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Abstract
In this work, we study the structure of minimizers of the quadratic Gromov–Wasserstein (GW)

problem on Euclidean spaces for two different costs. The first one is the scalar product for which we
prove that it is always possible to find optimizers as Monge maps and we detail the structure of such
optimal maps. The second cost is the squared Euclidean distance for which we show that the worst
case scenario is the existence of a bi-map structure. Both results are direct and indirect consequences
of an existence result of optimal maps in the standard optimal transportation problem for costs
that are defined by submersions. In dimension one for the squared Euclidean distance, we show
numerical evidence for a negative answer to the existence of a Monge map under the conditions of
Brenier’s theorem, suggesting that our result cannot be improved in general. In addition, we show
that a monotone map is optimal in some non-symmetric situations, thereby giving insight on why
such a map often appears to be optimal in numerical experiments.

Contents
1 Introduction 2

1.1 The Gromov–Wasserstein problem 3
1.1.1 Formulation 3
1.1.2 Relation with the optimal transportation problem: a tight bi-convex relaxation 4

1.2 Related work 5
1.2.1 Monge maps for the OT problem 5
1.2.2 Monge maps for the GW problem 7

1.3 Outline, contributions and perspectives 8
2 Existence of Monge maps for fiber-invariant costs 8

2.1 Statement of the results 8
2.2 Proof of Theorem 2 11
2.3 Proof of Theorem 3 13

3 Applications to the quadratic and inner-product GW problems 14
3.1 The inner-product cost 15
3.2 The quadratic cost 16
3.3 Complementary study of the quadratic cost in the one-dimensional case 18

3.3.1 Adversarial computation of non-monotone optimal correspondence plans 20
3.3.2 Empirical instability of the optimality of monotone rearrangements 22
3.3.3 A positive result for measures with two components 24

∗Email addresses: dumont.theo@protonmail.com, theo.lacombe@univ-eiffel.fr, francois-xavier.vialard@u-pem.fr.

1

mailto:dumont.theo@protonmail.com
mailto:theo.lacombe@univ-eiffel.fr
mailto:francois-xavier.vialard@u-pem.fr


2 T. DUMONT, T. LACOMBE AND F.-X. VIALARD

1 Introduction

Finding correspondences between objects that do not live in the same metric space is a problem of
fundamental interest both in applications and in theory, in very different fields such as computer vision
and shape analysis [Ume88, MS04, MS05, BBM05, Mém07, Mém11], mathematics [Stu12], biology
[DSS+20] andmachine learning [RVFC20, AMJ18]. Graph matching [ZDlT15] is a prominent example
of such a problem. A usual situation is when the objects of interest are metric spaces themselves,
whose comparison is of practical and theoretical importance [GKPS99]; in this context, the Gromov–
Hausdorff distance has been used in different settings [Mém08, MSW21] and its relaxation to !?

spaces, the Gromov–Wasserstein distance, has been explored in [GKPS99, Chap. 31/2] as well as in
[Stu06, Mém07, Mém08]. Following this line of research, comparingmetric measure spaces (i.e.metric
spaces endowed with probability measures) using Wasserstein-type distances has attracted a lot of
interest [Mém11, Stu12]. Follow-up works over the past decade include for instance [SVP21, DPM22]
which propose extensions to the case of metric spaces with positive measures (i.e.whose total volume
is not normalized to 1). The Gromov–Wasserstein distance and its extensions are applied successfully
in machine learning [GJB19, BAMKJ19, XLH+20] and biology [DSC+22].

Following [Mém07], the Gromov–Wasserstein approach consists in seeking for a map between
the two objects of interest that is of low distortion. In the case of measures that live in a metric
space, this distortion is measured in terms of distances. To make it well-posed and symmetric, the
problem is relaxed to a superposition of deterministic maps, such as in optimal transport where they
are called plans or couplings [San15]. However, in stark contrast to optimal transport which is a
linear programming problem, the formulation of the problems mentioned above falls in the class
of quadratic assignment problems [KB57], which are computationally harder. As a consequence, it
is not surprising that fewer results are available in the literature, yet some particular instances can
be computed in polynomial time [MSW21]. Our interest in this paper is the understanding of the
structure of optimal plans for this problem, and in particular when their support is the graph of a
map. This problem has been put forward by Sturm in [Stu12, Challenge 3.6] and by Mémoli and
Needham in [MN22, Question 2.14].

In optimal transport, the fact that the optimization can under mild conditions be reduced to the
space of maps has been developed a lot since Brenier’s work [Bre87] and further generalized by
McCann [McC01]. Brenier’s result essentially states that for the quadratic cost in Euclidean spaces,
the optimal coupling is a map which is given by the gradient of a convex function. Such results
on the structure of optimal plans/maps are of great interest in order to reduce the optimization set
[MTOL20].

In optimal transport, the existence of optimal maps heavily depends on the choice of the cost
functions. This is also the case for the Gromov–Wasserstein problem. In this work, we address the
question of optimal maps for the Gromov–Wasserstein problem for two particular costs in Euclidean
spaces. The first one is when the distortion is measured in terms of the scalar product; we show the
existence of optimalmaps andwe detail their structure, under conditions similar to Brenier’s theorem.
The second case is the quadratic squared distance for which the problem seems to have less structure;
we show that the worst case (but probably generic) situation is that optimal plans can always be
chosen to be supported on the union of two graphs. We also study the one-dimensional case, which
has attracted recent attention [Vay20, BHS22]. Indeed, in the latter article, a counter-example is given
to the fact that the monotone (non-decreasing or non-increasing) mapping is optimal in the discrete
case. We improve on these results in two directions. First by showing that this property is true
under some specific conditions on the measures and second by providing numerical evidence for a
counter-example to the existence of optimal maps between an arbitrarymeasure and ameasure which
is absolutely continuous w.r.t. the Lebesgue measure. We refer the reader to Section 1.3 for a detailed
account of our contributions, while the background and state-of-the-art are presented respectively in
Sections 1.1 and 1.2.
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1.1 The Gromov–Wasserstein problem
1.1.1 Formulation. The Gromov–Wasserstein (GW) problem, initially introduced in [Mém07], can
be seen as an extension of the Gromov–Hausdorff distance [GKPS99], to the context of (probability)
measure spaces (X , �) equippedwith a cost function 2X : X×X → R (typically, 2X can be a distance on
X). Given (X , �) and (Y , �) equipped with costs 2X , 2Y respectively, and random variables -, -′ ∼ �
and .,.′ ∼ �, the GW problem seeks a correspondence (i.e. a joint law) between � and � that would
make the distribution 2X(-, -′) as close as possible to 2Y(.,.′), in a !? sense. Formally, it reads
Definition 1. Let X and Y be Polish spaces and ? ≥ 1. Given two probability measures � ∈ P(X) and
� ∈ P(Y), two continuous functions 2X : X × X → R and 2Y : Y ×Y → R, the ?-Gromov–Wasserstein
problem aims at finding

GW?(�, �) = inf
�∈Π(�,�)

(∫
X×Y

∫
X×Y
|2X(G, G′) − 2Y(H, H′)|? d�(G, H)d�(G′, H′)

)1/?
, (GW)

whereΠ(�, �) denotes the subset ofP(X×Y) of probability measures that admit� (resp. �) as first (resp. second)
marginal. Any �★ minimizing (GW) is said to be an optimal correspondence plan between � and �. If there
exists a measurable map ) : X → Y satisfying )#�(�) , �()−1(�)) = �(�) for all Borel set � and such that
�★ can be written as �★ = (id, ))#�, then ) is said to be an optimal correspondence map, or aMonge map
between � and �.

While the existence of optimal correspondence plans holds under mild assumptions by compact-
ness arguments as long as the above minimum is not +∞, much less is known about the existence of
optimal correspondence maps, even in simple cases.

In this work, we will consider two specific instances of this problem, both assuming that X ⊂ R=
andY ⊂ R3 for two integers = ≥ 3 and using ? = 2:

(i) the inner product case (considered in [AMJ18] and [Vay20]), where 2X and 2Y are the inner
products on R= and R3 respectively (both denoted by 〈·, ·〉):

min
�∈Π(�,�)

∫
X×Y

∫
X×Y
|〈G, G′〉 − 〈H, H′〉|2 d�(G, H)d�(G′, H′) , (GW-IP)

which essentially compares distribution of angles in (X , �) and (Y , �);
(ii) the quadratic case (considered in [Stu12] and [Vay20]), where 2X and 2Y are the squared Euclidean

distance on R= and R3 respectively:

min
�∈Π(�,�)

∫
X×Y

∫
X×Y

��|G − G′ |2 − |H − H′ |2��2 d�(G, H)d�(G′, H′) , (GW-Q)

where by | · | we mean ‖ · ‖2 to alleviate notations in the paper.

This second choice and more generally 2X = 3@X and 2Y = 3@Y with @ ≥ 1 is standard as we have the
following property: if GW?(�, �) = 0, the metric measure spaces (X , 3X , �) and (Y , 3Y , �) are strongly
isomorphic, that is there exists an isometry ! : (X , 3X) → (Y , 3Y) such that !#� = �, see [Stu12].
A subcase of this problem is given when � = 1

#
∑#
8=1 �G8 and � = 1

#
∑#
9=1 �H9 are uniform probability

distributions supported on # points each. In this scenario, optimal correspondence plans � can be
chosen as permutations � of {1, . . . , #} (see [ML18, Thm. 1] and [Vay20, Thm. 4.1.2]), and the problem
optimizes over the set of such permutations S# ,

min
�∈S#

∑
8 , 9

��|G8 − G 9 |2 − |H�(8) − H�(9) |2��2 , (QAP)

which is a particular case of the Quadratic Assignment Problem first introduced in [KB57].
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1.1.2 Relation with the optimal transportation problem: a tight bi-convex relaxation. Let us first
recall the formulation of the Optimal Transportation (OT) problem, also known as the Kantorovich
problem, that will play an extensive role in this work.
Definition 2 (Kantorovich problem). Given two probability measures � ∈ P(X) and � ∈ P(Y) and a cost
function 2 : X ×Y → R ∪ {∞}, we consider the problem

min
�∈Π(�,�)

∫
X×Y

2(G, H)d�(G, H) . (OT)

A transport plan � ∈ Π(�, �) realizing (OT) is called an optimal transport plan, or optimal coupling.
Whenever it can be written as (id, ))#� for some map ) : X → Y, ) is said to be an optimal transport map,
or a Monge map between � and � for the cost 2.

The minimization problem in (GW) can be interpreted as the minimization of the map � ↦→
�(�,�) ,

∬
: d�⊗� where :((G, H), (G′, H′)) = |2X(G, G′) − 2Y(H, H′)|2, and � is thus a symmetric

bilinear map. By first order condition, if �★ minimizes (GW), then it also minimizes � ↦→ 2�(�,�★).
If we let ��★(G, H) =

∫
X×Y :((G, H), (G

′, H′))d�★(G′, H′), we obtain the linear problem

min
�∈Π(�,�)

∫
X×Y

��★(G, H)d�(G, H) , (1)

which is nothing but the (OT) problem induced by the cost ��★ on X ×Y. Therefore, we obtain that
any optimal correspondence plan for (GW) with costs 2X , 2Y must be an optimal transportation plan
for (OT) with cost ��★ . A crucial point, proved in [SVP21, Thm. 3] as a generalization of [Kon76], is
that if : is symmetric negative on the set of (signed) measures on X × Y with null marginals, that is∫
: d
⊗
 ≤ 0 for all such 
, then the converse implication holds: any solution �★ ∈ Π(�, �) of the OT

problem with cost ��★ is also a solution of the GW problem, that is

�(�★,�★) = �(�★, �★) = �(�★, �★) . (2)

Such a result is useful in this article to derive theoretical properties on the minimizers but also for the
alternate minimization algorithms that were first proposed in [Mém07]. The question of the existence
and structure of optimal maps has been extensively studied in optimal transportation, see Section 1.2.
Since in this case the solutions of (GW) are in correspondence with the solutions of an OT problem,
the tools and knowledge from optimal transportation can be used to derive existence and structure of
optimal maps.

In particular, this holds for our two problems of interest (GW-Q) and (GW-IP): if 
 denotes a finite
signed measure on X ×Y ⊂ R= × R3 with null marginals, observe that∬ ��|G − G′ |2 − |H − H′ |2��2 d
(G, H)d
(G′, H′)

=

∫
|G − G′ |2 d
⊗
︸                 ︷︷                 ︸

= 0

+
∫
|H − H′ |2 d
⊗
︸                 ︷︷                 ︸

= 0

− 2
∫
|G − G′ |2 |H − H′ |2 d
⊗


= −2
∫
(|G |2 − 2〈G, G′〉 + |G |2)(|H |2 − 2〈H, H′〉 + |H′ |2)d
⊗
 .

