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Abstract

We use the mathematical toolbox of the inverse scattering transform to study quantita-
tively the number of solitons in far from equilibrium one-dimensional systems described
by the defocusing nonlinear Schrödinger equation. We present a simple method to iden-
tify the discrete eigenvalues in the Lax spectrum and provide a extensive benchmark of
its efficiency. Our method can be applied in principle to all physical systems described
by the defocusing nonlinear Schrödinger equation and allows to identify the solitons
velocity distribution in numerical simulations and possibly experiments.
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1 Introduction17

Transport phenomena in nonlinear dispersive media may involve shock waves or the propa-18

gation of gray solitons that can be observed in a wide variety of systems. They appear for19

example in the propagation of monochromatic light in nonlinear optical fibers [1–5] or atomic20

vapors [6], ultra-cold atoms confined in very elongated traps [7–9], polariton superfluids [10]21

and the propagation of surface waves in deep water [11]. This can be explained by the fact22

that all these experiments can be modeled by a common nonlinear wave propagation equation,23

namely the homogeneous one-dimensional (1D) nonlinear Schrödinger equation (1DNLSE):24

i
∂ ψ(z, t )

∂ t
=
�

−
1

2

∂ 2

∂ z2
+ g |ψ(z, t )|2
�

ψ(z, t ), (1)

written here in dimensionless form and where g quantifies the strength of the nonlinear term25

and ψ(z, t ) is the wavefunction.26

In particular equation (1) is well adapted to the description of weakly interacting 1D Bose27

gases held in tightly confining traps, in the mean field regime. Thanks to the fine control28

of ultracold quasi 1D atomic gases it is possible to study experimentally the stability of soli-29

tons [12], soliton scattering on impurities [13], soliton creation by phase imprinting [8, 14]30

or head-on soliton collisions [15]. This has motivated numerous theoretical works to predict31

the soliton dynamics, following a phase-imprinting [16, 17], in the presence of an external32

trap [18] or an obstacle [19,20] and to study states with thermal-like correlations [21–24].33

A wide variety of theoretical tools and analytical methods have been developed for the34

study of equation (1), among which the inverse scattering transform (IST) that evidenced35

the special role of solitons [25–29], Whitham’s modulation theory to capture the transport36

of dispersive shock waves [30, 31], as for example in the so-called "dam-break" problem [5],37

and Lagrangian models describing solitons as particles with an effective mass [32–34]. When38

equation (1) is used to model a system with periodic boundary conditions the stationary states39

are known [35] and a specific form of IST can be used [36–39], taking advantage of the spatial40

periodicity.41

More recently, following the discovery of the generalized hydrodynamic equations applied42

to the Lieb-Liniger model for 1D interacting bosons [40–42], the hydrodynamic approach has43

been adapted to the study of soliton gases, offering a new insight in the study of these sys-44

tems [43–45]. The key ingredient in this approach is the knowledge of the distribution of45

soliton velocities [43], encoded in the discrete eigenvalues of the IST [28].46

In this work we aim at contributing to the study of soliton gases by providing a accurate and47

robust method to identify propagating gray solitons in a far from equilibrium state evolving48

according to the defocusing nonlinear Schrödinger equation, Eq. (1) with g > 0, also known49

as the repulsive Gross-Pitaevskii equation. We consider a finite size system of length L with50

periodic boundary conditions, ψ(z, t ) = ψ(z + L, t ) and we normalize the wavefunction to51

the total number of particles: N =
∫ L

0 dz |ψ(z, t )|2. In the following we denote by n0 = N/L52

the average density, c = pgn0 the bare speed of sound and ξ = 1/
p

2gn0 the bare healing53

length. These three parameters control the relevant physical scales associated to Eq. (1).54

We will focus on the regime of large non-linearity gn0 ≫ 1, such that ξ ≪ L. To solve55

Eq. (1) we use a spectral method relying on a discrete grid with Nz points, see Appendix A for56
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details. In the following we will use Nz = 512 and a non-linearity gn0 = 2× 104, such that57

δz = L/Nz = 1.95× 10−3 < ξ = 5× 10−3.58
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Figure 1: Density map of a far from equilibrium state evolving according to Eq. (1),
exhibiting large density fluctuations, with many propagating solitons. The quantity
plotted is |ψ(z, t )|2/N, normalized to the number of particles. The position z is
normalized to the length of the system L and the time to L/c where c is the bare
speed of sound. We identify Ns = 131.5±4.5 solitons propagating in this particular
realization. See text for details.

Figure 1 illustrates the problem we intend to solve. Given a arbitrary initial state, propa-59

gated in time according to Eq. (1), how can we identify the number of solitons and determine60

precisely their velocities ? This is not an easy task: even if the propagation of many density61

dips is clearly seen in the space-time density map of Fig. 1, it is not possible to follow accurately62

the trajectory of a individual soliton, due to the multiple collisions with other gray solitons.63

Instead of relying on data analysis tools to solve this issue [46], our idea is to use the well64

established tools of the inverse scattering transform method to measure the soliton velocity65

distribution. More precisely we are going to use the direct scattering transform to compute the66

Lax spectrum and build a soliton indicator to identify the solitons in the spectrum. By doing67

so we are adapting to the defocusing case a method that was successful for the study of the68

focusing NLSE [11]. Here however we are facing two main difficulties: (a) the creation of69

gray solitons is a threshold-less process [9, 47], and (b) the Lax spectrum is real, requiring a70

careful analysis to identify solitons.71

This paper is organized as follows: section 2 introduces our soliton indicator, section 372

presents a detailed benchmark of its efficiency, then section 4 discusses its applications and73

finally we conclude in section 5. We also provide three appendices that give additional details74

on the methods and a few extra examples.75

2 Definition of a soliton indicator76

The Lax operator corresponding to Eq. (1), for the defocusing case g > 0 reads [25,28]:77

L =
i

2

�

∂

∂ z −pgψ(z, t )
p

gψ(z, t )∗ − ∂∂ z

�

. (2)

