ★ = (id, ) # , then is said to be an optimal correspondence map, or a Monge map between and .

While the existence of optimal correspondence plans holds under mild assumptions by compactness arguments as long as the above minimum is not +∞, much less is known about the existence of optimal correspondence maps, even in simple cases.

In this work, we will consider two specific instances of this problem, both assuming that ⊂ R and ⊂ R for two integers ≥ and using = 2: 

∫ × ∫ × | -| 2 -| -| 2 2 d ( , ) d ( , ) , (GW-Q)
where by | • | we mean • 2 to alleviate notations in the paper.

This second choice and more generally = and = with ≥ 1 is standard as we have the following property: if GW ( , ) = 0, the metric measure spaces ( , , ) and ( , , ) are strongly isomorphic, that is there exists an isometry : A transport plan ∈ Π( , ) realizing (OT) is called an optimal transport plan, or optimal coupling. Whenever it can be written as (id, ) # for some map : → , is said to be an optimal transport map, or a Monge map between and for the cost .

The minimization problem in (GW) can be interpreted as the minimization of the map ↦ → ( , )

∬ d ⊗ where (( , ), ( , )) = | ( , ) -( , )| 2 ,
and is thus a symmetric bilinear map. By first order condition, if ★ minimizes (GW), then it also minimizes ↦ → 2 ( , ★ ).

If we let ★ ( , ) = ∫ × (( , ), ( , )) d ★ ( , ), we obtain the linear problem min ∈Π( , ) ∫ × ★ ( , ) d ( , ) , (1) 
which is nothing but the (OT) problem induced by the cost ★ on × . Therefore, we obtain that any optimal correspondence plan for (GW) with costs , must be an optimal transportation plan for (OT) with cost ★ . A crucial point, proved in [SVP21, Thm. 3] as a generalization of [START_REF] Konno | Maximization of a convex quadratic function under linear constraints[END_REF], is that if is symmetric negative on the set of (signed) measures on × with null marginals, that is ∫ d ⊗ ≤ 0 for all such , then the converse implication holds: any solution ★ ∈ Π( , ) of the OT problem with cost ★ is also a solution of the GW problem, that is

( ★ , ★ ) = ( ★ , ★ ) = ( ★ , ★ ) .
(2) Such a result is useful in this article to derive theoretical properties on the minimizers but also for the alternate minimization algorithms that were first proposed in [START_REF] Mémoli | On the use of gromov-hausdorff distances for shape comparison[END_REF]. The question of the existence and structure of optimal maps has been extensively studied in optimal transportation, see Section 1.2. Since in this case the solutions of (GW) are in correspondence with the solutions of an OT problem, the tools and knowledge from optimal transportation can be used to derive existence and structure of optimal maps. In particular, this holds for our two problems of interest (GW-Q) and (GW-IP): if denotes a finite signed measure on × ⊂ R × R with null marginals, observe that

∬ | -| 2 -| -| 2 2 d ( , ) d ( , ) = ∫ | -| 2 d ⊗ = 0 + ∫ | -| 2 d ⊗ = 0 -2 ∫ | -| 2 | -| 2 d ⊗ = -2 ∫ (| | 2 -2 , + | | 2 )(| | 2 -2 , + | | 2 ) d ⊗ .
Developing the remaining factor involves nine terms, but given that has null marginals (in particular, null mass), we obtain that

∫ | | 2 | | 2 d ⊗ = 0 (and similarly for the terms involving | | 2 | | 2 , | | 2 | | 2 and | | 2 | | 2 ), and also that ∫ | | 2 ,
d ⊗ = 0 (and similarly for the other terms). Eventually, the only remaining term is

-8 ∫ , , d ⊗ = -8 ∫ ⊗ d ( , ) 2 ≤ 0 ,
where ⊗ ∈ R × is the matrix ( ) , , where = ( 1 , . . . , ) and = ( 1 , . . . , ), and • denotes the Frobenius norm of a matrix; the same holds for non-finite by density. The negativity of this term ensures that solutions of (GW-Q) are exactly the solutions of an OT problem. Computations for (GW-IP) are similar-actually, they immediately boil down to the same last two equations. More generally, when one considers a cost such as ( ( , ) -( , )) 2 , by expanding the square, the only term that matters in the optimization is -2 ( , ) ( , ). Whenever it is possible to write both distances and as squared distances in Hilbert spaces, namely ( , ) = ( ) -( ) 2 and ( , ) = ( ) -( ) 2 for an embedding : → in a Hilbert space and similarly for , computation (3) holds. Such a property depends on the metric space, and when it is satisfied, the metric space is said to be of negative type or the distance to be Hilbertian. Another equivalent formulation is to say that is a conditionally negative definite kernel on . We refer to [Lyo13] for a thorough discussion.

Definition 3. A function

: × → R is a conditionally negative definite (CND) kernel if it is symmet- ric and for all ≥ 1, 1 , . . . , ∈ and 1 , . . . , ∈ R such that =1 = 0, , ≤ ( , ) ≤ 0.
Every CND kernel can be written as ( , ) = ( ) + ( ) + 1 2 ( ) -( ) 2 for an embedding : → with a Hilbert space and a function , as shown in [START_REF] Isaac | Metric spaces and positive definite functions[END_REF]. As far as the Gromov-Wasserstein functional is concerned, our discussion above shows that can actually be replaced with a kernel which is CND and that the relaxation still holds. To sum up our review of the literature, Proposition 1. Let ( , , ) and ( , , ) be two spaces endowed each with a conditionally negative definite kernel (or each with a conditionally positive definite one) and a probability measure. Then the bi-convex relaxation of GW 2 2 is tight, in the sense of (2). The corresponding kernel (( , ), ( , )) gives a non-positive quadratic form on signed measures with null marginals on × .

Remark that the map ( , ) ↦ → ( , ) is indeed bi-convex as it is linear in each variable , . Obviously, due to the square in the quadratic GW problem, the "sign" of both kernels do not matter. There are several important Riemannian manifolds which are of negative type; among them the real Hyperbolic space, the sphere and the Euclidean space. Counter-examples are for instance in finite dimension the Hyperbolic space on the quaternions [START_REF] Faraut | Distances hilbertiennes invariantes sur un espace homogene[END_REF], and in infinite dimension the Wasserstein-2 distance in R for ≥ 3 as proved in [START_REF] Andoni | Snowflake universality of wasserstein spaces[END_REF].

Related work

1.2.1 Monge maps for the OT problem. The (OT) problem has been extensively studied (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Vil08,PC19] for a thorough introduction) and particular attention has been devoted to situations where existence of Monge maps, or variations of, can be ensured.

Brenier's theorem [START_REF] Brenier | Décomposition polaire et réarrangement monotone des champs de vecteurs[END_REF], stated below, is the most well-known of such cases where the optimal plan is a map.

Theorem 1 (Brenier's theorem). Let = = R , , ∈ (R ) such that the optimal cost between and is finite and

( , ) = | -| 2 . If
ℒ , then there exists a unique (up to a set of -measure zero) solution of (OT) and it is induced by a map . This map is characterized by being the unique gradient of a convex function = ∇ such that (∇ ) # = .

This central result admits a generalization in the manifold setting, initially proposed by [McC01], that we shall use later on: Proposition 2 ([Vil08, Thm. 10.41]). Let be a Riemannian manifold with distance function , and

( , ) = ( , ) 2 . Let , ∈ ( ) with compact support. If vol , then there exists a unique solution of (OT) and it can be written as

= ( ) = exp (∇ ( )) ,
where is some 2 /2-convex function.

Brenier's theorem can be extended in a few directions. The condition that has a density can be weakened to the fact that it does not give mass to sets of Hausdorff dimension smaller than -1 (e.g. hypersurfaces), and can be more general than the squared distance function, as long as it satisfies the twist condition, defined below. In the following, = are complete Riemannian manifolds and : × → R is a continuous cost function, differentiable w.r.t. . We refer to [MG11, Vil08] for more information on the twist condition, to [START_REF] Chiappori | Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness[END_REF][START_REF] Ahmad | Optimal transportation, topology and uniqueness[END_REF][START_REF] Robert | A glimpse into the differential topology and geometry of optimal transport[END_REF] for the introduction of the subtwist condition and to [START_REF] Moameni | A characterization for solutions of the monge-kantorovich mass transport problem[END_REF] for that of the -twist and generalized twist conditions.

Proposition 3 (Twist). We say that satisfies the twist condition if for all 0 ∈ , ↦ → ∇ ( 0 , ) ∈ 0 is injective. (Twist)

Suppose that satisfies (Twist) and assume that any -concave function is differentiable -a.e. on its domain. If and have finite transport cost, then (OT) admits a unique optimal transport plan ★ and it is induced by a map which is the gradient of a -convex function : → R:

★ = (id, -exp (∇ )) # . R 1. Following [MG11, Vil08],
we recall that the -exponential map is defined on the image of -∇ by the formula -exp ( ) = (∇ ) -1 ( , -), i.e. -exp ( ) is the unique such that ∇ ( , ) + = 0. This notion reduces to the usual Riemannian exponential map when = 2 /2. R 2. Costs of the form ( , ) = ℎ( -) with ℎ strictly convex, and in particular the costs ( , ) = | -| for > 1, do satisfy the twist condition. Unfortunately, it cannot be satisfied for smooth costs on compact manifolds.

The twist condition is equivalent to the fact that for all 1 ≠ 2 ∈ , the function ∈ ↦ → ( , 1 ) -( , 2 ) has no critical point. Two weaker notions can be introduced in order to retain some (but less) structure on the optimal plans: Proposition 4 (Subtwist). We say that satisfies the subtwist condition if for all 1 ≠ 2 ∈ , ∈ ↦ → ( , 1 ) -( , 2 ) has no critical points, save at most one global maximum and at most one global minimum.

(Subtwist)

Suppose that satisfies (Subtwist) and is bounded. If vanishes on each hypersurface, then (OT) admits a unique optimal transport plan ★ and it is induced by the union of a map and an anti-map:

★ = (id, ) # ¯ + ( , id) # ( -# ¯ )
for some (Borel) measurable maps : → and : → and non-negative measure ¯ ≤ such that -# ¯ vanishes on the range of .