Developing the remaining factor involves nine terms, but given that 
 has null marginals (in
particular, null mass), we obtain that

∫
|G |2 |H |2 d
⊗ 
 = 0 (and similarly for the terms involving

|G′ |2 |H′ |2, |G |2 |H′ |2 and |G′ |2 |H |2), and also that
∫
|G |2〈H, H′〉 d
⊗ 
 = 0 (and similarly for the other

terms). Eventually, the only remaining term is

− 8
∫
〈G, G′〉〈H, H′〉 d
⊗
 = −8





∫ G ⊗ H d
(G, H)




2

�
≤ 0 ,
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where G ⊗ H ∈ R=×3 is the matrix (G8H 9)8 , 9 , where G = (G1 , . . . , G=) and H = (H1 , . . . , H3), and ‖ · ‖�
denotes the Frobenius norm of a matrix; the same holds for non-finite 
 by density. The negativity of
this term ensures that solutions of (GW-Q) are exactly the solutions of an OT problem. Computations
for (GW-IP) are similar—actually, they immediately boil down to the same last two equations. More
generally, when one considers a cost such as (3X(G, G′) − 3Y(H, H′))2, by expanding the square, the
only term that matters in the optimization is −23X(G, G′)3Y(H, H′). Whenever it is possible to write
both distances 3X and 3Y as squared distances in Hilbert spaces, namely 3X(G, G′) = ‖!(G) −!(G′)‖2�X
and 3Y(H, H′) = ‖#(H) − #(H′)‖2�Y for an embedding ! : X → �X in a Hilbert space �X and similarly
for Y, computation (3) holds. Such a property depends on the metric space, and when it is satisfied,
the metric space is said to be of negative type or the distance to be Hilbertian. Another equivalent
formulation is to say that 3X is a conditionally negative definite kernel on X. We refer to [Lyo13] for a
thorough discussion.
Definition 3. A function :X : X×X → R is a conditionally negative definite (CND) kernel if it is symmet-
ric and for all# ≥ 1, G1 , . . . , G# ∈ X and$1 , . . . , $# ∈ R such that

∑#
8=1 $8 = 0,

∑
8 , 9≤# $8$ 9 :X(G8 , G 9) ≤ 0.

Every CND kernel can be written as :X(G, G′) = 5 (G) + 5 (G′) + 1
2 ‖!(G) − !(G′)‖2� for an embedding

! : X → � with � a Hilbert space and a function 5 , as shown in [Sch38]. As far as the Gromov–
Wasserstein functional is concerned, our discussion above shows that 2X can actually be replacedwith
a kernel which is CND and that the relaxation still holds. To sum up our review of the literature,
Proposition 1. Let (X , :X , �) and (Y , :Y , �) be two spaces endowed eachwith a conditionally negative
definite kernel (or each with a conditionally positive definite one) and a probability measure. Then
the bi-convex relaxation of GW2

2 is tight, in the sense of (2). The corresponding kernel :((G, H), (G′, H′))
gives a non-positive quadratic form on signed measures with null marginals on X ×Y.

Remark that the map (�, �) ↦→ �(�, �) is indeed bi-convex as it is linear in each variable �,
�. Obviously, due to the square in the quadratic GW problem, the “sign” of both kernels do not
matter. There are several important Riemannian manifolds which are of negative type; among them
the real Hyperbolic space, the sphere and the Euclidean space. Counter-examples are for instance
in finite dimension the Hyperbolic space on the quaternions [FH74], and in infinite dimension the
Wasserstein-2 distance in R3 for 3 ≥ 3 as proved in [ANN18].

1.2 Related work
1.2.1 Mongemaps for theOTproblem. The (OT) problemhas been extensively studied (see [San15,
Vil08, PC19] for a thorough introduction) andparticular attention has beendevoted to situationswhere
existence of Monge maps, or variations of, can be ensured.

Brenier’s theorem [Bre87], stated below, is the most well-known of such cases where the optimal
plan is a map.

Theorem 1 (Brenier’s theorem). Let X = Y = R3, �, � ∈ P(R3) such that the optimal cost between �
and � is finite and 2(G, H) = |G − H |2. If � � ℒ3, then there exists a unique (up to a set of �-measure
zero) solution of (OT) and it is induced by a map ). This map is characterized by being the unique
gradient of a convex function ) = ∇ 5 such that (∇ 5 )#� = �.

This central result admits a generalization in the manifold setting, initially proposed by [McC01],
that we shall use later on:
Proposition 2 ([Vil08, Thm. 10.41]). Let " be a Riemannian manifold with distance function 3, and
2(G, H) = 3(G, H)2. Let �, � ∈ P(") with compact support. If � � vol" , then there exists a unique
solution of (OT) and it can be written as

H = )(G) = expG(∇ 5 (G)) ,

where 5 is some 32/2-convex function.
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Brenier’s theorem can be extended in a few directions. The condition that � has a density can be
weakened to the fact that it does not give mass to sets of Hausdorff dimension smaller than 3 − 1
(e.g. hypersurfaces), and 2 can bemore general than the squared distance function, as long as it satisfies
the twist condition, defined below. In the following, X = Y are complete Riemannian manifolds and
2 : X×Y → R is a continuous cost function, differentiable w.r.t. G. We refer to [MG11, Vil08] for more
information on the twist condition, to [CMN10, AKM11, McC12] for the introduction of the subtwist
condition and to [Moa16] for that of the <-twist and generalized twist conditions.
Proposition 3 (Twist). We say that 2 satisfies the twist condition if

for all G0 ∈ X , H ↦→ ∇G2(G0 , H) ∈ )G0X is injective. (Twist)

Suppose that 2 satisfies (Twist) and assume that any 2-concave function is differentiable �-a.e. on its
domain. If � and � have finite transport cost, then (OT) admits a unique optimal transport plan �★

and it is induced by a map which is the gradient of a 2-convex function 5 : X → R:

�★ = (id, 2- expG(∇ 5 ))#� .
Remark 1. Following [MG11,Vil08], we recall that the 2-exponentialmap is definedon the image of−∇G2
by the formula 2-expG(?) = (∇G2)−1(G,−?), i.e. 2-expG(?) is the unique H such that ∇G2(G, H) + ? = 0.
This notion reduces to the usual Riemannian exponential map when 2 = 32/2.
Remark 2. Costs of the form 2(G, H) = ℎ(G − H) with ℎ strictly convex, and in particular the costs
2(G, H) = |G − H |? for ? > 1, do satisfy the twist condition. Unfortunately, it cannot be satisfied for
smooth costs on compact manifolds.

The twist condition is equivalent to the fact that for all H1 ≠ H2 ∈ Y, the function G ∈ X ↦→
2(G, H1) − 2(G, H2) has no critical point. Two weaker notions can be introduced in order to retain some
(but less) structure on the optimal plans:
Proposition 4 (Subtwist). We say that 2 satisfies the subtwist condition if

for all H1 ≠ H2 ∈ Y , G ∈ X ↦→ 2(G, H1) − 2(G, H2) has no critical points,
save at most one global maximum and at most one global minimum. (Subtwist)

Suppose that 2 satisfies (Subtwist) and is bounded. If � vanishes on each hypersurface, then (OT)
admits a unique optimal transport plan �★ and it is induced by the union of a map and an anti-map:

�★ = (id, �)#�̄ + (�, id)#(� − �#�̄)

for some (Borel) measurable maps � : X → Y and � : Y → X and non-negative measure �̄ ≤ � such
that � − �#�̄ vanishes on the range of �.
Proposition 5 (<-twist). We say that 2 satisfies a <-twist (resp. generalized twist) condition if

for all (G0 , H0) ∈ X ×Y , the set {H | ∇G2(G0 , H) = ∇G2(G0 , H0)} has at most < elements (<-twist)

(resp. is a finite subset of Y). Suppose that 2 is bounded, satisfies (<-twist) and assume that any
2-concave function is differentiable �-almost surely on its domain. If � has not atom and � and �
have finite transport cost, then each optimal plan �★ of (OT) is supported on the graphs of : ∈ [[<]]
(resp. inN∪{∞}) measurable maps, i.e. there exists non-negative functions 
8 : X → [0, 1] and (Borel)
measurable maps )8 : X → Y such that

�★ =
:∑
8=1


8(id, )8)#� ,

in the sense �★(() = ∑:
8=1

∫
X 
8(G)1((G, )8(G))d�(G) for any Borel ( ⊂ X ×Y.
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Example 1. If X = Y = R, and 2(G, H) = G2H2 + �GH for some � ≠ 0, the 2-twist condition holds. As
we shall see in Section 3.3, such costs are closely related to the quadratic GW problem (GW-Q) in
dimension 1.

Remark 3. Following [Vil08, Rem. 10.33], when measures � and � have compact support and � has
a density—which are assumptions that we make in the following—, all conditions of Propositions 3
to 5 are satisfied.

Additionally, when X and Y are of dimension 3 and � and � are compactly supported, [MPW12]
shows that if 2 is �2 and satisfies the weaker condition of non-degeneracy det�2

GH2(G, H) ≠ 0 for all
(G, H) ∈ X ×Y, any solution of (OT) is supported on a 3-dimensional Lipschitz submanifold; but with
no guarantee of uniqueness. General conditions for the uniqueness of the (OT) problem to hold have
been recently established in [MR20].

1.2.2 Monge maps for the GW problem. Besides being an interesting mathematical question in
itself and in addition to reducing the computational complexity of the problem, preferring Monge
maps in the Gromov–Wasserstein setting is interesting for registration purposes via mappings in
imaging, shape analysis and simulation based inference; see [HGL21]. The interest of restricting the
Gromov–Wasserstein problem to the class of mappings is discussed in [MN22], where it is shown that
this formulation retains some properties of a metric [MN22, Thm. 3].

In sharp contrast with the optimal transportation problem, there are very few results that ensure
the existence of a Monge map for the Gromov–Wasserstein problem, even in the particular cases
considered in this work. For the inner product cost, [Vay20, Thm. 4.2.3] provides a positive answer
for the scalar product cost under some assumptions which are nontrivial to check.

Proposition 6 (Inner product cost: optimal map under condition). Let = ≥ 3, �, � ∈ P(R=) × P(R3)
two measures of finite second order moment with � � ℒ= . Suppose that there exists �★ solution of
(GW-IP) such that "★ ,

∫
H ⊗ G d�★(G, H) is of full rank. Then there exists an optimal map between

� and � that can be written as ) = ∇ 5 ◦"★ with 5 : R3 → R convex.

For the quadratic cost, in [Vay20] is claimed that in the discrete case in dimension 1 with uniform
mass and same number of points# , the optimal solution of (QAP)would either be the identity �(8) = 8
or the anti-identity �(8) = # + 1 − 8 (Thm. 4.1.1). However, a counter-example to this assertion has
been recently provided by [BHS22]. To the best of our knowledge, the only positive results on the
existence of Monge maps for the quadratic cost are the following.

Proposition 7 ([Stu12, Thm. 9.21]). Let �, � ∈ P(R=). Assume that �, � � ℒ= and that both measures
are rotationally invariant around their barycenter. Then every �★ solution of (GW-Q) is induced by a
transport map ), unique up to composition with rotations, which rearranges the radial distributions
of � and � around their barycenter in a monotone non-decreasing way.

It is of interest to note that this result implies that the optimal transportmapbetween twoGaussians
in dimension one is a monotone map. Yet, in higher dimension, the optimal plan for Gaussians is not
known unless more constraints on the structure of the optimal plan is imposed [SDD21].

Proposition 8 ([Vay20, Prop. 4.2.4]). Let �, � ∈ P(R=) × P(R3) with compact support, with = ≥ 3.
Assume that � � ℒ= and that both � and � are centered. Suppose that there exists �★ solution of
(GW-Q) such that "★ =

∫
H ⊗ G d�★(G, H) is of full rank. Then there exists 5 : R3 → R convex such

that ) = ∇ 5 ◦"★ pushes � to �. Moreover, if there exists a differentiable convex � : R→ R such that
|)(G)|22 = �′(|G |22) �-a.e., then ) is optimal for (GW-Q).

These results ensure the existence of a Monge map for the GW problems under restrictive condi-
tions, either on the symmetry of the measures � and � or on the rank of a matrix that depends on an
optimal correspondence plan.
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1.3 Outline, contributions and perspectives
This work is organized in the following way. Section 2 provides a general setting in which existence
of optimal transport maps can be shown for optimal transport problems with costs that are defined
by submersions. We provide two versions of the result, one (Theorem 2) which has no structure and
is fairly general and one (Theorem 3) which imposes a more structured setting thus recovering more
structure in the optimal maps; the latter having the benefit of being more usable in further theoretical
or computational analysis. The proof of the second version requires a measurability argument which
is addressed in details in Proposition 11. Applications of these results to the Gromov–Wasserstein
problems in Euclidean spaces with cost being the inner product (GW-IP) or the squared Euclidean
distance (GW-Q) are done in Section 3. We prove existence of Monge maps for the scalar product,
improving on the result in [Vay20] by alleviating the need for the rank assumption in Proposition 6,
difficult to check in practice. For the squared distance, the worst case, but probably the generic one,
is a bi-map structure, yet Monge maps can occur as well in a characterized setting.

An important question is to know if the result in the quadratic case (GW-Q) is sharp, that is we
cannot guarantee that a Monge map exists in general, but only a bi-map. We address it in Section 3.3
which focuses on the one-dimensional case with quadratic cost and consists into two parts: first,
after proving some structural properties of the optimal plan, we conduct a numerical exploration
that suggests our previous structural results are sharp in dimension one. Last, we prove a positive
result on the optimality of monotonemaps, which partly explains why suchmaps are often optimal in
practice. Notably, this result highlights the importance of long-range effects of this cost. In comparison,
Sturm’s result (Proposition 7) is concerned with symmetric distributions and does not account for the
phenomenon that very often in dimension 1, a monotone map is optimal. As a possible extension, it
is of interest to know if this result is stable with respect to the input distributions. We show that it is
not the case in dimension 1, i.e. that there exists (degenerate) symmetric cases (namely, � = � = �0) for
which a monotone map is not optimal for perturbations of the measures (i.e. there exist �= , �= → �, �
for which the optimal correspondence plan is never a monotone map)—although this result does
not prevent stability in non-degenerate symmetric cases. Further extensions could address sharper
sufficient conditions for guaranteeing optimality of monotone plans.

