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MIXED HODGE STRUCTURES AND FORMALITY OF SYMMETRIC
MONOIDAL FUNCTORS

JOANA CIRICI AND GEOFFROY HOREL

Abstract. We use mixed Hodge theory to show that the functor of singular chains with
rational coefficients is formal as a lax symmetric monoidal functor, when restricted to
complex varieties whose weight filtration in cohomology satisfies a certain purity prop-
erty. This has direct applications to the formality of operads or, more generally, of
algebraic structures encoded by a colored operad. We also prove a dual statement, with
applications to formality in the context of rational homotopy theory. In the general case
of complex varieties with non-pure weight filtration, we relate the singular chains functor
to a functor defined via the first term of the weight spectral sequence.

Résumé. Nous utilisons la théorie de Hodge mixte pour montrer que le foncteur des
chaînes singulières à coefficients rationnels est formel, comme foncteur symétrique mo-
noïdal lax, lorsqu’on le restreint aux variétés complexes dont la filtration par le poids
en cohomologie satisfait une certaine propriété de pureté. Ce résultat a des applications
directes à la formalité d’opérades ou plus généralement à des structures algébriques enco-
dées par une opérade colorée. Nous prouvons aussi le résultat dual, avec des applications
à la formalité dans le contexte de la théorie de l’homotopie rationnelle. Dans le cas gé-
néral d’une variété dont la filtration par le poids n’est pas pure, nous relions le foncteur
des chaînes singulières à un foncteur défini par la première page de la suite spectrale des
poids.

1. Introduction

There is a long tradition of using Hodge theory as a tool for proving formality results.
The first instance of this idea can be found in [DGMS75] where the authors prove that
compact Kähler manifolds are formal (i.e. the commutative differential graded algebra of
differential forms is quasi-isomorphic to its cohomology). In the introduction of that paper,
the authors explain that their intuition came from the theory of étale cohomology and the
fact that the degree n étale cohomology group of a smooth projective variety over a finite
field is pure of weight n. This purity is what heuristically prevents the existence of non-
trivial Massey products. In the setting of complex algebraic geometry, Deligne introduced
in [Del71, Del74] a filtration on the rational cohomology of every complex algebraic variety
X, called the weight filtration, with the property that each of the successive quotients of this
filtration behaves as the cohomology of a smooth projective variety, in the sense that it has
a Hodge-type decomposition. Deligne’s mixed Hodge theory was subsequently promoted to
the rational homotopy of complex algebraic varieties (see [Mor78], [Hai87], [NA87]). This can
then be used to make the intuition of the introduction of [DGMS75] precise. In [Dup16] and
[CC17], it is shown that purity of the weight filtration in cohomology implies formality, in
the sense of rational homotopy, of the underlying topological space. However, the treatment
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of the theory in these references lacks functoriality and is restricted to smooth varieties in
the first paper and to projective varieties in the second.

In another direction, in the paper [GNPR05], the authors elaborate on the method of
[DGMS75] and prove that operads (as well as cyclic operads, modular operads, etc.) internal
to the category of compact Kähler manifolds are formal. Their strategy is to introduce the
functor of de Rham currents which is a functor from compact Kähler manifolds to chain
complexes that is lax symmetric monoidal and quasi-isomorphic to the singular chain functor
as a lax symmetric monoidal functor. Then they show that this functor is formal as a lax
symmetric monoidal functor. Recall that, if C is a symmetric monoidal category and A is an
abelian symmetric monoidal category, a lax symmetric monoidal functor F : C −→ Ch∗(A)
is said to be formal if it is weakly equivalent to H ◦ F in the category of lax symmetric
monoidal functors. It is then straightforward to see that such functors send operads in C to
formal operads in Ch∗(A). The functoriality also immediately gives us that a map of operads
in C is sent to a formal map of operads or that an operad with an action of a group G is
sent to a formal operad with a G-action. Of course, there is nothing specific about operads
in these statements and they would be equally true for monoids, cyclic operads, modular
operads, or more generally any algebraic structure that can be encoded by a colored operad.

The purpose of this paper is to push this idea of formality of symmetric monoidal functors
from complex algebraic varieties in several directions in order to prove the most general
possible theorem of the form “purity implies formality”. Before explaining our results more
precisely, we need to introduce a bit of terminology.

Let X be a complex algebraic variety. Deligne’s weight filtration on the rational n-th
cohomology vector space of X is bounded by

0 = W−1H
n(X,Q) ⊆W0H

n(X,Q) ⊆ · · · ⊆W2nH
n(X,Q) = Hn(X,Q).

If X is smooth thenWn−1H
n(X,Q) = 0, while if X is projectiveWnH

n(X,Q) = Hn(X,Q).
In particular, if X is smooth and projective then we have

0 = Wn−1H
n(X,Q) ⊆WnH

n(X,Q) = Hn(X,Q).

In this case, the weight filtration on Hn(X,Q) is said to be pure of weight n. More generally,
for α a rational number and X a complex algebraic variety, we say that the weight filtration
on H∗(X,Q) is α-pure if, for all n ≥ 0, we have

GrWp H
n(X,Q) :=

WpH
n(X,Q)

Wp−1Hn(X,Q)
= 0 for all p 6= αn.

The bounds on the weight filtration tell us that this makes sense only when 0 ≤ α ≤ 2.
Note as well that if we write α = a/b with (a, b) = 1, α-purity implies that the cohomology
is concentrated in degrees that are divisible by b, and that Hbn(X,Q) is pure of weight an.

Aside from smooth projective varieties, some well-known examples of varieties with 1-pure
weight filtration are: projective varieties whose underlying topological space is a Q-homology
manifold ([Del74, Theorem 8.2.4]) and the moduli spaces MDol and MdR appearing in
the non-abelian Hodge correspondence ([Hau05]). Some examples of varieties with 2-pure
weight filtration are: complements of hyperplane arrangements ([Kim94]), which include
the moduli spacesM0,n of smooth projective curves of genus 0 with n marked points, and
complements of toric arrangements ([Dup16]). As we shall see in Section 8, complements
of codimension d subspace arrangements are examples of smooth varieties whose weight
filtration in cohomology is 2d/(2d−1)-pure. For instance, this includes configuration spaces
of points in Cd.
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Our main result is Theorem 7.3. We show that, for a non-zero rational number α, the
singular chains functor

S∗(−,Q) : VarC −→ Ch∗(Q)

is formal as a lax symmetric monoidal functor when restricted to complex varieties whose
weight filtration in cohomology is α-pure. Here VarC denotes the category of complex
algebraic varieties (i.e the category of schemes over C that are reduced, separated and of
finite type). This generalizes the main result of [GNPR05] on the formality of S∗(X,Q)
for any operad X in smooth projective varieties, to the case of operads in possibly singular
and/or non-compact varieties with pure weight filtration in cohomology.

As direct applications of the above result, we prove formality of the operad of singular
chains of some operads in complex varieties, such as the noncommutative analog of the
(framed) little 2-discs operad introduced in [DSV15] and the monoid of self-maps of the
complex projective line studied by Cazanave in [Caz12] (see Theorems 7.4 and 7.7). We also
reinterpret in the language of mixed Hodge theory the proofs of the formality of the little
disks operad and Getzler’s gravity operad appearing in [Pet14] and [DH18]. These last two
results do not fit directly in our framework, since the little disks operad and the gravity
operad do not quite come from operads in algebraic varieties. However, the action of the
Grothendieck-Teichmüller group provides a bridge to mixed Hodge theory.

In Theorem 8.1 we prove a dual statement of our main result, showing that Sullivan’s
functor of piecewise linear forms

A∗PL : Varop
C −→ Ch∗(Q)

is formal as a lax symmetric monoidal functor when restricted to varieties whose weight
filtration in cohomology is α-pure, where α is a non-zero rational number.

This gives functorial formality in the sense of rational homotopy for such varieties, gener-
alizing both “purity implies formality” statements appearing in [Dup16] for smooth varieties
and in [CC17] for singular projective varieties. Our generalization is threefold: we allow
α-purity (instead of just 1- and 2-purity), we obtain functoriality and we study possibly
singular and open varieties simultaneously.

Theorems 7.3 and 8.1 deal with situations in which the weight filtration is pure. In the
general context with mixed weights, it was shown by Morgan [Mor78] for smooth varieties
and in [CG14] for possibly singular varieties, that the first term of the multiplicative weight
spectral sequence carries all the rational homotopy information of the variety. In Theorem
7.8 we provide the analogous statement for the lax symmetric monoidal functor of singular
chains. A dual statement for Sullivan’s functor of piecewise linear forms is proven in Theo-
rem 8.11, enhancing the results of [Mor78] and [CG14] with functoriality.

We now explain the structure of this paper. The first four sections are purely algebraic. In
Section 2 we collect the main properties of formal lax symmetric monoidal functors that we
use. In particular, in Theorem 2.3 we recall a recent theorem of rigidification due to Hinich
that says that, over a field of characteristic zero, formality of functors can be checked at
the level of ∞-functors. We also introduce the notion of α-purity for complexes of bigraded
objects in a symmetric monoidal abelian category and show that, when restricted to α-pure
complexes, the functor defined by forgetting the degree is formal.

The connection of this result with mixed Hodge structures is done in Section 3, where we
prove a symmetric monoidal version of Deligne’s weak splitting of mixed Hodge structures
over C. Such splitting is a key tool towards formality. In Section 4 we study lax symmetric
monoidal functors to vector spaces over a field of characteristic zero equipped with a com-
patible filtration. We show, in Theorem 4.3, that the existence of a lax symmetric monoidal
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splitting for such functors can be verified after extending the scalars to a larger field. As
a consequence, we obtain splittings for the weight filtration over Q. This result enables us
to bypass the theory of descent of formality for operads of [GNPR05], which assumes the
existence of minimal models. Putting the above results together we are able to show that
the forgetful functor

Ch∗(MHSQ) −→ Ch∗(Q)

induced by sending a rational mixed Hodge structure to its underlying vector space is formal
when restricted to those complexes whose mixed Hodge structure in homology is α-pure.

In order to obtain a symmetric monoidal functor from the category of complex varieties
to an algebraic category encoding mixed Hodge structures, we have to consider more flexible
objects than complexes of mixed Hodge structures. This is the content of Section 5, where
we study the category MHCk of mixed Hodge complexes. In Theorem 5.4 we construct
an equivalence of symmetric monoidal ∞-categories between mixed Hodge complexes and
complexes of mixed Hodge structures. This result is a lift of Beilinson’s equivalence of
triangulated categories Db(MHSk) −→ ho(MHCk) (see also [Dre15], [BNT18]).

