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N E U R O S C I E N C E

Ultrasound modulation of macaque prefrontal  
cortex selectively alters credit assignment–related 
activity and behavior
Davide Folloni1*†, Elsa Fouragnan1,2*†, Marco K. Wittmann1, Lea Roumazeilles1, 
Lev Tankelevitch1, Lennart Verhagen1,3, David Attali4,5,6, Jean-François Aubry4,  
Jerome Sallet1,7†, Matthew F. S. Rushworth1†

Credit assignment is the association of specific instances of reward to the specific events, such as a particular 
choice, that caused them. Without credit assignment, choice values reflect an approximate estimate of how good 
the environment was when the choice was made—the global reward state—rather than exactly which outcome 
the choice caused. Combined transcranial ultrasound stimulation (TUS) and functional magnetic resonance imaging 
in macaques demonstrate credit assignment–related activity in prefrontal area 47/12o, and when this signal was 
disrupted with TUS, choice value representations across the brain were impaired. As a consequence, behavior was 
no longer guided by choice value, and decision-making was poorer. By contrast, global reward state–related 
activity in the adjacent anterior insula remained intact and determined decision-making after prefrontal disruption.

INTRODUCTION
In order for behavior to be adaptive, a decision-maker needs to 
know how good each of its options really is (1). While it is important 
to track how good the environment is in a general sense, it is also 
essential to know whether the beneficial consequences, such as food 
rewards that followed a choice, were just a feature of the current 
environment or whether they were actually caused by the choice. 
We refer to the process of assigning a particular occurrence of a re-
ward outcome to a particular choice as credit assignment. Here, we 
examine the neural circuits encoding different features of rewards 
including (i) the specific relationships between choices and outcomes 
essential for credit assignment; (ii) the choice value representations 
that result from credit assignment; and (iii) the general value of the 
environment regardless of the specific choice taken, a feature of 
reward that we refer to as the global reward state (GRS). A recent 
computational model proposed by Wittmann and colleagues (2) 
decomposes the influence of past experience on the next choice taken 
into a component due to cause-and-effect learning guided by credit 
assignment and a component due to GRS. By combining this ap-
proach with a novel combination of noninvasive transcranial ultra-
sound stimulation (TUS) (3–5) and functional magnetic resonance 
imaging (fMRI) in four macaques performing a behavioral task 
(Fig. 1, A and B), we recorded activity across the brain during normal 
credit assignment and when activity in a brain circuit supporting 
credit assignment was disrupted by TUS.

We focused on the three different reward-related brain signals 
described above (Fig. 1, C to E): (i) the credit assignment process 
itself, (ii) the choice value representations that result from credit 
assignment and that guide decision-making, and (iii) GRS. Credit 
assignment and the resulting choice value representations were 
associated with activity in two brain areas—prefrontal cortical area 
47/12o, at the border between orbital and ventral prefrontal cortex 
and anterior cingulate/medial frontal cortex, respectively, while GRS 
estimates were linked to anterior insula (IA) activity. Application of 
TUS to 47/12o not only disrupted credit assignment–related activity 
in 47/12o and adjacent cortex but also disrupted the representation 
of choice value estimates that result from credit assignment in dis-
tant areas, such as anterior cingulate/medial frontal cortex. By contrast, 
however, the GRS signals, which do not depend on credit assignment, 
remained in IA despite the spatial proximity of IA to the stimulated 
47/12o region. Moreover, after 47/12o TUS, it was this remaining 
GRS signal that now guided behavior.

RESULTS
Four macaques learned to choose between two objects presented on 
a computer by pressing an adjacent touch sensor (Fig. 1, A and B). 
On each trial, the two objects were drawn from a set of three used 
during each day’s testing. Each object had a different drifting prob-
abilistic association with reward (Fig. 1B), which was uncorrelated 
with that of the other objects (<22% mean shared variance). When 
credit assignment is operating normally, each macaque’s evaluation 
of a choice should reflect the history of reward experienced in con-
junction with that choice; reward experienced after taking a choice 
should determine that choice’s value and therefore whether it is chosen 
in subsequent decisions. We used a series of analyses and reinforce-
ment learning models to test whether this was the case.