Left open by ourwork is the existence of a cost which gives a proper Gromov–Wasserstein distance,
contrary to the scalar product, and which guarantees the existence of Monge maps. However, for
practical applications, having the possibility to choose the cost regardless of whether it defines a
distance, for instance to favor local or long range effects, may be highly relevant since it directly affects
the optimal correspondence plans, as well as the optimization problem.

2 Existence of Monge maps for fiber-invariant costs
This section provides the main result on the existence of Monge maps for OT problems for which the
cost satisfies an invariance property. As detailed in Section 3, this property will be satisfied by the
transport costs ��★ arising from the first-order condition of (GW-Q) and (GW-IP)—see Section 1.1.2.

2.1 Statement of the results
We briefly present the main idea. Let �, � be two probability measures supported on a measurable
space (�,Σ�) and consider ameasurablemap! : �→ �, for somemeasurable space (�,Σ�), referred to
as the base space latter on. We shall omit tomention the �-algebra afterwards. Let (�D)D∈� (resp. (�D)D∈�)
denote a disintegration of � (resp. �) with respect to ! (see Appendix A.3 or for instance [AGS05,
Thm. 5.3.1]). Let 2 : � × � → R that is invariant on the fibers of !, that is 2(G, H) = 2̃(!(G), !(H)) for
all (G, H) ∈ � × � and some cost function 2̃ on � × �. Solving the OT problem between � and � for 2
reduces to the OT problem between !#� and !#� on � × � for 2̃. Assuming that there exists a Monge
map C� between !#� and !#�, we build a Monge map ) between � and � by (i) transporting each
fiber �D onto �C�(D) using a map )D , and (ii) gluing the ()D)D∈� together to define a measurable map )
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satisfying )#� = � that will be optimal as it coincides with C� on � and the cost 2 does not depend on
the fibers (!−1(D))D∈�. We underline that ensuring the measurability of the map ) is non-trivial and
crucial from a theoretical standpoint.

�

�

�

�

�D

�C�(D)

!
!

C�

)D

D
C�(D)

Figure 1: Illustration of the construction of a Monge map between � and �: we optimally transport
the projections of the measures in � and then “lift” the resulting map C� to � by sending each fiber �D
onto the fiber �C�(D), resulting respectively from the disintegrations of � and � by !.

We propose two theorems to formalize this idea: the first one guarantees in a fairly general setting
the existence of a Monge map for the (GW) problem, but its construction is quite convoluted and
there is little to no hope that it can be leveraged in practice, either from a theoretical or computational
perspective. Assuming more structure, in particular on the fibers of !, enables the construction of a
Monge map for (GW) with a structure akin to Proposition 2. As detailed in Section 3, both (GW-Q)
and (GW-IP) fall in the latter setting.

Theorem 2. Let X and Y be two measurable spaces for which there exist two measurable maps
ΦX : X → R3 and ΦY : Y → R3 that are injective, and whose inverses are measurable. Let � ∈ P(X)
and � ∈ P(Y) be two probability measures. Let 2 : X ×Y → R be a cost function, and �+ , �− be two
measurable spaces along with measurable maps ! : X → �+ and # : Y → �−. Assume that there
exists a cost 2̃ : �+ × �− → R such that

2(G, H) = 2̃(!(G),#(H)) for all (G, H) ∈ X ×Y

and that there exists a Monge map C� : �+ → �− that transports !#� onto ##� for the cost 2̃. Assume
that there exists a disintegration (�D)D∈�+ of �with respect to ! such that !#�-a.e., �D is atomless.
Then there exists aMongemap between � and � for the cost 2. Furthermore, it projects onto C� through
(!,#), in the sense that (!,#)#(id, ))#� = (id, C�)#(!#�).

The proof of this theorem is provided in Section 2.2.

Remark 4. The atomless assumption on the disintegration (�D)D is a natural minimal requirement to
expect the existence of a map (without specific assumption on the target measure �) and implies in
particular that the fibers (!−1(D))D∈�+ should not be discrete (at least !#�-a.e.). Indeed, if for instance
X = Y = �+ = �− = R and! : G ↦→ |G |, the fibers of! are of the form {−D, D}, hence the disintegrations
(�D)D≥0 and (�D)D≥0 are discrete and given by �D(D)�D+(1−�D(D))�−D and �D(D)�D+(1−�D(D))�−D , and
there is in general nomap)D between two suchdiscretemeasures, unlesswe assume that�D(D) = �D(D)
or 1 − �D(D), !#�-a.e.
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Observe also that !#�may have atoms: as we assume the existence of the Monge map C�, it would
imply in that case that ##� also has atoms.
Remark 5. The “projection” property (!,#)#(id, ))#� = (id, C�)#(!#�) can also be written # ◦ )(G) =
C� ◦ !(G), for �-a.e. G. A converse implication, that is “every Monge map between � and � projects
onto a Monge map between !#� and !#�” may not hold in general. This is however true if we can
guarantee that there is a unique optimal transport plan between !#� and ##� and that it is of the
form (id, C�)#� (e.g. if we can apply Theorem 1)—in that case, ) necessary projects onto C� in the
aforementioned sense.

Under additional assumptions, we can build a more structured Monge map. Namely, as our goal
is to apply Proposition 2, we will assume that the (common) basis � = �+ = �− is a manifold, that
almost all the fibers of ! : � → � are homeomorphic to the same manifold �, and that every source
measure of interest (�, �D , !#�) has a density. We also introduce the following convention: if � ∈ P(�)
for some measurable space �, �′ ⊂ �, and ! : �′ → �, we let !#� be the (non-negative) measure
supported on � defined by !#�(�) = �(!−1(�)) for � ⊂ � measurable. If �(�′) = 1, note that !#�
defines a probability measure on �. This formalism allows us to state our theorem even when some
assumptions only hold �-a.e.
Theorem 3. Let �0 be a measurable space and �0 and � be complete Riemannian manifolds. Let
�, � ∈ P(�0) be two probability measures with compact support. Assume that there exists a set
� ⊂ �0 such that �(�) = 1 and that there exists a measurable map Φ : �→ �0 × � that is injective and
whose inverse on its image is measurable as well. Let ?� , ?� denote the projections of �0 × � on �0
and � respectively, and let ! , ?� ◦ Φ : � → �0. Let 2 : �0 × �0 → R and suppose that there exists a
twisted 2̃ : �0 × �0 → R such that

2(G, H) = 2̃(!(G), !(H)) for all (G, H) ∈ �0 × �0 .

Assume that !#� is absolutely continuous w.r.t. the Lebesgue measure on �0 and let thus C� denote
the unique Monge map between !#� and !#� for this cost. To alleviate notations, we let �′ , Φ#� and
�′ , Φ#� in the following. Suppose that there exists a disintegration (�′D)D∈�0 of �′ by ?� such that for
!#�-a.e. D, �′D is absolutely continuous w.r.t. the volume measure on �.
Then there exists an optimal map ) between � and � for the cost 2 that can be decomposed as

Φ ◦ ) ◦Φ−1(D, E) = (C�(D), C�(D, E)) = (2̃- expD(∇ 5 (D)), expE(∇6D(E))) , (3)

with 5 : �0 → R 2̃-convex and 6D : � → R 32
�/2-convex for !#�-a.e. D. Note that C� could actually be

any measurable function that sends each fiber �′D onto �′C�(D).
The proof of this theorem is provided in Section 2.3. Let us give a simple example that illustrates the

role played by our assumptions. This example has connections with (GW-Q) as detailed in Section 3.2.
Example 2. Let �0 = R3 and � = �0\{0}, let �0 = R and � = (3−1 = {G ∈ �0 | |G | = 1}. For convenience,
we also introduce the space � = R>0. Consider the cost function 2(G, H) = (|G | − |H |)2, so that 2 only
depends on the norm of its entries. The fibers of the map G ↦→ |G | are spheres, with the exception of
G = 0, which invites us to consider the diffeomorphism

Φ : �→ R>0 × (3−1 = � × � ⊂ �0 × �

G ↦→
(
|G |, G|G |

)
.

From this, we can write 2(G, H) = 2̃(!(G), !(H)) where !(G) = |G | and 2̃(D, D′) = (D − D′)2 (which is
twisted).

Now, if � has a density on R3, so does �′ on �0 × � as Φ is a diffeomorphism. The coarea formula
gives the existence of a disintegration (�′D)D∈� of �′ by ?� : (D, E) ↦→ D (note that ?�#�′ = !#� also has
a density) such that all the �′D admit a density on (3−1.
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Our theorem thus applies, ensuring the existence of a structured Monge map between � and (any)
� for the cost 2: it decomposes for almost all G ∈ R3 as a Monge map on the basis �0 = R (although it
is actually only characterized on the image of !, that is � = R>0) obtained as the gradient of a convex
function 5 (there is no need for the exponential map here and ∇ 5 is the non-decreasing mapping
between the quantiles of !#� and !#�) and a Monge map on each fiber � = (3−1, also built from
gradients of convex functions (via the exponential map on the sphere).

Note that our theorem only requires assumptions to hold almost everywhere on �0 = R3, which is
important since it allows to ignore the singularity of ! at G = 0.

2.2 Proof of Theorem 2
The proof decomposes in three steps.

Step 1: Existence and optimality of lifts. We know by assumption that there exists a Monge map
C� that is optimal between the pushforward measures !#� and ##�.

As our goal is to build a Monge map between the initial measures � and �, we first show that (i)
there exists a transport plan � ∈ Π(�, �) such that (!,#)#� = (id, C�)#� and that (ii) any such � is an
optimal transport plan between � and � for the cost 2. This is formalized by the following lemmas.

Lemma 1 (Existence of a lift). For any transport plan �̃ ∈ Π(!#�,##�), there exists a transport plan
� ∈ Π(�, �) such that (!,#)#� = �̃.

Proof. Let (�D)D∈�+ and (�E)E∈�− be disintegrations of � and � by ! and # respectively. Given �̃ ∈
Π(!#�,##�), we define

� ,

∬
�+×�−

(�D ⊗ �E)d�̃(D, E) ,

which is inΠ(�, �) since �̃ has (!#�,##�) as marginals and, by disintegration,
∫
�+
�D d(!#�) = � (and

same for �). The relation (!,#)#� = �̃ then follows from the fact that by disintegration �D is exactly
supported on !−1({D}) so one has �D(!−1(*)) = �* (D) for any measurable * ⊂ �+ (and same for
�E). �

Lemma 2. Let 2 : X ×Y → R and 2̃ : �+ × �− → R such that

2(G, H) = 2̃(!(G),#(H)) for all (G, H) ∈ X ×Y.

Then optimal plans for the base space cost 2̃ are the projections of optimal plans for 2: writingΠ★
2 (�, �)

the set of optimal transport plan between � and � for the cost 2, and similarly for Π★
2̃ (!#�,##�), one

has
Π★
2̃ (!#�,##�) = (!,#)#Π★

2 (�, �) .

Proof. Let us first remark that the relation between 2 and 2̃ implies that for any � ∈ Π(�, �) and �̃ =
(!,#)#�, one has 〈2, �〉 = 〈2̃ , �̃〉. Now, let �̃★ ∈ Π★

2̃ (!#�,##�); by Lemma 1, there exists a � ∈ Π(�, �)
such that (!,#)#� = �̃★. Then for any � ∈ Π(�, �), one has 〈2, �〉 = 〈2̃ , �̃★〉 ≤ 〈2̃ , (!,#)#�〉 = 〈2, �〉,
hence the optimality of �. Conversely, let �★ ∈ Π★

2 (�, �); by Lemma 1, for any �̃ ∈ Π(!#�,##�) there
exists a � ∈ Π(�, �) such that (!,#)#� = �̃. We then have 〈2̃ , (!,#)#�★〉 = 〈2, �★〉 ≤ 〈2, �〉 = 〈2̃ , �̃〉,
hence the optimality of (!,#)#�★. �

Step 2: Existence of Monge maps between the fibers. Using Lemma 1 with �̃ = (id, C�)#(!#�), we
know that we can build an optimal transportation plan � ∈ Π(�, �) that essentially coincides with C�
on �+ × �− and transports each fiber �D onto �C�(D) for �-a.e. D ∈ �+. In order to build a Monge map
between � and �, we must show that one can actually transport almost all �D onto �C�(D) using a map
rather than a plan. For this, we use the following result, see [San15, Rem. 1.23, Lemma 1.28, Cor. 1.29].
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Proposition 9. Let 
, � be two measures supported on R3 with 
 atomless. Then:
(i) if 3 = 1, there exists a transportmap )̃ that pushes 
 onto �. Furthermore, it is the unique optimal

map between these measures for the quadratic cost (G, H) ↦→ |G − H |2;
(ii) there exists a map �3 : R3 → R (that does not depend on 
, �) that is (Borel) measurable,

injective, and its inverse is measurable as well.

As we assumed that the ground spaces X and Y can be embedded in R3 using the injective,
measurable maps ΦX and ΦY , we can apply Proposition 9 using �X = �3 ◦ΦX and �Y = �3 ◦ΦY . As
�X is injective, �X#�D is atomless on R, and we can thus consider the unique Monge map )̃D between
�X#�D and �Y#�C�(D) for the quadratic cost on R.

From this, as the maps �X and �Y are measurable and injective (thus invertible on their image) we
can define )D = �−1

Y ◦ )̃D ◦ �X : X → Y, that defines a (measurable) transport map between �D and
�C�(D).