Its spectrum can be computed analytically for a few simple cases, in particular for infinite size78

systems with well defined asymptotic densities |ψ(z→±∞, t )| =pn0, for which it is proven79
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that the spectrum is made of two continuous branches, separated by a gap, in which discrete80

eigenvalues can exist, each one corresponding to a gray soliton [25]. Since we are working81

with periodic boundary conditions and a finite size system, we first consider how this picture82

is modified. We can adapt the analytic one soliton solution of the infinite system to the case83

of periodic boundary conditions by considering:84

ψ1(z, t ) =
p

n0ei(k0z−ωt ) �cosφ tanh
�

cosφ
p

gn0(z − z̄(t ))
�

+ i sinφ
�

, (3)

where ω = gn0 + k2
0/2 and we introduced the phase gradient eik0z , that guarantees the85

compatibility with periodic boundary conditions if:86

eik0L =
i sinφ − cosφ tanh

�

cosφ
p

gn0L/2
�

i sinφ + cosφ tanh
�

cosφ
p

gn0L/2
� . (4)

Equation (3) describes the propagation of a single gray soliton, parametrized by the angle87

φ ∈ [−π/2,π/2], moving at a constant velocity ˙̄z = k0+ c sinφ. We note that Eq. (3) is only88

an approximate solution that is accurate only in the large non-linearity limit L≫ ξ. A more89

general solution can be found in terms of elliptic functions for arbitrary values of L/ξ [35].90

The angle φ sets both the speed of the soliton and the density depletion at its center, giving a91

relative contrast of cos [φ]2.92

Plugging the formula of Eq. (3) into the definition of Eq. (2), a lengthy but straightforward93

calculation shows that the Lax spectrum Lv = ζv is made of two branches:94

ζ±q = −
k0

4
±

p

gn0 + q2

2
, (5)

where q ∈ 2π/L×Z, corresponding to quasi plane-wave eigenvectors:95

v±q (z, t )∝ e±iq z







ei
k0z−ωt

2

�

i
k0+4ζ±q∓2q

2
p

gn0
+

ψ1(z,t )
p

n0ei(k0z−ωt )

�

e−i
k0z−ωt

2

�

i
k0+4ζ±q±2q

2
p

gn0
− ψ1(z,t )∗
p

n0e−i(k0z−ωt )

�






,

and a single eigenvalue:96

ζ0 = −
k0

4
−

c

2
sinφ, (6)

lying in the gap between the two branches ζ−q < ζ0 < ζ
+
q and associated to a localized eigen-97

vector:98

v0(z, t )∝ sech
�

cosφ
p

gn0(z − z̄(t ))
�

�

ei
k0z−ωt

2

−e−i
k0z−ωt

2

�

.

Figure 2 shows the Lax spectrum numerically computed for the state of Eq. (3), evidencing99

the two branches and the isolated eigenvalue. We always sort the set of 2Nz eigenvalues100

by ascending order and focus on the central part of the spectrum, corresponding to the gap101

between the continuous branches, usually close to eigenvalue number Nz . The results are in102

very good agreement with the theoretical formulas presented above. The two main differences103

with the infinite system [25], come from the periodic boundary conditions: the Lax spectrum104

is globally shifted by a factor −k0/4 and the two branches are made of many, closely spaced,105

discrete eigenvalues, because the wave-vector q is discrete. The gap between the two branches106

is ζ+q=0 − ζ
−
q=0 = c, which corresponds to the speed of sound set by the uniform background107

density, while the sum ζ+q=0 + ζ
−
q=0 = −k0/2 reflects the velocity of the background flow.108
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Figure 2: (color online) a) Lax spectrum for a single gray soliton state with angle
φ = −π/8: open blue circles indicate continuous branches of the spectrum, the
single filled red circle is the discrete eigenvalue associated to a localized eigenstate
and the two horizontal dashed magenta lines correspond to the gap boundaries at
−k0/4±c/2. Upper inset: density of the single gray soliton state evidencing the den-
sity dip. Lower inset: square modulus of the eigenvector corresponding to the local-
ized eigenvalue (blue solid line) compared to the analytical prediction (red dashed
line). b) Soliton indicator S(ζ) for each eigenvalue, computed for a threshold of
ε = π2/(4L2pgn0), see text for details. The only eigenvalue with an indicator equal
to one corresponds to the gray soliton.
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Figure 3: (color online) a) Lax spectrum for a weakly excited state (open blue cir-
cles), created using the protocol described in Appendix A. The two horizontal dashed-
dotted magenta lines indicate the gap in the continuous spectrum, detected using the
soliton indicator S(ζ). Inset: example of the density profile of this state (solid blue
curve). b) Soliton indicator S(ζ) for each eigenvalue, computed for a threshold of
ε = π2/(4L2pgn0), see text for details. c) Density colormap |ψ(z, t )|2/N exhibiting
a small number of fast propagating solitons for this particular realization.
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While it is quite obvious to identify the isolated eigenvalue in the simple Lax spectrum109

shown in Fig. 2, it is in general a difficult problem, as for a discrete matrix operator the spec-110

trum is by essence discrete, and the notion of continuous branches is ill-defined. To illustrate111

this we consider an out-of-equilibrium state, corresponding to a small deviation with respect112

to a uniform background and yet resulting in a very rich dynamics, as shown on Fig. 3. We113

explain in Appendix A how we generate such an out-of-equilibrium state. On the one hand, the114

density map of Fig. 3c) shows many propagating density dips, moving at constant velocities115

across the sample, that can be identified as solitons by visual inspection, although it may be116

difficult already to count precisely the number of dips, see for example the inset of Fig. 3a). On117

the other hand, the associated Lax spectrum apparently displays two branches with a single118

isolated eigenvalue, leading to the obviously incorrect conclusion that there is only a single119

soliton propagating. In fact this isolated eigenvalue corresponds to the soliton with the highest120

contrast (or equivalently smallest velocity). This shows the need for an unambiguous method121

to identify and characterize the number of solitons in an excited state of Eq. (1), for a finite-size122

geometry.123

We intend to solve this problem by defining a soliton indicator S(ζ) equal to 1 if the eigen-124

value ζ corresponds to a soliton or 0 on the contrary. To achieve this we make use of a funda-125

mental property of integrable systems: the interaction between solitons results only in delays126

during their propagation, without altering their properties [28,43]. Now taking advantage of127

periodic boundary conditions, consider a extended system containing two copies of the same128

state, as sketched on Fig. 4a). We then expect to find twice as many solitons in the extended129

system, with respect to the original one, each soliton being present twice, with exactly the same130

velocity. For the continuous branches, we expect a different behavior: the quasi plane-waves131

will extend over the interval of length 2L, resulting in a denser spectrum, see for example132