The geometric character of this paper comes in Section 6, where we construct a symmetric
monoidal functor from complex varieties to mixed Hodge complexes. This is done in two
steps. First, for smooth varieties, we dualize Navarro’s construction [NA87] of functorial
mixed Hodge complexes to obtain a symmetric monoidal ∞-functor

D∗ : N(SmC) −→MHCQ

such that its composite with the forgetful functor MHCQ −→ Ch∗(Q) is naturally weakly
equivalent to S∗(−,Q) as a symmetric monoidal ∞-functor (see Theorem 6.5). Note that
in order to obtain monoidality, we move to the world of ∞-categories, denoted in boldface
letters. In the second step, we extend this functor from smooth, to singular varieties, by
standard cohomological descent arguments.

The main results of this paper are stated and proven in Section 7, where we also explain
several applications to operad formality. Lastly, Section 8 contains applications to the
rational homotopy theory of complex varieties.

Acknowledgments. This project was started during a visit of the first author at the Haus-
dorff Institute for Mathematics as part of the Junior Trimester Program in Topology. We
would like to thank the HIM for its support. We would also like to thank Alexander Berglund,
Brad Drew, Clément Dupont, Vicenç Navarro, Thomas Nikolaus and Bruno Vallette for
helpful conversations. Finally we thank the anonymous referees for many useful comments.

Notations. As a rule, we use boldface letters to denote ∞-categories and normal letters to
denote 1-categories. For C a 1-category, we denote by N(C) its nerve seen as an∞-category.

For A an additive category, we will denote by Ch?
∗(A) the category of (homologically

graded) chain complexes in A, where ? denotes the boundedness condition: nothing for
unbounded, b for bounded below and above and ≥ 0 (resp. ≤ 0) for non-negatively (resp.
non-positively) graded complexes. We denote by Ch?

∗(A) the ∞-category obtained from
Ch?
∗(A) by inverting the quasi-isomorphisms.

2. Formal symmetric monoidal functors

The main result of this section is a “purity implies formality” statement in the setting of
symmetric monoidal functors.

Let (A,⊗,1) be an abelian symmetric monoidal category with infinite direct sums. The
homology functor H : Ch∗(A) −→

∏
n∈ZA is a lax symmetric monoidal functor, via the

usual Künneth morphism. In the cases that will interest us, all the objects of A will be flat
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and the homology functor is in fact strong symmetric monoidal. We will also make the small
abuse of identifying the category

∏
n∈ZA with the full subcategory of Ch∗(A) spanned by

the chain complexes with zero differential.
We recall the following definition from [GNPR05].

Definition 2.1. Let C be a symmetric monoidal category and F : C −→ Ch∗(A) a lax
symmetric monoidal functor. Then F is said to be a formal lax symmetric monoidal functor
if F and H ◦ F are weakly equivalent in the category of lax symmetric monoidal functors:
there is a string of natural transformations of lax symmetric monoidal functors

F
Φ1←−− F1 −→ · · · ←− Fn

Φn−−→ H ◦ F

such that for every object X of C, the morphisms Φi(X) are quasi-isomorphisms.

Definition 2.2. Let C be a symmetric monoidal category and F : N(C) → Ch∗(A) a lax
symmetric monoidal functor (in the ∞-categorical sense). We say that F is a formal lax
symmetric monoidal ∞-functor if F and H ◦ F are equivalent in the ∞-category of lax
symmetric monoidal functors from N(C) to Ch∗(A).

Clearly a formal lax symmetric monoidal functor C → Ch∗(A) induces a formal lax
symmetric monoidal ∞-functor N(C) → Ch∗(A). The following theorem and its corollary
give a partial converse.

Theorem 2.3 (Hinich). Let k be a field of characteristic 0. Let C be a small symmetric
monoidal category. Let F and G be two lax symmetric monoidal functors C → Ch∗(k). If
F and G are equivalent as lax symmetric monoidal ∞-functors N(C) −→ Ch∗(k), then F
and G are weakly equivalent as lax symmetric monoidal functors.

Proof. This theorem is true more generally if C is a colored operad. Indeed recall that any
symmetric monoidal category has an underlying colored operad whose category of algebras
is equivalent to the category of lax symmetric monoidal functors out of the original category.

Now since we are working in characteristic zero, the operad underlying C is homotopically
sound (following the terminology of [Hin15]). Therefore, [Hin15, Theorem 4.1.1] gives us an
equivalence of ∞-categories

N(AlgC(Ch∗(k))
∼−→ AlgC(Ch∗(k))

where we denote by AlgC (resp. AlgC) the category of lax symmetric monoidal functors
(resp. the ∞-category of lax symmetric monoidal functors) out of C. Now, the two functors
F and G are two objects in the source of the above map that become weakly equivalent in the
target. Hence, they are already equivalent in the source, which is precisely saying that they
are connected by a zig-zag of weak equivalences of lax symmetric monoidal functors. �

Corollary 2.4. Let k be a field of characteristic 0. Let C be a small symmetric monoidal
category. Let F : C → Ch∗(k) be a lax symmetric monoidal functor. If F is formal as
lax symmetric monoidal ∞-functor N(C) −→ Ch∗(k), then F is formal as a lax symmetric
monoidal functor.

Proof. It suffices to apply Theorem 2.3 to F and H ◦ F . �

The following proposition whose proof is trivial is the reason we are interested in formal
lax monoidal functors.

Proposition 2.5 ([GNPR05], Proposition 2.5.5). If F : C −→ Ch∗(A) is a formal lax
symmetric monoidal functor then F sends operads in C to formal operads in Ch∗(A).
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In rational homotopy, there is a criterion of formality in terms of weight decompositions
which proves to be useful in certain situations (see for example [BMSS98] and [BD78]). We
next provide an analogous criterion in the setting of symmetric monoidal functors.

Denote by grA the category of graded objects of A. It inherits a symmetric monoidal
structure from that of A, with the tensor product defined by

(A⊗B)n :=
⊕
p

Ap ⊗Bp−n.

The unit in grA is given by 1 concentrated in degree zero. The functor U : grA −→ A
obtained by forgetting the degree is strong symmetric monoidal. The category of graded
complexes Ch∗(grA) inherits a symmetric monoidal structure via a graded Künneth mor-
phism.

Definition 2.6. Given a rational number α, denote by Ch∗(grA)α-pure the full subcategory
of Ch∗(grA) given by those graded complexes A =

⊕
Apn with α-pure homology :

Hn(A)p = 0 for all p 6= αn.

Note that if α = a/b, with a and b coprime, then the above condition implies that H∗(A)
is concentrated in degrees that are divisible by b, and in degree kb, it is pure of weight ka:

Hkb(A)p = 0 for all p 6= ka.

Proposition 2.7. Let A be an abelian category and α a non-zero rational number. The
functor U : Ch∗(grA)α-pure −→ Ch∗(A) defined by forgetting the degree is formal as a lax
symmetric monoidal functor.

Proof. We will define a functor τ : Ch∗(grA) −→ Ch∗(grA) together with natural transfor-
mations

Φ : U ◦ τ ⇒ U and Ψ : U ◦ τ ⇒ H ◦ U
giving rise to weak equivalences when restricted to chain complexes with α-pure homology.

Consider the truncation functor τ : Ch∗(grA) −→ Ch∗(grA) defined by sending a graded
chain complex A =

⊕
Apn to the graded complex given by:

(τA)pn :=

 Apn n > dp/αe
Ker(d : Apn → Apn−1) n = dp/αe
0 n < dp/αe

,

where dp/αe denotes the smallest integer greater than or equal to p/α. Note that for each p,
τ(A)p∗ is the chain complex given by the canonical truncation of Ap∗ at dp/αe, which satisfies

Hn(τ(A)p∗)
∼= Hn(Ap∗) for all n ≥ dp/αe.

To prove that τ is a lax symmetric monoidal functor it suffices to see that

τ(A)pn ⊗ τ(B)qm ⊆ τ(A⊗B)p+qn+m

for all A,B ∈ Ch∗(grA). By symmetry in A and B, it suffices to consider the following
three cases :

(1) If n > dp/αe and m ≥ dq/αe then n+m > dp/αe+ dq/αe ≥ d(p+ q)/αe. Therefore
we have τ(A⊗B)p+qn+m = (A⊗B)p+qn+m and the above inclusion is trivially satisfied.

(2) If n = dp/αe and m = dq/αe then n + m = dp/αe + dq/αe ≥ d(p + q)/αe. Now,
if n + m > d(p + q)/αe then again we have τ(A ⊗ B)p+qn+m = (A ⊗ B)p+qn+m. If
n+m = d(p+ q)/αe then the above inclusion reads

Ker(d : Apn → Apn−1)⊗Ker(d : Bqm → Bqm−1) ⊆ Ker(d : (A⊗B)p+qn+m → (A⊗B)p+qn+m−1).

This is verified by the Leibniz rule.
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(3) Lastly, if n < dp/αe then τ(A)pn = 0 and there is nothing to verify.
The projection Ker(d : Apn → Apn−1) � Hn(A)p defines a morphism τA→ H(A) by

(τA)pn 7→
{

0 n 6= dp/αe
Hn(A)p n = dp/αe .

This gives a symmetric monoidal natural transformation Ψ : U◦τ ⇒ H◦U = U◦H. Likewise,
the inclusion τA ↪→ A defines a symmetric monoidal natural transformation Φ : U ◦ τ ⇒ U .

Let A be a complex of Ch∗(grA)α-pure. Then both morphisms

Ψ(A) : τ ◦ U(A)→ H ◦ U(A) and Φ(A) : U ◦ τ(A)→ U(A)

are clearly quasi-isomorphisms. �

For graded chain complexes whose homology is pure up to a certain degree, we obtain a
result of partial formality as follows.

Definition 2.8. Let q ≥ 0 be an integer. A morphism of chain complexes f : A → B is
called a q-quasi-isomorphism if the induced morphism in homology Hi(f) : Hi(A)→ Hi(B)
is an isomorphism for all i ≤ q.

Remark 2.9. There is a notion of q-quasi-isomorphism in rational homotopy which asks in
addition that the map induced in degree (q + 1)-cohomology is a monomorphism. Dually,
for chain complexes one could ask to have an epimorphism in degree (q+1)-homology. Note
that we don’t consider this extra condition here, since we work with possibly negatively and
positively graded complexes and such a condition would break the symmetry. In addition,
in our subsequent work on formality with torsion coefficients [CH18], the notion of partial
formality as defined below plays a fundamental role.

Definition 2.10. Let q ≥ 0 be an integer. A functor F : C −→ Ch∗(A) is a q-formal lax
symmetric monoidal functor if there are natural transformations Φi as in Definition 2.1 such
that Φi(X) are q-quasi-isomorphisms for all X ∈ C and all 1 ≤ i ≤ n.

Proposition 2.11. Let A be an abelian category. Given a non-zero rational number α and
an integer q ≥ 0, denote by Ch∗(grA)α-pure

q the full subcategory of Ch∗(grA) given by those
graded complexes A =

⊕
Apn whose homology in degrees ≤ q is α-pure: for all n ≤ q,

Hn(A)p = 0 for all p 6= αn.

