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HOMOTOPY TRANSFER AND FORMALITY

GABRIEL C. DRUMMOND-COLE AND GEOFFROY HOREL

Abstract. In [CH17, CH18], the second author and Joana Cirici proved a the-

orem that says that given appropriate hypotheses, n-formality of a differential
graded algebraic structure is equivalent to the existence of a chain-level lift of

a homology-level degree twisting automorphism using a unit of multiplicative

order at least n.
Here we give another proof of this result of independent interest and under

slightly different hypotheses. We use the homotopy transfer theorem and an

explicit inductive procedure in order to kill the higher operations. As an
application of our result, we prove formality with coefficients in the p-adic

integers of certain dg-algebras coming from hyperplane and toric arrangements

and configuration spaces.

Introduction

An algebraic structure A (e.g. an associative algebra, a commutative algebra, an
operad, etc.) in the category of chain complexes is said to be formal if it is connected
to its homology H(A) by a zig-zag of quasi-isomorphisms that preserve the algebraic
structure. There are many interesting examples from a variety of arenas, including
rational homotopy theory [Sul77, FHT01], Kontsevich formality [Kon03, Tam03],
Kähler manifolds [DGMS75], string topology of complex projective spaces with
integral coefficients [BB17, Theorem 4.3], etc.

Let us generically use the term algebra to refer to any type of algebraic structure
such as those mentioned above; we assume that the structure operations are all
degree zero. For any algebra A, and any unit α of the base ring, one can construct
an automorphism σα ofH(A) that is given in homological degree n by multiplication
by αn. By a standard homotopical algebra reasoning, if A happens to be formal, this
automorphism can be lifted to an endomorphism of A (or at least an endomorphism
of a cofibrant replacement of A).

It was observed in the introduction of [DGMS75] (see also the last section of
[Pet14]) that the converse should be true if α is of infinite order. The intuition is
the following : if such an endomorphism exists at the level of chains, then any higher
Massey product has to be compatible with this action but then we see that they
have to be zero because they intertwine multiplication by αn with multiplication
by αm with n 6= m. As stated, this is not rigorous : for example, without some co-
herence assumption, the vanishing of the classical Massey products of a differential
graded algebra is not a sufficient condition to ensure formality. In fact Deligne–
Griffiths–Morgan–Sullivan proved their result using a different method. Sullivan
proved a statement of this kind for differential graded algebras in characteristic
zero [Sul77, Theorem 12.7] which was generalized to other algebraic structures by
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2 GABRIEL C. DRUMMOND-COLE AND GEOFFROY HOREL

Guillén Santos–Navarro–Pascual–Roig [GSNPR05, Theorem 5.2.4]. The method in
both cases uses a chain level filtration and does not explicitly pass through Massey
products.

One of our goals in this paper is to give a method for proving formality by making
more precise the intuition explained in the previous paragraph. We use the fact
that the Massey products are the shadow of the P∞-structure on the homology of
the algebra. Unlike the Massey products, the P∞-structure is not uniquely defined
but it is unique in a suitable homotopical manner. Moreover, it contains all the
homotopical information of the algebra. Our main result is the following :

Main Theorem. Let R be a commutative ring. Let P be an operad in the category
of R-modules. Let (A, d) be a P -algebra in the category of differential graded R-
modules such that the chain complex (H(A, d), 0) can be written as a homotopy
retract of (A, d). Let α be a unit in R and let σ̂ be an endomorphism of the P -
algebra (A, d) such that the induced map on H(A, d) is the degree twisting by α (see
Definition 0.1).

• If αk − 1 is a unit of R for k ≤ n, then (A, d) is n-formal as a P -algebra.
• If αk − 1 is a unit of R for all k, then (A, d) is formal as a P -algebra.

The assumption that (H(A, d), 0) can be written as a homotopy retract of (A, d)
allows us to apply the homotopy transfer theorem (Theorem 1.19). It is automatic
if R is a field or more generally if A and H(A) are degreewise projective and R
is a hereditary ring (a ring is hereditary if a submodule of a projective module
is projective). Let us mention that Dedekind rings (in particular principal ideal
domains) are hereditary. These conditions can be weakened a little further. See
Remark 2.17.

The main improvement over the kind of classical results of [Sul77] and the im-
provement of [GSNPR05] is the extension to give n-formality results outside char-
acteristic zero fields. The method of proof in both references relies on a filtration
that fails as soon as α does not have infinite order.

One reason this result is interesting is because the theory of étale cohomology
gives algebras with automorphisms of this type. Let us explain this with a simple
example. We take A to be the algebra C∗(Pn

C,Q`) of singular cochains on the
complex projective space with Q`-coefficients. Standard results of étale cohomology
imply that this algebra is quasi-isomorphic to the algebra B = C∗et(P

n
Q,Q`) of étale

cochains of the projective space over the algebraic closure of Q. Since the projective
space is actually defined over Q, the algebra B has an action of the absolute Galois
group of Q. If we fix a prime p different from `, we can pick a lift σ of the
Frobenius of Fp in the absolute Galois group of Q and it can be shown that σ acts
on H2k(Pn

C,Q`) by multiplication by pk. We are thus exactly in the situation of
the theorem above and we deduce that B is formal, and thus that A is as well.

We could apply the same strategy with the algebra of cochains of complex projec-
tive space with Z`-coefficients. In that case, the Frobenius lift still acts in degree 2k
by multiplication by pk. However, contrary to what happens in characteristic zero,
p`−1 − 1 is not a unit in Z`. The above theorem lets us conclude that C∗et(P

n
Q,Z`)

is (`− 2)-formal (it is in fact (2`− 4)-formal by the variant 3.1).
A similar suite of results was proven in the papers [CH17] and [CH18] by Cirici

and the second author. There the method used was different and relied on deep
results in abstract homotopy theory, most notably, Hinich’s recent result comparing
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Lurie’s∞-categorical approach to algebras over an operad with the model categor-
ical approach (see [Hin15]). Here the methods used are comparatively easier and
more explicit. We can in fact write an inductive formula for a formality quasi-
isomorphism. Moreover, we are able to improve one of the results of [CH18] by
removing a simple connectivity hypothesis and allowing the coefficient ring to be
more general than a field. From this we obtain a result of partial formality for
complements of hyperplane arrangements and toric arrangements with coefficients
in the p-adic integers that we believe is new. Let us mention however, that not
all of the results of [CH18] can be recovered from the methods of our paper. Most
notably, the result of (p− 2)-formality of the little disks operad with coefficients in
Fp proved in [CH18, Theorem 6.7] is not a consequence of our main theorem.

Structure of the paper. In section 1 we review mostly standard conventions,
definitions, and facts about operadic homotopy algebra. We briefly review operads
and cooperads, algebras and coalgebras, coderivations, homotopy algebras, and
homological perturbation. The only things that are non-standard are the following:

(1) we use the symbol / instead of ◦ for the composition product of S-modules
and N-modules, and

(2) we use the terminology component of a homotopy algebra in a non-standard
way—see Terminology 1.9 and Remark 1.10.

(3) we define n-formality in Definition 1.22 and connect it to formality in
Propositions 1.24 and 1.25.

Then Section 2 constitutes the proof of the main theorem. The method is to con-
struct a sequence of isomorphisms of homotopy algebras which witness the coherent
vanishing of successively more and more of the higher structure operations.

Section 3 presents a simple algebraic variant of the main theorem. Both this
variant and the main theorem are applied in Section 4 to yield the following exam-
ples.

(1) Formality of complex algebraic varieties whose mixed Hodge structure is
pure of some weight,

(2) Formality of the little disks operad,
(3) Formality of complements of hyperplane arrangements,
(4) Formality of complements of toric arrangements and
(5) Coformality of the space of configurations of points in Euclidean space.

To the best of our knowledge, the results obtained with integral coefficients in
examples (3), (4) and (5) are new.

Conventions. Fix a commutative ground ring R. All tensor products are taken
over R unless otherwise specified. When working with symmetric operads we insist
that all prime numbers are invertible in R (i.e. R is a Q-algebra). The symmetric
group on the set {1, . . . , n} is denoted Sn.

Definition 0.1. Let V be a graded R-module. Let α be a unit in R. The degree
twisting by α, denoted σα, is the linear automorphism of V which acts on the degree
n homogeneous component of V via multiplication by αn.

1. Reminder and conventions on operadic homotopy algebra

1.1. Operads. A N-module is a collection {P (n)} indexed by n ≥ 0 of chain com-
plexes over R. A S-module P is a collection {P (n)} indexed by n ≥ 0 of right



4 GABRIEL C. DRUMMOND-COLE AND GEOFFROY HOREL

(R-linear, differential graded) Sn-representations. The index n is called the arity.
When we are working with S-modules, we insist that our ground ring is a field
of characteristic zero (so that we can, e.g., identify invariants and coinvariants of
symmetric group actions).

Maps of N-modules (respectively S-modules) are collections of (equivariant) chain
maps. There are monoidal products on N-modules and S-modules defined as follows
(these products are often denoted ◦ in the literature; we avoid this because of the
potential for confusion):

(P / Q)(n) =

∞⊕
k=0

⊕
n1+···+nk=n

P (k)⊗Q(n1)⊗ · · · ⊗Q(nk).