Eq. (5).133

Figure 4b) shows how the Lax eigenvalues for the initial and extended systems are dis-134

tributed: the horizontal axis is shifted and rescaled to emphasize the fact that each eigenval-135

ues corresponding to a soliton is doubly degenerate in the extended set. In the continuous136

branches the analysis is less obvious as the spectrum is denser.137

Based on this physical intuition we build a soliton indicator by comparing the degeneracy138

of each eigenvalue of the Lax spectrum in the initial and extended systems: a eigenvalue with139

a degeneracy increased by a factor of two will correspond to a soliton. As we will show below,140

this allows to identify properly the propagating solitons in a arbitrary out-of equilibrium state141

of Eq. (1). To implement this, we compute the set of eigenvalues {ζi} of the initial system and142

the set of eigenvalues {ζ′
i
} of the extended system. We then define for each eigenvalue ζi the143

soliton indicator as:144

S(ζi) =
card{ζ′

j
such that |ζi − ζ′j | < ε}

card{ζ j such that |ζi − ζ j | < ε}
− 1, (7)

which is the ratio of the number of eigenvalues close to ζi in the extended set and original145

set, respectively, minus one. We use here the card notation to denote the cardinality of a set146

of eigenvalues. If the degeneracy of eigenvalue ζi is doubled in the extended set, we find147

S(ζi) = 1, while if the degeneracy does not change S(ζi) = 0. In the following we define the148

number of solitons in a particular state Nsol as the number of eigenvalues with indicator equal149

to one.150

Equation (7) introduces a parameter ε that defines the threshold between degenerate151

and non-degenerate eigenvalues. Because we have in mind to apply this method to nu-152

merical simulations with finite grid size and discrete approximations of the operators, there-153

fore introducing some level of numerical error, we have to choose a finite threshold value.154

Looking at the analytical formula corresponding to the single soliton solution, we may use155

6
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Eq. (5) to estimate the minimal distance between two eigenvalues at the gap edge (q → 0):156

δζ ≃ δq2/(4pgn0) = π2/(L2pgn0), for the initial system, where δq = 2π/L. In the ex-157

tended system this value is divided by a factor of 4 and it seems then reasonable to choose a158

value ε ≤ π2/(4L2pgn0) to separate two distinct eigenvalues in the extended set.159
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Figure 4: (color online) a) Density as a function of position for a state with Nimp = 10
solitons using the analytical formula described in Eq. (8). The solitons can be clearly
identified as density dips by visual inspection. The gray shaded area represents the
system copy we use to define the extended system. b) Lax spectrum for the initial
(open blue circles) and extended (open red circles) systems, respectively. The two
dashed-dotted magenta lines indicate the gap in the continuous part of the spec-
trum detected using the soliton indicator S(ζ). c) Soliton indicator S(ζ) for each
eigenvalue, computed for a threshold of ε = π2/(4L2pgn0). d) Density colormap
|ψ(z, t )|2/N of the propagating solitons for this particular realization.

Figure 4 illustrates this concept of soliton indicator, using a artificially created (see sec-160

tion 3) state for which solitons can be clearly identified as density dips by visual inspection,161

see the initial density profile shown in Fig. 4a) and the density map of Fig. 4d). For this partic-162

ular realization the soliton indicator, computed for a threshold value of ε = π2/(4L2pgn0),163

identifies 10 eigenvalues with S(ζ) = 1, corresponding to the 10 imprinted solitons. Similarly,164

Fig. 2b) and 3b) show the value of S(ζ), computed with the same value of ε = π2/(4L2pgn0),165

for a simple state with a single soliton and a out-of-equilibrium state, respectively. It seems166

to behave as anticipated, identifying a few eigenvalues as solitons inside the gap between the167

two continuous branches. In section 3 we benchmark how the soliton indicator behaves with168

the choice of threshold and give a robust definition of the number of solitons.169

Interestingly we also find with the indicator the two gap edges ζ±q=0, corresponding to170

the last (first) eigenvalue of the quasi continuous lower (upper) branch. In analogy with the171

analytical formula of the single soliton solution, see above, we may interpret the amplitude172

of the gap ζ+q=0 − ζ
−
q=0 = ceff as the effective speed of sound in the sample and deduce the173

effective background flow: keff = −2(ζ+q=0 + ζ
−
q=0).174

3 Benchmark of the soliton indicator175

In this section we study systematically how the choice of the threshold ε in the soliton indicator176

of Eq. (7) affects the efficiency of the soliton detection. To do so, we study the Lax spectrum177

of states defined by the following analytical formula:178

ψM(z) =
p

n0

M
∏

j=1

eik j z
�

cosφ j tanh
�

cosφ j
p

gn0(z − z j)
�

+ i sinφ j
�

, (8)
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where M > 0 is an integer. For M = 1, Eq. (8) is simply Eq. (3) evaluated at t = 0, thus179

describing a single gray soliton with angleφ1 located at position z1, provided that k1 is chosen180

according to Eq. (4) to fulfill periodic boundary conditions. For M > 1 it is a reasonable181

assumption that Eq. (8) describes a state with M solitons, provided that they are initially182

located far from each other. In other words, we use Eq. (8) as a guess state containing a dilute183

gas of M gray solitons that we will use to benchmark our soliton detection method. We will184

proceed as follows. First we choose a value of M ≥ 1, then we draw randomly M phases185