Then the functor U : Ch∗(grA)α-pure
q −→ Ch∗(A) defined by forgetting the degree is q-formal.

Proof. The proof is parallel to that of Proposition 2.7 by noting that, if Hn(A) is α-pure for
n ≤ q + 1, then the morphisms

Ψ(A) : τ ◦ U(A)→ H ◦ U(A) and Φ(A) : U ◦ τ(A)→ U(A)

are q-quasi-isomorphisms.
�

3. Mixed Hodge structures

We next collect some main definitions and properties on mixed Hodge structures and
prove a symmetric monoidal version of Deligne’s splitting for the weight filtration.

Denote by FA the category of filtered objects of an abelian symmetric monoidal category
(A,⊗,1). All filtrations will be assumed to be of finite length and exhaustive. With the
tensor product

Wp(A⊗B) :=
∑
i+j=p

Im(WiA⊗WjB −→ A⊗B),
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and the unit given by 1 concentrated in weight zero, FA is a symmetric monoidal cate-
gory. The functor Ufil : grA −→ FA defined by A =

⊕
Ap 7→ WmA :=

⊕
q≤mA

q is
strong symmetric monoidal. The category of filtered complexes Ch∗(FA) inherits a sym-
metric monoidal structure via a filtered Künneth morphism and we have a strong symmetric
monoidal functor

Ufil : Ch∗(grA) −→ Ch∗(FA).

Let k ⊂ R be a subfield of the real numbers.

Definition 3.1. A mixed Hodge structure on a finite dimensional k-vector space V is given
by an increasing filtration W of V , called the weight filtration, together with a decreasing
filtration F on VC := V ⊗C, called the Hodge filtration, such that for allm ≥ 0, each k-vector
space GrWm V := WmV/Wm−1V carries a pure Hodge structure of weight m given by the
filtration induced by F on GrWm V ⊗ C, that is, there is a direct sum decomposition

GrmWV ⊗ C =
⊕

p+q=m

V p,q where V p,q = F p(GrWm V ⊗ C) ∩ F q(GrWm V ⊗ C) = V
q,p
.

Morphisms of mixed Hodge structures are given by morphisms f : V → V ′ of k-vector
spaces compatible with filtrations: f(WmV ) ⊂ WmV

′ and f(F pVC) ⊂ F pV ′C. Denote by
MHSk the category of mixed Hodge structures over k. It is an abelian category by [Del71,
Theorem 2.3.5].

Remark 3.2. Given mixed Hodge structures V and V ′, then V ⊗V ′ carries a mixed Hodge
structure with the filtered tensor product. This makes MHSk into a symmetric monoidal
category. Also, Hom(V, V ′) carries a mixed Hodge structure with the weight filtration given
by

WpHom(V, V ′) := {f : V → V ′; f(WqV ) ⊂Wq+pV
′, ∀q}

and the Hodge filtration defined in the same way. In particular, the dual of a mixed Hodge
structure is again a mixed Hodge structure.

Let k ⊂ K be a field extension. The functors

ΠK : MHSk −→ VectK and ΠW
K : MHSk −→ FVectK

defined by sending a mixed Hodge structure (V,W,F ) to VK := Vk⊗K and (VK,W ) respec-
tively, are strong symmetric monoidal functors.

Deligne introduced a global decomposition of VC := V ⊗ C into subspaces Ip,q, for any
mixed Hodge structure (V,W,F ) which generalizes the decomposition of pure Hodge struc-
tures of a given weight. In this case, one has a congruence Ip,q ≡ Iq,p moduloWp+q−2. From
this decomposition, Deligne deduced that morphisms of mixed Hodge structures are strictly
compatible with filtrations and that the category of mixed Hodge structures is abelian (see
[Del71, Section 1], see also [PS08, Section 3.1]). We next study this decomposition in the
context of symmetric monoidal functors.

Lemma 3.3 (Deligne’s splitting). The functor ΠW
C admits a factorization

MHSk
G //

ΠW
C

##

grVectC

Ufil

��
FVectC
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into strong symmetric monoidal functors. In particular, there is an isomorphism of functors

Ufil ◦ gr ◦ΠW
C
∼= ΠW

C ,

where gr : FVectC −→ grVectC is the graded functor given by gr(VC,W )p = GrWp VC.

Proof. Let (V,W,F ) be a mixed Hodge structure. By [Del71, 1.2.11] (see also [GS75, Lemma
1.12]), there is a direct sum decomposition VC =

⊕
Ip,q(V ) where

Ip,q(V ) = (F pWp+qVC) ∩

(
F
q
Wp+qVC +

∑
i>0

F
q−i

Wp+q−1−iVC

)
.

This decomposition is functorial for morphisms of mixed Hodge structures and satisfies

WmVC =
⊕

p+q≤m

Ip,q(V ).

Define G by letting G(V,W,F )n :=
⊕

p+q=n I
p,q(V ) for any mixed Hodge structure. Since

f(Ip,q(V )) ⊂ Ip,q(V ′) for every morphism f : (V,W,F ) → (V ′,W, F ) of mixed Hodge
structures, G is functorial. To see that G is strong symmetric monoidal it suffices to use the
definition of Ip,q together with the tensor product mixed Hodge structure defined via the
filtered tensor product, to obtain isomorphisms∑

p+q=n
p′+q′=n′

Ip,q(V )⊗ Ip
′,q′(V ′) ∼=

∑
i+j=n+n′

Ii,j(V ⊗ V ′)

showing that the splittings I∗,∗ are compatible with tensor products (see also [Mor78, Propo-
sition 1.9]).

The functor Ufil : grVect −→ FVect is the strong symmetric monoidal functor given by⊕
n

V n 7→ (V,W ), with WmV :=
⊕
n≤m

V n.

Therefore we have Ufil ◦G = ΠW
C . In order to prove the isomorphism Ufil ◦ gr ◦ΠW

C
∼= ΠW

C
it suffices to note that there is an isomorphism of functors gr ◦ Ufil ∼= Id. �

4. Descent of splittings of lax symmetric monoidal functors

In this section, we study lax symmetric monoidal functors to vector spaces over a field of
characteristic zero k equipped with a compatible filtration. More precisely, we are interested
in lax symmetric monoidal maps C −→ FVectk. Our goal is to prove that the existence
of a lax symmetric monoidal splitting for such a functor (i.e. of a lift of this map to
C −→ grVectk) can be checked after extending the scalars to a larger field. Our proof
follows similar arguments to those appearing in [CG14, Section 2.4], see also [GNPR05]
and [Sul77]. A main advantage of our approach with respect to these references is that,
in proving descent at the level of functors, we avoid the use of minimal models (and thus
restrictions to, for instance, operads with trivial arity 0).

It will be a bit more convenient to study a more general situation where C is allowed
to be a colored operad instead of a symmetric monoidal category. Indeed recall that any
symmetric monoidal category can be seen as an operad whose colors are the objects of C and
where a multimorphism from (c1, . . . , cn) to d is just a morphism in C from c1⊗ . . .⊗cn to d.
Then, given another symmetric monoidal category D, there is an equivalence of categories
between the category of lax symmetric monoidal functors from C to D and the category of
C-algebras in the symmetric monoidal category D.
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We fix (V,W ) a map of colored operads C −→ FVectk such that for each color c of C, the
vector space V (c) is finite dimensional. We denote by AutW (V ) the set of its automorphisms
in the category of C-algebras in FVectk and by Aut(GrWV ) the set of automorphisms of
GrWV in the category of C-algebras in grVectk. We have a morphism gr : AutW (V ) →
Aut(GrWV ).

Let k→ R be a commutative k-algebra. The correspondence

R 7→ AutW (V )(R) := AutW (V ⊗k R)

defines a functor AutW (V ) : Algk −→ Gps from the category Algk of commutative k-algebras,
to the category Gps of groups. Clearly, we have AutW (V )(k) = AutW (V ). We define in a
similar fashion a functor Aut(GrWV ) from Algk to Gps.

We recall the following properties:

Proposition 4.1. Let (V,W ) be as above.
(1) AutW (V ) is a group scheme whose group of k-points is AutW (V ).
(2) The functor GrW induces a morphism gr : AutW (V ) → Aut(GrWV ) of group

schemes.
(3) The kernel U := Ker

(
gr : AutW (V )→ Aut(GrWV )

)
is a unipotent group scheme

over k.

Proof. We first observe that there is an isomorphism

AutW (V ) ∼= limS AutW (VS)

in which the limit is taken over the poset of finite sets S of objects of C and VS denotes the
restriction of V to those objects. We can write the groups AutW (V ) and Aut(GrWV ) as
similar limits. Therefore we may restrict to the case when C has finitely many objects and
prove that in this case, the above objects live in the category of algebraic groups.

Let N be such that the vector space ⊕c∈CV (c) can be linearly embedded in kN . Then
AutW (V ) is the closed subgroup of GLN (k) defined by the polynomial equations that express
the data of a filtration preserving C-algebra automorphism. Similarly, inside the functor of
linear automorphisms ⊕c∈CV (c) ⊗k R −→ ⊕c∈CV (c) ⊗k R, let F (R) be those preserving
the structure of V as a C-algebra in filtered vector spaces. The condition of preserving the
filtration and the algebra structure is given by polynomial equations in the matrix entries
and so F is representable (this is also explained in Section 7.6 of [Wat79]). It follows that
AutW (V ) is an algebraic group and its group of k-points is AutW (V ). Hence (1) is satisfied.

For every commutative k-algebra R, the map

AutW (V )(R) = AutW (V ⊗k R) −→ Aut(GrW (V ⊗k R)) = Aut(GrWV )(R)

is a morphism of groups which is natural in R. Thus (2) follows and hence the kernel U is
an algebraic group. It now suffices to take a basis of ⊕c∈CV (c) compatible with W . Then
we may view U as a subgroup of the group of upper-triangular matrices with 1’s on the
diagonal. Hence (3) is satisfied. �

Lemma 4.2. Let (V,W ) be as above. The following assertions are equivalent:
(1) The pair (V,W ) admits a lax symmetric monoidal splitting: WpV ∼=

⊕
q≤pGr

W
q V .

(2) The morphism gr : AutW (V )→ Aut(GrWV ) is surjective.
(3) There exists α ∈ k∗ which is not a root of unity together with an automorphism Φ ∈

AutW (V ) such that gr(Φ) = ψα is the grading automorphism of GrWV associated
with α, defined by

ψα(a) = αpa, for a ∈ GrWp V.
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Proof. The implications (1)⇒ (2)⇒ (3) are trivial. We show that (3) implies (1). Let Φ ∈
AutW (V ) be such that grΦ = ψα. We will first produce a decomposition Φ = Φs.Φu which
is such that for any object c of C, the restrictions (Φs(c),Φu(c)) is a Jordan decomposition
for Φ(c). In order to do that, recall that we have an isomorphism

AutW (V ) = limS AutW (VS)

where the limit is taken over the poset of finite subsets S of objects of C and VS denotes
the restriction of V to the subset S. For each of the groups AutW (VS) we can find a Jordan
decomposition of the image of Φ in each of them. The transition maps between those groups
preserve this decomposition and it follows that this decomposition induces a decomposition
of Φ with the desired property.