(P / Q)(n) =

∞⊕
k=0

P (k)⊗R[Sk]

( ⊕
n1+···+nk=n

Q(n1)⊗ · · · ⊗Q(nk)⊗R[Sn1
×···×Snk ] R[Sn]

)
.

The unit I has a rank one free R-module in I(1) and the zero representation else-
where. We suppress the associator isomorphisms throughout.

An operad is a monoid in the monoidal category of S-modules. A cooperad
is a comonoid in this monoidal category. A non-symmetric operad (respectively
cooperad) is a monoid (comonoid) in the monoidal category of N-modules. The
unit I with respect to / is thus both a cooperad and an operad. We refer to it
as the trivial cooperad and the trivial operad. A coaugmentation of a (possibly
non-symmetric) cooperad C is a cooperad map from the trivial cooperad to C; an
augmentation of a (possibly non-symmetric) operad P is an operad map from P
to the trivial operad. A weight-grading on a cooperad or operad is an extra N-
grading on the underlying N-module or S-module which is stable under the monoid
or comonoid structure maps. A weight-graded cooperad or operad is connected
if the unit or counit is an isomorphism on weight 0. A connected weight-graded
operad has a unique weight-respecting augmentation. A connected weight-graded
cooperad has a unique weight-respecting coaugmentation. A reduced N-module or
S-module has 0 in arity 0.

We will always work with the categories of reduced connected weight-graded op-
erads and reduced connected weight-graded cooperads, equipped with their unique
weight-respecting (co)augmentations. We will henceforth suppress these adjectives
in our terminology.

Remark 1.2. Essentially everything we do works equally well in the symmetric
and non-symmetric case, so we use the same symbol for both products; the reader
should interpret it as appropriate for the context.

The “reduced” assumption (starting our indexing at 1 and not 0) is a common
technical restriction to make certain sums finite. This assumption is probably
extraneous in the context of a connected weight-grading but various technical results
on which we rely are stated in the reduced category and it would require careful
verification that no subtle problems arise.

The connected weight-grading assumption is only used in Proposition 1.18 and
Theorem 1.19. This assumption would not be necessary in any situation in which
the conclusions of these two results were known by other means. For example,
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model-categorical methods have often been used to give access to more powerful
but non-constructive existence statements in operad theory. So one kind of context
that might work would use model-theoretical tools to give these two statements,
probably combining a model category of operads and a model category of algebras
over (sufficiently nice) operads. This would require that the interface with the
classical theory be well-developed enough to give statements about the specific
concrete model for homotopy algebras in use in these two theorems.

In any event, the examples that arise most commonly are reduced and support
a connected weight-grading.

It may also be possible to weaken the characteristic zero assumption for S-
modules. This would be much more interesting in the sense that algebras over
symmetric operads arise often in characteristic p. However, the requisite changes
appear to be much more substantial and it is not entirely clear that everything
would work.

1.3. Algebras and coalgebras. There is a fully faithful functor from the category
of chain complexes over R to the category of either N-modules or S-modules which
takes a chain complex V to the object with V in arity 0 and the zero complex in
all other arities. In a slight abuse, we will write V for the image of V under this
functor as well, hoping it causes little confusion. For such an object V we write
Q(V ) as shorthand for the N-module or S-module Q / V . This is also necessarily
concentrated in arity zero.

An algebra over the operad P is a left P -module whose underlying S-module
is concentrated in arity 0. That is, it is a chain complex V equipped with a
map P (V ) → V which satisfies the usual associativity and unitality constraints.
Similarly, a coalgebra over the cooperad C is a left C-comodule whose underlying
S-module is concentrated in arity 0. That is, it is a chain complex V equipped
with a map V → C(V ) which satisfies the usual coassociativity and counitality
constraints. We do not require any compatibility with the weight-grading in either
case.

Fix a cooperad C with structure map ∆ and counit ε. The cofree conilpotent
C-coalgebra on V is the coalgebra C(V ) with structure map induced by ∆. By
abuse, we typically also use the notation ∆ for this structure map

C(V )
∆−→ (C / C)(V ) ∼= C(C(V )).

There will be several further times when we abuse notation like this, using the
symbol of a map f for the map obtained by taking the monoidal product of f with
some identity map or other.

By the universal property of being cofree, given a chain map f : C(V ) → W ,
there is a unique extension to a map F of C-coalgebras C(V )→ C(W ). Explicitly,
F is given by the composite

C(V )
∆−→ C(C(V ))

f−→ C(W )

where ∆ is the comonoidal structure map of C.

1.4. Coderivations. Given a chain map m : C(V ) → V , there is another useful
extension of m, this time not as a coalgebra map but as a coderivation. To discuss
this, we first recall the linearization of the monoidal product / (see, e.g., [LV12, 6.1]
for more details). We describe the non-symmetric case for ease of notation.
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The linearization of / is easiest to describe in terms of a trifunctor on N-modules.
Given three N-modules P , Q, and R, the product P /(Q;R) consists of the R-linear
summands of P / (Q⊕R), i.e.,

(P / (Q;R))(n) =

∞⊕
k=1

k⊕
i=1

⊕
n1+···+nk=n

P (k)⊗Q(n1)⊗ · · · ⊗R(ni)⊗ · · · ⊗Q(nk).

Again we abbreviate P / (Q;R) as P (Q;R) if both Q and R are in the image of the
inclusion from chain complexes to N-modules. It doesn’t make sense to ask about
“associativity” but this trifunctor satisfies the following compatibility relations:

(P / Q) / (R;S) ∼= P / (Q/ R;Q/ (R;S))(1)

(P / (Q;R)) / S ∼= P / (Q/ S;R/ S).(2)

Now we can define the linearization of / as P /(1) R = P / (I;R). Explicitly we
have

(P /(1) R)(n) = (P / (I;R))(n)

=

∞⊕
k=1

k⊕
i=1

P (k)⊗ I(1)⊗ · · · ⊗R(n− k + 1)⊗ · · · ⊗ I(1)

∼=
n+1⊕
k=1

k⊕
i=1

P (k)⊗R(n− k + 1).

The linearization is not associative but rather preLie in general. We will not need
the preLie compatibility but rather two other relations which follow from Equa-
tions (1) and (2):

(P / Q) /(1) R ∼= P / (Q;Q/(1) R)(3)

(P /(1) Q) / R ∼= P / (R;Q/ R).(4)

These isomorphisms and the associator isomorphism for / together satisfy the ap-
propriate analogues of the pentagon relation, and so we may safely suppress them,
assuming a unique natural isomorphism between any two parenthesizations that
are equivalent by a chain of (modified) such associators.

The linearization P /(1) R is a direct summand of P / R with complement given
in terms of similar formulas with either zero or more than one entry from R. A
map O → Q⊕R induces a map P /O → P / (Q;R), and likewise a map Q⊕R→ O
induces a map P / (Q;R)→ P / O.

Now returning to our cooperad C, there is a linearized coproduct from the map

C
ε,idC−−−→ I ⊕ C as follows:

C
∆−→ C / C −→ C /(1) C

which we denote ∆(1).
Now given a differential graded C-coalgebra X, a linear map M : X → X of

homological degree −1 is a coderivation of X if the composition along the top and
right side of the following diagram is equal to the sum of the composition along the



HOMOTOPY TRANSFER AND FORMALITY 7

left side and the two choices on the bottom:

X X

C(X) C(X;X) C(X;X) C(X)

∆

M

∆

dC(X)

C(X;M)

where the unmarked arrows are induced by the diagonal X → X ⊕X and the fold
map X ⊕X → X. A priori, this definition does not use the weight-grading of the
cooperad C.

Given a chain complex V , the coderivations of the free C-coalgebra C(V ) are
in bijection with the homological degree −1 linear maps C(V ) → V . Given a
coderivation M , one gets a map m : C(V )→ V by projecting to the cogenerators:

C(V )
M−→ C(V )→ V.

In the other direction, given a map m : C(V ) → V , one obtains a linear map
C(V )→ C(V ) via adding dC(V ) to the composition

C(V )
∆(1)−−−→ (C /(1) C)(V ) ∼= C(V ;C(V ))

m−→ C(V ;V )→ C(V ).

Here the isomorphism is via Equation (3) and the unmarked arrow is induced by
the fold map of V . It is a tedious diagram chase to verify that this indeed gives a
coderivation.

There is a similar linearization /(1) in the symmetric case which we will not write
down explicitly and all of the statements in this section work symmetrically with
the minimal requisite changes.

1.5. Homotopy algebras. One convenient method for describing homotopy alge-
bras in the operadic formalism is via conilpotent cooperads and the cobar functor.
For our purposes here, conilpotence can essentially remain a black box, but we
briefly outline the definition with references for the interested reader.

Given a coaugmentation of a cooperad C, one can define a coradical filtration of
C of the form

I = F0C ⊂ F1C ⊂ · · · ⊂ C
where the object F1C is the coradical of C with respect to the coaugmentation.
There are different definitions of FnC for n > 1 in the literature (see, e.g., [LV12,
§ 5.8.5] or [LGL18, Definition 4.3]) which try to capture the idea that FnC admits
at most n − 1 “interesting” applications of the structure map ∆ before becoming
merely formal extensions by I. Then one says that the coaugmented cooperad C is
conilpotent (called local conilpotent in [LGL18]) if the natural map

colim
i

FiC → C

is an isomorphism. Despite the different filtrations in use in the definitions, a
cooperad is conilpotent in the sense of [LV12] if and only if it is locally conilpotent
in the sense of [LGL18], and for parsimony we will use “conilpotent” to refer to the
cooperads satisfying these equivalent conditions.