Step 3: building a measurable global map. Now that we have maps ()D)D between each �D and
�C�(D), it may be tempting to simply define a map ) : X → Y by )(G) = )!(G)(G)when �!(G) is atomless
(which, by assumption, holds �-a.e.). Intuitively, this map induces a transport plan (id, ))#� that
satisfies (!,#)#(id, ))#� = (id, C�)#(!#�) on �+ × �− and thus must be optimal according to Lemma 2.

One remaining step, though, is to prove that this map ) can be defined in a measurable way. For
this, we use the following measurable selection theorem due to [FGM10, Thm. 1.1], that reads:

Proposition 10. Let (�,Σ, <) be a �-finite measure space and consider ameasurable function � 3 D ↦→
(�D , �D) ∈ P(R3)2. Let 2 : R3 × R3 → R be a cost function, and assume that for <-a.e. D ∈ �, there is a
(unique) Monge map )D between �D and �D for the cost 2.
Then there exists a measurable function (D, G) ↦→ )(D, G) such that <-a.e., )(D, G) = )D(G), �D-a.e.

We can apply this result in the case 3 = 1 to the family ofmeasures (�X#�D , �Y#�C�(D))D∈�+ , where the
reference measure on �+ is !#�.1 We first need to show the measurability of this family of measures.
By definition of the disintegration of measures, themap E ∈ �− ↦→ �E is measurable; and as theMonge
map C� is measurable as well, so is the map �+ 3 D ↦→ �Y#EC�(D) by composition of measurable maps,
and thus so is the map D ↦→ (�D , �C�(D)). Proposition 10 therefore applies and guarantees the existence
of a measurable map )̃ : �+ × R→ R such that )̃(D, G) = )̃D(G) for !#� almost all D and �X#� almost
all G. Now, we can define

) : X → Y
G ↦→ �−1

Y ◦ )̃(!(G), �X(G)) .

This map is measurable as composition of measurable maps. Let us prove that this defines a transport
map between � and �. For any function � : Y → R continuous with compact support, we can write∫

Y
�(H)d)#�(H) =

∫
X
�()(G))d�(G) =

∫
D∈�+

∫
G∈!−1({D})

�
(
�−1
Y

(
)̃D(�X(G))

))
d�D(G)d!#�(D) ,

where we use the disintegration of � w.r.t. ! and the fact that the �D are supported on !−1({D}),
allowing us to write )̃(!(G), �X(G)) = )̃D(�X(G)) on that fiber (!#�-a.e.). Now, recall that )D : G ↦→
�−1
Y ◦ )̃D ◦ �X(G) defines a transport map between �D and �C�(D). In particular, the image of the fiber

!−1({D}) by this map is #−1({C�(D)}) ⊂ Y. Since �C�(D) is supported on #−1({C�(D)}), we therefore get∫
Y
�(H)d)#�(H) =

∫
D∈�+

∫
H∈Y

�(H)d�C�(D)(H)d!#�(D) =
∫
E∈�−

∫
H∈Y

�(H)d�E(H)d##�(E) ,

1Note that we cannot apply Proposition 10 to the measures (�D , �C�(D))D and the maps ()D)D directly, as )D may not be the
unique Monge map between the measures, a required assumption of the proposition.
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where we use the fact that C� pushes !#� to ##�; by disintegration of � w.r.t. #, we then have )#� = �.
By Lemma 2, this map is optimal if and only if it satisfies (!,#)#(id, ))#� = (id, C�)#(!#�), as C�

is an optimal transportation plan between !#� and ##�, making (id, ))#� optimal between � and �
(hence ) a Monge map). For this, let � : X ×Y → R be a continuous function with compact support.
We have∫

�+×�−
�(D, E)d(!,#)#(id, ))#�(D, E) =

∫
X
�(!(G),#()(G)))d�(G)

=

∫
D∈�+

∫
G∈!−1({D})

�
(
D,#(�−1

Y ◦ )̃D ◦ �X(G))
)

d�D(G)d!#�(D)

=

∫
D∈�+

∫
H∈#−1({C�(D)})

�(D, C�(D))d�C�(D)(H)d!#�(D)

=

∫
D∈�+

�(D, C�(D))d!#�(D)

=

∫
�+×�−

�(D, E)d(id, C�)#!#�(D, E) ,

proving the required equality and thus that ) is a Monge map between � and �.

2.3 Proof of Theorem 3
We recall that we note �′ , Φ#� and �′ , Φ#�. We also denote by � the image of ! = ?� ◦ Φ, so that
�′, �′ are supported on � × � ⊂ �0 × �.

Step 1: Construction of the structured Monge map. Given that !#� is absolutely continuous
w.r.t. the Lebesguemeasure on the complete (separable) Riemannianmanifold �0, by Theorem 1 there
exists a unique optimal transport plan �★� between !#� and !#� for the cost 2̃ and it is induced by a
map C� : �0 → �0 of the form C� = 2̃- expD(∇ 5 ), with 5 2̃-convex.

By Lemma 2, we know that any transport plan � ∈ Π(�, �) that satisfy (!, !)#� = (id, C�)#� must
be optimal. Therefore, if � happens to be induced by a map ), that is � = (id, ))#�, we would obtain
a Monge map between � and �. To build such a ), we proceed as in Section 2.2: we define a Monge
map )D between �′D and �′C�(D) for !#�-a.e. D and build a global map between �′ and �′ by (roughly)
setting )(D, G) = )D(G). As in Section 2.2, proving the measurability of such ) requires care.

Step 2: Transport between the fibers. For !#�-a.e. D, �′D has a density w.r.t. the volume measure
on � and the optimal cost between �′D and �′C�(D) is finite by assumption. Whenever �′D has a density,
we can therefore apply Proposition 2 between �′D and �′C�(D) with the cost 32

� to obtain that there
exists a plan �D between these fibers that is induced by a map )D : � → � that can be expressed as
)D(E) = expE(∇6D(E))with 6D being 32

�/2-convex on �.

Step 3: Measurability of the global map. Now that we have built structured maps )D between
corresponding fibers (through C�), it remains to prove the existence of a measurable map ) : �0 × �→
�0 × � transporting �′ onto �′ satisfying )(D, G) = (C�(D), )D(G)) for !#�-almost every D and �′D-almost
every G. For this, we need an adaptation of Proposition 10 to the manifold setting. Namely, we have
the following:
Proposition 11 (Measurable selection of maps, manifold case). Let " be a complete Riemannian
manifold and (�,Σ, <) a measure space. Consider a measurable function � 3 D ↦→ (�D , �D) ∈ P(")2.
Assume that for <-almost every D ∈ �, �D � vol" and �D and �D have a finite transport cost. Let )D
denote the (unique by Proposition 2) optimal transport map induced by the quadratic cost 32

" on "
between �D and �D .
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Then there exists a measurable function (D, G) ↦→ )(D, G) such that <-a.e., )(D, G) = )D(G), �D-a.e.

This can essentially be shown by adapting the proof of [FGM10] to the manifold setting, and most
steps adapt seamlessly. We provide a sketch of proof below. A complete proof, where we stress the
points that need specific care in adaptation, is deferred to Appendix A.2.2.

Sketch of proof of Proposition 11. The map (D, G) ↦→ )(D, G) is defined as being the limit of a Cauchy
sequence (on a complete metric space) of measurable maps (D, G) ↦→ )(:)(D, G) which are built as
!1-approximations of the )D(G), yielding the relation )(D, G) = )D(G) for D, G-a.e. when : →∞.

Moreprecisely, given apartition (�=,:)= of"madeof cells of diameters≤ 2−: , andgiven 0=,: ∈ �=,:
any fixed point, )(:) is precisely defined as )(:)(D, G) = 0=,: , where 0=,: is the single point such that
)D(G) ∈ �=,: . Since on each set of the form {(D, G) | )D(G) ∈ �=,:}, one has 3"()(:)(D, G), )D(G)) ≤ 2−:
(the diameter of the cell), it follows that )(:)(D, G) → )D(G), at least for <-a.e. D and �D-a.e. G.

The key point is to ensure themeasurability of themap)(:), which actually boils down to prove that
the set {(D, G) | )D(G) ∈ �=,:} is measurable. This is possible by relying on the theory of measurable
sets-valued maps [RW09, Ch. 5 and 14], that we carefully adapt to the manifold setting (instead of R3)
in Appendix A.2.1. �

We can apply this propositionwith themanifold being the (common) fiber � onwhich the �′D , �′C�(D)
are supported for !#�-a.e. D, and for which we have access to the (unique) Monge map )D . It gives the
existence of a global map C� satisfying C�(D, E) = )D(E) for !#�-a.e. D, and �′D-a.e. E, and we can thus
define the (measurable) map )(D, G) = (C�(D), C�(D, G)).

An elementary computation using the pushforward and disintegration definitions as well as the
facts that)D#(�′D) = �′C�(D) and C�#(!#�) = !#� then guarantees that) sends �′ to �′, and)� , Φ−1◦) ◦Φ
therefore sends � to �; and since (!, !)#(id, )�)#� = �★�, by Lemma 2, )� is an optimal map between �
and �.

3 Applications to the quadratic and inner-product GW problems

In this section, we apply the results of Section 2 to our two problems of interest, (GW-IP) and (GW-Q),
to obtain the existence of Monge maps as solutions of these GW problems in suitable settings. The
proofs can be sketched in the following way: for either of these two problems,

• Let �★ be an optimal plan for the GW problem;
• Consider the associated linearized problem (1) at �★ which is a standard optimal transportation

problem. From Section 1.1.2, we know that any solution of this OT problem (�★ being one of
them) must be a solution of the initial GW problem;

• Observe that the linearized versions of (GW-IP) and (GW-Q) reduce to optimal transportation
problems with costs that satisfy the assumptions of Theorem 3, thus guaranteeing the existence
of a structured Monge map for the GW problem.

As such, we only focus on detailing this last point in the following subsections.

Remark 6. Our results provide the existence of aMongemap for theGWproblems, but its construction
depends on the linearization (that is, of the initial �★ selected). Thus, even though we would have
uniqueness of solutions for the linearized problem as given e.g. by the subtwist condition, this does
not give uniqueness of the solution to the corresponding GW problem: it may happen that the GW
problem has several optimizers, each leading to a different linearized problem for which solutions,
unique or not, may differ.
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3.1 The inner-product cost

Expanding the integrand in (GW-IP) and using the fact that
∬
〈G, G′〉2 d�d� =

∬
〈G, G′〉2 d�d� is

constant (the same goes for the terms that depend on �), one gets the equivalent problem

min
�∈Π(�,�)

∬
−〈G, G′〉〈H, H′〉 d�(G, H)d�(G′, H′) .

This problem is not invariant to translations but it is to the action of $=(R) × $3(R). Any optimal
correspondence plan �★ is also an optimal transport plan for the linearized problem (1) with cost

��★(G, H) = −
∫
〈G, G′〉〈H, H′〉 d�★(G′, H′) =

〈
−

∫
(H′ ⊗ G′)G d�★(G′, H′), H

〉
= −〈"★G, H〉 ,

where "★ ,
∫
H′ ⊗ G′ d�★(G′, H′) ∈ R3×= . This linearized cost is twisted if and only if "★ is of full

rank, hence in this case �★ is the only solution of the linearized problem and it is induced by a map,
and Theorem 4.2.3 from [Vay20] gives a result on the structure of this map. We can actually generalize
this to the case where "★ is arbitrary:

Theorem 4 (Existence of an optimal map for the inner product cost). Let = ≥ 3, �, � ∈ P(R=) × P(R3)
two measures with compact supports. Suppose that � � ℒ= . Then there exists an optimal map for
(GW-IP) that can be written as

) = $>Y ◦ ()0 ◦ ?R3 ) ◦ $X , (4)

where $X and $Y are change-of-basis matrices of R= and R3, ?R3 : R= → R3 is defined by
?R3 (G1 , . . . , G=) = (G1 , . . . , G3), and

)0(G1 , . . . , G3) = (∇ 5 ◦ Σ(G1 , . . . , Gℎ),∇6G1 ,...,Gℎ (Gℎ+1 , . . . , G3)) , (5)

with ℎ ≤ 3, Σ ∈ Rℎ×ℎ diagonal with positive entries, 5 : Rℎ → R convex and all 6G1 ,...,Gℎ : R3−ℎ → R
convex.

In order to show this, we will need two simple lemmas that essentially state that Brenier’s result
holds when the scalar product is perturbed by homeomorphisms. We state them now and prove them
in Appendix A.1.
Lemma 3. Let �, � ∈ P(�) and let #1 ,#2 : � → � be homeomorphisms. Let 2̃ : � × � → R and
consider the cost 2(G, H) = 2(#1(G),#2(H)). Then a map is optimal for the cost 2 between � and � if and
only if it is of the form #−1

2 ◦ ) ◦ #1 with ) optimal for the cost 2̃ between #1#� and #2#�.

The following lemma is a simple corollary of the first:

Lemma 4. Let ℎ ≥ 1 and �, � ∈ P(Rℎ) with � � ℒℎ with compact supports. Consider the cost
2(G, H) = −〈#1(G), #2(H)〉 where #1 ,#2 : Rℎ → Rℎ are diffeomorphisms. Then, there exists a unique
optimal transport plan between � and � for the cost 2, and it is induced by a map C : Rℎ → Rℎ of the
form C = #−1

2 ◦ ∇ 5 ◦ #1, with 5 convex.

We now prove Theorem 4.