Proposition 5 ( -twist). We say that satisfies a -twist (resp. generalized twist) condition if for all ( 0 , 0 ) ∈ × , the set { | ∇ ( 0 , ) = ∇ ( 0 , 0 )} has at most elements ( -twist) (resp. is a finite subset of ). Suppose that is bounded, satisfies ( -twist) and assume that any -concave function is differentiable -almost surely on its domain. If has not atom and and have finite transport cost, then each optimal plan ★ of (OT) is supported on the graphs of ∈ [[ ]]

(resp. in N ∪ {∞}) measurable maps, i.e. there exists non-negative functions : → [0, 1] and (Borel) measurable maps : → such that

★ = =1 (id, ) # , in the sense ★ ( ) = =1 ∫ ( )1 ( , ( )) d ( ) for any Borel ⊂ × . E 1. If = = R, and ( , ) = 2 2 +
for some ≠ 0, the 2-twist condition holds. As we shall see in Section 3.3, such costs are closely related to the quadratic GW problem (GW-Q) in dimension 1. R 3. Following [Vil08, Rem. 10.33], when measures and have compact support and has a density-which are assumptions that we make in the following-, all conditions of Propositions 3 to 5 are satisfied.

Additionally, when and are of dimension and and are compactly supported, [MPW12] shows that if is 2 and satisfies the weaker condition of non-degeneracy det 2 ( , ) ≠ 0 for all ( , ) ∈ × , any solution of (OT) is supported on a -dimensional Lipschitz submanifold; but with no guarantee of uniqueness. General conditions for the uniqueness of the (OT) problem to hold have been recently established in [MR20].

Monge maps for the GW problem.

Besides being an interesting mathematical question in itself and in addition to reducing the computational complexity of the problem, preferring Monge maps in the Gromov-Wasserstein setting is interesting for registration purposes via mappings in imaging, shape analysis and simulation based inference; see [START_REF] Hur | Reversible gromov-monge sampler for simulation-based inference[END_REF]. The interest of restricting the Gromov-Wasserstein problem to the class of mappings is discussed in [MN22], where it is shown that this formulation retains some properties of a metric [MN22, Thm. 3].

In sharp contrast with the optimal transportation problem, there are very few results that ensure the existence of a Monge map for the Gromov-Wasserstein problem, even in the particular cases considered in this work. For the inner product cost, [Vay20, Thm. 4.2.3] provides a positive answer for the scalar product cost under some assumptions which are nontrivial to check.

Proposition 6 (Inner product cost: optimal map under condition). Let ≥ , , ∈ (R ) × (R ) two measures of finite second order moment with ℒ . Suppose that there exists ★ solution of (GW-IP) such that ★ ∫ ⊗ d ★ ( , ) is of full rank. Then there exists an optimal map between and that can be written as = ∇ • ★ with : R → R convex.

For the quadratic cost, in [Vay20] is claimed that in the discrete case in dimension 1 with uniform mass and same number of points , the optimal solution of (QAP) would either be the identity ( ) = or the anti-identity ( ) = + 1 -(Thm. 4.1.1). However, a counter-example to this assertion has been recently provided by [BHS22]. To the best of our knowledge, the only positive results on the existence of Monge maps for the quadratic cost are the following.

Proposition 7 ([Stu12, Thm. 9.21]). Let , ∈ (R ). Assume that , ℒ and that both measures are rotationally invariant around their barycenter. Then every ★ solution of (GW-Q) is induced by a transport map , unique up to composition with rotations, which rearranges the radial distributions of and around their barycenter in a monotone non-decreasing way.

It is of interest to note that this result implies that the optimal transport map between two Gaussians in dimension one is a monotone map. Yet, in higher dimension, the optimal plan for Gaussians is not known unless more constraints on the structure of the optimal plan is imposed

[SDD21]. Proposition 8 ([Vay20, Prop. 4.2.4]). Let , ∈ (R ) × (R ) with compact support, with ≥ . Assume that
ℒ and that both and are centered. Suppose that there exists ★ solution of (GW-Q) such that ★ = ∫ ⊗ d ★ ( , ) is of full rank. Then there exists : R → R convex such that = ∇ • ★ pushes to . Moreover, if there exists a differentiable convex : R → R such that

| ( )| 2 2 = (| | 2 
2 ) -a.e., then is optimal for (GW-Q). These results ensure the existence of a Monge map for the GW problems under restrictive conditions, either on the symmetry of the measures and or on the rank of a matrix that depends on an optimal correspondence plan.

Outline, contributions and perspectives

This work is organized in the following way. Section 2 provides a general setting in which existence of optimal transport maps can be shown for optimal transport problems with costs that are defined by submersions. We provide two versions of the result, one (Theorem 2) which has no structure and is fairly general and one (Theorem 3) which imposes a more structured setting thus recovering more structure in the optimal maps; the latter having the benefit of being more usable in further theoretical or computational analysis. The proof of the second version requires a measurability argument which is addressed in details in Proposition 11. Applications of these results to the Gromov-Wasserstein problems in Euclidean spaces with cost being the inner product (GW-IP) or the squared Euclidean distance (GW-Q) are done in Section 3. We prove existence of Monge maps for the scalar product, improving on the result in [Vay20] by alleviating the need for the rank assumption in Proposition 6, difficult to check in practice. For the squared distance, the worst case, but probably the generic one, is a bi-map structure, yet Monge maps can occur as well in a characterized setting.

An important question is to know if the result in the quadratic case (GW-Q) is sharp, that is we cannot guarantee that a Monge map exists in general, but only a bi-map. We address it in Section 3.3 which focuses on the one-dimensional case with quadratic cost and consists into two parts: first, after proving some structural properties of the optimal plan, we conduct a numerical exploration that suggests our previous structural results are sharp in dimension one. Last, we prove a positive result on the optimality of monotone maps, which partly explains why such maps are often optimal in practice. Notably, this result highlights the importance of long-range effects of this cost. In comparison, Sturm's result (Proposition 7) is concerned with symmetric distributions and does not account for the phenomenon that very often in dimension 1, a monotone map is optimal. As a possible extension, it is of interest to know if this result is stable with respect to the input distributions. We show that it is not the case in dimension 1, i.e. that there exists (degenerate) symmetric cases (namely, = = 0 ) for which a monotone map is not optimal for perturbations of the measures (i.e. there exist , → , for which the optimal correspondence plan is never a monotone map)-although this result does not prevent stability in non-degenerate symmetric cases. Further extensions could address sharper sufficient conditions for guaranteeing optimality of monotone plans.

Left open by our work is the existence of a cost which gives a proper Gromov-Wasserstein distance, contrary to the scalar product, and which guarantees the existence of Monge maps. However, for practical applications, having the possibility to choose the cost regardless of whether it defines a distance, for instance to favor local or long range effects, may be highly relevant since it directly affects the optimal correspondence plans, as well as the optimization problem.

Existence of Monge maps for fiber-invariant costs

This section provides the main result on the existence of Monge maps for OT problems for which the cost satisfies an invariance property. As detailed in Section 3, this property will be satisfied by the transport costs ★ arising from the first-order condition of (GW-Q) and (GW-IP)-see Section 1.1.2.

Statement of the results

We briefly present the main idea. Let , be two probability measures supported on a measurable space ( , Σ ) and consider a measurable map : → , for some measurable space ( , Σ ), referred to as the base space latter on. We shall omit to mention the -algebra afterwards. Let ( ) ∈ (resp. ( ) ∈ ) denote a disintegration of (resp. ) with respect to (see Appendix A.3 or for instance [AGS05, Thm. 5.3.1]). Let : × → R that is invariant on the fibers of , that is ( , ) = ˜ ( ( ), ( )) for all ( , ) ∈ × and some cost function ˜ on × . Solving the OT problem between and for reduces to the OT problem between # and # on × for ˜ . Assuming that there exists a Monge map between # and # , we build a Monge map between and by (i) transporting each fiber onto ( ) using a map , and (ii) gluing the ( ) ∈ together to define a measurable map satisfying # = that will be optimal as it coincides with on and the cost does not depend on the fibers ( -1 ( )) ∈ . We underline that ensuring the measurability of the map is non-trivial and crucial from a theoretical standpoint.

( ) ( )
Figure 1: Illustration of the construction of a Monge map between and : we optimally transport the projections of the measures in and then "lift" the resulting map to by sending each fiber onto the fiber ( ) , resulting respectively from the disintegrations of and by .

We propose two theorems to formalize this idea: the first one guarantees in a fairly general setting the existence of a Monge map for the (GW) problem, but its construction is quite convoluted and there is little to no hope that it can be leveraged in practice, either from a theoretical or computational perspective. Assuming more structure, in particular on the fibers of , enables the construction of a Monge map for (GW) with a structure akin to Proposition 2. As detailed in Section 3, both (GW-Q) and (GW-IP) fall in the latter setting.

Theorem 2. Let and be two measurable spaces for which there exist two measurable maps Φ : → R and Φ : → R that are injective, and whose inverses are measurable. Let ∈ ( ) and ∈ ( ) be two probability measures. Let : × → R be a cost function, and + , -be two measurable spaces along with measurable maps : → + and : → -. Assume that there exists a cost ˜ : + × -→ R such that

( , ) = ˜ ( ( ), ( )) for all ( , ) ∈ ×
and that there exists a Monge map : + → -that transports # onto # for the cost ˜ . Assume that there exists a disintegration ( ) ∈ + of with respect to such that # -a.e., is atomless. Then there exists a Monge map between and for the cost . Furthermore, it projects onto through ( , ), in the sense that ( ,

) # (id, ) # = (id, ) # ( # ).
The proof of this theorem is provided in Section 2.2. R 4. The atomless assumption on the disintegration ( ) is a natural minimal requirement to expect the existence of a map (without specific assumption on the target measure ) and implies in particular that the fibers ( -1 ( )) ∈ + should not be discrete (at least # -a.e.). Indeed, if for instance = = + = -= R and : ↦ → | |, the fibers of are of the form {-, }, hence the disintegrations ( ) ≥0 and ( ) ≥0 are discrete and given by ( ) +(1-( )) -and ( ) +(1-( )) -, and there is in general no map between two such discrete measures, unless we assume that ( ) = ( ) or 1 -( ), # -a.e.