By [Bor91, Theorem 4.4], there is a decomposition of the form V (c) = V ′(c) ⊕ V ′′(c),
where

V ′(c) =
⊕

Vp(c) with Vp(c) := Ker(Φs(c)− αpI)

and V ′′(c) is the complementary subspace corresponding to the remaining factors of the char-
acteristic polynomial of Φs(c). By assumption, GrWV (c) contains nothing but eigenspaces
of eigenvalue αp. Therefore we have GrWV ′′(c) = 0 and one concludes that V ′′(c) = 0.

In order to show that WpV =
⊕

i≤p Vp it suffices to prove it objectwise. Let c be an
object of C. For x ∈ Vp(c), let q be the smallest integer such that x ∈ WqV (c). Then x
defines a class x+Wq+1V (c) ∈ grV (c), and

ψα(x+Wq−1V (c)) = αqx+Wq−1V (c) = Φ(x) +Wq−1V (c) = αpx+Wq−1V (c).

Then (αq − αp)x ∈Wq−1V (c). Since x /∈Wq−1V (c) we have q = p, hence x ∈WpV . �

We may now state and prove the main theorem of this section.

Theorem 4.3. Let (V,W ) be a map of colored operads C −→ FVectk such that for each
color c of C, the vector space V (c) is finite dimensional. Let k ⊂ K be a field extension.
Then V admits a lax symmetric monoidal splitting if and only if VK := V ⊗kK : C −→ VectK
admits a lax symmetric monoidal splitting.

Proof. We may assume without loss of generality that K is algebraically closed. If VK admits
a splitting, the map

AutW (V )(K) −→ Aut(GrWV )(K)

is surjective by Lemma 4.2. Our goal is to prove surjectivity of

AutW (V )(k) −→ Aut(GrWV )(k).

As in Proposition 4.1, we can write those groups as filtered limits. Since an inverse limit of
surjections is a surjection, it is enough to prove the result when C has finitely many objects.

From [Wat79, Section 18.1] there is an exact sequence of groups

1 −→ U(k) −→ AutW (V )(k) −→ Aut(GrWV )(k) −→ H1(K/k, U) −→ . . .

where U is a unipotent algebraic group by Proposition 4.1 and our assumption that C has
finitely many objects. Since k has characteristic zero the group H1(K/k, U) is trivial (see
[Wat79, Example 18.2.e]) and we deduce the desired surjectivity. �

From this theorem we deduce that Deligne’s splitting holds over Q. We record this fact
in the following Lemma.
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Lemma 4.4 (Deligne’s splitting over Q). The forgetful functor ΠW
Q : MHSQ −→ FVectQ

given by (V,W,F ) 7→ (V,W ) admits a factorization

MHSQ
G //

ΠW
Q

##

grVectQ

Ufil

��
FVectQ

into lax symmetric monoidal functors. In particular, there is an isomorphism of functors

Ufil ◦ gr ◦ΠW
Q
∼= ΠW

Q ,

where gr : FVectQ −→ grVectQ is the graded functor given by gr(VQ,W )p = GrWp VQ.

Proof. We apply Theorem 4.3 to the lax symmetric monoidal functor ΠW
Q using the fact

that ΠW
Q ⊗Q C admits a splitting by Lemma 3.3. �

Remark 4.5. We want to emphasize that Theorem 4.3 does not say that the splitting of
the previous lemma recovers the splitting of Lemma 3.3 after tensoring with C. In fact,
it can probably be shown that such a splitting cannot exist. Nevertheless, the existence
of Deligne’s splitting over C abstractly forces the existence of a similar splitting over Q
which is all this Lemma is saying. Note as well that these are not splittings of mixed Hodge
structures, but only of the weight filtration. They are also referred to as weak splittings
of mixed Hodge structures (see for example [PS08, Section 3.1]). As is well-known, mixed
Hodge structures do not split in general.

The above splitting over Q yields the following “purity implies formality” statement in
the abstract setting of functors defined from the category of complexes of mixed Hodge
structures. Given a rational number α, denote by Ch∗(MHSQ)α-pure the full subcate-
gory of Ch∗(MHSQ) of complexes with pure weight α homology: an object (K,W,F ) in
Ch∗(MHSQ)α-pure is such that GrpWHn(K) = 0 for all p 6= αn.

Corollary 4.6. The restriction of the functor ΠQ : Ch∗(MHSQ) −→ Ch∗(Q) to the category
Ch∗(MHSQ)α-pure is formal for any non-zero rational number α.

Proof. This follows from Proposition 2.7 together with Lemma 4.4. �

5. Mixed Hodge complexes

In this section, we construct an equivalence of symmetric monoidal∞-categories between
mixed Hodge complexes and complexes of mixed Hodge structures, lifting Beilinson’s equiv-
alence of triangulated categories.

We first recall the notion of mixed Hodge complex introduced by Deligne in [Del74] in its
chain complex version (with homological degree). Note that, in contrast with the classical
setting of mixed Hodge theory, in the homological version of a mixed Hodge complex, the
weight filtration W will be decreasing while the Hodge filtration F will be increasing.

Let k ⊂ R be a subfield of the real numbers.

Definition 5.1. A mixed Hodge complex over k is given by a filtered chain complex (Kk,W )
over k, a bifiltered chain complex (KC,W, F ) over C, together with a finite string of filtered
quasi-isomorphisms of filtered complexes of C-vector spaces

(Kk,W )⊗ C α1−→ (K1,W )
α2←− · · · αl−1−−−→ (Kl−1,W )

αl−→ (KC,W ).
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We call l the length of the mixed Hodge complex. The following axioms must be satisfied:
(MH0) The homology H∗(Kk) is bounded and finite-dimensional.
(MH1) The differential of GrpWKC is strictly compatible with F .
(MH2) The filtration on Hn(GrpWKC) induced by F makes Hn(GrpWKk) into a pure Hodge

structure of weight p+ n.
Such a mixed Hodge complex will be denoted by K = {(Kk,W ), (KC,W, F )}, omitting

the data of the comparison morphisms αi.

The above axioms imply that for all n ≥ 0 the triple (Hn(Kk),W [n], F ) is a mixed Hodge
structure over k, where W [n] is the shifted weight filtration given by

W [n]pHn(Kk) := W p−nHn(Kk).

Morphisms of mixed Hodge complexes are given by levelwise bifiltered morphisms of com-
plexes making the corresponding diagrams commute. Denote by MHCk the category of
mixed Hodge complexes of a certain fixed length, which we omit in the notation. The tensor
product of mixed Hodge complexes is again a mixed Hodge complex (see [PS08, Lemma
3.20]). This makes MHCk into a symmetric monoidal category, with a filtered variant of the
Künneth formula.

Definition 5.2. A morphism f : K → L in MHCk is said to be a weak equivalence if H∗(fk)
is an isomorphism of k-vector spaces.

Since the category of mixed Hodge structures is abelian, the homology of every complex
of mixed Hodge structures is a graded mixed Hodge structure. We have a functor

T : Chb∗(MHSk) −→ MHCk

given on objects by (K,W,F ) 7→ {(K,TW ), (K ⊗ C, TW,F )}, where TW is the shifted
filtration (TW )pKn := W p+nKn. The comparison morphisms αi are the identity. Also, T
is the identity on morphisms. This functor clearly preserves weak equivalences.

Lemma 5.3. The shift functor T : Chb∗(MHSk) −→ MHCk is strong symmetric monoidal.

Proof. It suffices to note that given filtered complexes (K,W ) and (L,W ), we have:

T (W ⊗W )p(K ⊗ L)n = (TW ⊗ TW )p(K ⊗ L)n. �

Beilinson [Bĕı86] gave an equivalence of categories between the derived category of mixed
Hodge structures and the homotopy category of a shifted version of mixed Hodge complexes.
We will require a finer version of Beilinson’s equivalence, in terms of symmetric monoidal
∞-categories. Denote by MHCk the ∞-category obtained by inverting weak equivalences
of mixed Hodge complexes, omitting the length in the notation. As explained in [Dre15,
Theorem 2.7.], this object is canonically a symmetric monoidal stable∞-category. Note that
in loc. cit., mixed Hodge complexes have fixed length 2 and are polarized. The results of
[Dre15] as well as Beilinson’s equivalence, are equally valid for the category of mixed Hodge
complexes of an arbitrary fixed length.

Theorem 5.4. The shift functor induces an equivalence Chb∗(MHSk) −→MHCk of sym-
metric monoidal ∞-categories.

Proof. A proof in the polarizable setting appears in [Dre15]. Also, in [BNT18], a similar
statement is proven for a shifted version of mixed Hodge complexes. We sketch a proof in
our setting.

We first observe as in Lemma 2.6 of [BNT18] that both ∞-categories are stable and that
the shift functor is exact. The stability of MHCk follows from the observation that this
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∞-category is the Verdier quotient at the acyclic complexes of the ∞-category of mixed
Hodge complexes with the homotopy equivalences inverted. This last ∞-category underlies
a dg-category that can easily be seen to be stable. The stability of Chb∗(MHSk) follows
in a similar way. Since a complex of mixed Hodge structures is acyclic if and only if the
underlying complex of k-vector spaces is acyclic, and T is the identity on the underlying
complexes of k-vector spaces, it follows that T is exact. Therefore, in order to prove that
T is an equivalence of ∞-categories, it suffices to show that it induces an equivalence of
homotopy categories

Db(MHSk) −→ ho(MHCk).

In [Bĕı86, Lemma 3.11], it is proven that the shift functor T : Chb∗(MHSpk) −→ MHCpk
induces an equivalence at the level of homotopy categories. Here the superindex p indi-
cates that the mixed Hodge objects are polarized. One may verify that Beilinson’s proof is
equally valid if we remove the polarization (see also [CG16, Theorem 4.10] where Beilinson’s
equivalence is proven in the non-polarized version via other methods). The fact that T can
be given the structure of a strong symmetric monoidal ∞-functor follows from the work of
Drew in [Dre15]. �

6. Logarithmic de Rham currents

The goal of this section is to construct a strong symmetric monoidal ∞-functor from
algebraic varieties over C to mixed Hodge complexes which computes the correct mixed
Hodge structure after passing to homology. The construction for smooth varieties is rela-
tively straightforward. It suffices to take a functorial mixed Hodge complex model for the
cochains as constructed for instance in [NA87] and dualize it. The monoidality of that func-
tor is slightly tricky as one has to move to the world of ∞-categories for it to exist. Once
one has constructed this functor for smooth varieties, it can be extended to more general
varieties by standard descent arguments.