Proof of Theorem 4. Using a singular value decomposition (SVD), we have"★ = $Y>Σ$X ∈ R3×= with
$X , $Y ∈ $=(R)×$3(R)orthogonalmatrices of eachEuclidean space andΣ ∈ R3×= diagonalwithnon-
negative coefficients. The cost then becomes ��★(G, H) = −〈$Y>Σ$XG, H〉 = −〈Σ($XG), $YH〉. Using
Lemma 3, the problem transforms into an optimal transportation problem between �′ , $X#� and
�′ , $Y#�; and choosing $Y and $X that sort the singular values in decreasing order, i.e. assuming
�1 ≥ · · · ≥ �ℎ > 0 with ℎ , rk("★) ≤ 3, the problem therefore transforms into min�̃〈2Σ , �̃〉 for
�̃ ∈ Π(�′, �′), where 2Σ(G̃ , H̃) = −

∑ℎ
8=1 �8 G̃8 H̃8 , 2̃(?(G̃), ?(H̃)), ? being the orthogonal projection

on Rℎ . We reduce to the case where both measures live in the same space by noting that since
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2Σ(G̃ , H̃) = 2Σ(?R3 (G̃), H̃) for all G̃ and H̃, any map )0 optimal between �′′ , ?R3#�
′ and �′ will induce

a map ) = )0 ◦ ?R3 optimal between �′ and �′ (by Lemma 2). One can then recover an optimal map
between � and � by composing with $X and $Y> (Lemma 3), hence Eq. (4).

The existence of such amap)0 optimal between�′′ and �′ satisfying (5) follows from the application
of Theorem 3 for � = �0 = R3 = Rℎ × R3−ℎ = �0 × � and ! = ?. Indeed, �0 and � are complete
Riemannian manifolds; 2̃ is twisted on �0 × �0; ?#�′′ has a density on �0 and every �′′D has a density
w.r.t. the Lebesgue measure on � as a conditional probability. We then make C� explicit. One has that
2Σ(G, H) = −〈Σ̃G, H〉, where Σ̃ = diag(�8)1≤8≤ℎ . As ?#�′′ has a density, we can apply Lemma 4 stated
above with (#1 ,#2) = (Σ̃, id) to obtain that there exists a unique optimal transport plan �★� between
?#�′′ and ?#�′ for the cost 2Σ and that it is induced by a map C� : �→ � of the form C� = ∇ 5 ◦ Σ̃, with
5 convex. �

Remark 7. A particular case of our theorem is Theorem 4.2.3 from [Vay20] (Proposition 6 in this work):
when ℎ = 3, the optimal map between $X#� and $Y#� writes )0 ◦ ?R3 with )0 = ∇ 5 ◦ Σ̃. The induced
optimal map between � and � is then

) = $>Y ◦ (∇ 5 ◦ Σ̃ ◦ ?R3 ) ◦ $X = $
>
Y ◦ (∇ 5 ◦ Σ) ◦ $X = ∇( 5 ◦ $Y) ◦ $

>
Y ◦ Σ ◦ $X = ∇ 5̃ ◦"

★ ,

where 5̃ , 5 ◦ $Y is convex.

3.2 The quadratic cost
The (GW-Q) problem is invariant by translation of � and �. With no loss of generality, we suppose
both measures centered. Expanding the integrand provides��|G − G′ |2 − |H − H′ |2��2 = |G − G′ |4 + |H − H′ |4 − 2|G − G′ |2 |H − H′ |2 ,

and the two first terms only depend on � and �, not on �. Expanding the remaining term yields
nine terms. Two of them also lead to a constant contribution: −|G |2 |H′ |2 and −|G′ |2 |H |2; four lead to
vanishing integrals since � and � are centered: 2|G |2〈H, H′〉, 2|G′ |2〈H, H′〉, 2|H |2〈G, G′〉 and 2|H′ |2〈G, G′〉.
The remaining three terms then yield the following equivalent problem:

min
�∈Π(�,�)

∫
−|G |2 |H |2 d�(G, H) + 2

∬
−〈G, G′〉〈H, H′〉 d�(G, H)d�(G′, H′) .

Assuming an optimal correspondence plan �★, this plan is also an optimal transport plan for the
linearized problem (1) with cost

��★(G, H) = −|G |2 |H |2 − 4
∫
〈G, G′〉〈H, H′〉 d�★(G′, H′) = −|G |2 |H |2 − 4〈"★G, H〉 ,

where "★ ,
∫
H′ ⊗ G′ d�★(G′, H′) ∈ R3×= . In the cases where the rank of "★ is 3, this linearized cost

satisfies both subtwist and 2-twist conditions, yielding an optimal bi-map that is also amap/anti-map,
by compactness of the support of � and � and when � has a density. Similarly, when the rank of "★

is 3 − 1, the cost only satisfies the 2-twist condition, yielding an optimal bi-map structure. In the case
where rk"★ ≤ 3 − 2, nothing can be said and there is a priori no obvious reason for the existence of
an optimal correspondence map; but perhaps surprisingly, it can actually be guaranteed.
Theorem 5 (Existence of an optimal map or bi-map for the quadratic cost). Let = ≥ 3, �, � ∈ P(R=) ×
P(R3) two measures with compact supports. Suppose that � � ℒ= . Let �★ be a solution of (GW-Q)
and "★ ,

∫
H′ ⊗ G′ d�★(G′, H′). Then:

(i) if rk"★ = 3, there exists an optimal plan that is induced by a bi-map which is also a map/anti-
map;
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(ii) if rk"★ = 3 − 1, there exists an optimal plan that is induced by a bi-map;
(iii) if rk"★ ≤ 3 − 2, there exists an optimal plan that is induced by a map that can be written as

) = $Y
> ◦ )0 ◦ $X ,

where $X and $Y are change-of-basis matrices of R= and, writing any G ∈ R= as G = (G� , G⊥) ∈
Rℎ × R=−ℎ and Φ(G) , (G� , G�) , ((G� , |G⊥ |2), G⊥/|G⊥ |),

Φ ◦ )0(G) =
(
2̃- expG� (∇ 5 (G�)), expG� (∇6G� (G�))

)
where explicit expressions for 2̃ and 2̃-exp are given in (6) and (7) respectively, with ℎ = rk"★ ≤
3 − 2, 5 : Rℎ+1 → R being 2̃-convex and all 6G� : R=−ℎ → R being 32

(=−ℎ−1/2-convex.

Proof.

(i) We show that in this case both subtwist and 2-twist conditions are satisfied. For subtwist, remark
that G ↦→ ∇G2(G, H1) − ∇G2(G, H2) has no solution if |H1 | = |H2 | and a unique one otherwise. For
2-twist, remark that any H ∈ Y satisfying (|H |2 − |H0 |2)G0 = −2("★)>(H − H0) is fully determined
by A , |H |2 − |H0 |2, and that A is solution of a polynomial of degree two. This proves that there
are always at most two such H. Both subtwist and 2-twist conditions are therefore satisfied.
The uniqueness of optimal plans given by subtwist then guarantees that the unique optimal
transport plan for the linearized cost is induced both by a bi-map and a map/anti-map.

(ii) We show that in this case the 2-twist condition is satisfied. Let H ∈ Y such that |H |2G0+("★)>H =
|H0 |2G0+("★)>H0 , E. Up to singular value decomposition suppose"★ rectangular diagonal in
R3×= with sorted singular values and write Σ̃ = diag(�1 , . . . , �ℎ) with ℎ , rk("★). Decompose
each vector I of R= or R3 as I = (I� , I⊥), where I� ∈ Rℎ and I⊥ contains the remaining
coordinates. The equation becomes: {

|H |2G� + Σ̃H� = E�
|H |2G⊥ = E⊥ .

These two equations impose H to live in the intersection of a (3 − 1)-dimensional sphere and of
a (3 − A)-dimensional affine subspace of R3. As A = 3 − 1, H belongs to a set of at most 2 points
and the 2-twist condition is satisfied.

(iii) The case rk"★ ≤ 3−2 is a consequence of Theorem 3 and the proof is as follows. We consider the
measure � as a measure of R= of 3-dimensional support. Similarly to the inner product cost, by
SVD the cost becomes 2(G, H) = −|G |2 |H |2− 〈$Y>Σ$XG, H〉 = −|$XG |2 |$YH |2− 〈Σ($XG), $YH〉,
and using Lemma 3 the problem transforms into min�̃〈2Σ , �̃〉 for �̃ ∈ Π($X#�, $Y#�), where
2Σ(G, H) , −|G |2 |H |2 − 〈ΣG, H〉. Further assuming �1 ≥ · · · ≥ �ℎ > 0 and writing any I ∈ R= as
I = (I� , I⊥) ∈ Rℎ × R=−ℎ ,

2Σ(G, H) = −|G� |2 |H� |2 − |G� |2 |H⊥ |2 − |G⊥ |2 |H� |2 − |G⊥ |2 |H⊥ |2 − 〈Σ̃G� , H�〉
= −|G� |2 |H� |2 − |G� |2H+ − G+ |H� |2 − G+H+ − 〈Σ̃G� , H�〉
, 2̃(!(G), !(H)) , (6)

with G+ = |G⊥ |2, H+ = |H⊥ |2 and ! : G ↦→ (G� , |G⊥ |2), and the cost 2Σ(G, H) only depends of the
values of !(G) and !(H). A direct computation gives that 2̃ satisfies the twist condition.
Now, the same as in Example 2 applies, but this time with �0 = Rℎ × R=−ℎ , � = �0\(Rℎ × {0}),
�0 = Rℎ × R and � = (=−ℎ−1 = {G ∈ �0 | |G⊥ | = 1}. Is then ensured the existence of a structured
Monge map between � and � for the cost 2: it decomposes for almost all G ∈ R= as a Monge
map on the basis �0 = Rℎ+1 obtained as the gradient of a 2̃-convex function 5 : Rℎ+1 → R (via
the 2̃-exponential map on Rℎ+1) and a Monge map on each fiber � = (=−ℎ−1, also built from
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gradients of convex functions ℎ(G� ,|G⊥ |2) : (=−ℎ−1 → R (via the exponential map on the sphere);
hence the result. Note that the 2̃-exponential map is given in closed form by

2̃- expD(?) =
(

Σ̃−1(?� − 2?+D)
?+ − |Σ−1(?� − 2?+D)|2

)
for all D ∈ Rℎ and ? = (?� , ?+) ∈ Rℎ × R . (7)

Last, note that the case where "★ = 0 has not been explicitly treated. In this case, the cost is
simply 2(G, H) = −|G |2 |H |2 = 2̃(G+ , H+) and the strategy above directly applies. �

3.3 Complementary study of the quadratic cost in the one-dimensional case
The (GW-Q) problem being invariant by translation, we assume that measures � and � below are
centered. In the one-dimensional case X ,Y ⊂ R, the linearized GW problem (1) reads, with �★ an
optimal correspondence plan:

min
�∈Π(�,�)

∫
X×Y
(−G2H2 − 4<GH)d�(G, H) , where < =

∫
X×Y

G′H′ d�★(G′, H′) , (8)

and for any plan� ∈ Π(�, �) (not necessarily optimal), we denote by<(�) =
∫
GH d�(G, H)whatwe call

the correlation of�. When< ≠ 0 (resp.< = 0), the associatedOT cost function 2<(G, H) = −G2H2−4<GH
satisfies both subtwist and 2-twist conditions (resp. satisfies the 2-twist condition) and therefore
induces anoptimal transport plan that is a bi-mapandamap/anti-map (resp. a bi-map), seeTheorem5.
In the following sections, we study the tightness of this result, asking if it exists caseswhere the optimal
plan for this cost is not a map. In the one-dimensional case, the submodularity property of the cost
2 is useful, sometimes called the Spence–Mirrlees condition. It guarantees the optimality of the
non-decreasing (resp. non-increasing) matching �⊕mon (resp. �	mon) [Car12, San15]:
Definition 4 (Submodular cost). Let X ,Y ⊂ R be two intervals. A function 2 : X × Y → R is said to be
submodular if for all (G, H) ∈ X ,Y and �1 , �2 ∈ R≥0 such that G + �1 ∈ X and H + �2 ∈ Y,

2(G, H) + 2(G + �1 , H + �2) ≤ 2(G, H + �2) + 2(G + �1 , H) .

If 2 is twice differentiable, this global condition on the rectangle X ×Y is equivalent to the local condition

for all (G, H) ∈ X ×Y , %GH2(G, H) ≤ 0 . (Submod)

Supermodularity is defined with the reversed inequality.

We state the well-known consequence of submodularity on the structure of optimal plans.

Proposition 12. Let �, � ∈ P(X)×P(Y) of finite transport cost. If 2 satisfies (Submod), then �⊕mon is an
optimal plan for (OT), unique if the inequality is strict everywhere onX ×Y (see [McC12]). Similarly,
supermodularity induces the optimality of �	mon.

The linearized quadratic GW cost with parameter < ≥ 0 is submodular on the region ( = {(G, H) |
GH ≥ −<} and supermodular elsewhere (see Figure 2 for an illustration); so we cannot directly
apply this proposition. In general, for a given cost in dimension one, there are regions of sub and
supermodularity and this property gives only few information without particular structures of the
regions. To be applicable, submodularity requires a rectangular region. In view of the form of the
regions of modularity in our particular case, we can state:

Proposition 13. Let < > 0, ( = {(G, H) | GH ≥ −<} and denote by �★ an optimal transportation
plan for the cost 2< . Then, [�★]|( (the plan restricted to the submodularity region) is the monotone
non-decreasing rearrangement between its marginals. Similarly, if < < 0, [�★]|( (the plan restricted to
the supermodularity region) is the monotone non-increasing rearrangement. If < = 0, there are four
regions of sub/supermodularity, and on each of these regions, the plan is a monotone rearrangement.
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G ↦→ −</G

↗
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(G0 , H0)
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Figure 2: Submodularity region ( (light green) and supermodularity region ( for the linearized
quadratic GW cost with parameter < > 0 (Left) or < < 0 (Right), with an example of a rectangle
' ⊂ ( (purple) defined by a decreasing matching (G0 , H0), (G1 , H1) that allows to conclude for the
monotonicity of the optimal plan on ( (see proof of Proposition 13), while the same argument does
not apply to rectangles in ( (light purple), see Remark 8. Increasing (↗) anddecreasing (↘) arrows are
drawn in regions where the monotonicity of optimal correspondence plans is given by Proposition 13.