The coaugmentation coideal C of a coaugmented cooperad is the linear coker-
nel of the coaugmentation I → C. Then the cobar functor Ω from conilpotent
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cooperads to operads takes the cooperad C to the free operad on C̄[1], equipped
with

(1) a differential that combines the internal differential of C and the comonoid
structure of C and

(2) the induced weight-grading.

See, e.g., [LV12, § 6.5.2]. This works equally well for nonsymmetric cooperads
and operads. A twisting morphism from a conilpotent cooperad C to an operad
P is a morphism of operads from Ω(C) to P ; the twisting morphism is Koszul if
it induces an isomorphism on homology groups. Since Ω(C) is a free operad, a
twisting morphism is entirely determined by its restriction to C[1]. So we could
alternatively define, as in [LV12, §6.4], a twisting morphism as a degree −1 map
C → P satisfying certain equations. By definition our twisting morphisms must
intertwine the weight-grading of C and P .

Assumption 1.6. Let P be an operad over R, concentrated in degree zero. Let
C be a conilpotent cooperad over R, with coaugmentation coideal C̄ concentrated
in strictly positive degree. Let κ : Ω(C)→ P be a Koszul twisting morphism.

Given Assumption 1.6, one model for the category of strongly homotopy P -
algebras, or P∞-algebras is the category of cofree conilpotent C-coalgebras.

Definition 1.7. Assume Assumption 1.6. A P∞-algebra structure M on a chain
complex (V, d) is a degree −1 square-zero coderivation of the cofree conilpotent
coalgebra C(V ) so that the composition

V
coaugmentation−−−−−−−−−−→ C(V )

M−→ C(V )
projection−−−−−−→ V

is the differential d.
A P∞-algebra structure on a graded R-module V is a P∞-algebra structure on

(V, d) for some differential d.
A P∞-morphism between (V, d,M) and (V ′, d′,M ′) is a map F of differential

graded C-coalgebras from (C(V ),M) to (C(V ′),M ′), i.e., a map of coalgebras so
that the following diagram commutes:

C(V ) C(V ′)

C(V ) C(V ′).

F

M M ′

F

A P∞ morphism is a quasi-isomorphism if the composition

V
coaugmentation−−−−−−−−−−→ C(V )

F−→ C(V ′)
projection−−−−−−→ V ′

is a quasi-isomorphism of chain complexes.

Remark 1.8. As given here, this definition does not match the terminology for an
algebra over an operad from Section 1.3.

There is an alternate characterization of P∞-algebras that brings the two usages
into closer but not perfect alignment. Namely, by [LV12, Theorem 10.1.13], a P∞-
algebra structure on (V, d) is equivalent to an (ΩC)-algebra structure on (V, d) in
our earlier sense. Every (ΩC)-algebra morphism is a P∞-algebra morphism in this
new sense [LV12, Proposition 10.2.5], but the converse is not true in general.



HOMOTOPY TRANSFER AND FORMALITY 9

From this alternate perspective, any P -algebra structure on (V, d) can be pulled
back along the Koszul twisting morphism κ : ΩC → P to a P∞-algebra structure
on (V, d). Similarly, any P -algebra morphism (V, d,m) → (V ′, d′,m′) pulls back
along κ to a P∞ morphism. This pullback constitutes a functor from the category
of P -algebras to the category of P∞-algebras. If κ is surjective, this functor is in
fact the inclusion of a (non-full) subcategory.

This perspective also makes it easier to see that quasi-isomorphisms are closed
under composition.

By the discussion of the last section, specifying the coderivation M is equivalent
to specifying a degree −1 linear map

C(V )
m−→ V

so that V → C(V )→ V is d (the map m must satisfy further conditions equivalent
to the equation M2 = 0).

We will consistently pass back and forth between these two representations of
the same data in this article by using a capital letter for the coderivation and
the corresponding lowercase letter for the projection to the cogenerators. E.g.,
(V,M) and (V,m) are both notation for the same P∞-algebra structure on V and
M : C(V )→ C(V ) is the C-coalgebra coderivation extending m : C(V )→ V .

Similarly, we encode a P∞-morphism from V to W (leaving the structures im-
plicit) via a linear map C(V )→W satisfying relations which imply that the corre-
sponding coalgebra morphism intertwines the coderivations. Again, we use capital
letters for the coalgebra maps and lower case letters for the projections to the
cogenerators.

Terminology 1.9. Given a map (say, m or f) from C(V ) to W , we use a subscript
to indicate the further decomposition with respect to the homological degree of C,
and call the resulting maps components. Explicitly, we can decompose C(V ) as

C(V ) =
⊕
i∈N

Ci(V )

where Ci(V ) is defined as

Ci(V ) =
⊕
k∈N

Ci(k)⊗Sk V
⊗k or Ci(V ) =

⊕
k∈N

Ci(k)⊗ V ⊗k

respectively in the symmetric or non-symmetric contexts. We denote by fi or mi,
the restriction of f or m to Ci(V ).

So for instance mi : Ci(V ) → V is the ith component of the P∞-algebra m and
fi : Ci(V )→W is the ith component of a P∞-morphism f .

Remark 1.10 (Warning). This does not in general coincide with other uses of the
term component in operadic algebra. Often the ith component would be the com-
ponent in arity i in C. A different usage common in the literature would have the
ith component refer to the component in weight-grading i in C. For us it is neither
of these but the component in homological degree i in C.

In any case, typically the desirable properties for components are that they be
N-indexed and that the 0th component be split by the coaugmentation and counit,
which occurs for us by Assumption 1.6.
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In the case of weight-graded algebras, the arguments given in this paper should
work with more general filtrations mutatis mutandis (Definition 0.1 would have to
be changed to be about the weight rather than the homological degree).

Remark 1.11. Note that our usage does not coincide naively with the homological
degree of the operations. Since M is supposed to be of degree −1, the operations
of form mi have degree i− 1. For maps F (of degree zero) the fi operations indeed
have degree i.

Remark 1.12. Given P concentrated in degree zero, the image BP of P under
the bar functor satisfies the conditions of Assumption 1.6: it is conilpotent, the
coaugmentation coideal is concentrated in strictly positive degrees, and it comes
with a canonical Koszul twisting morphism to P . So if we don’t care about the
details of the particular choice of model for the category of strongly homotopy
P -algebras, we need only begin with an operad over R concentrated in degree zero.

However, many practitioners have preferred models, especially in specific cases.
A classical example where there is a different preferred model arises in the context
of a so-called Koszul operad, which is equipped with a quadratic presentation which
yields a Koszul twisting morphism ΩC → P from a cooperad C without an internal
differential (see [LV12, 7.4, especially Thm. 7.4.2(4)], although this case goes back
to [GK94]). Then the model which arises for the category of strongly homotopy
P -algebras is the so-called minimal model [LV12, 6.3.4, Corollary 7.4.3].

Since sometimes such a preference exists, we have explicitly recorded the required
conditions on the governing cooperad C and its relation to P .

Example. The classical examples (the “three graces”) and other Koszul operads are
all examples. In particular, the following examples work.

(1) Let P be the associative operad and C the shifted coassociative cooperad.
Then P∞-algebras are A∞-algebras with the standard definitions and the
example fits into this framework.

(2) Let P be the Lie operad and C the shifted cocommutative cooperad. Then
P∞-algebras are L∞-algebras with the standard definitions and the example
fits into this framework.

(3) Let P be the commutative operad and C the shifted coLie cooperad. Then
P∞-algebras are C∞-algebras with the standard definitions and the example
fits into this framework.

(4) All of these are subsumed by the following. Let P be a Koszul operad con-
centrated in degree zero. Then P∞-algebras with the standard definitions
fit into this framework.

Example. Everything we will do works with only the evident requisite changes
for colored operads. So another example that works is for P the colored operad
whose algebras are non-unital non-symmetric Markl operads. The operad P is
concentrated in degree zero so it fits into this framework. The operad P is also
Koszul with the requisite changes for color sets so there is an explicit small model
for homotopy operads as P∞-algebras [vdL03].

We will use the following elementary observation about a situation relating a
map and its linearization.

Lemma 1.13. Let C be a cooperad and V a chain complex, and suppose given a
map f : C(V )→ V . Suppose further that f0 = idV and fi = 0 for 1 ≤ i < n. Then
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the projection

CN (V )
∆−→ C(C(V ))

f−→ C(V )→ CN−n(V )

and the projection

CN (V )
∆(1)−−−→ C(V ;C(V ))

fn−→ C(V ;V )→ CN−n(V )

coincide for n > 0.

Proof. Applying ∆ lands in a sum over partitions of n = i1 +· · ·+ik into summands
represented by tensor products of the form

CN−n(k)⊗ Ci1 ⊗ · · · ⊗ Cik
and f vanishes on all summands except those with a single index of value n and all
other indices of value 0. The sum of such terms is then the projection of C / C to
C / (C0;Cn). �

1.14. Homological perturbation and formality. Given a differential graded P -
algebra (A, d,m), there is an induced P -algebra structure on the homology H(A, d),
because the operations making up m are all chain maps. However, in general
the induced structure (H(A, d), 0,m∗) is not equivalent to the original P -algebra
(A, d,m).