We denote by VarC the category of complex schemes that are reduced, separated and of
finite type. We use the word variety for an object of this category. We denote by SmC the
subcategory of smooth schemes. Both of these categories are essentially small (i.e. there
is a set of isomorphisms classes of objects) and symmetric monoidal under the cartesian
product.

We will make use of the following very simple observation.

Proposition 6.1. Let C and D be two categories with finite products seen as symmetric
monoidal categories with respect to the product. Then any functor F : C −→ D has a
preferred oplax symmetric monoidal structure.

Proof. We need to construct comparison morphisms F (c×c′) −→ F (c)×F (c′). By definition
of the product, there is a unique such functor whose composition with the first projection is
the map F (c×c′) −→ F (c) induced by the first projection c×c′ −→ c and whose composition
with the second projection is the map F (c× c′) −→ F (c′) induced by the second projection
c× c′ −→ c′. Similarly, one has a unique map F (∗) −→ ∗. One checks easily that these two
maps give F the structure of an oplax symmetric monoidal functor. �

6.1. For smooth varieties. In this section, we construct a lax symmetric monoidal functor

D∗ : N(SmC) −→MHCQ

such that its composition with the forgetful functor MHCQ −→ Ch∗(Q) is naturally weakly
equivalent to S∗(−,Q) as a lax symmetric monoidal functor.

We will adapt Navarro-Aznar’s construction of mixed Hodge diagrams [NA87]. Let X
be a smooth projective complex variety and j : U ↪→ X an open subvariety such that
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D := X − U is a normal crossing divisor. Denote by A∗X the analytic de Rham complex of
the underlying real analytic variety of X and let A∗X(logD) denote the subsheaf of j∗A∗U of
logarithmic forms in D. Note that in Deligne’s approach to mixed Hodge theory, the sheaf
Ω∗X(logD) of holomorphic forms on X with logarithmic poles along D is used instead. As
explained in 8.5 of [NA87], the main advantage to consider analytic forms is the natural real
structure obtained, together with a decomposition of the form

AnX(logD)⊗ C =
⊕
p+q=n

Ap,qX (logD).

Also, there is an inclusion Ω∗X(logD) ↪→ A∗X(logD) ⊗ C which is a quasi-isomorphism and
A∗X(logD) may be naturally endowed with a multiplicative weight filtration W (see 8.3 of
[NA87]). Proposition 8.4 of loc. cit. gives a string of quasi-isomorphisms of sheaves of
filtered cdga’s over R:

(RTWj∗QU , τ)⊗ R ∼−→ (RTWj∗A∗U , τ)
∼←− (A∗X(logD), τ)

∼−→ (A∗X(logD),W ),

where τ is the canonical filtration. In this diagram,

RTWj∗ : Sh(U,Ch≤0
∗ (k)) −→ Sh(X,Ch≤0

∗ (k))

is the functor defined by
RTWj∗ := sTW ◦ j∗ ◦G+

where
G+ : Sh(X,Ch≤0

∗ (k)) −→ ∆Sh(X,Ch≤0
∗ (k))

is the Godement canonical cosimplicial resolution functor and

sTW : ∆Sh(X,Ch≤0
∗ (k)) −→ Sh(X,Ch≤0

∗ (k))

is the Thom-Whitney simple functor introduced by Navarro in Section 2 of loc. cit. Both
functors are lax symmetric monoidal and hence RTWj∗ is a lax symmetric monoidal functor
(see [RR16, Section 3.2]).

The complex A∗X(logD) ⊗ C carries a natural multiplicative Hodge filtration F (see 8.6
of [NA87]). The above string of quasi-isomorphisms gives a commutative algebra object
in (cohomological) mixed Hodge complexes after taking global sections. Specifically, the
composition

RTWΓ(X,−) := sTW ◦ Γ(X,−) ◦G+

gives a derived global sections functor

RTWΓ(X,−) : Sh(X,Ch≤0
∗ (Q)) −→ Ch≤0

∗ (Q)

which again is lax symmetric monoidal. There is also a filtered version of this functor defined
via the filtered Thom-Whitney simple (see Section 6 of [NA87]). Theorem 8.15 of loc. cit.
asserts that by applying the (bi)filtered versions of RTWΓ(X,−) to each of the pieces of
the above string of quasi-isomorphisms, one obtains a commutative algebra object in mixed
Hodge complexes Hdg(X,U) whose cohomology gives Deligne’s mixed Hodge structure on
H∗(U,Q) and such that

Hdg(X,U)Q = RTWΓ(X,RTWj∗QU )

is naturally quasi-isomorphic to S∗(U,C) (as a cochain complex). This construction is
functorial for morphisms of pairs f : (X,U) → (X ′, U ′). The definition of Hdg(f) follows
as in the additive setting (see [Hub95, Lemma 6.1.2] for details), by replacing the classical
additive total simple functor with the Thom-Whitney simple functor.

Now we wish to get rid of the dependence on the compactification. For this purpose, we
define for U a smooth variety over C, a category RU whose objects are pairs (X,U) where
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X is smooth and proper variety containing U as an open subvariety and X −U is a normal
crossing divisor. Morphisms in RU are morphisms of pairs. We then define D∗(U) by the
formula

D∗(U) := colimRop
U
Hdg(X,U)

By theorems of Hironaka and Nagata, the category Rop
U is a non-empty filtered category.

Note that we have to be slightly careful here as the category of mixed Hodge complexes does
not have all filtered colimits. However, we can form this colimit in the category of pairs
(KQ,W ), (KC,W, F ) having the structure required in Definition 5.1 but not necessarily sat-
isfying the axioms MH0, MH1 and MH2. Since taking filtered colimit is an exact functor, we
deduce from the classical isomorphism between sheaf cohomology and singular cohomology
that there is a quasi-isomorphism

D∗(U)Q → S∗(U,Q)

This shows that the cohomology of D∗(U) is of finite type and hence, that D∗(U) satisfies
axiom MH0. The other axioms are similarly easily seen to be satisfied. Moreover, filtered
colimits preserve commutative algebra structures, therefore the functor D∗ is a functor from
Smop

C to commutative algebras in MHCQ.
Since the coproduct in commutative algebras is the tensor product, we deduce from the

dual of Proposition 6.1 that D∗ is canonically a lax symmetric monoidal functor from Smop
C

to MHCQ. But since the comparison map

D∗(U)Q ⊗Q D∗(V )Q −→ D∗(U × V )Q

is a quasi-isomorphism, this functor extends to a strong symmetric monoidal ∞-functor

D∗ : N(SmC)op −→MHCQ

Remark 6.2. A similar construction for real mixed Hodge complexes is done in [BT15,
Section 3.1]. There is also a similar construction in [Dre15] that includes polarizations.

Now, the category MHCQ is equipped with a duality functor. It sends a mixed Hodge
complex {(KQ,W ), (KC,W, F )} to the linear duals {(K∨Q ,W∨), (K∨C ,W

∨, F∨)} where the
dual of a filtered complex is defined as in 3.2. One checks easily that this dual object satisfies
the axioms of a mixed Hodge complex. Moreover, the duality functor MHCop

Q −→ MHCQ
is lax symmetric monoidal and preserves weak equivalences of mixed Hodge complexes,
therefore it induces a lax symmetric monoidal ∞-functor

MHCop
Q −→MHCQ

but in fact, we have the following proposition.

Proposition 6.3. The dualization ∞-functor

MHCop
Q −→MHCQ

is strong symmetric monoidal.

Proof. It suffices to observe that the canonical map

K∨ ⊗ L∨ −→ (K ⊗ L)∨

is a weak equivalence. This follows from the fact that mixed Hodge complexes are assumed
to have finite type cohomology. �

Composing the duality functor with D∗, we get a strong symmetric monoidal ∞-functor

D∗ : N(SmC) −→MHCQ
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Remark 6.4. One should note that D∗ comes from a lax symmetric monoidal functor from
Smop

C to MHCQ. On the other hand, D∗ is induced by a strict functor which is neither lax
nor oplax. Indeed, it is obtained as the composition of (D∗)op which is an oplax symmetric
monoidal functor SmC −→ (MHCQ)op and the duality functor which is a lax symmetric
monoidal functor. Thus, the symmetric monoidal structure on D∗ only exists at the ∞-
categorical level.

To conclude this construction, it remains to compare the functorD∗(−)Q with the singular
chains functor. These two functors are naturally quasi-isomorphic as shown in [NA87] but
we will need to know that they are quasi-isomorphic as symmetric monoidal ∞-functors.
We denote by S∗(−, R) the singular chain complex functor from the category of topological
spaces to the category of chain complexes over a commutative ring R. The functor S∗(−, R)
is lax symmetric monoidal. Moreover, the natural map

S∗(X,R)⊗ S∗(Y,R)→ S∗(X × Y,R)

is a quasi-isomorphism. This implies that S∗(−, R) induces a strong symmetric monoidal∞-
functor from the category of topological spaces to the∞-categoryCh∗(R) of chain complexes
over R. We still use the symbol S∗(−, R) to denote this ∞-functor.

Theorem 6.5. The functors D∗(−)Q and S∗(−,Q) are weakly equivalent as strong sym-
metric monoidal ∞-functors from N(SmC) to Ch∗(Q).

Proof. We introduce the category Man of smooth real manifolds. We consider the ∞-
category PSh(Man) of presheaves of spaces on the∞-categoryN(Man). This is a symmetric
monoidal ∞-category under the product. We can consider the reflective subcategory T
spanned by presheaves G satisfying the following two conditions:

(1) Given a hypercover U• →M of a manifold M , the induced map

G(M)→ lim∆ G(U•)

is an equivalence.
(2) For any manifoldM , the map G(M)→ G(M×R) induced by the projectionM×R→

M is an equivalence.
The presheaves satisfying these conditions are stable under product, hence the ∞-category
T inherits the structure of a symmetric monoidal locally presentable ∞-category. It has a
universal property that we now describe.

Given another symmetric monoidal locally presentable ∞-category D, we denote by
FunL,⊗(T,D) the ∞-category of colimit preserving strong symmetric monoidal functors
T→ D. Then, we can consider the composition

FunL,⊗(T,D)→ FunL,⊗(PSh(Man),D)→ Fun⊗(NMan,D)

where the first map is induced by precomposition with the left adjoint to the inclusion T→
PSh(Man) and the second map is induced by precomposition with the Yoneda embedding.
We claim that the above composition is fully faithful and that its essential image is the full
subcategory of Fun⊗(NMan,D) spanned by the functors F that satisfy the following two
properties:

(1) Given a hypercover U• →M of a manifold M , the map

colim∆op F (U•)→ F (M)

is an equivalence.
(2) For any manifold M , the map F (M × R)→ F (M) induced by the projection M ×

R→M is an equivalence.
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This statement can be deduced from the theory of localizations of symmetric monoidal
∞-categories (see [Hin16, Section 3]).