Figure 2 illustrates the regions, with increasing (↗) and (↘) decreasing arrows, where the mono-
tonicity of optimal correspondence plans is given by the proposition.

Proof. In this proof, we use the fact that if �★ is optimal, then it is also optimal when restricted
on a domain between the corresponding marginals. In particular, when < > 0, the plan [�★]|( is
necessarily optimal for the cost 2< between its marginals. Consider (G0 , H0), (G1 , H1) ∈ supp([�★]|()
such that G0 < G1 and H0 > H1. The particular geometry of the space ( ensures that in this particular
configuration, the rectangle ' = [G0 , G1] × [H1 , H0] is necessarily contained in ( (see Figure 2). As a
consequence, the strict submodularity of the cost applies on ' to prove that [�★]|' is the monotone
non-decreasing plan, contradicting the configuration. The proof goes similarly when < < 0. The
case < = 0 yields four different regions of sub/supermodularity which are quadrants. Since these
regions are union of rectangles on which the cost is strictly sub/supermodular, the argument above
applies. �

Remark 8. Let us underline that it is not possible to apply the argument to thewhole region ( since any
two points of ( are not contained in a rectangle included in (. The proof above only uses the fact that
this property is used for someparticular configurationof points, namelywhenever G0 < G1 and H0 > H1,
which is (somewhat fortunately) exactly the configuration we want to consider when wondering if a
map may be non-increasing. For instance, this argument does not apply to the complementary of (
denoted (, although the property is of course satisfied on every rectangle contained in (.

Before going into further details on our complementary study, we recall the discrete formulation
of (OT) in dimension one. Given two sets {G1 , . . . , G# } and {H1 , . . . , H"} of R and two probability
vectors 0 and 1, the (OT) problem between the discrete measures � =

∑#
8=1 08�G8 and � =

∑"
9=1 1 9�H9

reads
min

�∈*(0,1)
〈�, �〉 ,

where*(0, 1) , {� ∈ R#×" | �1" = 0, �>1# = 1} is the transport polytope, � = (2(G8 , H9))8 , 9 is the cost
matrix and 〈·, ·〉 is the Frobenius inner product. In the case of the linearized problem (8), we denote
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by �GW(<) the cost matrix, that has coefficients (�GW(<))8 , 9 = −G2
8 H

2
9 − 4<G8H 9 with < = 〈�GH , �★〉 and

(�GH)8 , 9 = G8H 9 .
In the following sections, we study the optimality of the monotone non-decreasing and non-

increasing rearrangements �⊕mon and �	mon. It is worth noting that by submodularity of G, H ↦→ −GH,
these two plans have respective correlations <min and <max, where{

<min = min� 〈�GH , �〉
<max = max� 〈�GH , �〉

, with (�GH)8 , 9 = G8H 9 , (9)

and that for any correspondenceplan�, thevalueof its correlation<(�) lies in the interval [<min , <max].
We provide in the following a complementary study of the quadratic cost in dimension one, namely

(i) a procedure to find counter-examples to the optimality of the monotone rearrangements;
(ii) empirical evidence for the tightness of Theorem 5;
(iii) a proof of the instability of having a monotone rearrangement as an optimal correspondence

plan;
(iv) a newresult on the optimality of themonotone rearrangementswhen themeasures are composed

of two distant parts.
All experiments are reproducible and the code can be found on GitHub2.

3.3.1 Adversarial computation of non-monotone optimal correspondence plans. Theorem 4.1.1
of [Vay20] claims that in the discrete case in dimension 1 with # = " and 0 = 1 = 1# , the optimal
solution of (QAP) is either the monotone non-decreasing rearrangement �⊕mon or the monotone non-
increasing one �	mon. It seems to be the case with high probability empirically when generating
random discrete measures. While this claim is true for # = 1, 2 and 3, a counter-example for # ≥ 7
points has recently been exhibited in [BHS22]. We further propose a procedure to automatically obtain
additional counter-examples, demonstrating empirically that such adversarial distributions occupy a
non-negligible place in the space of empirical measures. We propose to perform a gradient descent
over the space of empirical distributions on X × Y using an objective function that favors the strict
sub-optimality of the monotone rearrangements; we now detail this procedure.

For # ≥ 1, we consider the set of empirical distributions over X × Y = R × R with # points and
uniform mass, i.e. of the form � = 1

#
∑#
8=1 �(G8 ,H8 ). Such plans � can be seen as the identity mapping

between vectors - = (G1 , . . . , G# ) and . = (H1 , . . . , H# ), and we therefore note � = id(-,.). Denoting
by 2GW the functional that takes a correspondence plan and returns its cost on the GW problem, we
then define ℱ : R# × R# → R by

ℱ (-,.) , 2GW(�) −min
{
2GW(�⊕mon), 2GW(�	mon)

}
,

where � = id(-,.) and �⊕mon and �	mon are the monotone rearrangements between - and .. This
quantifies howwell the plan � compares to the two monotone rearrangements. We generate # points
at random in [0, 1]2 and then perform a simple gradient descent over the positions of the points
(-,.) = (G8 , H8)8 following the objective

min
-,.∈R#

ℱ (-,.) .

We include an early-stopping threshold C since when ℱ (�) becomes negative, i.e. we found an adver-
sarial example, the objective function often decreases exponentially fast. The procedure can be found
in Algorithm 1 below. We implemented it using PyTorch’s automatic differentiation [PGM+19] and
used [BTBD20] to implement a differentiable sorting operator to compute the monotone rearrange-
ments. Adversarial plans � 5 = id(- 5 , .5 ) obtained by Algorithm 1 are not a priori optimal for the GW
cost between their marginals; but they have at least a better cost than the monotone rearrangements
since ℱ (- 5 , .5 ) < 0, proving the sub-optimality of the latter.

2link of the code: https://github.com/theodumont/monge-gromov-wasserstein.

https://github.com/theodumont/monge-gromov-wasserstein
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Algorithm 1 Simple gradient descent over the positions (G8)8 and (H8)8 .
Parameters:

• # : number of points of the distributions
• #iter: maximum number of iterations
• �: step size
• C: early stopping threshold

Algorithm:
1: - ← # random values in [0, 1], then centered
2: . ← # random values in [0, 1], then centered
3: for 8 ∈ {1, . . . , #iter} do
4: �⊕mon ← id(sort(-), sort(.)) ⊲ id is the identity mapping
5: �	mon ← id(sort(-), reverse(sort(.)))
6: � ← id(-,.)
7: ℱ (-,.) ← GW(�) − min(GW(�⊕mon), GW(�

	
mon)) ⊲ GW computes 2GW

8: if ℱ (-,.) < C then stop ⊲ early stopping
9: (-,.) ← (-,.) − �∇ℱ (-,.) ⊲ step of gradient descent
10: end for
11: return � 5 = id(-,.)

Output: a plan � 5 with better GW cost than �⊕mon and �	mon

On Figure 3 is displayed an example of adversarial plans obtained following this procedure. It
can be observed that during the descent, the plan � has difficulties getting out of what seems to be
a saddle point consisting in being (close to) the monotone rearrangements between its marginals.
Moreover, it is worth noting that the marginals of our typical adversarial plans, such as the one of
Figure 3, are often similar to the counter-example proposed in [BHS22], where both measures have
their mass concentrated near zero, except for one outlier for � and two for �, one on each tail.

0 10 20 30 40 50 60

−1

0

1

2

3

·10−2

Iterations

Objective function ℱ (-,.)

−1 −0.5 0 0.5 1

−0.5

0

0.5

G

H

Initial plan �0

−1 −0.5 0 0.5 1

−0.5

0

0.5

G

Final plan � 5

Figure 3: Gradient descent results with parameters # = 122, � = 26, C = −2. (Left) Evolution of the
objective function ℱ . (Center) Initial plan �0, generated at random. (Right) Final plan � 5 (iter. 66).

Furthermore, examining the optimal correspondence plan for these adversarial examples allows
to exhibit cases where it is not a map, providing empirical evidence for the following conjecture:

Conjecture 1. Theorem 5 is tight, i.e. there exists � and � for which optimal correspondence plans
for (GW-Q) are not maps but rather a union of two graphs (that of two maps or one map and one
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anti-map); and this even if � has a density, classical OT assumption for the existence of an optimal
transport map.

In order to approximate numerically the case of a measure which has density w.r.t. the Lebesgue
measure, we convolve our distributions � = (- 5 , 1# ) and � = (.5 , 1# ) with a Gaussian of standard
deviation � and represent it in Eulerian coordinates; that is we evaluate the closed form density on
a fine enough grid. When � is large, the optimal correspondence plan for GW is probably induced
by a monotone map, as it is the case very frequently empirically; on the contrary, if � is sufficiently
small, i.e.when the distributions are very close to their sum of Dirac measures discrete analogous, the
optimal correspondence plan should not be a monotone map, by construction of � and �.

Remark 9. Because of the adversarial nature of � 5 for the sub-optimality of �⊕mon and �	mon, we know
that when � is sufficiently small, the optimal correspondence plan is not a monotone rearrangement.
Still, it could be the case that this optimal plan is amap, but not amonotone one, and there is a priori no
reason to believe that � 5 will agree with Conjecture 1. Surprisingly, it sometimes does, as numerical
experiments below suggest.

In order to find the optimal correspondence plan �★ between � and �, we leverage the fact that
�★ is a solution of its associated linearized problem. Therefore, a minimizer of the GW functional is
given by

arg min
{

GW(�★<)
�� �★< ∈ arg min

�∈*(0,1)
〈�GW(<) , �〉 , < ∈ [<min , <max]

}
, (10)

where (�GW(<))8 , 9 = −G2
8 H

2
9 − 4<G8H 9 . We therefore compute both <min and <max by solving the linear

programs in (9), discretize the interval [<min , <max] with #Δ< points, and solve the corresponding
linear optimization problem for every value of the parameter < and evaluate the GW cost on each
optimal plan for the given parameter<. We then check if the optimal plan exhibits a bi-map structure.
The procedure is described in Algorithm 2.

We display the results on Figure 4, wherewe plot the optimal correspondence plan�★ in two cases:
(a) starting from an adversarial plan with both marginals convolved as to simulate densities;
(b) starting from an adversarial planwith only the firstmarginal convolved and the secondmarginal

being a sum of Dirac measures.
To facilitate the reading, we draw a blue pixel at a location G on the discretized G-axis (resp. H on the
H-axis) each time G (resp. H) has two (disjoint) images (resp. pre-images), making �★ a bi-map (resp. a
bi-anti-map), or the union of a graph and an anti-graph. In both cases, we observe that �★ is not a map
but a bi-map instead, similarly to [CMN10, Sec. 4.5]. Note that in case (b), � being atomic, there cannot
be amap from � to �, so in both (a) and (b) we numerically exhibit an instance where there is a priori no
map from neither � to � nor � to �. We also plot the submodularity regions of the linearized GW cost
function with parameter <(�★) as an overlay and we observe that when the optimal plan gives mass
to a region where the cost is submodular (resp. supermodular), it has a monotone non-decreasing
(resp. non-increasing) behaviour in this region.

3.3.2 Empirical instabilityof theoptimalityofmonotone rearrangements. Theabove studydemon-
strates that there exist probability measures � and � for which property

%(�, �) : �⊕mon or �	mon is an optimal correspondence plan between � and �

does not hold. However, as it is very likely in practice when generating empirical distributions
at random, one could ask if property % is at least stable, i.e. if when we have �0 and �0 satisfying
%(�0 , �0) there is a small ball around �0 and �0 (for a given distance, say Wasserstein-2) inside which
property % remains valid. A negative answer to this—besides, in the symmetric case—is given by the
counter-example by [BHS22] with an increasing number of points:
Proposition 14. There exists two symmetricmeasures �, � onR and sequences (�=)= , (�=)= that weakly
converge to �, � such that optimal plans �= between �= and �= are never supported by a monotone
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Algorithm 2 Generating bi-maps from adversarial examples.

Input: an adversarial plan � 5 = id(- 5 , .5 ) obtained from Algorithm 1

Parameters:
• �: standard deviation of convolution
• #ΔG : discretization precision
• #Δ< : discretization precision of the interval [<min , <max]

Algorithm:
1: 0 ← convolution(- 5 , �, #ΔG)
2: 1 ← convolution(.5 , �, #ΔG) ⊲ (optional)
3: <min ← min�∈*(0,1) 〈�GH , �〉 ⊲ solve linear programs
4: <max ← max�∈*(0,1) 〈�GH , �〉
5: scores← []
6: for < ∈ {<min , . . . , <max} do ⊲with #Δ< points
7: �★< ← arg min�∈*(0,1) 〈�GW(<) , �〉 ⊲ solve linear program
8: append GW(�★<) to scores
9: end for
10: �★← arg max� scores ⊲ take best plan for GW
11: 1 ← “�★ is a bi-map”
12: return �★, 1

Outputs:
• �★: optimal plan for GW
• 1: boolean asserting if �★ is a bi-map

map.