Definition 1.15. We call the differential graded P -algebra (A, d,m) classically
formal if it is equivalent to the induced structure (H(A, d), 0,m∗), i.e., if there

exists a differential graded P -algebra (Â, d̂, m̂) and a zig-zag of maps of differential
graded P -algebras inducing isomorphisms on homology:

(A, d,m)
∼←− (Â, d̂, m̂)

∼−→ (H(A, d), 0,m∗).

Another way to say this is that (A, d,m) and (H(A, d), 0,m∗) are isomorphic
objects in the homotopy category of differential graded P -algebras. This notion
goes back to [DGMS75]. Let us point out that, usually, such an algebra is simply
called formal. We have decided to change the terminology in this paper because we
would like to operate under a slightly different definition of formality.

Definition 1.16. We call the differential graded P -algebra (A, d,m) formal if there
is a P∞-quasi-isomorphism from (A, d,m) to (H(A, d), 0,m∗).

In the nicest cases, the two notions of formality coincide. Here are two precise
statements along these lines.

Proposition 1.17. Let R be a field. A classically formal differential graded P -
algebra is formal.

This is more or less well-known, we include a proof later as a corollary of Theo-
rem 1.19.

Proposition 1.18. Let R be a characteristic zero field. Then a formal differential
graded P -algebra is classically formal.

Let R be any commutative ring. Let P and C be non-symmetric, and arity-
wise and degreewise flat. Then a formal differential graded P -algebra is classically
formal.
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Proof. The first statement can be found in [Mar04, (M1),(M3)] and in [LV12, The-
orem 11.4.9].

We were not able to find a reference for the second statement so we give a few
details.

We first recall the bar and cobar construction associated to the twisting mor-
phism κ, denoted Bκ and Ωκ. The functor Bκ takes as an argument a P -algebra
and returns a C-coalgebra, the functor Ωκ is its left adjoint. The functor Bκ can
be extended to P∞-algebras. In that case, it is denoted Bι as it is the Bar con-
struction associated to a canonical twisting morphism ι (see [LV12, §11.4]) which
in our presentation corresponds to the identity map ΩC → ΩC. Note that if we
view P∞-algebras as a subcategory of differential graded C-coalgebras, the functor
Bι is simply the inclusion functor.

Now, we sketch the proof of the theorem. Let A = (V, d,m) be a P -algebra and
H = (H(A, d), 0,m∗) its homology with the induced P -algebra structure.

The C-coalgebras Bι(A) and Bι(H) are simply Bκ(A) and Bκ(H) since A and
H are strict P -algebras. Therefore by [LV12, Theorem 11.3.3], the counit of the
adjunction (Ωκ, Bκ) induces quasi-isomorphisms of P -algebras ΩκBκ(A)→ A and
ΩκBκ(H)→ H.

By assumption, we have a P∞-morphism f : A→ H inducing an isomorphism in
homology. By [LV12, Proposition 11.4.7], this implies that the map of P -algebras

ΩκBκ(A) ∼= ΩκBι(A)
ΩκBι(f)−−−−−→ ΩκBι(H) ∼= ΩκBκ(H)

is a quasi-isomorphism. Combining these three maps yields a zig-zag of quasi-
isomorphisms of P -algebras

A
'←− ΩκBκ(A)

'−→ ΩκBκ(H)
'−→ H.

We invite the skeptical reader to check that the only reason the ground ring is
assumed to be a field of characteristic zero in this context in [LV12] is so that the
operadic Künneth formula [LV12, Proposition 6.2.3] holds. Since we assume that P
and C are flat, we have a version of this proposition in the non-symmetric case. We
should be a little careful because a priori we could have terms like H(A⊗n, dA⊗n)
on the right side of the formula which would necessitate flatness of A and/or H to
continue. But the only such terms that arise in the proof of Theorem 11.3.3 have
n = 1, so further assumptions are unnecessary. �

Even in the absence of formality and working over a general ground ring, as
long as (A, d) and (H(A, d), 0) are homotopy equivalent chain complexes, there is
always a way to compress the data of (A, d,m) to the homology, via the so-called
homological perturbation lemma or transfer theorem. Perturbation methods are
a classical tool in algebraic topology. They were first used for A∞-algebras by
Kadeishvili [Kad80]. For algebras over more general operads, see [Mar04, LV12,
Ber14].

Theorem 1.19 (Transfer theorem). Let (A, d,m) be a differential graded P -algebra
such that the chain complex (H(A, d), 0) can be written as a homotopy retract of
(A, d). Then there exist

(1) a transferred P∞-algebra structure mt with zero differential on H(A, d) ex-
tending the induced P -algebra structure on the homology and



HOMOTOPY TRANSFER AND FORMALITY 13

(2) quasi-inverse P∞ quasi-isomorphisms between the P∞-algebras (A, d,m)
and (H(A, d), 0,mt) extending a given homotopy retraction between (A, d)
and (H(A, d), 0).

Here quasi-inverse means that the composition in both directions induces the
identity morphism on homology.

Note that such a homotopy retraction always exists over a field but this also
holds if both A and H(A, d) are degreewise projective and the base ring R is hered-
itary. Indeed if this is the case, we have an epimorphism Zn(A) → Hn(A) from
the group of n-cycles to the n-th homology group. This epimorphism splits since
Hn(A) is projective. We can thus write Zn(A) as the direct sum Hn(A)⊕ Bn(A).
Moreover, we can identify An/Zn(A) with Bn−1(A) which is projective. Therefore
the epimorphism An → Bn−1(A) induced by the differential also splits and we have
a splitting An ∼= Bn(A) ⊕ Hn(A) ⊕ Bn−1(A). The construction of the homotopy
retraction then works exactly as in the case of fields.

Proof of Proposition 1.17. It suffices to show that given a quasi-isomorphism f of

P -algebras from (Â, d̂, m̂) to (A, d,m), there is a P∞-quasi-isomorphism in the other

direction (A, d,m)→ (Â, d̂, m̂).
Because R is a field, the hypotheses of Theorem 1.19 apply to both the do-

main and codomain of f . Precomposing and postcomposing f with the guaran-

teed P∞-quasi-isomorphisms yields a P∞-quasi-isomorphism from (H(Â, d̂), 0, m̂t)
to (H(A, d), 0,mt). Because the differentials on both sides of this map vanish,
this P∞-quasi-isomorphism is an isomorphism of P∞ algebras and admits an in-
verse (see [LV12, Theorem 10.4.1]). The inverse can be precomposed and post-
composed with the guaranteed P∞-quasi-isomorphisms to finally yield a P∞ quasi-

isomorphism from (A, d,m) to (Â, d̂, m̂). �

Remark 1.20. The version of Theorem 1.19 stated in [Ber14], which works for ar-
bitrary rings makes the assumption that P (1) ∼= I. In the subcategory of operads
and cooperads with 0 in arity 0 and I in arity 1, there there is a canonical con-
nected weight-grading on every operad and cooperad by one less than the arity,
and Berglund’s methods apply mutatis mutandis to the more general connected
weight-graded case.

Until the end of this section, we let (A, d,m) be a differential graded P -algebra
such that the chain complex (H(A, d), 0) can be written as a homotopy retract of
(A, d) so that the transfer theorem applies.

Corollary 1.21. If (H(A, d), 0,mt) and (H(A, d), 0,m∗) are isomorphic as P∞-
algebras, then the algebra (A, d,m) is formal.

Definition 1.22. Let n be a positive integer, we say that a differential graded
P -algebra (A, d,m) is n-formal if (H(A, d), 0,mt) is isomorphic to a P∞-algebra
(H(A, d), 0,m) with mi = 0 for i in the range 2 ≤ i ≤ n.

Remark 1.23 (Warning). This notion differs from other notions of n-formality in the
literature for commutative differential graded algebras [FM05, Definition 2.2], [Mă10,
Definition 2.4], and [CH18, Introduction]. The definitions in these references use n
as a stand-in for geometric dimension, so that n-formal means something along the
lines of “formal up to homological degree n” whereas for us an n-formal commuta-
tive differential graded algebra is “formal up to arity n+ 2.”
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The following two propositions that show that n-formality can sometimes imply
formality.

Proposition 1.24. Let (A, d,m) be a differential graded P -algebra. Assume that
Hi(A, d) = 0 for i outside of the interval [0, n]. Then, (A, d,m) is n-formal if and
only if it is formal.

Proof. Indeed, the components mi with i > n of any P∞-structure on H(A, d) have
to be zero for degree reasons. �

There is also a somewhat more involved version for cohomologically graded al-
gebraic structures. In order to keep consistent conventions throughout, we phrase
it in terms of homologically graded structures concentrated in nonpositive degrees;
statements with nonnegative cohomological grading can be obtained by negating
indices.

Proposition 1.25. Let (A, d,m) be a differential graded P -algebra. Let j be an
integer, n and q a positive integers. Suppose that

(1) for all i, the component Ci is concentrated in arity at least i+ j, and
(2) Hi(A, d) = 0 for i outside [n− q(n+ j + 1) + 2,−q].