φ j ∈ [−π/2,π/2] and build the state of Eq. (8) by distributing the M solitons at regular186

spacings z j+1 − z j = L/M over the interval [0, L]. We then compute the Lax spectrum for187

this state and study how the soliton indicator changes with the choice of threshold ε. We188

repeat this procedure many times to sample the different possible soliton gas configurations189

and analyze the results to define a probability of success for our soliton detection method.190

As mentioned in the previous section, an annoying consequence of working with periodic191

boundary conditions is the extra phase gradient proportional to k j that must be included in192

the definition of the state and that results in a shift of the gap edges. One way to avoid this193

issue is to consider a special case with a gas of pairs of solitons having opposite phases: all194

phase gradients then compensate and the Lax spectrum becomes symmetric, all eigenvalues195

coming by pairs of opposite sign. We will first discuss the case of a dilute gas of soliton pairs196

before generalizing to a dilute gas of solitons. In the following, Nimp = M will be the number197

of solitons we intend to imprint, using Eq. (8) and Nsol the number of solitons detected for a198

particular threshold and realization.199

3.1 Dilute gas of soliton pairs200

A first generic feature that we observe is that S(ζ) is always 0, except for a small number of201

eigenvalues, in the central part of the spectrum (assuming that the eigenvalues are sorted by202

increasing value). The number of eigenvalues corresponding to S(ζ) = 1, that we denote Nsol203

is always smaller than Nimp for small thresholds and tends to increase with the value of the204

threshold.205

Figure 5a) illustrates this by showing the value of S(ζ) for Nimp = 20, corresponding206

to 10 imprinted pairs, averaged over 500 realizations with phases φ j drawn randomly, as a207

function of the threshold ε and the index of the eigenvalue in the spectrum Nζ. Figure 5b)208

shows the relative difference between the average number of detected and imprinted solitons209

∆ = (Nsol − Nimp)/Nimp, as a function of the threshold and for initial states with different210

numbers of pairs. For each curves the results are averaged over an ensemble sampling at least211

10000 random phases. From both figures we see that a low threshold value leads to an under-212

estimation of the number of solitons, while a value above 5×10−2 induces an overestimation.213

In order to provide a reasonable estimate of the number of solitons in a single realization214

we define empirically two thresholds: ε− = 1× 10−3 and ε+ = 5× 10−2, that give a lower215

(N−
sol

) and upper (N+
sol

) bound respectively on the number of solitons. We have chosen those216

particular values such that the average magnitude of ∆ remains below 0.1, corresponding to217

an error of less than 10%, on average. This allows us to measure the number of soliton in a218

single realization Nsol = N̄sol±δNsol, where N̄sol = (N+sol
+N−

sol
)/2 and δNsol = (N+sol

−N−
sol
)/2.219

Figure 5c) reports the average value of the relative number of detected solitons with the220

average uncertainty, as a function of the number of imprinted solitons. It shows that with our221

choice of thresholds ε±, N̄sol tends to underestimate the number of imprinted solitons by 2222

to 5%. We also report the relative number of imprinted solitons with phases below a certain223

value, in magnitude: |φ| < κπ/2, with κ ∈ [0, 1]. We find that our method gives a average224

number of solitons that agrees very well with the number of imprinted solitons with phases225

below 0.97×π/2, within self-consistently estimated uncertainties. The agreement is less good226

for higher numbers of pairs, which we attribute to the fact that the analytical formula is not227

8
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Figure 5: (color online) a) Average value of the soliton indicator over 500 realiza-
tions for Nimp = 20, corresponding to 10 imprinted pairs of solitons as a function
of threshold ε and the index of the eigenvalue in the spectrum Nζ. We perform the
numerical simulation with grid size Nz = 1024 and nonlinearity gn0 = 2 × 104.
The two vertical dashed-dotted magenta lines corresponds to the two thresholds
ε− = 1 × 10−3 and ε+ = 5 × 10−2. b) The relative difference between the aver-
age number of detected and imprinted solitons ∆ = (Nsol − Nimp)/Nimp as a func-
tion of thresholds for small to large number of imprinting solitons. For each curves,
the results are averaged over an ensemble sampling at least 10000 random phases.
c) The relative difference between the average number of detected and imprinted
solitons ∆̄ = (N̄sol− Nimp)/Nimp (black open markers with solid black line) with av-
erage uncertainty represented by the gray shaded area as a function of the number
of imprinted solitons Nimp. The different dashed-dotted lines with square markers
represent the value of ∆ as a function of Nimp with phases below a certain value,
|φ| < κπ/2. Here we only plot five different κ values ranging from κ = 0.95 to
κ = 0.99.
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accurate anymore because the solitons tend to overlap at higher density. However we think228

that our method can still faithfully estimate the number of solitons in the sample with a rea-229

sonable uncertainty. We note that solitons with phases greater than 0.97 × π/2 correspond230

to dips in the density profile with contrast below 3× 10−3, using a naive estimation based on231

Eq. (3), that are hardly visible anyway. We stress also that the results presented in Fig. 5 are232

ensemble averaged, in order to calibrate the relevant thresholds and the efficiency of the pro-233

tocol. However when applied to particular states our method can identify exactly the number234

of solitons, when the contrast of solitons is sufficiently high, even if they partially overlap.235
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Figure 6: (color online) a) Histogram of soliton eigenvalues, computed for a state
with 5 imprinted pairs (Nimp = 10), averaged over 1000 realizations. The black solid
line with open circles shows the histogram computed for eigenvalues identified by
the threshold ε−, the blue solid line the histogram for eigenvalues identified only by
the threshold ε+ and the dashed-dotted magenta line the expected distribution of
imprinted solitons. The inset evidences the behavior near the gap edge where the
solitons are more difficult to detect. The dash-dotted vertical magenta lines corre-
spond to ±c/2, while the dash-dotted cyan lines correspond to ± sin (0.97π/2)c/2.
b) Effective speed of sound ceff (open blue circles) found from the gap edges as a
function of the number of imprinted solitons. The solid blue line is a guide to the
eye. The light blue shaded area indicates the uncertainty on the speed of sound,
extracted from the gap edges computed with the thresholds ε±, see text for details.
The horizontal dash-dotted magenta line indicates the bare speed of sound c.