Observe also that # may have atoms: as we assume the existence of the Monge map , it would imply in that case that # also has atoms. R 5. The "projection" property ( , ) # (id, ) # = (id, ) # ( # ) can also be written • ( ) =

• ( ), for -a.e. . A converse implication, that is "every Monge map between and projects onto a Monge map between # and # " may not hold in general. This is however true if we can guarantee that there is a unique optimal transport plan between # and # and that it is of the form (id, ) # (e.g. if we can apply Theorem 1)-in that case, necessary projects onto in the aforementioned sense.

Under additional assumptions, we can build a more structured Monge map. Namely, as our goal is to apply Proposition 2, we will assume that the (common) basis = + = -is a manifold, that almost all the fibers of : → are homeomorphic to the same manifold , and that every source measure of interest ( , , # ) has a density. We also introduce the following convention: if ∈ ( ) for some measurable space , ⊂ , and : → , we let # be the (non-negative) measure supported on defined by # ( ) = ( -1 ( )) for ⊂ measurable. If ( ) = 1, note that # defines a probability measure on . This formalism allows us to state our theorem even when some assumptions only hold -a.e. Theorem 3. Let 0 be a measurable space and 0 and be complete Riemannian manifolds. Let , ∈ ( 0 ) be two probability measures with compact support. Assume that there exists a set ⊂ 0 such that ( ) = 1 and that there exists a measurable map Φ : → 0 × that is injective and whose inverse on its image is measurable as well. Let , denote the projections of 0 × on 0 and respectively, and let

• Φ : → 0 . Let : 0 × 0 → R and suppose that there exists a twisted ˜ : 0 × 0 → R such that ( , ) = ˜ ( ( ), ( )) for all ( , ) ∈ 0 × 0 .
Assume that # is absolutely continuous w.r.t. the Lebesgue measure on 0 and let thus denote the unique Monge map between # and # for this cost. To alleviate notations, we let Φ # and Φ # in the following. Suppose that there exists a disintegration ( ) ∈ 0 of by such that for # -a.e. , is absolutely continuous w.r.t. the volume measure on . Then there exists an optimal map between and for the cost that can be decomposed as

Φ • • Φ -1 ( , ) = ( ( ), ( , )) = ( ˜ -exp (∇ ( )), exp (∇ ( ))) , (3) 
with : 0 → R ˜ -convex and : → R 2 /2-convex for # -a.e. . Note that could actually be any measurable function that sends each fiber onto ( ) .

The proof of this theorem is provided in Section 2.3. Let us give a simple example that illustrates the role played by our assumptions. This example has connections with (GW-Q) as detailed in Section 3.2. 

Φ : → R >0 × -1 = × ⊂ 0 × ↦ → | |, | | .
From this, we can write ( , ) = ˜ ( ( ), ( )) where ( ) = | | and ˜ ( , ) = ( -) 2 (which is twisted).

Now, if has a density on R , so does on 0 × as Φ is a diffeomorphism. The coarea formula gives the existence of a disintegration ( ) ∈ of by : ( , ) ↦ → (note that # = # also has a density) such that all the admit a density on -1 .

Our theorem thus applies, ensuring the existence of a structured Monge map between and (any)

for the cost : it decomposes for almost all ∈ R as a Monge map on the basis 0 = R (although it is actually only characterized on the image of , that is = R >0 ) obtained as the gradient of a convex function (there is no need for the exponential map here and ∇ is the non-decreasing mapping between the quantiles of # and # ) and a Monge map on each fiber = -1 , also built from gradients of convex functions (via the exponential map on the sphere).

Note that our theorem only requires assumptions to hold almost everywhere on 0 = R , which is important since it allows to ignore the singularity of at = 0.

Proof of Theorem 2

The proof decomposes in three steps.

Step 1: Existence and optimality of lifts. We know by assumption that there exists a Monge map that is optimal between the pushforward measures # and # .

As our goal is to build a Monge map between the initial measures and , we first show that (i) there exists a transport plan ∈ Π( , ) such that ( , ) # = (id, ) # and that (ii) any such is an optimal transport plan between and for the cost . This is formalized by the following lemmas.

Lemma 1 (Existence of a lift). For any transport plan ˜ ∈ Π( # , # ), there exists a transport plan ∈ Π( , ) such that ( , ) # = ˜ .

Proof. Let ( ) ∈ + and ( ) ∈ -be disintegrations of and by and respectively. Given ˜ ∈ Π( # , # ), we define

∬ + × - ( ⊗ ) d ˜ ( , ) ,
which is in Π( , ) since ˜ has ( # , # ) as marginals and, by disintegration, ∫ + d( # ) = (and same for ). The relation ( , ) # = ˜ then follows from the fact that by disintegration is exactly supported on -1 ({ }) so one has ( -1 ( )) = ( ) for any measurable ⊂ + (and same for ).

Lemma 2. Let : × → R and ˜ : + × -→ R such that ( , ) = ˜ ( ( ), ( )) for all ( , ) ∈ × .

Then optimal plans for the base space cost ˜ are the projections of optimal plans for : writing Π ★ ( , ) the set of optimal transport plan between and for the cost , and similarly for Π ★ ˜ ( # , # ), one has

Π ★ ˜ ( # , # ) = ( , ) # Π ★ ( , ) .
Proof. Let us first remark that the relation between and ˜ implies that for any ∈ Π( , ) and ˜ = ( , ) # , one has , = ˜ , ˜ . Now, let ˜ ★ ∈ Π ★ ˜ ( # , # ); by Lemma 1, there exists a ∈ Π( , ) such that ( , ) # = ˜ ★ . Then for any ∈ Π( , ), one has , = ˜ , ˜ ★ ≤ ˜ , ( , ) # = , , hence the optimality of . Conversely, let ★ ∈ Π ★ ( , ); by Lemma 1, for any ˜ ∈ Π( # , # ) there exists a ∈ Π( , ) such that ( , ) # = ˜ . We then have ˜ , ( ,

) # ★ = , ★ ≤ , = ˜ , ˜ , hence the optimality of ( , ) # ★ .
Step 2: Existence of Monge maps between the fibers. Using Lemma 1 with ˜ = (id, ) # ( # ), we know that we can build an optimal transportation plan ∈ Π( , ) that essentially coincides with on + × -and transports each fiber onto ( ) for -a.e. ∈ + . In order to build a Monge map between and , we must show that one can actually transport almost all onto ( ) using a map rather than a plan. For this, we use the following result, see [San15, Rem. 1.23, Lemma 1.28, Cor. 1.29].

Proposition 9. Let , be two measures supported on R with atomless. Then: (i) if = 1, there exists a transport map ˜ that pushes onto . Furthermore, it is the unique optimal map between these measures for the quadratic cost ( , ) ↦ → | -| 2 ; (ii) there exists a map : R → R (that does not depend on , ) that is (Borel) measurable, injective, and its inverse is measurable as well.

As we assumed that the ground spaces and can be embedded in R using the injective, measurable maps Φ and Φ , we can apply Proposition 9 using = • Φ and = • Φ . As is injective, # is atomless on R, and we can thus consider the unique Monge map ˜ between # and # ( ) for the quadratic cost on R.

From this, as the maps and are measurable and injective (thus invertible on their image) we can define = -1 • ˜ • : → , that defines a (measurable) transport map between and ( ) .

Step 3: building a measurable global map. Now that we have maps ( ) between each and

( ) , it may be tempting to simply define a map : → by ( ) = ( ) ( ) when ( ) is atomless (which, by assumption, holds -a.e.). Intuitively, this map induces a transport plan (id, ) # that satisfies ( , ) # (id, ) # = (id, ) # ( # ) on + × -and thus must be optimal according to Lemma 2.

One remaining step, though, is to prove that this map can be defined in a measurable way. For this, we use the following measurable selection theorem due to [FGM10, Thm. 1.1], that reads: Proposition 10. Let ( , Σ, ) be a -finite measure space and consider a measurable function ↦ → ( , ) ∈ (R ) 2 . Let : R × R → R be a cost function, and assume that for -a.e. ∈ , there is a (unique) Monge map between and for the cost . Then there exists a measurable function ( , ) ↦ → ( , ) such that -a.e., ( , ) = ( ), -a.e.

We can apply this result in the case = 1 to the family of measures ( # , # ( ) ) ∈ + , where the reference measure on + is # . 1 We first need to show the measurability of this family of measures. By definition of the disintegration of measures, the map ∈ -↦ → is measurable; and as the Monge map is measurable as well, so is the map + ↦ → # ( ) by composition of measurable maps, and thus so is the map ↦ → ( , ( ) ). Proposition 10 therefore applies and guarantees the existence of a measurable map ˜ : + × R → R such that ˜ ( , ) = ˜ ( ) for # almost all and # almost all . Now, we can define

: → ↦ → -1 • ˜ ( ( ), ( )) .
This map is measurable as composition of measurable maps. Let us prove that this defines a transport map between and . For any function : → R continuous with compact support, we can write

∫ ( ) d # ( ) = ∫ ( ( )) d ( ) = ∫ ∈ + ∫ ∈ -1 ({ }) -1 ˜ ( ( )) d ( ) d # ( ) ,
where we use the disintegration of w.r.t. and the fact that the are supported on -1 ({ }), allowing us to write ˜ ( ( ), ( )) = ˜ ( ( )) on that fiber ( # -a.e.). Now, recall that : ↦ → -1 • ˜ • ( ) defines a transport map between and ( ) . In particular, the image of the fiber

-1 ({ }) by this map is -1 ({ ( )}) ⊂ . Since ( ) is supported on -1 ({ ( )}), we therefore get ∫ ( ) d # ( ) = ∫ ∈ + ∫ ∈ ( ) d ( ) ( ) d # ( ) = ∫ ∈ - ∫ ∈ ( ) d ( ) d # ( ) ,
where we use the fact that pushes # to # ; by disintegration of w.r.t. , we then have # = .

By Lemma 2, this map is optimal if and only if it satisfies ( , ) # (id, ) # = (id, ) # ( # ), as is an optimal transportation plan between # and # , making (id, ) # optimal between and (hence a Monge map). For this, let : × → R be a continuous function with compact support.