Then (A, d,m) is n-formal if and only if it is formal.

The most common applications occur in the case where

• The operad P is trivial in arity 0 and 1, in which case C can be chosen to
satisfy (1) with j = 2, and
• The integer q is specified to be 2 (the simply connected case)

in which case the restriction is that Hi(A, d) = 0 for i outside [−n− 4,−2].

Proof. Applying mi to elements in degree at most −q yields something in degree
at most i− (i+ j)q. If i ≥ n+ 1 then

i− (i+ j)q = i(1− q)− jq ≤ n− nq − jq − q + 1

so the output is outside of the support of H(A, d). �

2. Extending formality inductively

Throughout this section we will assume given the data (P,C, κ) of Assump-
tion 1.6.

2.1. Statement of the key lemma. The following lemma is the technical core of
the argument that we will use.

Lemma 2.2. Let V be a graded R-module and σα : V → V be the degree twisting
morphism by α where α is a unit in R which is such that αn − 1 is also a unit.
Suppose that V (viewed as a chain complex with trivial differential) is equipped with

(1) a P∞-algebra structure C(V )
m−→ V which vanishes on Ci(V ) for i = 0 and

i in the range 2 ≤ i < n+ 1 and
(2) a P∞-automorphism s of (V,m) which is equal to the automorphism σα on

V ∼= C0(V )→ V and which vanishes on Ci(V ) in the range 1 ≤ i < n.

Then there exist:

(1) a P∞-algebra structure m′ on V which vanishes on Ci(V ) for i = 0 and i
in the range 2 ≤ i < n+ 2,
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(2) a P∞-automorphism s′ of (V,m′) which is equal to the automorphism σα
of V on V ∼= C0(V ) → V and which vanishes on Ci(V ) in the range
1 ≤ i < n+ 1, and

(3) a P∞-isomorphism f from (V,m) to (V,m′) which is equal to idV on V ∼=
C0(V ) → V , vanishes on Ci(V ) for i /∈ {0, n}, and intertwines the P∞-
automorphisms s and s′.

In words, given m which is formal up to degree n components and s which is
formal up to degree n − 1 components, we can build isomorphic data m′ and s′

with the formality range improved by 1.

2.3. A warmup example. The proof of Lemma 2.2, given in the next subsection,
is somewhat technical. Here, for the reader’s convenience, we specialize to a familiar
case, with P be the associative operad and C the shifted coassociative cooperad
over Q, so that P∞-algebras are standard A∞ algebras over Q. We will explicate
the first instance of Lemma 2.2 in this case. This subsection is purely expositional
and none of the rest of the article has any formal reliance on it.

Remark 2.4 (Warning). In this example we will also deviate from the notation we
have set up to relate this more directly to the typical notation used in the literature
on A∞ algebras.

Remark 2.5. None of the arguments are particularly sensitive to sign conventions.
The purpose of this example is to illustrate the induction, not to give a precise
proof (that is the purpose of the following subsection). Therefore, in the example
we will be somewhat careless with signs.

Here, using one typical set of degree conventions for A∞ algebras, we will consider
an A∞ algebra (V, d, µ) = (V, d, µ2, µ3, . . .) as a graded vector space V equipped
with a degree −1 differential d and a collection of maps µi of degree i− 2 from V ⊗i

to V satisfying the A∞ relations. With these conventions, an automorphism s of
(V, d, µ) is a collection (s1, s2, . . .) of maps where si is a degree i− 1 map from V ⊗i

to V satisfying the appropriate compatibility relations with µi and d.

Example (the associative n = 1 case). We are given

• an A∞ algebra (V, d, µ),
• an A∞ automorphism s of (V, d, µ), and
• a rational number α

such that:

• the differential d of V vanishes (this is the condition that m vanishes on
C0(V )),
• the arity one component s1 of the automorphism s is equal to the degree

twisting by α, that is, σα, and
• the rational number α is not equal to 0 or 1.

Our goal is to establish the existence of

• an A∞ algebra (V, d′, µ′),
• an automorphism s′ of (V, d′, µ′), and
• an A∞ isomorphism F between (V, d, µ) and (V, d′, µ′)

such that

• the differential d′ and the operation µ′3 vanish,
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• the arity one projection s′1 of the automorphism s′ is equal to the degree
twisting by α and the arity two projection s2 vanishes, and
• the isomorphism F is of the form (idV , f2, 0, 0 . . .) and intertwines s and s′.

Let us begin.
The condition that s is an automorphism of (V, 0, µ) means, among other con-

ditions, that the following equation is satisfied:

σα ◦ µ3 ± s2 ◦ (id⊗µ2)± s2 ◦ (µ2 ⊗ id)

= µ3 ◦ (σ⊗3
α )± µ2 ◦ (σα ⊗ s2)± µ2 ◦ (s2 ⊗ σα).

This is an equation of maps from V ⊗3 to V . Applying it to the elementary tensor
v ⊗ w ⊗ x we get

α|v|+|w|+|x|+1µ3(v, w, x)± s2(v ⊗ µ2(w, x))± s2(µ2(v, w), x)

= α|v|+|w|+|x|µ3(v, w, x)± α|v|µ2(v, s2(w, x))± α|x|µ2(s2(v, w), x).

Gathering terms and dividing through by α|v|+|w|+|x|+1−α|v|+|w|+|x| (well-defined
because α is neither 0 nor 1) we get the equation

µ3(v, w, x)± s2(v ⊗ µ2(w, x))± s2(µ2(v, w), x)

α|v|+|w|+|x|+1 − α|v|+|w|+|x|

∓ µ2(v, s2(w, x))

α|w|+|x|+1 − α|w|+|x|
∓ µ2(s2(v, w), x)

α|v|+|w|+1 − α|v|+|w|
= 0.

If we define a map f2 : V ⊗2 → V as

f2(v, w) =
s2(v, w)

α|v|+|w|(α− 1)
,

then this equation can be further rewritten

(5) µ3(v, w, x)± f2(v ⊗ µ2(w, x)± f2(µ2(v, w), x)

∓ µ2(v, f2(w, x))∓ µ2(s2(v, w), x) = 0.

We set this equation aside, returning to it a bit later.
Now the sequence of maps (idV , f2, 0, 0, . . .) can be extended to be an endomor-

phism F of the tensor coalgebra T c(V [1]) on a degree shifted copy of V . In fact, F
is an automorphism of this tensor coalgebra because its first component idV is an
automorphism of V . We don’t need a full description of the inverse F−1 but it is
easy to compute that in components, it begins (idV ,−f2, . . .) — this is very much
like inverting a formal power series with vanishing constant term.

Now we can define a new A∞ algebra structure (V, d′, µ′) by conjugating by this
automorphism of the tensor coalgebra. Using d = 0 and the descriptions of F and
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F−1 we can calculate the following:

d′ = idV ◦d ◦ idV = 0;

µ′2 = idV ◦µ2 ◦ (idV )⊗2 + terms involving d

= µ2;

µ′3 = idV ◦µ3 ◦ (idV )⊗3

± f2 ◦ (idV ⊗µ2)± f2 ◦ (µ2 ⊗ idV )

± µ2 ◦ (−f2 ⊗ idV )± µ2 ◦ (idV ⊗(−f2))

+ terms involving d.

The right hand side here is zero by Equation (5), so µ′3 vanishes.
At this point we have established the existence of the desired A∞ algebra struc-

ture. It is also true by construction that F is an A∞ isomorphism between (V, 0, µ)
and (V, 0, µ′) of the desired form.

In order for an automorphism s′ of (V, 0, µ′) to be intertwined with s by F , it is
necessary for s′ to be obtained from s via conjugation by F .

Again we calculate the first terms explicitly:

s′1 = idV ◦s1 ◦ idV = s1 = σα;

s′2 = idV ◦s2 ◦ (idV ⊗ idV ) + f2 ◦ (s1 ⊗ s1) ◦ (idV ⊗ idV ) + idV ◦s1 ◦ (−f2)

and applying s′2 to the pair (v, w) we get

s′2(v, w) = s2(v, w) +
α|v|+|w|

α|v|+|w|+1 − α|v|+|w|
s2(v, w)− α|v|+|w|+1

α|v|+|w|+1 − α|v|+|w|
s2(v, w)

= 0.

We conclude that s′ has the desired form, concluding the example.

2.6. Proof of the key lemma. Now we will prove Lemma 2.2 in generality. We
proceed constructively in stages, assuming throughout that n is at least 1. For the
remainder of the section, assume as given the data in the hypotheses of Lemma 2.2.

Definition 2.7. We begin by defining a map fn : Cn(V ) → V as follows. On
the homogeneous degree n + N component of Cn(V ) (i.e., the component with
homological degree n in C and degree N in tensor powers of V ) we act by 1

αN+n−αN
times sn (the degree n component of the automorphism s, which has the desired
domain and codomain). The hypotheses on α ensure that the coefficient is well-
defined.

Now define a linear map f : C(V )→ V as

fi : Ci(V )→ V =


idV i = 0

fn i = n

0 otherwise.