We examined win-stay/lose-shift behavior in no-TUS condi-
tion (sham control condition) and after TUS (Fig. 1E). TUS was 
applied using procedures similar to those previously shown to af-
fect either neural activity or behavior (3, 4, 6–10). In one condition, 
our main condition of interest, TUS was focused on 47/12o, a region 
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previously linked to win-stay/lose-shift behavior (11), situated close 
to the posterior lateral orbitofrontal sulcus and adjacent to IA. The 
region’s functional connectivity suggests correspondence with a 
human brain region, often referred to as lateral orbitofrontal cortex 
(lOFC) but probably comprising the same 47/12o region, linked to 
choice-outcome learning (12–15). Modeling suggested that ultra-
sound was distributed in an approximately cigar-shaped cylinder 
where the peak intensity was in 47/12o. The maximum spatial-peak 
pulse-averaged intensity (ISPPA) at the acoustic focus point was ap-
proximately 35–40 W/cm2 in the left and in the right area 47/12o 
(Fig. 2 and fig. S1). In addition, in another active control condition, 
we examined the impact of TUS to an anterior prefrontal cortex 
(aPFC) area that has not previously linked to credit assignment.

It has been argued that it is the acoustic radiation force of the 
propagating TUS wave that affects neurons (16). This stretches the 

cell membrane so that ion channels are transiently opened (17). 
While active discussion about the mechanism through which TUS 
exerts its effects continues, what is clear is that it has a relatively 
circumscribed effect on neural activity but can operate at a distance 
from the transducer and so it can be used to stimulate deep cortex 
and subcortical brain areas in a relatively selective manner. TUS has 
been applied to aPFC, anterior cingulate cortex (ACC), supplemen-
tary motor area, basal forebrain, and amygdala, while whole-brain 
measurements of neural activity were obtained with fMRI. The 
whole-brain connectome (a measure of the patterns of correlation 
between each voxel in the brain and everywhere else in the brain) 
has been estimated and compared with and without TUS. The pat-
tern of interaction between the stimulated region and the rest of brain 
changes, but patterns of connections between most other brain re-
gions remain unchanged (6–9). It has also been shown that when 

Fig. 1. Experimental design. (A) Four macaques learned to choose one of the two options represented by visual stimuli presented on a computer monitor by pressing 
an adjacent touch sensor while in the MRI scanner. The two options presented on each trial were drawn from a larger set of three options. Macaques learned about new 
stimulus sets in each daily testing session. (B) Each option, if chosen, had a probabilistic association with juice reward delivery that drifted over time during the course of 
the experiment. The reward histories for the three options were uncorrelated with one another (<22% mean shared variance), making it possible to identify neural activ-
ity that was correlated with the value of each one of the three options. (C) We examined the neural circuits encoding different features of rewards. This includes the 
specific relationships between choices and outcomes essential for credit assignment and (D) the general value of the environment regardless of the specific choice taken, 
a feature of reward that we refer to as the GRS. (E) To test our hypotheses, we also investigated the choice value representations that result from credit assignment and 
the decision to stay or switch on future trials. (F) We used three experimental TUS settings: Sham, where no stimulation was applied; (G) TUS targeting a region in area 
47/12o, hypothesized to disrupt both credit assignment and value representations that depend on credit assignment; and an active control condition (H) in which TUS 
was applied to anterior prefrontal cortex (aPFC), hypothesized to cause no disruption in credit assignment and value representation. Blue, red, and green color codes 
indicate results relating to sham, 47/12o, and aPFC conditions, respectively, in the subsequent figures.
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it is applied to a brain region, then specific behavioral processes are 
disrupted (3, 4, 7, 9, 18). The effects are transient, but with some 
stimulation protocols, they outlast the stimulation period and last 
for somewhere between half an hour and a day. They occur in the 
absence of evidence of permanent tissue damage (8, 19). In the cur-
rent study, we applied a short TUS train for 40 s and, within 10 or 
15 min, begun measuring its impact on neural activity and behavior 
over a subsequent period of several tens of minutes, while macaques 
performed a task (Fig. 1). Similar TUS protocols have previously been 
shown to affect either neural activity or behavior (3, 4, 6–10). Unlike 
in previous studies, which focused either on recording neural activity 
or behavioral effects in the absence of neural recordings, here, we 
recorded TUS’s effect on behavior and neural activity throughout the 
whole brain with fMRI. In this way, we sought to manipulate neural 
activity, measure the effects of this manipulation in a specific pri-
mate brain circuit, and record the impact of this manipulation on 
behavior.