Proof. We consider � = � = �0 and the discrete measures �= = 1
=
∑=
8=1 �G8 and �= = 1

=
∑=
8=1 �H8 defined

as follows for = ≥ 7:

G8 ,


−1 for 8 = 1
(8 − =+1

2 ) 1
=2 for 8 = 2, . . . , = − 1

1 for 8 = =
and H8 ,


−1 for 8 = 1
−1 + 1

=2 for 8 = 2
(8 − 2) 1

=2 for 8 = 3, . . . , =

which is simply the counter-example from [BHS22] with = points and �= = 1/=2. Since = ≥ 7,
�= < 2/(=−3) and the identity or anti-identity mappings are not optimal between �= and �= . By direct
computation,

W2
2(�0 , �=) = $(2/= + �2

==
2) =→∞−−−−→ 0 ,

and the exact same goes for � = �0 and �= . �

One can actually obtain non-degenerate (although not symmetric anymore) examples of such
measures �, �. We start from the counter-example given in [BHS22] with # = 7 points and � = 10−2,
that we convolve with a Gaussian of standard deviation � as before. We then plot as a function of
< ∈ [<min , <max] the (true) GW cost of a plan �★< optimal for the linearized GW problem: �★< ∈
arg min� 〈�GW(<) , �〉. The minimum values of this graph are attained by the correlations of optimal
correspondence plans, as explained in Section 3.3.1. Hence if � is small, this optimal plan is not a
monotone rearrangement by construction and the minima are not located on the boundary of the
domain. On the contrary, when � is large, a monotone rearrangement is optimal again. In order
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Figure 4: Optimal correspondence plan (in log scale) obtainedwith our procedure, starting either from
a plan with both marginals convolved (Left) or with only the first marginal convolved (Right); bi-map
and anti-bi-map coordinates (blue); submodularity regions (light green). Parameters: � = 5.10−3,
#ΔG = 150, #Δ< = 2000.
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Figure 5: Evolution of the graph of < ↦→ GW(�★<)when varying � on the counter-example of [BHS22]
with # = 7 points and � = 10−2. Parameters: #ΔG = 100, #Δ< = 150.

to study the phase transition, we plot on Figure 5 the landscape of < ↦→ GW(�★<) while gradually
increasing the value of �.

Looking at Figure 5, it is worth noting that there is an incentive for optimal plans at correlations
close to <min or <max to be the monotone rearrangements, as the horizontal portions of the plot
suggest. More importantly, it can be observed that when � = �3 or �4, the monotone rearrangements
are optimal, as their correlations realize the minimum of < ↦→ GW(�★<); unlike for �1 and �2, for
which the minimum value of the plot is located near zero. Hence there should exist a �0 ∈ (�2 , �3)
for which the convolved measures have both �⊕mon, �	mon and another �0 as optimal correspondence
plans; it is direct that property % does not hold in the neighbourhood of these specific measures �0
and �0.

3.3.3 A positive result for measures with two components. In the following, �1, �2, �1 and �2
are four probability measures supported on a compact interval � ⊂ R. Denote Δ = diam(�), and fix
C ∈ (0, 1) and > Δ. Let � : G ↦→ G+ denote the translationby , and�+ = � (�) = {G+ | G ∈ �}.
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Now, introduce the measures

� = (1 − C)�1 + C� #�2 and � = (1 − C)�1 + C� #�2 .

Note that �1 and � #�2 (resp. �1 and � #�2) have disjoint supports. We want to prove the following:

Proposition 15. For  large enough, the unique optimal plan for the quadratic cost between � and �
is given by one of the two monotone maps (non-decreasing or non-increasing).

Remark 10. The hypothesis of the theorem illustrates that monotone maps are favored when � and
� both contain a single or more outliers. The proof of the theorem actually shows the importance
of long range correspondences or global effect over the local correspondences on the plan. In other
words, even though monotone maps may not be optimal locally, global correspondences favor them.
Moreover, these global correspondences have proportionally more weight in the GW functional since
the cost is the squared difference of the squared distances. In conclusion, pair of points which are at
long distances tend to be put in correspondence. In turn, this correspondence, as shown in the proof,
favors monotone matchings. This argument gives some insight on the fact that a monotone map is
often optimal and it is made quantitative in the previous theorem.

We first prove the following lemma:

Lemma 5. In the setting described above, there exists  0 > 0 such that if  ≥  0, every � optimal
plan for GW(�, �) can be decomposed as � = �1 + �2, where either:

1. �1 is supported on � × � and �2 on (� +  ) × (� +  ) (that is, we separately transport �1 to �1
and � #�2 to � #�2), or

2. �1 is supported on � × (� +  ) and �2 on � × (� +  ) (that is, we transport �1 to � #�2 and �2
to � #�1).

Furthermore, whenever C ≠ 1
2 , only the first point can occur.

Proof. Consider first the case C = 1
2 . To shorten the notations, we introduce the notations �1 = � and

�2 = �+ . We can now decompose any plan � as �11+�12+�21+�22 where for instance �12 denotes
the restriction of the plan � to the product �1 × �2. Let us also denote by A the mass of �12, one has
0 ≤ A ≤ 1/2 and by symmetry, one can choose that A ≤ 1/4, otherwise we exchange �1 and �2 for the
second measure since the cost is invariant to isometries. Remark that, due to marginal constraints,
the total mass of �11 and �22 is 1/2 − A and the mass of �21 is A. Therefore, it is possible to consider
a coupling plan �̃11 between the first marginal of �12 and the second marginal of �21, and similarly,
let �̃22 be a coupling plan between the first marginal of �21 and the second marginal of �12. We then
define a competitor plan �̃ = �11 + �̃11 + �22 + �̃22. The first step is to get a lower bound on the term
GW(�,�). Slightly overloading the notations, we introduce

GW(�, �) =
∫

2 d� ⊗ � . (11)

We expand GW by bilinearity

GW(�,�) =
∑
8 , 9 ,8′ , 9′

GW(�8 9 ,�8′ 9′) =
∑
8 , 9

GW(�88 ,� 9 9) + ' ,

where ' is the remainder that contains 12 terms from which one can identify two types. Among
them, 8 terms are of the type GW(�12 ,�11) ≥ A(1/2 − A)( 2 − Δ2)2. Indeed, one compares pairs of
points (G, G′) and (H, H′) for (G, H) ∈ �1×�1 and (G′, H′) ∈ �1×�2, therefore (G− G′)2 is upper bounded
by Δ2 and (H − H′)2 lower bounded by  2 and the bound above follows after integration against the
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Figure 6: Visual sketch of the proof of Lemma 5.

corresponding measures. The second type is GW(�12 ,�21) ≥ 0, there are 4 of such terms. We thus
have ' ≥ 8A(1/2 − A)( 2 − Δ2)2. We now upper-bound the competitor. Similarly, one has

GW(�̃, �̃) =
∑
8 , 9

GW(�88 ,� 9 9) + '̃

where '̃ = 2 GW(�̃11 ,�22+ �̃22)+2 GW(�̃22 ,�11+ �̃11)+2 GW(�11 , �̃11)+2 GW(�22 , �̃22). The two last
terms can be upper bounded by 2A(1/2 − A)Δ2. Indeed, one compares distance squared of couples of
points in �1 to couple of points in �1, so it is upper bounded by Δ2. Again by elementary inequalities
(see Figure 6), the two first terms can be upper bounded by A(2 Δ + Δ2)2. Note that the total mass
of the plan �11 + �̃11 is 1/2 which explains why (1/2 − A) does not appear. Therefore, the difference
between the two values of GW is

GW(�,�) −GW(�̃, �̃) ≥ A
(
8(1/2 − A)( 2 − Δ2)2 − 4(1/2 − A)Δ2 − 2(2 Δ + Δ2)2

)
. (12)

Then, since 1/2 − A ≥ 1/4 the limit in  of the polynomial function on the r.h.s. of Eq. (12) is +∞
uniformly in A ∈ [0, 1

4 ], and the result follows; there exists  > 0 such that the polynomial function
above is non-negative, for instance max(0,  0)where  0 is the largest root.

The proof in the case C > 1/2 (the other is symmetric) is even simpler since C − A > C − 1/2
and consequently, there is no choice in the matching of the two measures; it is determined by the
corresponding masses. One can directly apply the argument above. �

We now prove Proposition 15.

Proof of Proposition 15. Thanks to Lemma 5, we know that we can restrict to transportation plans
� = �1 + �2 where, up to flipping �, we can assume that �1 is supported on � × � and �2 on
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(� +  ) × (� +  ).3
Using again the bilinear formGW(�, �)defined in (11), the objective value reached by any transport

plan � = �1 + �2 actually decomposes as

GW(�,�) = GW(�1 ,�1) + 2 GW(�1 ,�2) +GW(�2 ,�2) .

Now, assume that we have found �★2 optimal. Let us minimize in �1 the resulting quadratic problem:

min
�1

GW(�1 ,�1) + 2 GW(�1 ,�★2 ) .

We know that if �★1 is a minimizer of this quantity, it must also be a solution of the linear problem

min
�1

GW(�1 ,�★1 ) +GW(�1 ,�★2 ) .

This minimization problem is exactly the optimal transportation problem for the cost

2(G, H) =
∫
�×�
((G − G′)2 − (H − H′)2)2 d�★1 (G

′, H′) + 2
∫
(�+ )2

((G − G′′)2 − (H − H′′)2)2 d�★2 (G
′′, H′′) .

Now, using the relation ((G− G′′)2−(H− H′′)2)2 = ((G− H)− (G′′− H′′))2((G+ H)− (G′′+ H′′))2, and that �★2
is a transportation plan between � #�2 and � #�2 so that we can make a change of variable, observe
that

2(G, H) =
∫
�×�
((G − G′)2 − (H − H′)2)2 d�★1 (G

′, H′)

+
∫
�×�
((G − H) − (G′′ − H′′))2((G + H) − (G′′ + H′′ + 2 ))2 d(�− , �− )#�★2 (G

′′, H′′) .

Now, observe that %GH2(G, H) is a polynomial function in  , G, H whose dominant term in  is simply
−2 2, and recall that � is compact, so that this polynomial function is bounded in G, H. We conclude

%GH2(G, H) = −2 2 + $( ) < 0

for  large enough, for all (G, H) ∈ � × �. The plan �★1 is optimal for a submodular cost, and by
Proposition 12 must be the non-decreasing matching between �1 and �1. By symmetry, so is �★2 . �

3Note: this is where the choice is made, as in the proof of Lemma 5, between the increasing and the non-increasing
matchings. Using this convention, the non-decreasing monotone map is shown to be optimal.
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A Appendix

A.1 Proofs of Lemmas 3 and 4
Proof of Lemma 3. Remark that the continuity of #1 and #2 and their inverse ensures their measurabil-
ity. We have the following equalities:

arg min
�∈Π(�,�)

∫
2̃(#1(G),#2(H))d�(G, H) = arg min

�∈Π(�,�)

∫
2̃(D, E)d(#1 ,#2)#�(D, E)

= (#−1
1 ,#−1

2 )# arg min
�̃∈Π(#1#�,#2#�)

∫
2̃(D, E)d�̃(D, E)

since the mapping (#−1
1 ,#−1

2 )# is a one-to-one correspondence from Π(#1#�,#2#�) to Π(�, �) by bĳec-
tivity of #1 and #2. This bĳectivity ensures that any optimal deterministic transport plan �̃★ between
#1#� and #2#� induces an optimal deterministic transport plan �★ between � and �, and vice versa.
Writing �̃★ = (id, ))#(#1#�), this plan �★ is given by

�★ = (#−1
1 ,#−1

2 )#�̃★

= (#−1
1 ,#−1

2 )#(id, ))##1#�

= (id,#−1
2 ◦ ) ◦ #1)#� . �

Proof of Lemma 4. As #1#� has a density w.r.t. the Lebesgue measure since #1 is a diffeomorphism
and #1#� and #2#� have compact support, Brenier’s theorem states that there exists a unique optimal
transport plan between #1#� and #2#� and that it is induced by a map ∇!, where ! is a convex
function. Using Lemma 3 then gives the result. �

Remark 11 (Discussion on the hypothesis of Lemma 4). In the proof of Lemma 4, we only needed (i)
#1, #2 and their inverse to be measurable, (ii) #1#� to have a density w.r.t. Lebesgue, and (iii) #1#� and
#2#� to have compact support. Imposing #1 to be a diffeomorphism and #2 to be a homeomorphism
ensures both (i) and (ii) and is natural to expect.

A.2 Measurable selection of maps in the manifold setting
A.2.1 Measurability of set-valued maps. Let -,* be two topological spaces, and let ℬ denote the
Borel �-algebra on -. A set-valued map ( is a map from - to %(*) (the set of subsets of*). This will
be denoted by ( : - ⇒ * . The idea is to introduce notations which are consistent with the case where
((G) = {D} for all G in -, where we want to retrieve the standard case of maps - → * . Definitions are
taken from [RW09], where measurability is studied when * = R= . Most results and proofs adapt to
a more general setting—in particular when* is a complete Riemannian manifold ", which we shall
assume in the following. For the sake of completeness, we provide all the proofs, and highlight those
that require specific care when replacing R= by a manifold.

Of importance for our proofs, we define:

• The pre-image of a set � ⊂ * is given by (−1(�) = {G ∈ - | ((G) ∩ � ≠ ∅}.
• The domain of ( is (−1(*), that is {G ∈ - | ((G) ≠ ∅}.

Wewill oftenuse the following relation: if a set� can bewritten as� =
⋃
�: , then (−1(�) = ⋃

(−1(�:).
Indeed, G ∈ (−1(�) ⇔ ((G) ∩ � ≠ ∅ ⇔ ∃:, ((G) ∩ �: ≠ ∅ ⇔ ∃:, G ∈ (−1(�:) ⇔ G ∈ ⋃

: (
−1(�:).