Then f defines a map of coalgebras F : C(V )→ C(V ).
For the remainder of the section we will employ a simplified notation

Notation 2.8. Given maps f and g from C(V ) to V , we will write f / g for the
composition

C(V )
∆−→ C(C(V ))

C(g)−−−→ C(V )
f−→ V
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and f /(1) g for the composition

C(V )
∆(1)−−−→ (C /(1) C)(V ) ∼= C(V ;C(V ))

C(V ;g)−−−−→ C(V ;V )→ C(V )
f−→ V.

where the unmarked arrow is induced by the fold map of V . We call this schematic
notation.

One reason for this notation is that H = F ◦ G is an equation of maps of
coalgebras C(V )→ C(V ), if and only if h = f/g is an equation of maps C(V )→ V .

Lemma 2.9. The map F is invertible, and writing f−1 for the projections of F−1

to the cogenerators V we have the following properties on its components:

f−1
i =


id i = 0

0 1 ≤ i < n

−fn i = n

(we make no claim for i > n).

Proof. We begin by establishing invertibility. Using schematic notation, H = G◦F
is the identity map of C(V ) if and only if h = g / f is the projection of C(V ) to V .
The equation h = g / f decomposes component by component as follows:

h0 = g0 / f0

h1 = g1 / f0 + terms containing gi only having i < 1

...
...

hj = gj / f0 + terms containing gi only having i < j.

we will solve this inductively with h0 : C0(V ) ∼= V → V the identity of V and
hi = 0 for i > 0. Since f0 = idV the only solution to the h0 equation has g0 = idV
as well. Then by induction, for the remaining equations to hold with hj = 0, gj
must (and can) be chosen to be the negation of the remaining terms on the right
hand side of the jth equation. This establishes the existence of a one-sided inverse
to F .

We can perform a similar manipulation to establish the existence of an inverse on
the other side, using the equations H = F ◦G′ and h = f/g′ and the componentwise
decomposition

h0 = f0 ◦ g′0
h1 = f0 ◦ g′1 + terms containing g′i only having i < 1

...
...

hj = f0 ◦ g′j + terms containing g′i only having i < j.

In this case we use ◦ instead of / because f0 is concentrated in arity one. Again,
g′0 must be idV while g′j (for j ≥ 1) can and must be taken as the negation of the
remaining terms of the right hand side of the hj equation. This suffices to define
g′j inductively which in turn establishes two-sided invertibility of F .

We have along the way also already established that f−1
0 = idV . To get the

remaining formulas for F−1 under projection and in components 1 ≤ j < n, we
examine the terms of this second sequence of equations more closely. Every term
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in the equation for g′j contains at least one fi with 1 ≤ i < n, and thus vanishes by

assumption—thus g′j = (f−1)j vanishes as well.

For j = n, precisely one term in the equation for (f−1)n = g′n survives, namely
−fn / g0 = −fn. �

Now we can define the structures M ′ and S′ via conjugation.

Definition 2.10. Given the construction of Definition 2.7 and Lemma 2.9, define
a map M ′ : C(V )→ C(V ) of degree −1 and a map S′ : C(V )→ C(V ) of degree 0
as follows.

M ′ = FMF−1 S′ = FSF−1.

Lemma 2.11. The data of Definition 2.10 satisfies the following properties:

• M ′ is a P∞-algebra structure on V ,
• S′ is a P∞-automorphism of (V,M ′), and
• F is a P∞-isomorphism between (V,M) and (V,M ′).

Proof. Since M squares to zero, the map M ′ is a degree −1 square zero coderivation
of the cofree C-coalgebra, and thus a P∞-algebra structure on V . Likewise, from the
properties of S, the map S′ is a differential graded C-coalgebra map with respect to
M ′ and thus a P∞ automorphism of the P∞-algebra (V,M ′). By construction, the
coalgebra map F intertwines the coderivations M and M ′ and the automorphisms
S and S′. �

It remains to be seen that m′ and s′ have the promised description.

Lemma 2.12. The P∞-algebra structure M ′ has component m′1 equal to m1. The
component m′i vanishes on Ci(V ) for i = 0 and for i in the range 2 ≤ i < n+ 2.

Proof. First note that the composition m′ : C(V ) → V has two contributions.
There is a part from m of the form

(6) C(V )→ (C /(1) C) / C(V )
f−1

−−→ (C /(1) C)(V )
m−→ C(V )

f−→ V

where the first map is induced by the comonoid map and linearized comonoid map
of C. The other part comes from the internal differential of C and is of the form

(7) C(V )→ C / C(V )
f−1

−−→ C(V )
dC−−→ C(V )

f−→ V.

We have the following facts about these compositions:

• the decomposition map of C respects degree,
• the 0th components of f and f−1 are the identity,
• the ith components of f and f−1 vanish for 1 ≤ i < n,
• the operation m0 vanishes, and
• the differential dC reduces degree by 1 and vanishes on C1.

These facts immediately imply that the ith component of the composition (6) coin-
cides with mi for 0 ≤ i < n+ 1 and that the ith component of the composition (7)
vanishes for i in the same range. It remains to show that m′n+1 = 0, for which we
will need a more complicated argument.

Let us review the condition that s is a an automorphism of (V,m). This is the
condition that MS = SM , which can be written as the equality of the composition

C(V )→ C(C(V ))
s−→ C(V )

m−→ V ;(8)
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and the sum of the compositions

C(V )→ C(V ;C(V ))
m−→ C(V ;V )→ C(V )

s−→ V(9)

and

C(V )
dC−−→ C(V )

s−→ V.(10)

We focus first on the n + 1st component of the composition (8). We know mi

vanishes for i = 0 and 2 ≤ i < n+ 1. Therefore the only terms that survive use m1

or mn+1. By Lemma 1.13, the m1 term is

C(V )
σα−−→ C(V ) −→ C1(V ;Cn(V ))

snσ
−1
α−−−−→ C1(V ;V ) → C1(V )

m1−−→ V.

The other term in (8) uses first s0 = σα on each argument and then applies mn+1.
There are only two non-vanishing terms in the compositon (9). One involves

applying first mn+1 and then s0. Since C0 is trivial, this term can be rewritten

Cn+1(V )
mn+1−−−−→ V

s0−→ V.

Moreover, because mn+1 is of homological degree n, this is αn times

Cn+1(V )
s0=σα−−−−→ Cn+1(V )

mn+1−−−−→ V.

The other term involves acting first by m1 and then sn. We can write sn as the
composition (snσ

−1
α )σα and then σα commutes with m1 which is homological degree

0.
Finally, the composition (10) has only a single term, first acting by dC and then

by sn. Again (sn = snσ
−1
α )σα, and since dC acts only on the C factor, this is the

composition where first we apply σα, then dC , and finally snσ
−1
α .

So schematically we can write the equation as follows:

(m1 /(1) snσ
−1
α )σα +mn+1σα = αnmn+1σα + (snσ

−1
α /(1) m1)σα

+ (snσ
−1
α )dCσα.

By construction the terms we are calling snσ
−1
α are equal to (αn−1)fn. That is, on

homogeneous components of Cn(V ) of total homological degree n+N (thus degree
N in tensor powers of V ) we have

snσ
−1
α =

1

αN
sn = (αn − 1)

1

αN+n − αN
sn = (αn − 1)fn.

Then our schematic equation becomes

(1− αn)(−m1 /(1) fn +mn+1 + fn /(1) m1 + fndC) = 0.

As long as αn 6= 1, we can divide by 1−αn and use Lemma 2.9 to get the schematic
equation

m1 /(1) f
−1
n +mn+1 + fn /(1) m1 + fndC = 0.

We claim that the left hand side of this equation is m′n+1, which will complete the
proof.

We return to the expressions (6) and (7) defining m′n+1. Some of the terms
in (6) do not vanish from the conditions on m and f . We classify these into three
kinds. The first kind is made up of compositions of m1 with f−1

n and f0, the
second kind has only one member, the term mn+1, and the third kind is made up
of compositions of fn with m1. For (7), the vanishing conditions on f and dC imply
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that the only surviving term must be the composition of fn with dC . Essentially
by Lemma 1.13, we can write the overall calculation in our schematic pidgin as

m′n+1 = m1 /(1) f
−1
n +mn+1 + fn /(1) m1 + fndC

which is what we got from compatibility of m and s. �

Lemma 2.13. The P∞-automorphism S′ has component s′0 : C0(V )→ V equal to
σ and s′i vanishes on Ci(V ) in the range 1 ≤ i ≤ n+ 1.

Proof. The composition s′ : C(V )→ V takes the form

C(V )→ C(C(C(V )))
f−1

−−→ C(C(V ))
s−→ C(V )

f−→ V,

where the first map is induced by the decomposition of C. As in Lemma 2.12,
the vanishing conditions for the degrees of C in which the maps f and f−1 are
supported (0 or at least n) and the fact that f0 = f−1

0 = idV imply that s′i = si for
i < n. For s′n, we have the schematic equation

s′n = fn / s0 + sn + s0 / f
−1
n

and so acting on the homogeneous component of Cn(V ) of total homological degree
n+N , we have the equality

s′n =
αN

αN+n − αN
sn + sn −

αN+n

αN+n − αN
sn = 0,

as desired. �

This concludes the proof of Lemma 2.2.

2.14. Using the key lemma. As the output of the lemma yields the input data
with an increased index n, we can recursively arrive at the following.