So far we have only considered the number of detected solitons, we now study how the236

eigenvalues are distributed. To do so we again use the state of Eq. (8) and identify for each237

realization of the random phases the eigenvalues corresponding to solitons. More precisely we238

build a first histogram of the eigenvalues identified by the lower threshold ε− and a second one239

for the extra ones identified only by the second threshold ε+. Figure 6a) shows the result for240

5 pairs, averaged over 1000 realizations, and compare it to the expected histogram, obtained241

from the knowledge of all the phases and using Eq. (6) with the bare speed of sound. The242

measured histogram shows a very good agreement with the expected one, except near the243

edges (see the inset), as could be anticipated.244

We have varied the number of imprinted pairs between 1 and 30, always sampling roughly245

10000 phases (in total) and observed qualitatively a similar behavior. However for number246

of pairs larger than 10 we start to observe significant deviations. To confirm this we extract247

from each realization an estimation of the speed of sound c̄eff ± δceff (from the gap edges248

corresponding to the two thresholds, see Sec. 2) and plot the averaged effective speed of249

sound and uncertainty as a function of the number of pairs on Fig. 6b). We attribute the fact250

that the speed of sound deviates from the background value c =pgn0 to the failure of Eq. (8)251
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to describe a dense soliton gas. However we think that the method we explained here still252

gives a reasonable estimate of the soliton gas properties.253

3.2 Dilute gas of solitons254

We now briefly confirm our choice of thresholds by studying a dilute gas of solitons, each phase255

being drawn independently. Figure 7a) reports the average relative error on the number of256

solitons that remains consistent with the results of Fig. 6b) (note that 30 solitons is equivalent257

to 15 pairs): on average solitons with phases of magnitude up to 0.97 × π/2 are correctly258

detected. Figure 7b) evidences that the distribution of detected eigenvalues indeed follows259

the expected law. However, one notable difference is the distribution of extra eigenvalues260

(those detected only in between ε− and ε+), near the edges of the histogram that is much261

broader. This is not due to a lesser precision of the detection method, but reflects the random262

shifts of the gap edges in the continuous spectrum due to the background phase, as mentioned263

above (see Eqs. (5), (6) and (8)).264
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Figure 7: (color online) a) The relative difference between the average number of
detected and imprinted solitons ∆̄ (black open markers with solid black line) with
average uncertainty represented by the gray shaded area as a function of the number
of imprinted solitons Nimp. The different dashed-dotted lines with square markers
represent the value of ∆ as a function of Nimp with phases below a certain value,
|φ| < κπ/2. Here we only plot five different κ values ranging from κ = 0.95 to
κ = 0.99. b) Histogram of soliton eigenvalues, computed for a state with 10 im-
printed solitons Nimp = 10, averaged over 500 realizations. The black solid line
with open circles shows the histogram computed for eigenvalues identified by the
threshold ε−, the blue solid line the histogram for eigenvalues identified only by the
threshold ε+ and the dashed-dotted magenta line the expected distribution of im-
printed solitons.

For example, when applied to very simple states, as shown on Fig. 2 for a single soliton or265

on Fig. 4 for a state with 10 clearly visible solitons, our soliton detection method gives an exact266

result: Nsol = 1±0 or 10±0, respectively, which can be simply confirmed in that case by a visual267

inspection of the space-time density map. Finally our method enables a simple and efficient268

identification of solitons for arbitrary excited states, as shown in Fig. 1 and 3, resulting in269

Nsol = 131.5±4.5 and 25.5±2.5 respectively, with a guarantee that the uncertainty concerns270

only the shallowest (fastest) solitons. Moreover we emphasize that our method give also access271

to the full distribution of Lax eigenvalues corresponding to the soliton gas, a key ingredient in272

the generalized hydrodynamics approach [43].273
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3.3 Comparison to a analytical result274

Finally to validate our findings we compare the outcome of our method with a simple analytical275

result. A initial state with a hyperbolic tangent wavefunction is known to generate a odd276

number of solitons with a specific distribution of velocities in a infinite size system [9]. We277

can adapt this result to the case of periodic boundary conditions, by using the initial state:278

ψana(z) =
p

n0 tanh(
p

gn0αz)eik0z (9)

where the phase gradient eik0z is there to compensate the phase jump at z = 0 and ensure com-279

patibility with periodic boundary conditions. The parameter α controls the width of the initial280

density dip and the distribution of generated solitons. Using this initial wavefunction, the Lax281

operator of Eq. (2) can be diagonalized exactly and the resulting eigenvalues of the discrete282

spectrum are given by ζ0 = −
k0

4 , ζ2 j = −
k0

4 +
c
2

p

1− (1− jα)2, ζ2 j+1 = −
k0

4 −
c
2

p

1− (1− jα)2283

where j = 1, 2, ..., N0 and N0 is the largest integer such that N0 < 1/α. These formula show284

that for arbitrary α, the initial wavefunction profile of the form of Eq. (9) always produces a285

dark soliton at z = 0 and additional N0 pairs of symmetric gray solitons corresponding to the286

nonzero eigenvalues. As a result, the total number of eigenvalues and thus the total number287

of solitons is 2N0+1 and depends on the value of α. We now benchmark our soliton detection288

method using Eq. 9 for different values of α, using the two thresholds ε− = 1 × 10−3 and289

ε+ = 5× 10−2.290
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Figure 8: (color online) a) Lax spectrum as a function of the eigenvalue number for
α = 0.26 (open blue circles) using the initial state of Eq. (9). The two horizontal
dashed-dotted magenta lines indicate the gap in the continuous spectrum, detected
using the soliton indicator S(ζ). The filled blue circles denote the eigenvalues corre-
sponding to the ε− threshold, while the two filled red circles denote the eigenvalue
detected only by the ε+ threshold. b) Soliton indicator S(ζ) for each eigenvalue,
computed for the threshold ε−. c) Density colormap showing the propagation of the
initial state, with seven gray solitons propagating.