We have

∫ + × - ( , ) d( , ) # (id, ) # ( , ) = ∫ ( ( ), ( ( ))) d ( ) = ∫ ∈ + ∫ ∈ -1 ({ }) , ( -1 • ˜ • ( )) d ( ) d # ( ) = ∫ ∈ + ∫ ∈ -1 ({ ( )}) ( , ( )) d ( ) ( ) d # ( ) = ∫ ∈ + ( , ( )) d # ( ) = ∫ + × - ( , ) d(id, ) # # ( , ) ,
proving the required equality and thus that is a Monge map between and .

Proof of Theorem 3

We recall that we note Φ # and Φ # . We also denote by the image of = • Φ, so that , are supported on × ⊂ 0 × .

Step 1: Construction of the structured Monge map. Given that # is absolutely continuous w.r.t. the Lebesgue measure on the complete (separable) Riemannian manifold 0 , by Theorem 1 there exists a unique optimal transport plan ★ between # and # for the cost ˜ and it is induced by a map : 0 → 0 of the form = ˜ -exp (∇ ), with ˜ -convex.

By Lemma 2, we know that any transport plan ∈ Π( , ) that satisfy ( , ) # = (id, ) # must be optimal. Therefore, if happens to be induced by a map , that is = (id, ) # , we would obtain a Monge map between and . To build such a , we proceed as in Section 2.2: we define a Monge map between and ( ) for # -a.e. and build a global map between and by (roughly) setting ( , ) = ( ). As in Section 2.2, proving the measurability of such requires care.

Step 2: Transport between the fibers. For # -a.e. , has a density w.r.t. the volume measure on and the optimal cost between and ( ) is finite by assumption. Whenever has a density, we can therefore apply Proposition 2 between and ( ) with the cost 2 to obtain that there exists a plan between these fibers that is induced by a map : → that can be expressed as

( ) = exp (∇ ( )) with being 2 /2-convex on .
Step 3: Measurability of the global map. Now that we have built structured maps between corresponding fibers (through ), it remains to prove the existence of a measurable map : 0 × → 0 × transporting onto satisfying ( , ) = ( ( ), ( )) for # -almost every and -almost every . For this, we need an adaptation of Proposition 10 to the manifold setting. Namely, we have the following: Proposition 11 (Measurable selection of maps, manifold case). Let be a complete Riemannian manifold and ( , Σ, ) a measure space. Consider a measurable function ↦ → ( , ) ∈ ( ) 2 . Assume that for -almost every ∈ , vol and and have a finite transport cost. Let denote the (unique by Proposition 2) optimal transport map induced by the quadratic cost 2 on between and .

Then there exists a measurable function ( , ) ↦ → ( , ) such that -a.e., ( , ) = ( ), -a.e.

This can essentially be shown by adapting the proof of [FGM10] to the manifold setting, and most steps adapt seamlessly. We provide a sketch of proof below. A complete proof, where we stress the points that need specific care in adaptation, is deferred to Appendix A.2.2. Sketch of proof of Proposition 11. The map ( , ) ↦ → ( , ) is defined as being the limit of a Cauchy sequence (on a complete metric space) of measurable maps ( , ) ↦ → ( ) ( , ) which are built as 1 -approximations of the ( ), yielding the relation ( , ) = ( ) for , -a.e. when → ∞.

More precisely, given a partition ( , ) of made of cells of diameters ≤ 2 -, and given , ∈ , any fixed point, ( ) is precisely defined as ( ) ( , ) = , , where , is the single point such that ( ) ∈ , . Since on each set of the form {( , ) | ( ) ∈ , }, one has ( ( ) ( , ), ( )) ≤ 2 - (the diameter of the cell), it follows that ( ) ( , ) → ( ), at least for -a.e. and -a.e. .

The key point is to ensure the measurability of the map ( ) , which actually boils down to prove that the set {( , ) | ( ) ∈

, } is measurable. This is possible by relying on the theory of measurable sets-valued maps [RW09, Ch. 5 and 14], that we carefully adapt to the manifold setting (instead of R ) in Appendix A.2.1.

We can apply this proposition with the manifold being the (common) fiber on which the , ( ) are supported for # -a.e. , and for which we have access to the (unique) Monge map . It gives the existence of a global map satisfying ( , ) = ( ) for # -a.e. , and -a.e. , and we can thus define the (measurable) map ( , ) = ( ( ), ( , )).

An elementary computation using the pushforward and disintegration definitions as well as the facts that # ( ) = ( ) and # ( # ) = # then guarantees that sends to , and Φ -1 • •Φ therefore sends to ; and since ( , ) # (id, ) # = ★ , by Lemma 2, is an optimal map between and .

Applications to the quadratic and inner-product GW problems

In this section, we apply the results of Section 2 to our two problems of interest, (GW-IP) and (GW-Q), to obtain the existence of Monge maps as solutions of these GW problems in suitable settings. The proofs can be sketched in the following way: for either of these two problems,

• Let ★ be an optimal plan for the GW problem;

• Consider the associated linearized problem (1) at ★ which is a standard optimal transportation problem. From Section 1.1.2, we know that any solution of this OT problem ( ★ being one of them) must be a solution of the initial GW problem;

• Observe that the linearized versions of (GW-IP) and (GW-Q) reduce to optimal transportation problems with costs that satisfy the assumptions of Theorem 3, thus guaranteeing the existence of a structured Monge map for the GW problem. As such, we only focus on detailing this last point in the following subsections. R 6. Our results provide the existence of a Monge map for the GW problems, but its construction depends on the linearization (that is, of the initial ★ selected). Thus, even though we would have uniqueness of solutions for the linearized problem as given e.g. by the subtwist condition, this does not give uniqueness of the solution to the corresponding GW problem: it may happen that the GW problem has several optimizers, each leading to a different linearized problem for which solutions, unique or not, may differ.

The inner-product cost

Expanding the integrand in (GW-IP) and using the fact that This problem is not invariant to translations but it is to the action of (R) × (R). Any optimal correspondence plan ★ is also an optimal transport plan for the linearized problem (1) with cost

★ ( , ) = - ∫ , , d ★ ( , ) = - ∫ ( ⊗ ) d ★ ( , ), = -★ , ,
where

★ ∫ ⊗ d ★ ( , ) ∈ R × .
This linearized cost is twisted if and only if ★ is of full rank, hence in this case ★ is the only solution of the linearized problem and it is induced by a map, and Theorem 4.2.3 from [Vay20] gives a result on the structure of this map. We can actually generalize this to the case where ★ is arbitrary:

Theorem 4 (Existence of an optimal map for the inner product cost). Let ≥ , , ∈ (R ) × (R ) two measures with compact supports. Suppose that ℒ . Then there exists an optimal map for (GW-IP) that can be written as

= • ( 0 • R ) • , (4) 
where and are change-of-basis matrices of R and R , R : R → R is defined by R ( 1 , . . . , ) = ( 1 , . . . , ), and

0 ( 1 , . . . , ) = (∇ • Σ( 1 , . . . , ℎ ), ∇ 1 ,..., ℎ ( ℎ+1 , . . . , )) , (5) 
with ℎ ≤ , Σ ∈ R ℎ×ℎ diagonal with positive entries, : R ℎ → R convex and all 1 ,..., ℎ : R -ℎ → R convex.

In order to show this, we will need two simple lemmas that essentially state that Brenier's result holds when the scalar product is perturbed by homeomorphisms. We state them now and prove them in Appendix A.1. Lemma 3. Let , ∈ ( ) and let 1 , 2 : → be homeomorphisms. Let ˜ : × → R and consider the cost ( , ) = ( 1 ( ), 2 ( )). Then a map is optimal for the cost between and if and only if it is of the form -1 2 • • 1 with optimal for the cost ˜ between 1# and 2# . The following lemma is a simple corollary of the first: Lemma 4. Let ℎ ≥ 1 and , ∈ (R ℎ ) with ℒ ℎ with compact supports. Consider the cost ( , ) = -1 ( ), 2 ( ) where 1 , 2 : R ℎ → R ℎ are diffeomorphisms. Then, there exists a unique optimal transport plan between and for the cost , and it is induced by a map : R ℎ → R ℎ of the form = -1 2 • ∇ • 1 , with convex. We now prove Theorem 4. 

˜ ∈ Π( , ), where Σ ( ˜ , ˜ ) = -ℎ =1 ˜ ˜ ˜ ( ( ˜ ), ( ˜ )),
being the orthogonal projection on R ℎ . We reduce to the case where both measures live in the same space by noting that since Σ ( ˜ , ˜ ) = Σ ( R ( ˜ ), ˜ ) for all ˜ and ˜ , any map 0 optimal between R # and will induce a map = 0 • R optimal between and (by Lemma 2). One can then recover an optimal map between and by composing with and (Lemma 3), hence Eq. ( 4). The existence of such a map 0 optimal between and satisfying (5) follows from the application of Theorem 3 for = 0 = R = R ℎ × R -ℎ = 0 × and = . Indeed, 0 and are complete Riemannian manifolds; ˜ is twisted on 0 × 0 ; # has a density on 0 and every has a density w.r.t. the Lebesgue measure on as a conditional probability. We then make explicit. One has that Σ ( , ) = -Σ , , where Σ = diag( ) 1≤ ≤ℎ . As # has a density, we can apply Lemma 4 stated above with ( 1 , 2 ) = ( Σ, id) to obtain that there exists a unique optimal transport plan ★ between # and # for the cost Σ and that it is induced by a map : → of the form = ∇ • Σ, with convex. R 7. A particular case of our theorem is Theorem 4.2.3 from [Vay20] (Proposition 6 in this work): when ℎ = , the optimal map between # and # writes 0 • R with 0 = ∇ • Σ. The induced optimal map between and is then

= • (∇ • Σ • R ) • = • (∇ • Σ) • = ∇( • ) • • Σ • = ∇ ˜ • ★ ,
where ˜ • is convex.