In particular, there exists an essentially unique strong symmetric monoidal and colimit
preserving functor from T to S (the ∞-category of spaces) that is determined by the fact
that it sends a manifold M to the simplicial set Sing(M). This functor is an equivalence of
∞-categories. This is a floklore result. A proof of a model category version of this fact can
be found in [Dug01, Proposition 8.3.].

The ∞-category S is the unit of the symmetric monoidal ∞-category of presentable ∞-
categories. It follows that it has a commutative algebra structure (which corresponds to the
symmetric monoidal structure coming from the cartesian product) and that it is the initial
symmetric monoidal presentable ∞-category. Since T is equivalent to S as a symmetric
monoidal presentable ∞-category, we deduce that, up to equivalence, there is a unique
functor T −→ Ch∗(Q) that is strong symmetric monoidal and colimit preserving. But,
using the universal property of T, we easily see that S∗(−,Q) and D∗(−)Q can be extended
to strong symmetric monoidal and colimits preserving functors from T to Ch∗(Q). It follows
that they must be equivalent. �

6.2. For varieties. In this subsection, we extend the construction of the previous subsection
to the category of varieties.

We have the site (VarC)pro of varieties over C with the proper topology and the site
(SmC)pro which is the restriction of this site to the category of smooth varieties (see [Bla16,
Section 3.5] for the definition of the proper topology).

Proposition 6.6 (Blanc). Let C be a symmetric monoidal presentable ∞-category. We
denote by Fun⊗pro,(VarC,C) the∞-category of strong symmetric monoidal functors from VarC
to C whose underlying functor satisfies descent with respect to proper hypercovers. Similarly,
we denote by Fun⊗pro(SmC,C) the ∞-category of strong symmetric monoidal functors from
SmC to C whose underlying functor satisfies descent with respect to proper hypercovers. The
restriction functor

Fun⊗pro(VarC,C) −→ Fun⊗pro(SmC,C)

is an equivalence.

Proof. We have the categories Fun(Varop
C , sSet) and Fun(Smop

C , sSet) of presheaves of sim-
plicial sets over VarC and SmC respectively. These categories are related by an adjunction

π∗ : Fun(Smop
C , sSet) � Fun(Varop

C , sSet) : π∗

where the right adjoint π∗ is just the restriction of a presheaf to smooth varieties. Both
sides of this adjunction have a symmetric monoidal structure by taking objectwise product.
The functor π∗ is obviously strong symmetric monoidal. We can equip both sides with the
local model structure with respect to the proper topology. We obtain a Quillen adjunction

π∗ : Funpro(Smop
C , sSet) � Funpro(Varop

C , sSet) : π∗

between symmetric monoidal model categories in which the right adjoint is a strong sym-
metric monoidal functor. In [Bla16, Proposition 3.22], it is proved that this is a Quillen
equivalence. The model category Funpro(Smop

C , sSet) presents the∞-topos of hypercomplete
sheaves over the proper site on SmC and similarly for model category Funpro(Varop

C , sSet).
Therefore, this Quillen equivalence implies that these two ∞-topoi are equivalent. More-
over, as in the proof of 6.5, these topoi, seen as symmetric monoidal presentable ∞-
categories under the cartesian product, represent the functor C 7→ Fun⊗pro(SmC,C) (resp.
C 7→ Fun⊗pro(VarC,C)). The result immediately follows. �
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Theorem 6.7. Up to weak equivalences, there is a unique strong symmetric monoidal func-
tor

D∗ : N(VarC) −→MHCQ

which satisfies descent with respect to proper hypercovers and whose restriction to SmC is
equivalent to the functor D∗ constructed in the previous subsection.

There is also a unique strong symmetric monoidal functor

D∗ : N(VarC)op −→MHCQ

which satisfies descent with respect to proper hypercovers and whose restriction to SmC is
equivalent to the functor D∗ constructed in the previous subsection.

Proof. Let Ind(MHCQ) be the Ind-category of the ∞-category of mixed Hodge complexes.
This is a stable presentable ∞-category. We first prove that the composite

D∗ : N(SmC) −→MHCQ −→ Ind(MHCQ)

satisfies descent with respect to proper hypercovers. Let Y be a smooth variety and X• → Y
be a hypercover for the proper topology. We wish to prove that the map

α : colim∆op D∗(X•) −→ D∗(Y )

is an equivalence in Ind(MHCQ). By [Bla16, Proposition 3.24] and the fact that taking
singular chains commutes with homotopy colimits in spaces, we see that the map

β : colim∆op S∗(X•,Q) −→ S∗(Y,Q)

is an equivalence. On the other hand, writing Ch∗(Q)ω for the ∞-category of chain com-
plexes whose homology is finite dimensional, the forgetful functor

U : Ind(MHCQ) −→ Ind(Ch∗(Q)ω) ' Ch∗(Q)

preserves colimits and by Theorem 6.5, the composite U◦D∗ is weakly equivalent to S∗(−,Q).
Therefore, the map β is weakly equivalent to the map U(α) in particular, we deduce that the
source of α is in MHCQ (as opposed to Ind(MHCQ)). And since the functor U : MHCQ →
Ch∗(C) is conservative, it follows that α is an equivalence as desired.

Hence, by Proposition 6.6, there is a unique extension of D∗ to a strong symmetric
monoidal functor N(VarC) −→ Ind(MHCQ) that has proper descent. Moreover, by the
first paragraph of this proof, if Y is an object of VarC and X• −→ Y is a proper hypercover
by smooth varieties, then colim∆op D∗(X•,Q) has finitely generated homology. It follows
that this unique extension of D∗ to VarC lands in MHCQ ⊂ Ind(MHCQ).

For the case of D∗, we know from Proposition 6.3 that dualization induces a strong
symmetric monoidal equivalence of ∞-categories MHCop

Q ' MHCQ (we emphasize that,
as a functor, dualization is only lax symmetric monoidal but as an ∞-functor it is strong
symmetric monoidal). Thus, we see that we have no other choice but to define D∗ as the
composite

N(Var)op (D∗)
op

−−−−→MHCop
Q

(−)∨−−−→MHCQ

and this will be the unique strong symmetric monoidal functor

D∗ : N(VarC)op −→MHCQ

which satisfies descent with respect to proper hypercovers and whose restriction to SmC is
equivalent to the functor D∗ constructed in the previous subsection. �

Proposition 6.8. (1) There is a weak equivalence D∗(−)Q ' S∗(−,Q) in the category
of strong symmetric monoidal ∞-functors N(VarC) −→ Ch∗(Q).
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(2) There is a weak equivalence A∗PL(−) ' D∗(−)Q ' S∗(−,Q) in the ∞-category of
strong symmetric monoidal ∞-functors N(VarC)op −→ Ch∗(Q).

Proof. We prove the first claim. By construction D∗(−)Q is a symmetric monoidal functor
that satisfies proper descent. By [Bla16, Proposition 3.24], the same is true for S∗(−,Q).
Since these two functors are moreover weakly equivalent when restricted to SmC, they are
equivalent by Proposition 6.6.

The linear dual functor is strong symmetric monoidal when restricted to chain complexes
whose homology is of finite type. Moreover, both S∗(−,Q) and D∗(−)Q land in the ∞-
category of such chain complexes. Therefore, the equivalence S∗(−,Q) ' D∗(−)Q follows
from the first part. The equivalence A∗PL(−) ' S∗(−,Q) is classical. �

7. Formality of the singular chains functor

In this section, we prove the main results of the paper on the formality of the singular
chains functor. We also explain some applications to operad formality.

Definition 7.1. Let X be a complex variety and let α be a rational number. We say that
the weight filtration on H∗(X,Q) is α-pure if for all n ≥ 0 we have

GrWp H
n(X,Q) = 0 for all p 6= αn.

Remark 7.2. Note that since the weight filtration on Hn(−,Q) has weights in the interval
[0, 2n] ∩ Z, the above definition makes sense only for α ∈ [0, 2] ∩ Q. For α = 1 we recover
the purity property shared by the cohomology of smooth projective varieties. A very simple
example of a variety whose filtration is α-pure, with α not integer, is given by C2 \ {0}.
Its reduced cohomology is concentrated in degree 3 and weight 4, so its weight filtration is
4/3-pure. We refer to Proposition 8.6 in the following section for more elaborate examples.

Here is our main theorem.

Theorem 7.3. Let α be a non-zero rational number. The singular chains functor

S∗(−,Q) : VarC −→ Ch∗(Q)

is formal as a lax symmetric monoidal functor when restricted to varieties whose weight
filtration in cohomology is α-pure.

Proof. By Corollary 2.4, it suffices to prove that this functor is formal as an∞-lax symmetric
monoidal functor. By Proposition 6.8, it is equivalent to prove that D∗(−)Q is formal.
We denote by D̄∗ the composite of D∗ with a strong symmetric monoidal inverse of the
equivalence of Theorem 5.4. Because of that theorem, D∗(−)Q is weakly equivalent to
ΠQ ◦D̄∗. The restriction of D̄∗ to Varα-pure

C lands in Ch∗(MHSQ)α-pure, the full subcategory
of Ch∗(MHSQ) spanned by chain complexes whose homology is α-pure. By Corollary 4.6,
the∞-functor ΠQ from Ch∗(MHSQ)α-pure to Ch∗(Q) is formal and hence so is ΠQ ◦D̄∗. �

We now list a few applications of this result.

7.1. Noncommutative little disks operad. The authors of [DSV15] introduce two non-
symmetric topological operads AsS1 and AsS1 o S1. In each arity, these operads are given
by a product of copies of C−{0} and the operad maps can be checked to be algebraic maps.
It follows that the operads AsS1 and AsS1 o S1 are operads in the category SmC and that
the weight filtration on their cohomology is 2-pure. Therefore, by 7.3 we have the following
result.

Theorem 7.4. The operads S∗(AsS1 ,Q) and S∗(AsS1 o S1,Q) are formal.
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Remark 7.5. The fact that the operad S∗(AsS1 ,Q) is formal is proved in [DSV15, Propo-
sition 7] by a more elementary method and it is true even with integral coefficients. The
other formality result was however unknown to the authors of [DSV15].

7.2. Self-maps of the projective line. We denote by Fd the algebraic variety of degree
d algebraic maps from P1

C to itself that send the point ∞ to the point 1. Explicitly, a point
in Fd is a pair (f, g) of degree d monic polynomials without any common roots. Sending
a monic polynomial to its set of coefficients, we may see the variety Fd as a Zariski open
subset of A2d

C . See [Hor16, Section 5] for more details.

Proposition 7.6. The weight filtration on H∗(Fd,Q) is 2-pure.