Figure 8a) shows a typical Lax spectrum we obtain for the state of Eq. (9), here for the291

particular value α = 0.26. Our soliton indicator method identifies correctly the gap between292

the two continuous branches, and Nsol = 8±1 solitons. The analytical formula predicts exactly293

7 solitons. By comparing the predicted eigenvalues to the detected ones, we find a excellent294

agreement: all expected solitons are correctly detected and the two extra ones correspond to295

very shallow features close to the gap. This result is consistent with our analysis of the dilute296

soliton gas. In Fig. 8c), we plot the density colormap corresponding to the propagation of the297

initial state. Here it can be checked that indeed seven density dips (gray lines) are propagating,298

although the fastest (shallowest) ones are barely visible on this color scale. It is interesting to299

note also that the solitons moving upwards (relative to the orientation of the plot) are faster300
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than those moving downwards: the symmetry is broken by the background phase gradient301

eik0z .302

In order to evaluate the accuracy of our soliton indicator we repeat the same study for 200303

different values of α ∈ [0.05, 0.90]. Fig. 9 reports the result of this analysis, in the form of the304

histogram of eigenvalues corresponding to solitons. We compare this histogram to the one we305

expect based on the analytical formulas. We find an excellent agreement, except near the edges306

where our choice of upper threshold tends to lead to "false positive" soliton detection, as was307

observed for the previous study. Here we limit ourselves to α > 0.05 to avoid distortion of the308

hyperbolic tangent shape due to periodic boundary conditions: when α < 0.05 the effective309

speed of sound we measure deviates significantly from the bare value c, which provides an310

indication that the background is not flat anymore.311
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Figure 9: (color online) Histogram of the soliton eigenvalues computed for a range
of α values. The black solid line with open circles shows the histogram computed for
eigenvalues identified by the threshold ε−, and the blue solid line is the histogram
for eigenvalues identified only by the threshold ε+. The red dashed line shows the
histogram computed for eigenvalues for the soliton as described in Eq. (9). The two
dashed-dotted vertical magenta lines indicate the gap in the Lax spectrum at the
positions ±c/2.

To summarize, we have shown in section 3 that it is possible to use the soliton indicator of312

Eq. (7) with two thresholds to estimate a upper and a lower bound of the soliton number, the313

effective speed of sound with an uncertainty and finally the distribution of soliton velocities. By314

using the two benchmarking methods we demonstrate that we are able to identify all solitons315

and that when extra solitons are detected it is always near the gap edges, which leads only to316

a small overestimation of the speed of sound. Importantly our method can then be applied to317

identify solitons in a arbitrary initial state.318

4 Discussion319

In this last section we discuss our results and highlight a few open questions.320

We have checked how the choice of the thresholds ε± was related to the value of the non-321

linearity. To do so, we have repeated the benchmarking procedure for different values of the322

nonlinearity gn0 and we have found that choosing the thresholds as ε±→ ε± ×
p

2e4/(gn0)323

provide similar performances, keeping in mind that our benchmarking protocol using the for-324
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mula of Eq. (8) requires that L≫ ξ (or gn0 ≫ 1). Similarly, we have also checked that our325

method is robust with respect to the grid size, provided that δz = L/Nz < ξ, by testing dif-326

ferent values of Nz ∈ {256, 512, 1024}. Even for Nz = 256 (meaning that δz ≃ ξ) we find327

that the soliton indicator correctly identifies the discrete eigenvalues in a dilute soliton gas328

initial state, see Eq. (8). However, we note that with this lower grid size the time propagation329

induces numerical errors and that the Lax spectrum evolve slightly with time, indicating that330

the discretization is too sparse. This is in fact a very convenient way to check whether the time331

evolution of Eq. (1) is computed with a sufficiently high accuracy. Indeed, if the continuous332

model is correctly mapped onto a discrete grid, we find that it remains approximately inte-333

grable, in the sense that the Lax spectrum is indeed time-independent. However, it may not be334

the case, for example if the number of modes is too small (δz ≥ ξ) or if the time propagation335

introduces errors.336

While varying the grid size Nz or the nonlinearity gn0 we noticed that for some trial337

functions the soliton indicator could take values other than 0 or 1, depending on the threshold338

value ε. This always occurs near the edges of the continuous branches, where, as discussed339

above it is difficult to distinguish very shallow solitons. For the purpose of our analysis we340

have considered that these few eigenvalues with "anomalous" indicator (meaning S(ζ) ̸= 0 or341

1) belonged to the same class as their neighboring eigenvalues. We interpret this phenomenon342

as a consequence of the fact that gray solitons are created without threshold in the defocusing343

1DNLSE.344

We emphasize that our method gives access to an estimation of the effective speed of sound345

in the system (see the end of section 2), which can be much larger than the bare estimate346

c = pgn0. To the best of our knowledge there is no other method to access directly this347

quantity for a arbitrary initial state. For example, in Fig. 1 it can be seen that some propagating348

features travel much faster than the bare speed of sound, and their speed is compatible with349

the measured speed of sound ceff = 268±4 (in dimensionless units). Moreover we obtain the350

whole distribution of soliton velocities and it would be very interesting to apply our method351

to a set of thermal states, generated by a stochastic classical field model [24]. In principle it352

should be possible to obtain the equation of state ceff(µ, T), relating the speed of sound to the353

chemical potential µ and the temperature T , and compare it to analytical predictions [48].354