The quadratic cost

The (GW-Q) problem is invariant by translation of and . With no loss of generality, we suppose both measures centered. Expanding the integrand provides 

| -| 2 -| -| 2 2 = | -| 4 + | -| 4 -2| -| 2 | -| 2 ,
∫ -| | 2 | | 2 d ( , ) + 2 ∬ -, , d ( , ) d ( , ) .
Assuming an optimal correspondence plan ★ , this plan is also an optimal transport plan for the linearized problem (1) with cost

★ ( , ) = -| | 2 | | 2 -4 ∫ , , d ★ ( , ) = -| | 2 | | 2 -4 ★ , ,
where

★ ∫ ⊗ d ★ ( , ) ∈ R × .
In the cases where the rank of ★ is , this linearized cost satisfies both subtwist and 2-twist conditions, yielding an optimal bi-map that is also a map/anti-map, by compactness of the support of and and when has a density. Similarly, when the rank of ★ is -1, the cost only satisfies the 2-twist condition, yielding an optimal bi-map structure. In the case where rk ★ ≤ -2, nothing can be said and there is a priori no obvious reason for the existence of an optimal correspondence map; but perhaps surprisingly, it can actually be guaranteed.

Theorem 5 (Existence of an optimal map or bi-map for the quadratic cost). Let ≥ , , ∈ (R ) × (R ) two measures with compact supports. Suppose that ℒ . Let ★ be a solution of (GW-Q) and ★ ∫ ⊗ d ★ ( , ). Then: (i) if rk ★ = , there exists an optimal plan that is induced by a bi-map which is also a map/antimap;

(ii) if rk ★ = -1, there exists an optimal plan that is induced by a bi-map;

(iii) if rk ★ ≤ -2, there exists an optimal plan that is induced by a map that can be written as

= • 0 • ,
where and are change-of-basis matrices of R and, writing any

∈ R as = ( , ⊥ ) ∈ R ℎ × R -ℎ and Φ( ) ( , ) (( , | ⊥ | 2 ), ⊥ /| ⊥ |), Φ • 0 ( ) = ˜ -exp (∇ ( )), exp (∇ ( ))
where explicit expressions for ˜ and ˜ -exp are given in ( 6) and ( 7) respectively, with ℎ = rk ★ ≤ -2, : R ℎ+1 → R being ˜ -convex and all : R -ℎ → R being 2

-ℎ-1 /2-convex.
Proof.

(i) We show that in this case both subtwist and 2-twist conditions are satisfied. For subtwist, remark that

↦ → ∇ ( , 1 ) -∇ ( , 2 ) has no solution if | 1 | = | 2
| and a unique one otherwise. For 2-twist, remark that any ∈ satisfying

(| | 2 -| 0 | 2 ) 0 = -2( ★ ) ( -0 ) is fully determined by | | 2 -| 0 | 2 ,
and that is solution of a polynomial of degree two. This proves that there are always at most two such . Both subtwist and 2-twist conditions are therefore satisfied. The uniqueness of optimal plans given by subtwist then guarantees that the unique optimal transport plan for the linearized cost is induced both by a bi-map and a map/anti-map. (ii) We show that in this case the 2-twist condition is satisfied.

Let ∈ such that | | 2 0 +( ★ ) = | 0 | 2 0 + ( ★ ) 0
. Up to singular value decomposition suppose ★ rectangular diagonal in R × with sorted singular values and write Σ = diag( 1 , . . . , ℎ ) with ℎ rk( ★ ). Decompose each vector of R or R as = ( , ⊥ ), where ∈ R ℎ and ⊥ contains the remaining coordinates. The equation becomes:

| | 2 + Σ = | | 2 ⊥ = ⊥ .
These two equations impose to live in the intersection of a ( -1)-dimensional sphere and of a ( -)-dimensional affine subspace of R . As = -1, belongs to a set of at most 2 points and the 2-twist condition is satisfied. (iii) The case rk ★ ≤ -2 is a consequence of Theorem 3 and the proof is as follows. We consider the measure as a measure of R of -dimensional support. Similarly to the inner product cost, by

SVD the cost becomes ( , ) = -| | 2 | | 2 - Σ , = -| | 2 | | 2 -Σ(
), , and using Lemma 3 the problem transforms into min ˜ Σ , ˜ for ˜ ∈ Π( # , # ), where

Σ ( , ) -| | 2 | | 2 -Σ , . Further assuming 1 ≥ • • • ≥ ℎ > 0 and writing any ∈ R as = ( , ⊥ ) ∈ R ℎ × R -ℎ , Σ ( , ) = -| | 2 | | 2 -| | 2 | ⊥ | 2 -| ⊥ | 2 | | 2 -| ⊥ | 2 | ⊥ | 2 -Σ , = -| | 2 | | 2 -| | 2 + -+ | | 2 -+ + -Σ , ˜ ( ( ), ( )) , (6) 
with

+ = | ⊥ | 2 , + = | ⊥ | 2 and : ↦ → ( , | ⊥ | 2 )
, and the cost Σ ( , ) only depends of the values of ( ) and ( ). A direct computation gives that ˜ satisfies the twist condition. Now, the same as in Example 2 applies, but this time with

0 = R ℎ × R -ℎ , = 0 \(R ℎ × {0}), 0 = R ℎ × R and = -ℎ-1 = { ∈ 0 | | ⊥ | = 1}.
Is then ensured the existence of a structured Monge map between and for the cost : it decomposes for almost all ∈ R as a Monge map on the basis 0 = R ℎ+1 obtained as the gradient of a ˜ -convex function : R ℎ+1 → R (via the ˜ -exponential map on R ℎ+1 ) and a Monge map on each fiber = -ℎ-1 , also built from gradients of convex functions ℎ ( ,| ⊥ | 2 ) : -ℎ-1 → R (via the exponential map on the sphere); hence the result. Note that the ˜ -exponential map is given in closed form by

˜ -exp ( ) = Σ-1 ( -2 + ) + -|Σ -1 ( -2 + )| 2 for all ∈ R ℎ and = ( , + ) ∈ R ℎ × R . (7) 
Last, note that the case where ★ = 0 has not been explicitly treated. In this case, the cost is simply

( , ) = -| | 2 | | 2 = ˜ ( + , +
) and the strategy above directly applies.

Complementary study of the quadratic cost in the one-dimensional case

The (GW-Q) problem being invariant by translation, we assume that measures and below are centered. In the one-dimensional case , ⊂ R, the linearized GW problem (1) reads, with ★ an optimal correspondence plan:

min ∈Π( , ) ∫ × (-2 2 -4 ) d ( , ) , where = ∫ × d ★ ( , ) , (8) 
and for any plan ∈ Π( , ) (not necessarily optimal), we denote by

( ) = ∫ d ( , )
what we call the correlation of . When ≠ 0 (resp. = 0), the associated OT cost function ( , ) = -2 2 -4 satisfies both subtwist and 2-twist conditions (resp. satisfies the 2-twist condition) and therefore induces an optimal transport plan that is a bi-map and a map/anti-map (resp. a bi-map), see Theorem 5. In the following sections, we study the tightness of this result, asking if it exists cases where the optimal plan for this cost is not a map. In the one-dimensional case, the submodularity property of the cost is useful, sometimes called the Spence-Mirrlees condition. It guarantees the optimality of the non-decreasing (resp. non-increasing) matching ⊕ mon (resp. mon ) [START_REF] Carlier | Optimal transportation and economic applications[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]:

Definition 4 (Submodular cost). Let , ⊂ R be two intervals. A function : × → R is said to be submodular if for all ( , ) ∈ , and 1 , 2 ∈ R ≥0 such that + 1 ∈ and + 2 ∈ ,

( , ) + ( + 1 , + 2 ) ≤ ( , + 2 ) + ( + 1 , ) .
If is twice differentiable, this global condition on the rectangle × is equivalent to the local condition for all ( , ) ∈ × , ( ,

) ≤ 0 . (Submod) 
Supermodularity is defined with the reversed inequality.

We state the well-known consequence of submodularity on the structure of optimal plans. Proposition 12. Let , ∈ ( ) × ( ) of finite transport cost. If satisfies (Submod), then ⊕ mon is an optimal plan for (OT), unique if the inequality is strict everywhere on × (see [START_REF] Robert | A glimpse into the differential topology and geometry of optimal transport[END_REF]). Similarly, supermodularity induces the optimality of mon .

The linearized quadratic GW cost with parameter ≥ 0 is submodular on the region = {( , ) | ≥ -} and supermodular elsewhere (see Figure 2 for an illustration); so we cannot directly apply this proposition. In general, for a given cost in dimension one, there are regions of sub and supermodularity and this property gives only few information without particular structures of the regions. To be applicable, submodularity requires a rectangular region. In view of the form of the regions of modularity in our particular case, we can state: Proposition 13. Let > 0, = {( , ) | ≥ -} and denote by ★ an optimal transportation plan for the cost . Then, [ ★ ] | (the plan restricted to the submodularity region) is the monotone non-decreasing rearrangement between its marginals. Similarly, if < 0, [ ★ ] | (the plan restricted to the supermodularity region) is the monotone non-increasing rearrangement. If = 0, there are four regions of sub/supermodularity, and on each of these regions, the plan is a monotone rearrangement.

↦ → -/ ( 0 , 0 ) ( 1 , 1 )
Figure 2: Submodularity region (light green) and supermodularity region for the linearized quadratic GW cost with parameter > 0 (Left) or < 0 (Right), with an example of a rectangle ⊂ (purple) defined by a decreasing matching ( 0 , 0 ), ( 1 , 1 ) that allows to conclude for the monotonicity of the optimal plan on (see proof of Proposition 13), while the same argument does not apply to rectangles in (light purple), see Remark 8. Increasing ( ) and decreasing ( ) arrows are drawn in regions where the monotonicity of optimal correspondence plans is given by Proposition 13.

Figure 2 illustrates the regions, with increasing ( ) and ( ) decreasing arrows, where the monotonicity of optimal correspondence plans is given by the proposition.