Win-stay/lose-shift (WSLS) behavior provides a direct index of 
credit assignment that is independent of any particular computa-
tional modeling approach because it examines whether a choice’s out-
come on one occasion influences whether the choice will be taken on 
the next occasion that it is available (11, 20, 21). If a monkey wins a 
reward for taking a choice, then it should be more likely to repeat 
that choice on the next occasion that it is available (even if this may 
only be several trials later in the current paradigm because only two of 
the three possible options are offered on each trial). By contrast, if the 
macaque loses, then it should be more likely to shift away to take 
the alternative choice (20). Both win-stay and lose-shift are adaptive 
strategies indicative of credit assignment. By contrast, the other 
possible behavioral strategies, win-shift and lose-stay, are maladaptive 
ones. Simple win-stay/lose-shift strategies are especially adaptive in 
deterministic tasks, in which one choice is always rewarded and the 
other option is never rewarded. Reward is, however, probabilistically 
associated with choice in the current experiment so, rather than just 
a simple win-stay/lose-shift strategy that relates the last outcome to 
the next choice, each outcome should have some impact not only on 

the next choice taken but also on choices even in later trials. That is, 
each choice should be influenced by outcomes not only on the pre-
vious trial but also across several previous trials. We therefore con-
sidered the influence that outcome for a choice had on the next 
occasion (t-1), the subsequent occasion (t-2), and the occasion after 
that (t-3) on which the same choice was presented. Because only 
two of the three options were presented on each trial, a choice might 
not be available over several consecutive trials, and so, this analysis 
approach meant that we frequently examined the impact each out-
come had for more than three trials in the future. We considered the 
combined impact that winning had on staying and losing had on 
switching (Fig. 3B, left), the impact wins had on staying (Fig. 3B, 
center), and the impact losses had on switching (Fig. 3B, right). In 
each case, we used a logistic regression approach so that the impacts 
of outcomes on subsequent behavior are reported as regression co-
efficients rather than simply as frequencies of win-stay/lose-shift, win-
stay, or lose-shift (Fig. 3B).

Analyses were conducted with a linear mixed-effects model that 
included condition (either sham versus 47/12o TUS or sham versus 
aPFC TUS) and trial history (looking at the impact that outcomes 
on the current trial had for behavior one, two, or three trials into the 
future) as fixed effects and subjects as random effects. In the sham 
control condition, all four macaques exhibited win-stay/lose-shift 
behavior (Figs.1, F  to H, and 3, A and B). However, 47/12o TUS 
disrupted crediting positive outcomes, reward, to the choice made 
[win-stay strategy: t(177) = −4.19, P < 0.0001; fig. S2] but not lose-
shift strategy compared to sham [t(177) = 0.66, P = 0.51; Fig. 2B and 
fig. S2]. By contrast, aPFC TUS was no different to sham [win-stay: 
t(177) = −1.61, P = 0.11; lose-shift: t(177) = 0.07, P = 0.95; Fig. 3B and 
fig. S2].

A similar general linear model (GLM1) sought fMRI activity 
associated with adaptive behavioral strategies throughout the brain; 
GLM1 identified fMRI activity associated with adaptive win-stay/
lose-shift strategies after controlling for the influence of maladaptive 
win-shift/lose-stay behaviors. The fMRI analysis was conducted in 
an analogous manner to the behavioral analysis and considered the 
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Fig. 2. Estimated peak intensities and spatial distributions of ultrasound based on a high-resolution macaque whole-head computed tomography scan. 
(A) Before each session, the TUS protocol consisted of a 40-s ultrasonic stimulation with a rectangular envelope over a train of pulses: The pattern displayed was repeated 
40 times. Within the ultrasonic stimulation pulse train, each pulse had a pulse duration of 30 ms and a pulse repetition interval (PRI) of 100 ms for a duty cycle of 30%. The 
pulse repetition frequency (PRF) within the stimulus duration was 10 Hz. PRF = 1/PRI. a.u., arbitrary units. (B) Simulated focused ultrasound peak intensities and spatial 
distribution in the brain when targeting right and left area 47/12o, based on a high-resolution macaque whole-head computed tomography scan. The maximum 
spatial-peak pulse-averaged intensity (ISPPA) at the acoustic focus point was 42.6 W/cm2 for the left area 47/12o target and 34.6 W/cm2 for the right area 47/12o target. 
aPFC TUS protocol was the same as the one we previously used in (8). Because the beams do not overlap, there is no region of dark red as we have estimated that there 
has been in some of our previous studies, in which beam overlap was intended (9). TUS occurred several minutes before the behavioral task was performed. Such a stim-
ulation protocol is often referred to as an “offline protocol.”
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impact of outcomes on the current trial on stay/shift behaviors over 
the next three occasions on which each option was offered (see the 
“GLM1—Neural activity related to adaptive behavioral strategies” 
under “Whole-brain GLMs” section; Fig. 3B and fig. S2). In the sham 
condition, activity in orbitofrontal cortex centered on 47/12o (in and 
adjacent to the lateral orbital sulcus) encoded adaptive behavioral 
strategies following both positive (win-stay) and negative outcomes 
(lose-shift) (Fig. 3C, blue) (11). The pattern of activity associated with 