Proof. The variety Fd is denoted Polyd,21 in [FW16, Definition 1.1.]. It is explained in
Step 4 of the proof of Theorem 1.2 in that paper, that the variety Fd is the quotient of
the complement of a hyperplane arrangement H in A2d

C by the group Σd × Σd acting by
permuting the coordinates. The quotient map

π : A2d
C −H → Fd

is algebraic and thus induces a morphism of mixed Hodge structures π∗ : H∗(Fd,Q) →
H∗(A2d

C − H,Q). Moreover, it is classical that π∗ is injective (see e.g. [Bre72, Theorem
III.2.4]). Since the mixed Hodge structure of Hk(A2d

C − H,Q) is pure of weight 2k (by
Proposition 8.6 or by [Kim94]), the desired result follows. �

In [Caz12, Proposition 3.1.], Cazanave shows that the variety
⊔
d Fd has the structure of

a graded monoid in SmC. The structure of a graded monoid can be encoded by a colored
operad. Thus the following result follows from Theorem 7.3.

Theorem 7.7. The graded monoid in chain complexes
⊕

d S∗(Fd,Q) is formal.

7.3. The little disks operad. In [Pet14], Petersen shows that the operad of little disks D is
formal. The method of proof is to use the action of a certain group GT(Q) on S∗(PABQ,Q)
which follows from work of Drinfeld. Here the operad PABQ is rationally equivalent to D
and GT(Q) is the group of Q-points of the pro-algebraic Grothendieck-Teichmüller group.
We can reinterpret this proof using the language of mixed Hodge structures. Indeed, the
group GT receives a map from the group Gal(MT(Z)), the Galois group of the Tannakian
category of mixed Tate motives over Z (see [And04, 25.9.2.2]). Moreover there is a map
Gal(MHTSQ) → Gal(MT(Z)) from the Tannakian Galois group of the abelian category of
mixed Hodge Tate structures (the full subcategory of MHSQ generated under extensions by
the Tate twists Q(n) for all n) which is Tannaka dual to the tensor functor

MT(Z) −→ MHTSQ

sending a mixed Tate motive to its Hodge realization. This map of Galois group allows
us to view S∗(PABQ,Q) as an operad in Ch∗(MHSQ) which moreover has a 2-pure weight
filtration (as follows from the computation in [Pet14]). Therefore by Corollary 4.6, the
operad S∗(PABQ,Q) is formal and hence also S∗(D,Q).

7.4. The gravity operad. In [DH18], Dupont and the second author prove the formality
of the gravity operad of Getzler. It is an operad structure on the collection of graded
vector spaces {H∗−1(M0,n+1), n ∈ N}. It can be defined as the homotopy fixed points of
the circle action on S∗(D,Q). The method of proof in [DH18] can also be interpreted in
terms of mixed Hodge structures. Indeed, a model GravW ′ of gravity is constructed in 2.7
of loc. cit. This model comes with an action of GT(Q) and a GT(Q)-equivariant map
ι : GravW ′ −→ S∗(PABQ,Q) which is injective on homology. As in the previous subsection,
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this action of GT(Q) allows us to interpret GravW ′ as an operad in Ch∗(MHSQ). Moreover,
the injectivity of ι implies that GravW ′ also has a 2-pure weight filtration. Therefore by
Corollary 4.6, we deduce the formality of GravW ′ . In fact, we obtain the stronger result
that the map

ι : GravW
′
−→ S∗(PABQ,Q)

is formal as a map of operads (i.e. it is connected to the induced map in homology by a
zig-zag of maps of operads).

7.5. E1-formality. The above results deal with objects whose weight filtration is pure. In
general, for mixed weights, the singular chains functor is not formal, but it is E1-formal as
we now explain.

The r-stage of the spectral sequence associated to a filtered complex is an r-bigraded
complex with differential of bidegree (−r, r− 1). By taking its total degree and considering
the column filtration we obtain a filtered complex. Denote by

Er : Ch∗(FQ) −→ Ch∗(FQ)

the resulting strong symmetric monoidal ∞-functor. Denote by

Π̃W
Q : MHCQ −→ Ch∗(FQ)

the forgetful functor defined by sending a mixed Hodge complex to its rational component
together with the weight filtration. Note that, since the weight spectral sequence of a mixed
Hodge complex degenerates at the second stage, the homology of E1 ◦ Π̃W

Q gives the weight
filtration on the homology of mixed Hodge complexes. We have:

Theorem 7.8. Denote by Sfil∗ : N(VarC) −→ Ch∗(Q) the composite functor

N(VarC)
D∗−−→MHCQ

Π̃W
Q−−→ Ch∗(FQ).

There is an equivalence of strong symmetric monoidal ∞-functors E1 ◦ Sfil∗ ' Sfil∗ .

Proof. It suffices to prove an equivalence Π̃W
Q ' E1 ◦ Π̃W

Q . We have a commutative diagram
of strong symmetric monoidal ∞-functors.

Ch∗(MHSQ)

ΠW
Q
��

T //MHCQ

Π̃W
Q
��

Ch∗(FQ)
T //

E0

��

Ch∗(FQ)

E1

��
Ch∗(FQ)

T // Ch∗(grQ)

The commutativity of the top square follows from the definition of T . We prove that the
bottom square commutes. Recall that T (K,W ) is the filtered complex (K,TW ) defined by
TW pKn := W p+nKn. It satisfies d(TW pKp) ⊂ TW p+1Kn−1. In particular, the induced
differential on GrTWK is trivial. Therefore we have:

E1
−p,q(K,TW ) ∼= Hq−p(Gr

p
TWK) ∼= GrpTWKq−p = GrqWKq−p = E0

−q,2q−p(K,W ).

This proves that the above diagram commutes.
Since T is an equivalence of ∞-categories, it is enough to prove that E1 ◦ Π̃W

Q ◦ T is
equivalent to Π̃W

Q ◦T . By the commutation of the above diagram it suffices to prove that there
is an equivalence E0 ◦ΠW

Q
∼= ΠW

Q . This follows from Lemma 4.4, since E0 = Ufil ◦ gr. �
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8. Rational homotopy of varieties and formality

For X a space, we denote by A∗PL(X), Sullivan’s algebra of piecewise linear differential
forms. This is a commutative dg-algebra over Q that captures the rational homotopy type
of X. A contravariant version of Theorem 7.3 gives:

Theorem 8.1. Let α be a non-zero rational number. The functor

A∗PL : Varop
C −→ Ch∗(Q)

is formal as a lax symmetric monoidal functor when restricted to varieties whose weight
filtration in cohomology is α-pure.

Proof. The proof is the same as the proof of Theorem 7.3 using D∗ instead of D∗ and using
the fact that D∗(−)Q is quasi-isomorphic to A∗PL as a lax symmetric monoidal functor (see
[NA87, Théorème 5.5]). �

Recall that a topological space X is said to be formal if there is a string of quasi-
isomorphisms of commutative dg-algebras from A∗PL(X) to H∗(X,Q), where H∗(X,Q) is
considered as a commutative dg-algebra with trivial differential. Likewise, a continuous map
of topological spaces f : X −→ Y is formal if there is a string of homotopy commutative
diagrams of morphisms

A∗PL(Y )

f∗

��

∗oo

��

· · ·oo // ∗

��

// H∗(Y,Q)

H∗(f)

��
A∗PL(X) ∗oo · · ·oo // ∗ // H∗(X,Q)

where the horizontal arrows are quasi-isomorphisms. Note that if f : X → Y is a map of
topological spaces and X and Y are both formal spaces, then it is not always true that f is
a formal map. Also, in general, the composition of formal morphisms is not formal.

Theorem 8.1 gives functorial formality for varieties with pure weight filtration in coho-
mology, generalizing both “purity implies formality” statements appearing in [Dup16] for
smooth varieties and in [CC17] for singular projective varieties. We also get a result of
partial formality as done in these references, via Proposition 2.11. Our generalization is
threefold, as explained in the following three subsections.

8.1. Rational purity. To our knowledge, in the existing references where α-purity of the
weight filtration is discussed, only the cases α = 1 and α = 2 are considered, whereas we
obtain formality for varieties with α-pure cohomology, for α an arbitrary non-zero rational
number. We now show that certain complement of subspaces arrangements give examples
of such varieties.

Definition 8.2. Let V be a finite dimensional C-vector space. We say that a finite set
{Hi}i∈I of subspaces of V is a good arrangement of codimension d subspaces if

(i) For each i ∈ I, the subspace Hi is of codimension d.

(ii) For each i ∈ I, the set of subspaces {Hi ∩Hj}j 6=i of Hi form a good arrangement of
codimension d subspaces.

Remark 8.3. In particular the empty set of subspaces is a good arrangement of codimension
d subspaces. By induction on the size of I, we see that this condition is well-defined.

Example 8.4. Recall that a set of subspaces of codimension d of an n-dimensional space
is said to be in general position if the intersection of k of those subspaces is of codimension
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min(n, dk). One easily checks that a set of codimensions d subspaces in general position is a
good arrangement. However, the converse does not hold as shown in the following example.

Example 8.5. Take V = (Cd)m and define, for (i, j) an unordered pair of distinct elements
in {1, . . . ,m}, the subspace

W(i,j) = {(x1, . . . , xn) ∈ (Cd)m, xi = xj}.

This collection of codimension d subspaces of V is a good arrangement. However, these
subspaces are not in general position if m is at least 3. Indeed, the codimension of W(1,2) ∩
W(1,3) ∩ W(2,3) is 2d. The complement V −

⋃
(i,j)W(i,j) is exactly Fm(Cd), the space of

configurations of m points in Cd.

Proposition 8.6. Let H = {H1, . . . ,Hk} be a good arrangement of codimension d subspaces
of Cn. Then the mixed Hodge structure on H∗(Cn−∪iHi,Q) is pure of weight 2d/(2d− 1).

Proof. We proceed by induction on k. This is obvious for k = 0. Now, we consider the
variety X = Cn − ∪k−1

i Hi, It contains an open subvariety U = Cn − ∪kiHi and its closed
complement Z = Hk − ∪k−1

i Hi ∩ Hk which has codimension d. Therefore the purity long
exact sequence on cohomology groups has the form

. . . −→ Hr−2d(Z)(−d) −→ Hr(X) −→ Hr(U) −→ Hr+1−2d(Z)(−d) −→ . . .

By the induction hypothesis, the Hodge structure on Hr+1−2d(Z)(−d) and on Hr(X) are
pure of weight 2dr/(2d− 1) and hence it is also the case for Hr(U) as desired. �

Remark 8.7. This proposition is well-known for d = 1 and is proved for instance in [Kim94].
Note that the space Fm(Cd) of configurations of m points in Cd fits in the above proposition,
so we recover formality of these spaces by purely Hodge theory arguments.