Proof. In this proof, we use the fact that if ★ is optimal, then it is also optimal when restricted on a domain between the corresponding marginals. In particular, when > 0, the plan [ ★ ] | is necessarily optimal for the cost between its marginals. Consider ( 0 , 0 ), ( 1 , 1 ) ∈ supp([ ★ ] | ) such that 0 < 1 and 0 > 1 . The particular geometry of the space ensures that in this particular configuration, the rectangle = [ 0 , 1 ] × [ 1 , 0 ] is necessarily contained in (see Figure 2). As a consequence, the strict submodularity of the cost applies on to prove that [ ★ ] | is the monotone non-decreasing plan, contradicting the configuration. The proof goes similarly when < 0. The case = 0 yields four different regions of sub/supermodularity which are quadrants. Since these regions are union of rectangles on which the cost is strictly sub/supermodular, the argument above applies. R 8. Let us underline that it is not possible to apply the argument to the whole region since any two points of are not contained in a rectangle included in . The proof above only uses the fact that this property is used for some particular configuration of points, namely whenever 0 < 1 and 0 > 1 , which is (somewhat fortunately) exactly the configuration we want to consider when wondering if a map may be non-increasing. For instance, this argument does not apply to the complementary of denoted , although the property is of course satisfied on every rectangle contained in .

Before going into further details on our complementary study, we recall the discrete formulation of (OT) in dimension one. Given two sets { 1 , . . . , } and { 1 , . . . , } of R and two probability vectors and , the (OT) problem between the discrete measures = =1 and = =1 reads min

∈ ( , )
, ,

where ( , ) { ∈ R × | 1 = , 1 = } is the transport polytope, = ( ( , )) , is the cost matrix and •, • is the Frobenius inner product. In the case of the linearized problem (8), we denote by GW( ) the cost matrix, that has coefficients ( GW( ) ) , = -2 2 -4 with = , ★ and ( ) , = . In the following sections, we study the optimality of the monotone non-decreasing and nonincreasing rearrangements ⊕ mon and mon . It is worth noting that by submodularity of , ↦ → -, these two plans have respective correlations min and max , where min = min ,

max = max , , with 
( ) , = , (9) 
and that for any correspondence plan , the value of its correlation ( ) lies in the interval [ min , max ].

We provide in the following a complementary study of the quadratic cost in dimension one, namely (i) a procedure to find counter-examples to the optimality of the monotone rearrangements;

(ii) empirical evidence for the tightness of Theorem 5;

(iii) a proof of the instability of having a monotone rearrangement as an optimal correspondence plan; (iv) a new result on the optimality of the monotone rearrangements when the measures are composed of two distant parts. All experiments are reproducible and the code can be found on GitHub 2 .

3.3.1

Adversarial computation of non-monotone optimal correspondence plans. Theorem 4.1.1 of [Vay20] claims that in the discrete case in dimension 1 with = and = = 1 , the optimal solution of (QAP) is either the monotone non-decreasing rearrangement ⊕ mon or the monotone nonincreasing one mon . It seems to be the case with high probability empirically when generating random discrete measures. While this claim is true for = 1, 2 and 3, a counter-example for ≥ 7 points has recently been exhibited in [BHS22]. We further propose a procedure to automatically obtain additional counter-examples, demonstrating empirically that such adversarial distributions occupy a non-negligible place in the space of empirical measures. We propose to perform a gradient descent over the space of empirical distributions on × using an objective function that favors the strict sub-optimality of the monotone rearrangements; we now detail this procedure.

For ≥ 1, we consider the set of empirical distributions over × = R × R with points and uniform mass, i.e. of the form = 1 =1 ( , ) . Such plans can be seen as the identity mapping between vectors = ( 1 , . . . , ) and = ( 1 , . . . , ), and we therefore note = id( , ). Denoting by GW the functional that takes a correspondence plan and returns its cost on the GW problem, we then define ℱ : R × R → R by ℱ ( , ) GW ( ) -min GW ( ⊕ mon ), GW ( mon ) , where = id( , ) and ⊕ mon and mon are the monotone rearrangements between and . This quantifies how well the plan compares to the two monotone rearrangements. We generate points at random in [0, 1] 2 and then perform a simple gradient descent over the positions of the points ( , ) = ( , ) following the objective min , ∈R ℱ ( , ) .

We include an early-stopping threshold since when ℱ ( ) becomes negative, i.e. we found an adversarial example, the objective function often decreases exponentially fast. The procedure can be found in Algorithm 1 below. We implemented it using PyTorch's automatic differentiation [PGM + 19] and used [START_REF] Blondel | Fast differentiable sorting and ranking[END_REF] to implement a differentiable sorting operator to compute the monotone rearrangements. Adversarial plans = id( , ) obtained by Algorithm 1 are not a priori optimal for the GW cost between their marginals; but they have at least a better cost than the monotone rearrangements since ℱ ( , ) < 0, proving the sub-optimality of the latter.

Algorithm 1 Simple gradient descent over the positions ( ) and ( ) .

Parameters:

• : number of points of the distributions • iter : maximum number of iterations • : step size • : early stopping threshold

Algorithm:

1:

← random values in [0, 1], then centered 2:

← random values in [0, 1], then centered 3: for ∈ {1, . . . , iter } do 4:

⊕ mon ← id(sort( ), sort( ))
⊲ id is the identity mapping 5:

mon ← id(sort( ), reverse(sort( )))

6:

← id( , )

7: ℱ ( , ) ← GW( ) -min(GW( ⊕ mon ), GW( mon )) ⊲ GW computes GW 8:
if ℱ ( , ) < then stop ⊲ early stopping 9:

( , ) ← ( , ) -∇ℱ ( , ) ⊲ step of gradient descent 10: end for 11: return = id( , )

Output: a plan with better GW cost than ⊕ mon and mon On Figure 3 is displayed an example of adversarial plans obtained following this procedure. It can be observed that during the descent, the plan has difficulties getting out of what seems to be a saddle point consisting in being (close to) the monotone rearrangements between its marginals. Moreover, it is worth noting that the marginals of our typical adversarial plans, such as the one of Figure 3, are often similar to the counter-example proposed in [BHS22], where both measures have their mass concentrated near zero, except for one outlier for and two for , one on each tail. Furthermore, examining the optimal correspondence plan for these adversarial examples allows to exhibit cases where it is not a map, providing empirical evidence for the following conjecture: Conjecture 1. Theorem 5 is tight, i.e. there exists and for which optimal correspondence plans for (GW-Q) are not maps but rather a union of two graphs (that of two maps or one map and one anti-map); and this even if has a density, classical OT assumption for the existence of an optimal transport map.

In order to approximate numerically the case of a measure which has density w.r.t. the Lebesgue measure, we convolve our distributions = ( , 1 ) and = ( , 1 ) with a Gaussian of standard deviation and represent it in Eulerian coordinates; that is we evaluate the closed form density on a fine enough grid. When is large, the optimal correspondence plan for GW is probably induced by a monotone map, as it is the case very frequently empirically; on the contrary, if is sufficiently small, i.e. when the distributions are very close to their sum of Dirac measures discrete analogous, the optimal correspondence plan should not be a monotone map, by construction of and . R 9. Because of the adversarial nature of for the sub-optimality of ⊕ mon and mon , we know that when is sufficiently small, the optimal correspondence plan is not a monotone rearrangement. Still, it could be the case that this optimal plan is a map, but not a monotone one, and there is a priori no reason to believe that will agree with Conjecture 1. Surprisingly, it sometimes does, as numerical experiments below suggest.

In order to find the optimal correspondence plan ★ between and , we leverage the fact that ★ is a solution of its associated linearized problem. Therefore, a minimizer of the GW functional is given by arg min GW( ★ ) ★ ∈ arg min

∈ ( , ) GW( ) , , ∈ [ min , max ] , (10) 
where ( GW( ) ) , = -2 2 -4 . We therefore compute both min and max by solving the linear programs in (9), discretize the interval [ min , max ] with Δ points, and solve the corresponding linear optimization problem for every value of the parameter and evaluate the GW cost on each optimal plan for the given parameter . We then check if the optimal plan exhibits a bi-map structure. The procedure is described in Algorithm 2.

We display the results on Figure 4, where we plot the optimal correspondence plan ★ in two cases: (a) starting from an adversarial plan with both marginals convolved as to simulate densities; (b) starting from an adversarial plan with only the first marginal convolved and the second marginal being a sum of Dirac measures. To facilitate the reading, we draw a blue pixel at a location on the discretized -axis (resp. on the -axis) each time (resp. ) has two (disjoint) images (resp. pre-images), making ★ a bi-map (resp. a bi-anti-map), or the union of a graph and an anti-graph. In both cases, we observe that ★ is not a map but a bi-map instead, similarly to [CMN10, Sec. 4.5]. Note that in case (b), being atomic, there cannot be a map from to , so in both (a) and (b) we numerically exhibit an instance where there is a priori no map from neither to nor to . We also plot the submodularity regions of the linearized GW cost function with parameter ( ★ ) as an overlay and we observe that when the optimal plan gives mass to a region where the cost is submodular (resp. supermodular), it has a monotone non-decreasing (resp. non-increasing) behaviour in this region.

Empirical instability of the optimality of monotone rearrangements.

The above study demonstrates that there exist probability measures and for which property ( , ) : ⊕ mon or mon is an optimal correspondence plan between and does not hold. However, as it is very likely in practice when generating empirical distributions at random, one could ask if property is at least stable, i.e. if when we have 0 and 0 satisfying ( 0 , 0 ) there is a small ball around 0 and 0 (for a given distance, say Wasserstein-2) inside which property remains valid. A negative answer to this-besides, in the symmetric case-is given by the counter-example by [BHS22] with an increasing number of points: Proposition 14. There exists two symmetric measures , on R and sequences ( ) , ( ) that weakly converge to , such that optimal plans between and are never supported by a monotone ← " ★ is a bi-map" 12: return ★ , Outputs:

• ★ : optimal plan for GW • : boolean asserting if ★ is a bi-map map.

Proof. We consider = = 0 and the discrete measures = 1 =1 and = 1 =1 defined as follows for ≥ 7:

         -1 for = 1 ( -+1 2 ) 1 2 for = 2, . . . , -1 1 for = and          -1 for = 1 -1 + 1 2 for = 2 ( -2) 1 2 for = 3, . . . ,
which is simply the counter-example from [BHS22] with points and = 1/ 2 . Since ≥ 7, < 2/( -3) and the identity or anti-identity mappings are not optimal between and . By direct computation,

W 2 2 ( 0 , ) = (2/ + 2 2 ) →∞ ----→ 0 ,
and the exact same goes for = 0 and .