(11) (V,m[1], s[1])
f [1,2]

−−−→ (V,m[2], s[2])
f [2,3]

−−−→ · · · f
[n−1,n]

−−−−−→ (V,m[n], s[n])
f [n,n+1]

−−−−−→ · · ·

where

(1) the data m[j] is a P∞ structure on V which vanishes on Ci(V ) for i = 0
and i in the range 2 ≤ i < j + 1,

(2) the data s[j] is a P∞-automorphism of (V,m[j]) which is equal to σα on V
and vanishes on Ci(V ) in the range 1 ≤ i < j, and

(3) the data f [j,j+1] is a P∞-isomorphism from (V,m[j]) to (V,m[j+1]) inter-
twining s[j] and s[j+1] which is equal to the identity on V and vanishes on
Ci(V ) for i /∈ {0, j}.

We can continue this procedure up to the smallest n such that αn− 1 is not a unit.
If αn − 1 is always a unit, then (11) is an infinite sequence.

Lemma 2.15. If αn − 1 is a unit for all n, the transfinite composition

f [1,ω] := · · · ◦ f [n,n+1] ◦ f [n−1,n] ◦ · · · ◦ f [1,2]

is well-defined. In particular, the component f
[1,ω]
n : Cn(V ) → V is equal to the

Cn(V )→ V component of the finite composite

f [n,n+1] ◦ f [n−1,n] ◦ · · · ◦ f [1,2].
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Proof. Because the 0th component of f [m,m+1] is the identity and all other compo-
nents with index less than m are 0, the composition of F [m,m+1] with an arbitrary
P∞ map G : W → V has components Cn(W ) → V equal to those of G for all
indices n less than m. �

Remark 2.16. We were not able to find a comprehensible closed form expression
for the coefficients involved in the transfinite composition, which seem to involve a
summation over some special classes of decorated trees.

Now we are ready to prove the main theorem.

Proof of Main Theorem. By the homological perturbation lemma (Theorem 1.19)
there is a P∞-structure m[1] on H(A, d), along with P∞ quasi-inverses

ι : (H(A, d),m[1]) � (A, d,m) : π.

Since these are quasi-inverses the composition πι is homotopic to the identity of
H(A, d). But since H(A, d) has no differential, this means πι is equal to the iden-
tity. Define s[1] as the composition of the P∞ morphisms π, σ̂, and ι; then s[1]

is automatically a P∞ automorphism of (H(A, d),m[1]). Its zeroth component is
given by π0σ̂ι0. Since ι is a P∞-morphism, in particular ι0 lands in the cycles of
A with respect to d, and then up to boundary terms, σ̂ι0 = ι0σ. But then π0 kills
boundary terms so that

π0σ̂ι0 = π0ι0σ = σ.

Then m[1] and s[1] are precisely the input data necessary for Lemma 2.2 and
Lemma 2.15. If αk − 1 is a unit for all k ≤ n, then the finite composition

f [1,n] := f [n−1,n] ◦ · · · ◦ f [1,2]

is an isomorphism between m[1] and a P∞-structure whose first n components
vanish. If αk − 1 is always a unit, the transfinite composition f [1,ω] constructed in
Lemma 2.15 is an isomorphism between m[1] and the P∞-structure m∗. �

Remark 2.17. This proof relies on the following consequences of the homological
perturbation lemma for the base case:

(1) the chain complex (H(A, d), 0) supports a P∞-algebra structure m[1] with
first component which is induced by m along with a quasi-isomorphism
(H(A, d), 0,m[1])→ (A, d,m), and

(2) the P∞-algebra (H(A, d), 0,m[1]) supports a P∞-automorphism s[1] with
first component σ (induced by σ̂).

Any hypotheses guaranteeing these two conditions is sufficient for the argument.

Remark 2.18. Bruno Vallette has pointed out to us that the core of the argument
presented in this section is more or less a computation in the convolution preLie
algebra HomS(C,EndH(A,d)) (see, e.g., [LV12, § 6.4.2] and [DSV16, § 5]). It looks
like an interesting and possibly illuminating exercise to rewrite the proof using this
observation.
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3. A variant of the main theorem

We are interested in examples where the homology of the P -algebra A is con-
centrated in degree divisible by c for some integer c (an example is given by the
cohomology of CPn which is concentrated in even degrees). In such a situation
we can “ignore” the zero cohomology groups and our main theorem becomes the
following.

Theorem 3.1. Let (A, d,m) be a differential graded P -algebra in R-modules such
that the chain complex (H(A, d), 0) can be written as a homotopy retract of (A, d).
Assume further that the homology H(A, d) is concentrated in degrees divisible by
c. Let α be a unit in R and let σ̂ be an endomorphism of (A, d,m) such that the
induced map on Hcn(A, d) is multiplication by αn.

• If αk−1 is a unit of R for k ≤ n, then (A, d,m) is cn-formal as a P -algebra.
• If αk − 1 is a unit of R for all k, then (A, d,m) is formal as a P -algebra.

Observe that if α has a c-th root in our ring R, then this theorem is our main
theorem with α replaced by (α)1/c. In general this variant is proved by adapting
the proof of Lemma 2.2 in an obvious manner.

4. Applications

4.1. Hodge theory. Let us reinterpret the classical Deligne–Griffiths–Morgan–
Sullivan [DGMS75] result in the light of the present paper. This has already been
done indirectly by Sullivan [Sul77, §12]. There he argues that complex formality of
Kähler manifolds (proven by other means in [DGMS75]) implies that degree twisting
automorphisms lift to the chain level. Then rational degree twisting automorphisms
lift to the chain level, and therefore the rational homotopy type of a Kähler manifold
is formal.

We outline a more direct proof along the same lines, sketching a way to obtain
real-valued chain level lifts of the degree twisting automorphism. Arguably this is
not the most natural way to prove such results so we do not provide full details.
We denote by MHS the abelian category of rational mixed Hodge structures. An
object of MHS is a triple (H,W,F ) where H is a Q-vector space, W is an increasing
filtration on H (the weight filtration) and F is a decreasing filtration on H ⊗Q C
(the Hodge filtration). We make the following conjecture.

Conjecture 4.2. Let X be a complex algebraic variety. There exists a commuta-
tive algebra A∗(X) in the category of cochain complexes in MHS which represents
the rational homotopy type of X and such that the induced weight filtration on
H∗(A(X)) ∼= H∗(X,Q) is the weight filtration of the mixed Hodge structure con-
structed by Deligne in [Del71, Del74].

Let us make precise what we mean by “represents the rational homotopy type”.
There is a forgetful symmetric monoidal functor from the category MHS to the
category of rational vector spaces. We can apply this functor to the model A∗(X)
and we obtain a commutative differential graded algebra over Q and we require
that the resulting object is quasi-isomorphic to Sullivan’s commutative differential
graded algebra of piecewise polynomial differential forms.

Let us give some ideas on how one should be able to prove such a conjecture.
In [CH17], Cirici and the second author explained how one can view a model for
the singular cochains of X as a commutative algebra in the ∞-category of chain
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complexes of real mixed Hodge structures. Then we believe that a rigidification
result similar to the one proved in Hinich [Hin15] should be true in that context
and we can actually represent this commutative algebra in the ∞-category by a
strict commutative algebra.

We assume that this conjecture is correct until the end of the subsection. The
abelian category of real mixed Hodge structure is a Tannakian category. As a fiber
functor we can take the functor

(H,F,W ) 7→ ⊕ngrWn (H)

that sends a mixed Hodge structure to the associated graded of the weight filtration.
This functor is isomorphic to the forgetful functor (H,F,W ) 7→ H. An explicit
isomorphism was given by Deligne over the real numbers in [Del71, 1.2.11]. It was
observed in [CH17, Lemma 4.4.] that, for abstract reasons, there must exist such
an isomorphism over Q as well, although it is not explicit. By definition, this fiber
functor factors through the Tannakian category of graded vector spaces. Therefore,
by Tannaka duality, if we denote by GMHS the Tannakian Galois group of mixed
Hodge structure, there exists a maps of affine group schemes over Q

i : Gm → GMHS

We refer the reader to [Gon11] for more details about this. According to our
conjecture, there is an action of GMHS(Q) on our model A∗(X) of the rational
homotopy type of X. We can restrict this action along i and we get an action of
Q× = Gm(Q) on A∗(X). We have the following fact about this action.

Proposition 4.3. Let X be an algebraic variety over C. If Hk(X,R) is a cohomol-
ogy group of X whose mixed Hodge structure is pure of weight n, then the action
of x ∈ Q× on Hk(X) is given by multiplication by xn.

Proof. This can be found in [Del71, Paragraph 2.1.5.1, p.25]. �

Hence, applying our main result to the commutative algebra over the rational
numbers A∗(X), we can prove the following theorem.

Theorem 4.4. Let X be a smooth projective complex variety, or more generally
a variety satisfying the property that Hk(X,R) is a pure Hodge structure of weight
k for all k. Then there exists a model A∗(X) for the rational homotopy type of X
that is formal.