8.2. Functoriality. Every morphism of smooth complex projective varieties is formal. How-
ever, if f : X → Y is an algebraic morphism of complex varieties (possibly singular and/or
non-projective), and both X and Y are formal, the morphism f need not be formal.

Example 8.8. Consider the algebraic Hopf fibration f : C2 \ {0} −→ P1
C defined by

(x0, x1) 7→ [x0 : x1]. Both spaces C2 \ {0} ' S3 and P1
C ' S2 are formal. The morphism

induced by f in cohomology is trivial in all positive degrees. Therefore, if f were formal,
this would mean that f is nullhomotopic. However, it is well-known that f generates the
one dimensional vector space π3(S2)⊗Q. Note in fact, that P1

C has 1-pure weight filtration
while C2 \ {0} has 4/3-pure weight filtration.

Theorem 8.1 tells us that if f : X −→ Y is a morphism of algebraic varieties and both X
and Y have α-pure cohomology, with α a non-zero rational number (the same α for X and
Y ), then f is a formal morphism. This generalizes the formality of holomorphic morphisms
between compact Kähler manifolds of [DGMS75] and enhances the results of [Dup16] and
[CC17] by providing them with functoriality. In fact, we have:

Proposition 8.9. Let f : X −→ Y be a morphism between connected complex varieties.
Assume that the weight filtration on the cohomology of X (resp. Y ) is α-pure (resp. β-pure).
Then:

(1) If α = β, then f is formal.

(2) If α 6= β, then f is formal only if it is rationally nullhomotopic.
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Proof. Let us first give the precise definition that we will use of a rationally nullhomotopic
map. We say that a map g : U −→ V between topological spaces is rationally nullhomotopic
if the induced map

APL(g) : A∗PL(V ) −→ A∗PL(U)

is equal in the homotopy category of cdga’s to a map that factors through the initial cdga
Q.

When α = β, Theorem 8.1 ensures that f is formal.
If α 6= β, then we claim that H∗(f) is zero in positive degree. Indeed, since H∗(f) is

strictly compatible with the weight filtration, it suffices to show that the morphism

GrWp H
n(Y,Q) −→ GrWp H

n(X,Q)

is trivial for all p ∈ Z and all n > 0 which follows from the purity conditions. Therefore, if
f is formal, the map A∗PL(f) coincides with H∗(f) in the homotopy category of cdga’s and
the latter map factors through Q. �

8.3. Non-projective singular varieties. The following result of formality of non-projective
singular complex varieties with pure Hodge structure seems to be a new result.

Example 8.10. Let X be an irreducible singular projective variety of dimension n > 0
with 1-pure weight filtration in cohomology. Let p ∈ X be a smooth point of X. Then, we
claim that the complement X − p has 1-pure weight filtration in cohomology. Indeed, we
can consider the long exact sequence of cohomology groups for the pair (X,X − p).

· · · → Hi−1(X − p)→ Hi(X,X − p)→ Hi(X)→ Hi(X − p)→ Hi+1(X,X − p)→ · · ·
Since p is a smooth point, there exists a neighborhood U of p that is homeomorphic to R2n,
therefore excision gives us an isomorphism

Hk(X,X − p) ∼= Hk(U,U − p)
Since Hk(U,U − p) is non-zero only when k = 2n, we deduce that the map Hk(X) →
Hk(X − p) is an isomorphism for all k < 2n− 1. Moreover, since X is irreducible, we have
H2n(X) = Q and this vector space has a generator, the fundamental class, which is in the
image of H2n(X,X − q)→ H2n(X) for any smooth point q. Together with the above long
exact sequence, this implies that H2n−1(X − p) ∼= H2n−1(X) and H2n(X − p) = 0. To
summarize, we have proved that the inclusion X − p → X induces an isomorphism on all
cohomology groups except on the top one where H2n(X) = Q while H2n(X − p) = 0. This
proves that the weight filtration of X − p is 1-pure. As a consequence, the space X − p is
formal and the inclusion X − p ↪→ X is formal.

8.4. E1-formality. We also have a contravariant version of Theorem 7.8.

Theorem 8.11. Denote by A∗fil : N(VarC)op −→ Ch∗(FQ) the composite functor

N(VarC)op D∗−−→MHCQ
Π̃W

Q−−→ Ch∗(FQ).

Then

(1) The lax symmetric monoidal ∞-functors A∗fil and E1 ◦ A∗fil are weakly equivalent.

(2) Let U : Ch∗(FQ) −→ Ch∗(Q) denote the forgetful functor. The lax symmetric
monoidal ∞-functor U ◦ E1 ◦ A∗fil : N(VarC)op → Ch∗(Q) is weakly equivalent to
Sullivan’s functor A∗PL of piecewise linear forms.

(3) The lax symmetric monoidal functor U ◦ E1 ◦ A∗fil : Smop
C → Ch∗(Q) is weakly

equivalent to Sullivan’s functor A∗PL of piecewise linear forms.
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Proof. The first part is proven as Theorem 7.8 replacing D∗ by D∗. The second part
follows from the first part and the fact that A∗PL(−) is naturally weakly equivalent to
D∗(−)Q ' U ◦ A∗fil (Proposition 6.8). The third part follows from the second part and
Theorem 2.3, using the fact that both functors are ordinary lax symmetric monoidal functors
when restricted to smooth varieties. �

Remark 8.12. In [Mor78] it is proven that the complex homotopy type of every smooth
complex variety is E1-formal. This is extended to possibly singular varieties and their mor-
phisms in [CG14]. Then, a descent argument is used to prove that for nilpotent spaces (with
finite type minimal models), this result descends to the rational homotopy type. Theorem
8.11 enhances the contents of [CG14] in two ways: first, since descent is done at the level
of functors, we obtain E1-formality over Q for any complex variety, without nilpotency con-
ditions (the only property needed is finite type cohomology). Second, the functorial nature
of our statement makes E1-formality at the rational level, compatible with composition of
morphisms.

8.5. Formality of Hopf cooperads. Our main theorem takes two dual forms, one covari-
ant and one contravariant. The covariant theorem yields formality for algebraic structures
(like monoids, operads, etc.), the contravariant theorem yields formality for coalgebraic
structure (like the comonoid structure coming from the diagonal X → X ×X for any vari-
ety X). One might wonder if there is a way to do both at the same time. For example, if M
is a topological monoid, then H∗(M,Q) is a Hopf algebra where the multiplication comes
from the diagonal of M and the comultiplication comes from the multiplication of M . One
may ask whether S∗(M,Q) is formal as a Hopf algebra. This question is not well-posed
because S∗(M,Q) is not a Hopf algebra on the nose. The problem is that there does not
seem to exist a model for singular chains or cochains that is strong symmetric monoidal: the
standard singular chain functor S∗(−,Q) is lax symmetric monoidal and Sullivan’s functor
A∗PL is oplax symmetric monoidal functor from Top to Ch∗(Q)op.

Nevertheless, the functor A∗PL is strong symmetric monoidal “up to homotopy”. It follows
that, if M is a topological monoid, A∗PL(M) has the structure of a cdga with a comultipli-
cation up to homotopy and it makes sense to ask if it has formality as such an object. In
order to formulate this more precisely, we introduce the notion of an algebraic theory. The
following is inspired by Section 3 of [LV14].

Definition 8.13. An algebraic theory is a small category T with finite products. For C a
category with finite products, a T -algebra in C is a finite product preserving functor T −→ C.

There exist algebraic theories for which the T -algebras are monoids, groups, rings, oper-
ads, cyclic operads, modular operads etc.

Remark 8.14. Definitions of algebraic theories in the literature are usually more restrictive.
This definition will be sufficient for our purposes.

Definition 8.15. Let T be an algebraic theory. Let k be a field. Then a dg Hopf T -
coalgebra over k is a finite coproduct preserving functor from T op to the category of cdga’s
over k.

Remark 8.16. Recall that the coproduct in the category of cdga’s is the tensor product.
It follows that a dg Hopf T -coalgebra for T the algebraic theory of monoids is a dg Hopf
algebra whose multiplication is commutative. A dg Hopf T -coalgebra for T the theory of
operads is what is usually called a dg Hopf cooperad in the literature.

Definition 8.17. Let T be an algebraic theory and C a category with products and with a
notion of weak equivalences. A weak T -algebra in C is a functor F : T −→ C such that for
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each pair (s, t) of objects of T , the canonical map

F (t× s) −→ F (t)× F (s)

is a weak equivalence. A weak T -algebra in the opposite category of CDGAk is called a
weak dg Hopf T -coalgebra.

Observe that if X : T −→ Top is a T -algebra in topological spaces (or even a weak
T -algebra), then A∗PL(X) is a weak dg Hopf T -coalgebra. Our main theorem for Hopf
T -coalgebras is the following.

Theorem 8.18. Let α be a rational number different from zero. Let X : T −→ VarC be a
T -algebra such that for all t ∈ T , the weight filtration on the cohomology of X(t) is α-pure.
Then A∗PL(X) is formal as a weak dg Hopf T -coalgebra.

Proof. Being a weak T -coalgebra is a property of a functor T op → CDGAk that is invariant
under quasi-isomorphism. Thus the result follows immediately from Theorem 8.1. �

It should be noted that knowing that A∗PL(X) is formal as a dg Hopf T -coalgebra im-
plies that the data of H∗(X,Q) is enough to reconstruct X as a T -algebra up to rational
equivalence. Indeed, recall the Sullivan spatial realization functor

〈−〉 : CDGAk −→ Top

Applying this functor to a weak dg Hopf T -coalgebra yields a weak T -algebra in rational
spaces. Specializing to A∗PL(X) where X is a T -algebra in spaces, we get a rational model
for X in the sense that the map

X −→ 〈A∗PL(X)〉
is a rational weak equivalence of weak T -algebras whose target is objectwise rational. It
should also be noted that for reasonable algebraic theories T (including in particular the
theory for monoids, commutative monoids, operads, cyclic operads), the homotopy theory
of T -algebras in spaces is equivalent to that of weak T -algebras by the main theorem of
[Ber06]. In particular our weak T -algebra 〈A∗PL(X)〉 can be strictified to a strict T -algebra
that models the rationalization of X. If A∗PL(X) is formal, one also get a rational model for
X by applying the spatial realization to the strict Hopf T -coalgebra H∗(X,Q). Thus the
rational homotopy type of X as a T -algebra is a formal consequence of H∗(X,Q) as a Hopf
T -coalgebra.

Example 8.19. Applying this theorem to the non-commutative little disks operad and
framed little disks operad of subsection 7.1, we deduce that A∗PL(AsS1) and A∗PL(AsS1oS1)
are formal as a weak Hopf non-symmetric cooperads. Similarly applying this to the monoid
of self maps of the projective line of subsection 7.2, we deduce that A∗PL(

⊔
d Fd) is formal

as a weak Hopf graded comonoid.
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