the adaptive win-stay/lose-shift behavior was, however, significantly 
reduced after 47/12o TUS (Fig. 3D, red, and fig. S2), although it re-
mained unchanged after control aPFC TUS [Fig. 3E, green, and fig. S2, 
and see for illustration regions of interest (ROIs) 1 to 3 in 47/12o].

So far, the analyses have focused on the process of credit assign-
ment as indexed by an analysis of win-stay/lose-shift behavior. The 
credit assignment process determines the choice value estimates 
that, in turn, guide the monkeys’ decisions (Figs. 1E and 3A). In the 

Fig. 3. Area 47/12o TUS disrupts adaptive win-stay/lose-shift behavior and neural activity. (A) Hypotheses: 47/12o TUS (red) should disrupt credit assignment com-
pared to sham (blue), but aPFC TUS (green) should have no impact. (B) Animals exhibited win-stay/lose-shift behavior; they repeated choices after receiving a reward for 
choosing it previously (win-stay), and they switched away from choices that had previously been unrewarded (lose-shift). Regression coefficients illustrate influence of 
outcomes on whether win-stay/lose-shift strategy will be taken (left), the win-stay component will be taken (center), or the lose-shift component will be taken (right). 
Win-stay/lose-shift frequency remained unchanged after aPFC TUS but was significantly reduced after 47/12o TUS. This primarily reflected a decrement in win-stay 
behavior but not lose-shift behavior (*P < 0.05; n.s., not significant). (C) Neural activity underlying adaptive behavior was prominent in sham condition in 47/12o 
(cluster-corrected, |z| > 2.3, P < 0.05; light blue) and extended into adjacent orbitofrontal and ventrolateral prefrontal cortex when examined without cluster-based 
correction for multiple comparison (darker blue). (D) However, this pattern was altered by area 47/12o TUS; adaptive behavior–related activity in area 47/12o was sig-
nificantly reduced compared to sham (comparison of effects estimated from last three occasions choice taken). After cluster-based correction for multiple comparisons, 
activity was reduced in 47/12o and adjacent orbitofrontal cortex (|z| 2.3, P < 0.05; light red color indicates significant difference between sham versus 47/12o TUS; dark 
red indicates activity without cluster-based correction 4.7 < z > 2.3; the area of altered activity overlapped with that seen in sham condition in (C). (E) No changes in 
adaptive behavior–related activity were apparent after aPFC TUS versus sham (empty brain indicates no significant difference). (F) Illustrated by BOLD effects from 
1.5-mm-radius spherical ROIs centered on regions identified by comparison of the adaptive behavior effect in sham and 47/12o TUS condition. No similar changes in adaptive 
behavior–related activity were apparent after aPFC TUS in these ROIs.
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next analyses, we focus on these choice value estimates themselves 
and the way in which they reflect the extended history of choice-
reward conjunctions, and we examine how they change when credit 
assignment is altered by 47/12o TUS (Figs. 1E and 4, A to C) (22, 23).

We investigated how macaques estimated the values of their choices; 
first, we used an approach independent of any formal, computational 
model: a logistic regression analysis to predict the next choice that 
would be made by each macaque as a function of previous choices, 
previous rewards, or their conjunction (22). The brightness of squares 
in the grid (Fig. 4B) indicates the size of influence of these factors as 
indexed by the regression coefficients in sham, 47/12o TUS, and 
aPFC TUS conditions, respectively. The bright diagonal indicates 
that it is the conjunction of choices made on each recent occasion 
they were made (t-1, t-2, and t-3) and the rewards received on the 
same occasions, rather than just the history of choices regardless of 
reward, or reward receipt regardless of choice, that has the greatest 
influence on what decision will be made next. The choice-reward 
history (the diagonal in Fig. 4B) is replotted as a histogram in Fig. 4C.  
Note that, unlike in behavioral paradigms in which all choices are 
offered on every trial (22, 23), in the present task, a given option is 

only offered on a subset of trials, and so t-1, t-2, and t-3 effects indi-
cate influences extending across many trials in the past. While there 
was no difference in past choice-reward conjunction effects after sham 
and control aPFC TUS [t(177) = −0.4, P = 0.69; Fig. 4B], there was a 
significant difference between sham and 47/12o TUS [t(177) = −3.06, 
P < 0.01; Fig. 4B].