Similarly, we may use our soliton indicator tool to test the accuracy of the recently proposed355

generalized hydrodynamics equation for gray soliton gases [43]. Indeed, once the distribution356

of Lax eigenvalues corresponding to solitons is known, we may select a particular one as a test357

"tracer" soliton and follow its trajectory over time. To do so we may look at the position of358

the maximum of the associated eigenvector, see the lower inset of Fig. 2a). By comparing the359

initial and final position associated to the same eigenvalue (recall that the Lax spectrum is360

time invariant) we obtain a direct measure of the effective velocity of the soliton, that can be361

compared to the hydrodynamic effective velocity [43].362

A natural extension of our work would be to find a way to extend our soliton detection363

method to non-integrable cases, that are highly relevant in the context of atomtronics: for364

example introduce a localized barrier that will change the soliton velocities [49,50] or enable365

the nucleation of new solitons [19,20]. In the limit of large barriers, that is considering hard366

wall boundary conditions the Lax spectrum can be readily computed using a mirror image367

technique [51]. It would be also very relevant to consider the case of a harmonic poten-368

tial: although it breaks formally the integrability of Eq. (1) it sustains long-lived soliton like369

solutions [9]. For all these examples we believe that our method can be adapted to study370

quantitatively how the external potential term breaks integrability, in the spirit of the study371

reported in [11] for the focusing (attractive) case. More generally it would be interesting to372

extend our results to other integrable equations similar to Eq. (1) [52,53].373

Finally, we emphasize that the method we introduce in this work is rather simple as it374
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requires only Fourier transforms and the diagonalization of a simple matrix, see Appendix B375

for details. Therefore it can be readily applied to any simulation relying on Eq. (1). We provide376

in Appendix C two examples of specific states with peculiar behavior that can be identified377

only with the use of the soliton indicator. We also think that it can even be used to analyze378

experimental data, provided that one can measure the amplitude and the phase of the field379

ψ(z, t ) at a given time, with a spatial resolution of at least ξ, and calibrate the non-linearity380

parameter g . This is within reach in experiments dealing with the propagation of light pulses381

in nonlinear fibers [54] or atomic vapors [6].382

5 Conclusion383

We have reported a detailed study of the use of the inverse scattering transform tools to identify384

the number of gray solitons in the defocusing one-dimensional nonlinear Schrödinger equa-385

tion. We define a self consistent soliton indicator that allows a study of the soliton distribution386

and demonstrate through a extensive benchmark its reliability. More precisely we are able to387

count the solitons and find their velocities within a given margin of error, where the errors388

always concern fast, shallow, gray solitons. Moreover it provides a accurate measurement of389

the effective speed of sound in a arbitrary excited state. We think that our method is very390

relevant to the analysis of gray soliton gases, in the context of a generalized hydrodynamics391

approach.392
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A Methods398

We provide here details on the numerical methods we use to study the 1DNLSE. To numerically399

solve Eq. (1), we use a spectral method relying on fast Fourier transforms to evaluate exactly400

the kinetic energy term [55], with a regular grid of Nz = 512 points and a dimensionless non-401

linear parameter g N = 2×104, well within the mean field regime [50]. The grid introduces a402

natural cut-off for the wavevectors at kmax = πNz/L and to avoid aliasing in the computation403

of nonlinear terms we use a projector onto the low k region: |k| < kcut = 2kmax/3 [56].404

The groundstate of Eq. (1) corresponds to a flat density profile: ψ0 =
p

n0, where n0 = N/L,405

fixing the value of the bare speed of sound c =pgn0 and healing length ξ = 1/
p

2gn0.406

To drive the system to out-of-equilibrium states we use a simple excitation protocol: we407

introduce a Gaussian potential that we stir back and forth along the z axis [57–61]. To do so,408

we add to Eq. (1) the excitation potential in the form of a moving Gaussian obstacle:409

Vstirr(t , z) = Vb(t )exp[−(z − zc(t ))
2/σ2],

where Vb(t ) is the time-dependent barrier height, σ = 4ξ is the width of the barrier and410

zc(t ) = δz cos (ωexct ) is the position of the barrier. The amplitude of the motion is set to411

δz = L/4, the barrier is turned on in a time ton = L/c, kept at its maximum value V0 = gn0412
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for Texc = 8 × L/c and turned off in a time toff = L/c. V0 is chosen such that the density413

is nearly completely depleted at the peak of the barrier which facilitates the creation of soli-414

tons, while ton and toff are slow enough to prevent the creation of excitations if the barrier415

is not moving (i.e. for ωexc = 0 or δz = 0). We then vary ωexc to control the amount of416

excitation created in the final state. For example the state of Fig. 1 was generated with a417

fast oscillation ωexc = 4.5× c/L, while the state of Fig. 3 corresponds to a slower frequency418

ωexc = 0.384× c/L. At the end of the excitation phase, when the barrier amplitude is turned419

off, we record the wavefunction and compute its Lax spectrum. Our analysis protocol allows420

then to extract for each simulation the number of solitons.421

B Computation of the Lax spectrum422

The Lax eigenvalue equation we want to solve isLv = ζv , with v = (v1, v2)T a two-component423

vector. In order to compute this equation in momentum space, we take the Fourier transform,424

L̂ ∗ v̂ = ζv̂ , where ∗ is the convolution and v̂ is the Fourier transform of v . The equation then425

reads:426
�

− k
2 v̂1 − i

p
g

2 ψ̂ ∗ v̂2

i
p

g
2 ψ̂
∗ ∗ v̂1 +

k
2 v̂2

�

= ζ

�

v̂1
v̂2

�

.