A set-valued map ( : - ⇒ * is said to be measurable if, for any open set $ ⊂ * ,

(−1($) ∈ ℬ.

Note that if ( is measurable (as a set-valued map), then its domain must be measurable as well (as an
element ofA). We say that ( : - ⇒ * is closed-valued if ((G) is a closed subset of* for all G ∈ -.
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Proposition 16 (Theorem 14.3.c in [RW09]). A closed-valued map ( : - ⇒ * is measurable if and
only if (−1(�) ∈ ℬ holds either:
(a) for all � ⊂ * open (the definition);
(b) for all � ⊂ * compact;
(c) for all � ⊂ * closed.

Proof of Proposition 16.
• (a)⇒ (b): For a compact � ⊂ * , let �: = {G ∈ * | 3(G, �) < :−1}, : ≥ 0 (that is open). Note

that G ∈ (−1(�) ⇔ ((G) ∩ � ≠ ∅ ⇔ ((G) ∩ �: ≠ ∅ for all : because ((G) is a closed set. Hence
(−1(�) = ⋂

: (
−1(�:). All the (−1(�:) are measurable, so is (−1(�) as a countable intersection of

measurable sets.
• (b) ⇒ (a): Fix $ an open set of * . As we assume * to be a complete separable Riemannian

manifold, $ can be written as a countable union of compact balls: $ =
⋃
= �(G= , A=).

• (b)⇒ (c): Immediate.
• (c) ⇒ (b): A closed set � can be obtained as a countable union of compact sets by letting
� =

⋃
= � ∩ �(G0 , =) for some G0. Hence (−1(�) = ⋃

= (
−1(� ∩ �(G0 , =)) is in ℬ. �

Now, we introduce a proposition on operations that preserve measurability of closed-set valued
maps. The proof requires adaptation from the one of [RW09] because the latter uses explicitly the fact
that one can compute Minkowski sums of sets (which may not make sense on a manifold).
Proposition 17 (Proposition 14.11 in [RW09], adapted to the manifold case). Let (1 and (2 : - ⇒ *
be two measurable closed-set valued maps. Then

• % : G ↦→ (1(G)×(2(G) is measurable as a closed-valuedmap in*×* (equippedwith the product
topology).

• & : G ↦→ (1(G) ∩ (2(G) is measurable.

Proof. The first point can be proved in the same spirit as the proof proposed by Rockafellar and Wets.
Namely, let $′ be an open set in * ×* . By definition of the product topology, $′ can be obtained as⋃
= $
(=)
1 × $

(=)
2 where $(=)1 and $(=)2 are open sets in * . Then %−1($′) = ⋃

= %
−1($(=)1 × $

(=)
2 ). Now,

observe that %−1(�×�) = {G | (1(G)×(2(G) ∈ �×�} = {G | (1(G) ∈ � and (2(G) ∈ �} = (−1
1 (�)∩(−1

2 (�),
so that finally, %−1($′) = ⋃

= (
−1
1 ($

(=)
1 ) ∩ (−1

2 ($
(=)
2 ) that is measurable as a countable union of (finite)

intersection of measurable sets (given that (1 , (2 are measurable). Note that this does not require
(1 , (2 to be closed-valued.

Now, let us focus on the second point, that requires more attention. Thanks to the previous
proposition, it is sufficient to show that &−1(�) ∈ ℬ for any compact set � ⊂ * . In [RW09], this
is done by writing &−1(�) = {G | (1(G) ∩ (2(G) ∩ � ≠ ∅} = {G | '1(G) ∩ '2(G) ≠ ∅} = {G | 0 ∈
('1(G)−'2(G))} = ('1 −'2)−1({0}), where ' 9(G) = ( 9(G)∩� (that is also closed valued), and using the
fact that the (Minkowski) difference of measurable closed-valued maps is measurable as well [RW09,
Prop. 14.11.c].

To adapt this idea (we cannot consider Minkowski difference in our setting), we introduce the
diagonalΔ = {(D, D) | D ∈ *} ⊂ *×* . Now, observe that'1(G)∩'2(G) ≠ ∅ ⇔ ('1(G)×'2(G))∩Δ ≠ ∅,
that is G ∈ '−1(Δ), where '(G) = '1(G) × '2(G). Since the maps '1 and '2 are measurable closed-
valued maps (inherited from (1 , (2), so is ' according to the previous point. And since Δ is closed,
'−1(Δ) = &−1(�) is measurable. �

A.2.2 Proof of Proposition 11. The proof is essentially an adaptation of the one of [FGM10], with
additional care required due to the fact that we do not have access to a linear structure on themanifold
". It relies on measurability of set-valued maps (see [RW09, Ch. 5 and 14] and Appendix A.2.1 for a
summary).

In the following, we consider a partition (�=,:)= of " made of cells with diameter ≤ 2−: and such
that (�=,9)= is a refinement of (�=,:)= in sense that each �=,: is itself partitioned by some �=′ , 9 . The
crucial point regarding measurability is the following proposition.
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Proposition 18. The set
�=,: = {(D, G) | )D(G) ∈ �=,:}.

is measurable.
Its proof relies on a core lemma:
Lemma 6. Let � ⊂ " be a closed set. Then the set

�� = {(D, G) | )D(G) ∈ �}

is measurable.
The key will be to identify this set as the domain of a measurable set-valuedmap, see Appendix A.2.1.

Proof of Lemma 6. Observe that �� = {(D, G) | ({G} × �) ∩ gph()D) ≠ ∅}, where gph()D) = {(G, )D(G)) |
G ∈ "} denotes the topological closure of the graph of the optimal transport map )D that pushes
�D onto �D . Let (1 : (D, G) ↦→ {G} × � and (2 : (D, G) ↦→ gph()D), so that �� = dom((), where
((G) = (1(G) ∩ (2(G). According to Proposition 17, given that (1 and (2 are closed-valued, if they are
measurable, so is (, and so is �� as the domain of a measurable map. The measurability of these two
maps can be easily adapted from the work of [FGM10], we give details for the sake of completeness.

Measurability of (1: Let $ ⊂ " ×" be open. Observe that (−1
1 ($) = {(D, G) | {G} × � ∩$ ≠ ∅} =

� × {G | {G} × � ∩$ ≠ ∅}. Fix I ∈ �. We have � > 0 such that �(G, �) × {I} ⊂ $ (since $ is open), and
thus �(G, �) × � ∩$ ≠ ∅, proving that there is a neighborhood of G included in {G | {G} × � ∩$ ≠ ∅}
which is thus open, making in turn (−1

1 ($) open (thus measurable), hence the measurability of (1.
Measurability of (2: Given that D ↦→ (�D , �D) is measurable by assumption, and that measurability

is preserved by composition, we want to show that (i) the map ( : (�, �) ↦→ Π★(�, �) (the set of
optimal transport plans between � and � for the quadratic cost on ") is measurable and (ii) the map
U : � ∈ P("2) ↦→ supp� satisfiesU−1($) is open for any open set$ ⊂ P("2). From these two points,
we get that (* ◦ ()−1($) is measurable, thus the measurability of (2.

To get (i), observe first that ( is closed-valued, so that it is sufficient to prove that (−1(�) is
measurable for any closed set � ⊂ P("2) according to Proposition 16. Let � ⊂ P("2) be closed.
Then, (−1(�) = {(�, �) | Π★(�, �) ∩� ≠ ∅}, and consider a sequence (�= , �=)= in (−1(�) that converges
to (�, �) for the weak topology. Let �= ∈ Π★(�= , �=)∩�. According to [Vil08, Thm. 5.20], (�=)= admits
a weak limit � inΠ★(�, �), but also since � is closed, � ∈ �, so that (�, �) ∈ (−1(�) that is closed (hence
measurable), proving the measurability of (.

(ii) simply follows from the fact that U−1($) = {� | supp� ∩ $ ≠ ∅} = {� | �($) > 0} that
is open. Indeed, the Portmanteau theorem gives that if �= → � (weakly) and �=($) = 0, then
0 = lim inf�=($) ≥ �($) ≥ 0, so �($) = 0. The complementary set of*−1($) is closed, that is U−1($)
is open. �

Proof of Proposition 18. Using that�=,: canbe inner-approximatedbya sequenceof closed set �9 ⊂ �=,: ,
we obtain a sequence of sets (��9 )9 such that

⋃
9 ��9 = �=,: . By Lemma 6, the (��9 )9 are measurable, so

is �=,: as the (countable) union of measurable sets. �

We can now prove our main proposition regarding measurability.

Proof of Proposition 11. Recall that we assume that" =
⊔
= �=,: . For each =, :, select (in a measurable

way) a 0=,: in �=,: . Then, define the map

)(:) : (D, G) ↦→ 0=,: , such that )D(G) ∈ �=,: .

This map is measurable. Indeed, for any open $ ⊂ ", )(:),−1($) = {(D, G) | )D(G) ∈ �=,:} = �=,: that
is measurable according to Proposition 18.

Now, for two maps 5 , 6 : � ×" → ", let �1 denotes the natural !1 distance on ", that is

�1( 5 , 6) =
∫
�

∫
"
3( 5 (D, G), 6(D, G))d�D(G)d<(D) .
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This yields a complete metric space [Chi07], and we can observe that ()(:)): is a Cauchy sequence
for this distance. Indeed, for : ≤ 9 two integers, recall that we assume that (�=,9)= is a refinement of
(�=,:)= , yielding

�1()(:) , )(9)) =
∫
�

∫
"
3()(:)(D, G), )(9)(D, G))d�D(G)d<(D)

=

∫
�

∫
"

∑
=

∑
=′:�=′ , 9⊂�=,:

1�=′ , 9 (D, G) · 3(0=,: , 0=′ , 9)d�D(G)d<(D)

=

∫
�

∫
"

∑
=

∑
=′:�=′ , 9⊂�=,:

3(0=,: , 0=′ , 9)d�D(�=′ , 9)d<(D)

≤ 2−:

where we use that for all D,
∫
G∈" 1�=′ , 9 (D, G)d�D(G) = �D(�=′ , 9) by construction (recall that (D, G) ∈

�=′ , 9 ⇔ )D(G) ∈ �=′ , 9 ⇔ G ∈ �D()−1
D (�=′ , 9)) = )D#�D(�=′ , 9) and )D transports �D onto �D), and then

that the diameter of the partition �=,: is less than or equal to 2−: and that �D and < are probability
measures.

Now, let ) denote the limit of ()(:)): (that is measurable). It remains to show that )(D, G) = )D(G),
<-a.e. This can be obtained by proving that∫

6(G) 5 ()(G, D))d�D(G) =
∫

6(G) 5 ()D(G))d�D(G) ,

for any pair 5 , 6 : " → R of bounded Lipschitz-continuous functions [VdV00, Lemma 2.24].
As in [FGM10], let ‖ 5 ‖ B supG≠H

| 5 (G)− 5 (H)|
3(G,H) + supG | 5 (G)|. The difference between these two terms

can be bounded using the partition (�=,:)= . We have for <-a.e. D:����∫ 6(G) 5 ()D(G))d�D(G) −
∫

6(G) 5 ()(D, G))d�D(G)
����

≤
����∫ 6(G) 5 ()D(G))d�D(G) −

∫
6(G) 5 ()(:)(D, G))d�D(G)

���� + ‖6‖‖ 5 ‖ ∫ 3
(
)(:)(D, G), )(D, G)

)
d�D(G) .

Since )(:) → ) in�1, it implies that up to a subsequence,
∫
G
3()(:)(D, G), )(D, G))d�D(G) → 0 as : →∞

for <-a.e. D.
To treat the first term and show that it goes to 0 as : → ∞ for a subset of � with full <-measure,

we write for <-a.e. D: ����∫ 6(G) 5 ()D(G))d�D(G) −
∫

6(G) 5 ()(:)(D, G))d�D(G)
����

≤
∫
|6(G)|

��� 5 ()D(G)) − 5 ()(:)(D, G))��� d�D(G)

≤‖6‖‖ 5 ‖
∫

3()D(G), )(:)(D, G))d�D(G)

≤‖6‖‖ 5 ‖ 2−:
∑
=

�D(�=,:) → 0 .

This concludes the proof. �
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A.3 Measure disintegration
The following definition and theorem are taken from [AGS05].
Definition 5 (Measure disintegration). Let X and Z be two Radon spaces, � ∈ %(X) and ! : X → Z a
Borel-measurable function. A family of probability measures {�D}D∈Z ⊂ %(X) is a disintegration of � by ! if:

(i) the function D ↦→ �D is Borel-measurable;
(ii) �D lives on the fiber !−1({D}) : for !#�-a.e. D ∈ Z,

�D(X \ !−1({D})) = 0 ,

and so �D(�) = �D(� ∩ !−1({D})) for any Borel � ⊂ X;
(iii) for every measurable function 5 : X → [0,∞],∫

X
5 (G)d�(G) =

∫
Z

(∫
!−1({D})

5 (G)d�D(G)
)

d(!#�)(D) .

In particular, for any Borel � ⊂ X, taking 5 to be the indicator function of �,

�(�) =
∫
Z
�D(�)d(!#�)(D) .

Theorem 6 (Disintegration theorem). Let X and Z be two Radon spaces, � ∈ %(X) and ! : X → Z
a Borel-measurable function. There exists a !#�-a.e. uniquely determined family of probability
measures {�D}D∈Z ⊂ %(X) that provides a disintegration of � by !.