One can actually obtain non-degenerate (although not symmetric anymore) examples of such measures , . We start from the counter-example given in [BHS22] with = 7 points and = 10 -2 , that we convolve with a Gaussian of standard deviation as before. We then plot as a function of ∈ [ min , max ] the (true) GW cost of a plan ★ optimal for the linearized GW problem: ★ ∈ arg min GW( ) , . The minimum values of this graph are attained by the correlations of optimal correspondence plans, as explained in Section 3.3.1. Hence if is small, this optimal plan is not a monotone rearrangement by construction and the minima are not located on the boundary of the domain. On the contrary, when is large, a monotone rearrangement is optimal again. In order to study the phase transition, we plot on Figure 5 the landscape of ↦ → GW( ★ ) while gradually increasing the value of .

Looking at Figure 5, it is worth noting that there is an incentive for optimal plans at correlations close to min or max to be the monotone rearrangements, as the horizontal portions of the plot suggest. More importantly, it can be observed that when = 3 or 4 , the monotone rearrangements are optimal, as their correlations realize the minimum of ↦ → GW( ★ ); unlike for 1 and 2 , for which the minimum value of the plot is located near zero. Hence there should exist a 0 ∈ ( 2 , 3 ) for which the convolved measures have both ⊕ mon , mon and another 0 as optimal correspondence plans; it is direct that property does not hold in the neighbourhood of these specific measures 0 and 0 . Note that 1 and # 2 (resp. 1 and # 2 ) have disjoint supports. We want to prove the following:

A positive result

Proposition 15. For large enough, the unique optimal plan for the quadratic cost between and is given by one of the two monotone maps (non-decreasing or non-increasing). R 10. The hypothesis of the theorem illustrates that monotone maps are favored when and both contain a single or more outliers. The proof of the theorem actually shows the importance of long range correspondences or global effect over the local correspondences on the plan. In other words, even though monotone maps may not be optimal locally, global correspondences favor them. Moreover, these global correspondences have proportionally more weight in the GW functional since the cost is the squared difference of the squared distances. In conclusion, pair of points which are at long distances tend to be put in correspondence. In turn, this correspondence, as shown in the proof, favors monotone matchings. This argument gives some insight on the fact that a monotone map is often optimal and it is made quantitative in the previous theorem.

We first prove the following lemma: Lemma 5. In the setting described above, there exists 0 > 0 such that if ≥ 0 , every optimal plan for GW( , ) can be decomposed as = 1 + 2 , where either:

1. 1 is supported on × and 2 on ( + ) × ( + ) (that is, we separately transport 1 to 1 and # 2 to # 2 ), or 2. 1 is supported on × ( + ) and 2 on × ( + ) (that is, we transport 1 to # 2 and 2 to # 1 ).

Furthermore, whenever ≠ 1 2 , only the first point can occur.

Proof. Consider first the case = 1 2 . To shorten the notations, we introduce the notations 1 = and 2 = + . We can now decompose any plan as 11 + 12 + 21 + 22 where for instance 12 denotes the restriction of the plan to the product 1 × 2 . Let us also denote by the mass of 12 , one has 0 ≤ ≤ 1/2 and by symmetry, one can choose that ≤ 1/4, otherwise we exchange 1 and 2 for the second measure since the cost is invariant to isometries. Remark that, due to marginal constraints, the total mass of 11 and 22 is 1/2 -and the mass of 21 is . Therefore, it is possible to consider a coupling plan ˜ 11 between the first marginal of 12 and the second marginal of 21 , and similarly, let ˜ 22 be a coupling plan between the first marginal of 21 and the second marginal of 12 . We then define a competitor plan ˜ = 11 + ˜ 11 + 22 + ˜ 22 . The first step is to get a lower bound on the term GW( , ). Slightly overloading the notations, we introduce GW( , ) = where is the remainder that contains 12 terms from which one can identify two types. Among them, 8 terms are of the type GW( 12 , 11 ) ≥ (1/2 -)( 2 -Δ 2 ) 2 . Indeed, one compares pairs of points ( , ) and ( , ) for ( , ) ∈ 1 × 1 and ( , ) ∈ 1 × 2 , therefore ( -) 2 is upper bounded by Δ 2 and ( -) 2 lower bounded by 2 and the bound above follows after integration against the ). The two last terms can be upper bounded by 2 (1/2 -)Δ 2 . Indeed, one compares distance squared of couples of points in 1 to couple of points in 1 , so it is upper bounded by Δ 2 . Again by elementary inequalities (see Figure 6), the two first terms can be upper bounded by (2 Δ + Δ 2 ) 2 . Note that the total mass of the plan 11 + ˜ 11 is 1/2 which explains why (1/2 -) does not appear. Therefore, the difference between the two values of GW is

GW( , ) -GW( ˜ , ˜ ) ≥ 8(1/2 -)( 2 -Δ 2 ) 2 -4(1/2 -)Δ 2 -2(2 Δ + Δ 2 ) 2 . ( 12 
)
Then, since 1/2 -≥ 1/4 the limit in of the polynomial function on the r.h.s. of Eq. ( 12) is +∞ uniformly in ∈ [0, 1 4 ], and the result follows; there exists > 0 such that the polynomial function above is non-negative, for instance max(0, 0 ) where 0 is the largest root.

The proof in the case > 1/2 (the other is symmetric) is even simpler since -> -1/2 and consequently, there is no choice in the matching of the two measures; it is determined by the corresponding masses. One can directly apply the argument above.

We now prove Proposition 15.

Proof of Proposition 15. Thanks to Lemma 5, we know that we can restrict to transportation plans = 1 + 2 where, up to flipping , we can assume that 1 is supported on × and 2 on

  (i) the inner product case (considered in [AMJ18] and [Vay20]), where and are the inner products on R and R respectively (both denoted by •, • )( , ) d ( , ) , (GW-IP) which essentially compares distribution of angles in ( , ) and ( , ); (ii) the quadratic case (considered in [Stu12] and [Vay20]), where and are the squared Euclidean distance on R and R respectively: min ∈Π( , )

  , ) → ( , ) such that # = , see [Stu12]. A subcase of this problem is given when = 1 =1 and = 1 =1 are uniform probability distributions supported on points each. In this scenario, optimal correspondence plans can be chosen as permutations of {1, . . . , } (see [ML18, Thm. 1] and [Vay20, Thm. 4.1.2]), and the problem optimizes over the set of such permutations , min ∈ , | -| 2 -| ( ) -( ) | 2 2 , (QAP) which is a particular case of the Quadratic Assignment Problem first introduced in [KB57]. 1.1.2 Relation with the optimal transportation problem: a tight bi-convex relaxation. Let us first recall the formulation of the Optimal Transportation (OT) problem, also known as the Kantorovich problem, that will play an extensive role in this work. Definition 2 (Kantorovich problem). Given two probability measures ∈ ( ) and ∈ ( ) and a cost function : × → R ∪ {∞}, we consider the problem min ∈Π( , ) ∫ × ( , ) d ( , ) . (OT)

E 2 .

 2 Let 0 = R and = 0 \{0}, let 0 = R and = -1 = { ∈ 0 | | | = 1}. For convenience, we also introduce the space = R >0 . Consider the cost function ( , ) = (| | -| |) 2 , so that only depends on the norm of its entries. The fibers of the map ↦ → | | are spheres, with the exception of = 0, which invites us to consider the diffeomorphism

  constant (the same goes for the terms that depend on ), one gets the equivalent problem min ∈Π( , ) ∬ -, , d ( , ) d ( , ) .

Proof of Theorem 4 .

 4 Using a singular value decomposition (SVD), we have ★ = Σ ∈ R × with , ∈ (R)× (R) orthogonal matrices of each Euclidean space and Σ ∈ R × diagonal with nonnegative coefficients. The cost then becomes ★ ( , ) =the problem transforms into an optimal transportation problem between # and # ; and choosing and that sort the singular values in decreasing order, i.e. assuming 1 ≥ • • • ≥ ℎ > 0 with ℎ rk( ★ ) ≤ , the problem therefore transforms into min ˜ Σ , ˜ for

  and the two first terms only depend on and , not on . Expanding the remaining term yields nine terms. Two of them also lead to a constant contribution: -| | 2 | | 2 and -| | 2 | | 2 ; four lead to vanishing integrals since and are centered: 2| | 2 , , 2| | 2 , , 2| | 2 , and 2| | 2 , . The remaining three terms then yield the following equivalent problem: min ∈Π( , )

Figure 3 :

 3 Figure 3: Gradient descent results with parameters = 122, = 26, = -2. (Left) Evolution of the objective function ℱ . (Center) Initial plan 0 , generated at random. (Right) Final plan (iter. 66).

Figure 4 :Figure 5 :

 45 Figure 4: Optimal correspondence plan (in log scale) obtained with our procedure, starting either from a plan with both marginals convolved (Left) or with only the first marginal convolved (Right); bi-map and anti-bi-map coordinates (blue); submodularity regions (light green). Parameters: = 5.10 -3 , Δ = 150, Δ = 2000.

  for measures with two components. In the following, 1 , 2 , 1 and 2 are four probability measures supported on a compact interval ⊂ R. Denote Δ = diam( ), and fix ∈ (0, 1) and > Δ. Let : ↦ → + denote the translation by , and+ = ( ) = { + | ∈ }.Now, introduce the measures= (1 -) 1 + # 2 and = (1 -) 1 + # 2 .

Figure 6 :

 6 Figure 6: Visual sketch of the proof of Lemma 5.

  Algorithm 2 Generating bi-maps from adversarial examples.

	Input: an adversarial plan	= id( , ) obtained from Algorithm 1
	Parameters: • : standard deviation of convolution • Δ : discretization precision • Δ : discretization precision of the interval [ min , max ]
	Algorithm:	
	1: 2: 3: 4: 5: scores ← [] ← convolution( , , Δ ) ← convolution( , , Δ ) min ← min ∈ ( , ) , , max ← max ∈ ( , ) 6: for ∈ { min , . . . , max } do 7: ★ ← arg min ∈ ( , ) GW( ) , 8: append GW( ★ ) to scores	⊲ (optional) ⊲ solve linear programs ⊲ with Δ points ⊲ solve linear program
	9: end for 10: ★ ← arg max scores		⊲ take best plan for GW
	11:	

Note that we cannot apply Proposition 10 to the measures ( , ( ) ) and the maps ( ) directly, as may not be the unique Monge map between the measures, a required assumption of the proposition.

link of the code: https://github.com/theodumont/monge-gromov-wasserstein.