It should be noted that the approach outlined in this section is dependent on
Conjecture 4.2. However the result is true regardless of this conjecture as was
proved, in various degrees of generality, in [DGMS75, Dup15, CH17]. It should also
be noted that if instead the variety X has the property that Hk(X,R) is a pure
Hodge structure of weight αk for all k, where α is a fixed non-zero rational number,
then, using Theorem 3.1, we also get a formality result that recovers the one of
[CH17].

4.5. Formality of the little disks operad. Following Petersen, we can prove
formality of the little disks operad with rational coefficients. Let us denote by D2

the topological little disks operad. Petersen observes that for any α in Q×, there
exists an automorphism of C∗(D2,Q) that induces the grading automorphism σα
on the homology (see the proof of the main Theorem of [Pet14]). We can give an
alternative proof of the Proposition in [Pet14] using our Main Theorem. In that
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case the ring of coefficient is Q and the operad we consider is the colored operad
that controls the structure of a single colored operad. Note that this proof is closer
in spirit to the intuition developed in the last section of [Pet14].

4.6. Complement of subspace arrangements. In this subsection, we denote
by K a finite extension of Qp. The residue field of the ring of integers of K is
isomorphic to Fq for q some power of p. We denote by ` a prime number different
from p and we denote by h the order of q in F×` .

For us, a complement of a hyperplane arrangement over a field L is the comple-
ment of a finite collection of affine hyperplanes in AnL viewed as a scheme over L.
We say that a complement of hyperplane arrangements X over the complex num-
bers is defined over K if there exists an embedding ι : K → C and a complement
of a hyperplane arrangement over K denoted X such that X ×K C is isomorphic
to X.

Theorem 4.7. Let X be a complement of a hyperplane arrangement over the com-
plex numbers. Assume that X is defined over K. Then the dg-algebra C∗(Xan,Z`)
is (h− 1)-formal

Proof. Indeed in that case, by standard comparison results in étale cohomology, we
have a quasi-isomorphism of dg-algebras

C∗(Xan,Z`) ' C∗ét(XK ,Z`)

where X is the complement of a hyperplane arrangement defined over K that exists
by assumption. Let σ be a Frobenius lift, i.e. an element of Gal(K/K) that
maps to a generator of Gal(Fq/Fq). Then the action of σ on Hn

ét(XK ,Z`) is given
by multiplication by qn (see [Kim94, Theorem 1’]). We are thus precisely in the
situation of our main theorem. The ring of coefficient is Z` and the operad P is
the associative operad. �

Remark 4.8. This theorem is the codimension 1 version of [CH18, Theorem 8.11].
Note that, in contrast to [CH18], we do not make the assumption that Xan is simply
connected. The higher codimension version of [CH18, Theorem 8.11] can also be
proved using the methods of the current paper. It should also be noted that we
obtain a formality result over Z` and not just over F` as in [CH18].

Remark 4.9. Note that the condition of being defined over K cannot be dropped.
Indeed for each prime `, Matei in [Mat06], gives an example of a hyperplane arrange-
ments in C3 whose complement has a non-trivial Massey products in H2(−,F`).
However, the equations of his hyperplanes involve `-th roots of unity. If a p-adic
field K has `-th roots of unity then the residue field Fq must have `-th roots of
unity as well and this implies that ` divides q − 1. But in that case q is congruent
to 1 modulo ` and therefore the previous theorem is an empty statement. This is
in sharp contrast with the case of rational coefficients where all complements of
hyperplane arrangements are formal.

Remark 4.10. On the other hand, if the hyperplane arrangement is defined over Q,
then it is defined over Qp for every p. We are then free to pick p such that p is of
order (`−1) in F×` and we obtain (`−2)-formality for such arrangements. Example
of such arrangements are the An, Bn, Cn and Dn arrangements.
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We also have a similar result for complements of toric arrangements. We first
recall the relevant definition. A character of (C∗)d is an algebraic group homo-
morphism (C∗)d → C∗. It is straightforward to check that any character is of the
form

(z1, . . . , zd) 7→ zn1
1 . . . zndd

with n1, . . . , nd a sequence of integers. Given a character of (C∗)d and a non-
zero complex number a, we denote by Hχ,a the subvariety of (C∗)d defined by the
equation

χ(z1, . . . , zd) = a

Definition 4.11. A complement of a toric arrangement is an open subspace of
(C∗)d of the form

(C∗)d −
n⋃
i=1

Hχi,ai

where each χi is a character and each ai is a non-zero complex number.

We say that a complement of a toric arrangement X is defined over K if there
exists an embedding ι : K → C such that the coefficient a in the equation of each
Hχ,a is in the image of ι. Given such a choice of ι we can construct a variety X
over K given as the open complement in Gdm of the closed subsets Hχ,a (or more
precisely Hχ,ã where ã is the preimage of a) and we have

X = X ×Spec(K) Spec(C)

Proposition 4.12. Let X be a complement of a toric arrangement that is defined
over K. Then the dg-algebra C∗(X,Z`) is (h− 1)-formal.

Proof. Again, by comparison between étale and singular cohomology, it suffices to
prove that C∗ét(XK ,Z`) is formal. We claim that for any choice of Frobenius lift σ in

Gal(K/K) the action of σ on Hn
ét(XK ,Z`) is given by multiplication by qn. Indeed,

by [dD15] the cohomology of the complement of a toric arrangement is torsion free,
it follows that it is enough to prove that σ acts on Hn

ét(XK ,Q`) by multiplication
by qn. The proof of the analogous statement in the Hodge case (instead of the étale
case) is done in [Loo93, 2.2]. We can therefore conclude as in the proof of Theorem
4.7. �

Remark 4.13. This result about formality of complements of hyperplane arrange-
ments and toric arrangements with coefficients in Z` is new as far as the authors
know. Let us mention however, that the paper [CDD+18] contains a result called
integral formality for toric arrangements (see [CDD+18, Theorem 7.4]). We believe
that our result and the result of [CDD+18] are independent. If we denote by X
the toric arrangement, our result is about formality of the singular cohomology
algebra C∗(X) whereas the result of [CDD+18] identifies a certain Z-subalgebra
of the de Rham algebra of X that is isomorphic to the integral cohomology of X.
It is classical that the real singular cochains algebra is quasi-isomorphic to the de
Rham algebra but such a result cannot be expected to hold integrally because the
de Rham algebra is commutative whereas it is known that C∗(X) is merely E∞
and cannot be strictified to a commutative differential graded algebra (the Steen-
rod operations are an obstruction to the existence of such a strictification). From
the homotopical point of view the E∞-dg-algebra C∗(X) is the most interesting
object as it permits to reconstruct the homotopy type of X by a famous theorem
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of Mandell (see [Man06]). Note however that our formality result is only about the
associative differential graded algebra C∗(X) and does not say anything about the
E∞-structure.

Remark 4.14. Using étale cohomology with coefficients in Q` instead of Z`, we can
also prove formality (without bound) of cohomology of complements of hyperplane
and toric arrangements with Q`-coefficients. This gives an alternative proof of the
results of Brieskorn and Dupont (proved respectively in [Bri73] and [Dup15]). Let
us mention however that the étale cohomology method only yields formality if the
arrangement is defined over a p-adic field. The results we get are thus less general
than those of Brieskorn and Dupont. If instead of étale cohomology we use Hodge
theory as in subsection 4.1 we can completely recover the results of [Bri73] and
[Dup15].

4.15. Coformality of configuration spaces. Recall that, by the work of Quillen,
the homotopy type of simply connected rational spaces is captured by a differential
graded Lie algebra. One says that a space is coformal if this Lie algebra is formal.
By [Sal17, Corollary 1.2], asking for a space X to be coformal is equivalent to asking
for the dg-algebra C∗(ΩX,Q) to be formal (by ΩX we mean a stricly associative
model for the loop space of X). The advantage of this second definition is that it
can be generalized to coefficient rings that are not Q-algebras.

We are interested in the coformality of the configuration space of n distinct
ordered points in Rd denoted Confn(Rd). These spaces are known to be rationally
coformal. We have the following theorem about coformality with Zp-coefficients.

Theorem 4.16. Let d ≥ 3. Let X = Confn(Rd). Let p be a prime number. The
dg-algebra C∗(ΩX,Zp) is (p− 2)(d− 2)-formal.

Proof. We can first replace X by its p-completion which we will do implicitly from
now on. In [BdBH19], an action of GTp, the p-complete Grothendieck–Teichmüller
group is constructed on X. As a consequence of this action, it is shown in [BdBH19,
Proposition 8.2] that for any unit α in Zp, there exists an automorphism α] of
X that acts by multiplication by α in homological degree (d − 1). Since this is
the bottom non-vanishing homology group of X, using the Hurewicz isomorphism
twice, we can identify this group with Hd−2(ΩX,Zp). By [CG02, Theorem 2.3],
we know that the homology of ΩX is torsion-free, concentrated in degree divisible
by (d − 2) and is generated as an algebra by classes of degree (d − 2). Since the
action of α] exists at the space level, it is compatible with the dg-algebra structure
on C∗(ΩX,Zp) and we deduce that α] acts as multiplication by αk in homological
degree k(d − 2). We can pick an α whose residue modulo p is a generator of the
group of units of Fp. For such an α, the number αk−1 is a unit in Zp for k ≤ p−2.
We are thus precisely in the situation of Theorem 3.1 with P the associative operad
and R = Zp. �
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