Now to compute the convolution, corresponding to off-diagonal terms in L, we have to write it427

using the discrete Fourier transform: ψ̂(k)→ ψ̂q =
∑Nz−1

n=0 ψne−ikq xn where xn or kq belong428

to the discrete grid in position or momentum space. Then the discrete convolution reads:429

�

ψ̂ ∗ v̂
�

q =
Nz−1
∑

p=0

ψ̂q−p v̂p ,

where the index q − p in the sum is taken modulo Nz , as ψ̂q = ψ̂q+Nz
. This operation can be430

written in a matrix form:431

C v̂ =













ψ̂0 ψ̂1 · · · ψ̂Nz−2 ψ̂Nz−1

ψ̂Nz−1 ψ̂0 · · · ψ̂Nz−3 ψ̂Nz−2
· · ·

ψ̂2 ψ̂3 · · · ψ̂0 ψ̂1

ψ̂1 ψ̂2 · · · ψ̂Nz−1 ψ̂0













v̂

from which it is clear that the convolution matrix has a Toeplitz structure.432

Finally we diagonalize the 2Nz × 2Nz matrix:433

L̂ =
i

2

�

ik −pgCp
gC † −ik

�

,

where k stands for the diagonal matrix of discrete wave-vectors. All operations are imple-434

mented in Octave/Matlab language using built-in functions.435

As L̂ is a generic hermitian matrix, the typical algorithmic complexity cost of its diagonal-436

ization is O(N3
z ) [62]. For the grid sizes we used in this work we have not found any significant437

difference in computation time between computing only the eigenvalues or the eigenvalues438

and the eigenvectors. However the latter requires more available memory to store the matrix of439

eigenvectors. Our soliton detection algorithm requires to diagonalize first a 2Nz ×2Nz matrix440

and then a 4Nz×4Nz matrix, and to identify the soliton positions we need the eigenvectors of441

the first matrix. In our Matlab implementation we indeed observe that the diagonalization of442
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the second matrix takes roughly 8 times longer than the first one. For a grid size of Nz = 512443

it amounts to about 1 second and 8 seconds, respectively, on a standard laptop computer.444

Our algorithm also require pairs of fast direct and inverse Fourier transforms with complexity445

scaling as O(Nz log Nz) that have a negligible impact on the total computation time.446

C Examples of peculiar non-stationary states447

In this last appendix we report two examples of initial states leading to a non-trivial dynamics448

that can be understood correctly only with the analysis of the Lax spectrum thanks to the449

soliton indicator.450

We first consider the state of Eq. (9), with α = 2 and a non-linearity gn0 = 2×104. Since451

the initial density dip is very narrow, we use a grid size of Nz = 1024 to correctly compute the452

time-evolution. In that case, the analytical result predicts that there is a single dark soliton at453

ζ0 = −
k0

4 in the gap. Our soliton indicator method detects Nsol = 10±7 solitons and a effective454

speed of sound ceff = 142.9 ± 1.3 very close to the bare speed of sound c. Figure 10a) and455

b) show the Lax spectrum structure, evidencing clearly the isolated eigenvalue corresponding456

to the dark soliton, and a bunch of discrete eigenvalues very close to the gap edges, that are457

within the uncertainty of our detection method.458
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Figure 10: (color online) a) Lax spectrum as a function of the eigenvalue number for
α = 2 (open blue circles) using the initial state of Eq. (9). The two horizontal dashed-
dotted magenta lines indicate the gap in the continuous spectrum, detected using the
soliton indicator S(ζ). b) Soliton indicator S(ζ) for each eigenvalue, computed for
the threshold ε−. c) Density colormap showing the propagation of the initial state.

Figure 10c) displays the density colormap of the time-evolution for this initial state. One459

can clearly see a dark soliton slowly moving due to the background phase gradient k0 ≃ π/L,460

and several bright features propagating at a speed significantly faster than the bare speed of461

sound. We interpret this as a Bogoliubov excitation propagating at a group velocity vg =
dω
dk462

larger than the speed of sound, which do not appear as a soliton in the Lax spectrum. We note463

that an analysis based only on the apparent speed of propagating features in Fig. 10c) would464

lead to an incorrect estimation of the speed of sound. We have checked that a initial state465

with a small Bogoliubov excitation wave-packet on top of a homogeneous background results466

indeed in a similar dynamics, except for the slow moving soliton that is absent.467

Finally we present a second puzzling case, showing that it is possible to construct a non sta-468

tionary state with a non trivial Lax spectrum exhibiting several continuous branches, separated469

by multiple gaps. To do so we consider the initial state:470

ψk(z) =
p

n0 (1+η cos kz) ,
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Figure 11: (color online) a) Lax spectrum as a function of eigenvalue number for
a highly periodic initial state (open blue circles). Inset: initial density profile as a
function of the position, zoomed in around z = 0. b) Soliton indicator S(ζ) for each
eigenvalue, computed for the threshold ε−. In a) and b) the two horizontal dashed-
dotted magenta lines indicate the edges of the main gap in the continuous spectrum.
c) Density colormap of the periodic state for this particular realization (note the small
time scale).

with n0 = 1, η = 0.5, k = 50× 2π/L and nonlinearity gn0 = 2× 104.471

Figure 11 shows the Lax spectrum, the soliton indicator and the typical time evolution of472

the density profile, for this initial state. The Lax spectrum displays a non trivial structure,473

with many eigenvalues inside the gap. However, the analysis of our soliton indicator indicates474

that these eigenvalues do not correspond to solitons but rather behave as plane waves, in475

term of degeneracy. We interpret this as a spectrum with four continuous branches, separated476

by three gaps. Here since the soliton indicator is always 0 we define the gap based on the477

analysis of the distance between consecutive eigenvalues. This structure seems to arise from478

the highly periodic pattern of the initial state, that give rise also to a time periodic evolution479

at a high frequency. We also note that the density evolution do not display the propagation480

of many gray solitons. We have carefully checked that this is not the result of a numerical481

artifact. Although we do not think that this state is of particular significance for the study of482

the physical properties of the 1DNLSE, its existence supports the need for a careful analysis of483

Lax spectrum to detect eigenvalues corresponding to solitons. We leave for a future work the484

question of the possibility of engineering a state with both continuous branches and soliton485

eigenvalues inside the gaps.486
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