Note: this is where the choice is made, as in the proof of Lemma 5, between the increasing and the non-increasing matchings. Using this convention, the non-decreasing monotone map is shown to be optimal.
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( + ) × ( + ). 3 Using again the bilinear form GW( , ) defined in (11), the objective value reached by any transport plan = 1 + 2 actually decomposes as GW( , ) = GW( 1 , 1 ) + 2 GW( 1 , 2 ) + GW( 2 , 2 ) . Now, assume that we have found ★ 2 optimal. Let us minimize in 1 the resulting quadratic problem:

We know that if ★ 1 is a minimizer of this quantity, it must also be a solution of the linear problem

This minimization problem is exactly the optimal transportation problem for the cost

Now, using the relation (( -) 2 -( -) 2 ) 2 = (( -) -( -)) 2 (( + ) -( + )) 2 , and that ★ 2 is a transportation plan between # 2 and # 2 so that we can make a change of variable, observe that

Now, observe that ( , ) is a polynomial function in , , whose dominant term in is simply -2 2 , and recall that is compact, so that this polynomial function is bounded in , . We conclude ( , ) = -2 2 + ( ) < 0 for large enough, for all ( , ) ∈ × . The plan ★ 1 is optimal for a submodular cost, and by Proposition 12 must be the non-decreasing matching between 1 and 1 . By symmetry, so is ★ 2 .

A Appendix

A.1 Proofs of Lemmas 3 and 4

Proof of Lemma 3. Remark that the continuity of 1 and 2 and their inverse ensures their measurability. We have the following equalities:

since the mapping

by bijectivity of 1 and 2 . This bijectivity ensures that any optimal deterministic transport plan ˜ ★ between 1# and 2# induces an optimal deterministic transport plan ★ between and , and vice versa.

Proof of Lemma 4. As 1# has a density w.r.t. the Lebesgue measure since 1 is a diffeomorphism and 1# and 2# have compact support, Brenier's theorem states that there exists a unique optimal transport plan between 1# and 2# and that it is induced by a map ∇ , where is a convex function. Using Lemma 3 then gives the result. R 11 (Discussion on the hypothesis of Lemma 4). In the proof of Lemma 4, we only needed (i)

1 , 2 and their inverse to be measurable, (ii) 1# to have a density w.r.t. Lebesgue, and (iii) 1# and 2# to have compact support. Imposing 1 to be a diffeomorphism and 2 to be a homeomorphism ensures both (i) and (ii) and is natural to expect.

A.2 Measurable selection of maps in the manifold setting

A.2.1 Measurability of set-valued maps. Let , be two topological spaces, and let ℬ denote the Borel -algebra on . A set-valued map is a map from to ( ) (the set of subsets of ). This will be denoted by : ⇒ . The idea is to introduce notations which are consistent with the case where ( ) = { } for all in , where we want to retrieve the standard case of maps → . Definitions are taken from [RW09], where measurability is studied when = R . Most results and proofs adapt to a more general setting-in particular when is a complete Riemannian manifold , which we shall assume in the following. For the sake of completeness, we provide all the proofs, and highlight those that require specific care when replacing R by a manifold.

Of importance for our proofs, we define:

We will often use the following relation: if a set can be written as = , then -1 ( )

A set-valued map : ⇒ is said to be measurable if, for any open set ⊂ ,

Note that if is measurable (as a set-valued map), then its domain must be measurable as well (as an element of ). We say that : Proof of Proposition 16.

≠ for all because ( ) is a closed set. Hence -1 ( ) = -1 ( ). All the -1 ( ) are measurable, so is -1 ( ) as a countable intersection of measurable sets.

an open set of . As we assume to be a complete separable Riemannian manifold, can be written as a countable union of compact balls: = ( , ).

A closed set can be obtained as a countable union of compact sets by letting = ∩ ( 0 , ) for some 0 . Hence -1 ( )

Now, we introduce a proposition on operations that preserve measurability of closed-set valued maps. The proof requires adaptation from the one of [RW09] because the latter uses explicitly the fact that one can compute Minkowski sums of sets (which may not make sense on a manifold).

Proposition 17 (Proposition 14.11 in [RW09], adapted to the manifold case). Let 1 and 2 : ⇒ be two measurable closed-set valued maps. Then

) is measurable as a closed-valued map in × (equipped with the product topology).

Proof. The first point can be proved in the same spirit as the proof proposed by Rockafellar and Wets. Namely, let be an open set in × . By definition of the product topology, can be obtained as

( )

2 are open sets in . Then -1 ( ) = -1 ( ( )

) that is measurable as a countable union of (finite) intersection of measurable sets (given that 1 , 2 are measurable). Note that this does not require 1 , 2 to be closed-valued. Now, let us focus on the second point, that requires more attention. Thanks to the previous proposition, it is sufficient to show that -1 ( ) ∈ ℬ for any compact set ⊂ . In [RW09], this is done by writing

, where ( ) = ( ) ∩ (that is also closed valued), and using the fact that the (Minkowski) difference of measurable closed-valued maps is measurable as well [RW09, Prop. 14.11.c].

To adapt this idea (we cannot consider Minkowski difference in our setting), we introduce the diagonal

, where ( ) = 1 ( ) × 2 ( ). Since the maps 1 and 2 are measurable closedvalued maps (inherited from 1 , 2 ), so is according to the previous point. And since Δ is closed, -1 (Δ) = -1 ( ) is measurable.

A.2.2 Proof of Proposition 11.

The proof is essentially an adaptation of the one of [FGM10], with additional care required due to the fact that we do not have access to a linear structure on the manifold . It relies on measurability of set-valued maps (see [RW09, Ch. 5 and 14] and Appendix A.2.1 for a summary).

In the following, we consider a partition ( , ) of made of cells with diameter ≤ 2 -and such that ( , ) is a refinement of ( , ) in sense that each

, is itself partitioned by some , . The crucial point regarding measurability is the following proposition. } denotes the topological closure of the graph of the optimal transport map that pushes onto . Let 1 : ( , ) ↦ → { } × and 2 : ( , ) ↦ → gph( ), so that = dom( ), where ( ) = 1 ( ) ∩ 2 ( ). According to Proposition 17, given that 1 and 2 are closed-valued, if they are measurable, so is , and so is as the domain of a measurable map. The measurability of these two maps can be easily adapted from the work of [FGM10], we give details for the sake of completeness.

Measurability of

1 ( ) open (thus measurable), hence the measurability of 1 . Measurability of 2 : Given that ↦ → ( , ) is measurable by assumption, and that measurability is preserved by composition, we want to show that (i) the map : ( , ) ↦ → Π ★ ( , ) (the set of optimal transport plans between and for the quadratic cost on ) is measurable and (ii) the map :

From these two points, we get that ( • ) -1 ( ) is measurable, thus the measurability of 2 .

To get (i), observe first that is closed-valued, so that it is sufficient to prove that -1 ( ) is measurable for any closed set ⊂ ( 2 ) according to Proposition 16. Let ⊂ ( 2 ) be closed. Then, -1 ( ) = {( , ) | Π ★ ( , ) ∩ ≠ }, and consider a sequence ( , ) in -1 ( ) that converges to ( , ) for the weak topology. Let ∈ Π ★ ( , ) ∩ . According to [Vil08, Thm. 5.20], ( ) admits a weak limit in Π ★ ( , ), but also since is closed, ∈ , so that ( , ) ∈ -1 ( ) that is closed (hence measurable), proving the measurability of .

(ii) simply follows from the fact that -1 ( )

0} that is open. Indeed, the Portmanteau theorem gives that if → (weakly) and ( ) = 0, then 0 = lim inf ( ) ≥ ( ) ≥ 0, so ( ) = 0. The complementary set of -1 ( ) is closed, that is -1 ( ) is open.

Proof of Proposition 18. Using that , can be inner-approximated by a sequence of closed set ⊂ , , we obtain a sequence of sets ( ) such that = , . By Lemma 6, the ( ) are measurable, so is , as the (countable) union of measurable sets.

We can now prove our main proposition regarding measurability.

Proof of Proposition 11. Recall that we assume that = , . For each , , select (in a measurable way) a , in , . Then, define the map

, . This map is measurable. Indeed, for any open ⊂ , ( ),-1 ( ) = {( , ) | ( ) ∈ , } = , that is measurable according to Proposition 18. Now, for two maps , : × → , let 1 denotes the natural 1 distance on , that is

This yields a complete metric space [START_REF] Chiron | On the definitions of sobolev and bv spaces into singular spaces and the trace problem[END_REF], and we can observe that ( ( ) ) is a Cauchy sequence for this distance. Indeed, for ≤ two integers, recall that we assume that ( , ) is a refinement of ( , ) , yielding

where we use that for all ,

and transports onto ), and then that the diameter of the partition , is less than or equal to 2 -and that and are probability measures. Now, let denote the limit of ( ( ) ) (that is measurable). It remains to show that ( , ) = ( ), -a.e. This can be obtained by proving that

The difference between these two terms can be bounded using the partition ( , ) . We have for -a.e. :

Since ( ) → in 1 , it implies that up to a subsequence, ∫ ( ( ) ( , ), ( , )) d ( ) → 0 as → ∞ for -a.e. .

To treat the first term and show that it goes to 0 as → ∞ for a subset of with full -measure, we write for -a. This concludes the proof.

A.3 Measure disintegration

The following definition and theorem are taken from [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF]. In particular, for any Borel ⊂ , taking to be the indicator function of ,

Theorem 6 (Disintegration theorem). Let and be two Radon spaces, ∈ ( ) and : → a Borel-measurable function. There exists a # -a.e. uniquely determined family of probability measures { } ∈ ⊂ ( ) that provides a disintegration of by .