Next, we used Wittmann’s reinforcement learning model (2) to 
decompose this influence of past experience on future decisions into 
two components in addition to the choice-specific value estimates 
based on credit assignment over recent trials [note that this model 
fits the behavioral data better than a classical reinforcement learning 
(RL) model (2)]. The first component was the GRS, the general value 
of the environment regardless of the specific choice taken (we return 
to this below and in Fig. 5D), and the second component comprised 
choice-specific effects regardless of whether rewards were received; 
that is, does an animal tend to take the same choice again just because 
it was taken in the past regardless of whether it was rewarded? With 
this model, it is possible to estimate how animal learn choice values 
on each trial (given each individual’s experience of the choices up to 
that point); if 47/12o TUS disrupts how animal learn choice values, 

Fig. 4. Area 47/12o TUS disrupts credit assignment and reduces choice value representation in ACC. (A) Hypotheses: 47/12o TUS (red) should disrupt value repre-
sentations used for decision-making that are dependent on credit assignment compared to sham (blue) and aPFC TUS (green). (B) The influence, on which choice is taken 
next, of past reward history (abscissa), choice history (ordinate), and their conjunction (main diagonal) in sham (left), after 47/12o TUS (middle), and aPFC TUS (right). 
Labels t-1, t-2, and t-3 refer, respectively, to the last occasion, the previous occasion, and the occasion before that, on which a given stimulus was encountered. In sham, 
choices are influenced by the conjoint history of choice and reward (regression weights on main diagonal are high). (C) The influence of choice-reward conjunctions 
[regression weights from diagonal in (B)] in all three conditions is also replotted as a histogram. It was significantly reduced after 47/12o TUS but not aPFC TUS (*P < 0.05; 
n.s., not significant). (D) (i) The difference in choice value learning after 47/12o TUS was also attested by lower learning rates compared to sham and aPFC TUS. (ii) Area 
47/12o TUS reduced the frequency with which macaques took the option estimated by the reinforcement learning model to have the highest value in comparison to 
sham and aPFC TUS and (iii) so animals earned fewer rewards. (E) In sham, activity in several frontal cortical areas including ACC reflected values of choices that could be 
taken (cluster-corrected, |z| > 2.3, P < 0.05). This value signal in ACC was significantly reduced after 47/12o TUS (cluster-corrected, |z| > 2.3, P < 0.05) but not after aPFC TUS. 
(F) (i and ii) This is illustrated by extracting BOLD effects from 1.5-mm-radius ROIs [black circle (E)]. Separate panels illustrate contrasts of sham and 47/12o TUS (Fi) and 
sham and aPFC TUS (Fii) on ACC value estimates (models fitted separately for each comparison).
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then this should be reflected in a difference in the model’s learning 
rate parameter in sham and 47/12o conditions because this reflects 
how past experience shapes choice-specific values [note that although 
we tested whether there was evidence of different learning rates 
for positive and negative outcomes, as in previous studies (2, 37), 
we found that a single learning rate provided the best account of the 
data; fig. S3]. Second, if choice-specific value representations are 
compromised, then they may influence decisions less; decisions will 
become inaccurate. Third, ultimately, animals will obtain fewer re-
wards. Our results confirmed all three hypotheses. After 47/12o 
TUS, animals (i) learned choice values in a different way, and this is 
attested by lower learning rates after 47/12o TUS [47/12o TUS versus 
sham (sham 47/12o and sham aPFC): t(58) = −1.99, P = 0.05; 47/12o 
TUS versus sham 47/12o: t(38) = −2.27, P = 0.027; Fig. 4Di]; (ii) the 
value estimates are not used so effectively in decision-making; 
the choices are less accurate even when one takes into account 
that they have been learned differently [47/12o TUS versus sham: 
t(58) = −2.27, P = 0.027; Fig. 4Dii; aPFC versus sham: t(58) = −0.04, 
P = 0.97; fig. S4 illustrates a rolling average of the frequency of correct 
choices—choices of the highest value throughout the session]; 
(iii) as a consequence, animals obtained fewer rewards in each 
session [t(58) = −2.39, P = 0.02; Fig. 4Diii], but this was not the case 
when aPFC TUS and sham conditions were compared [t(58) = 0.31, 
P = 0.76]. Note that while the first two findings relate to Wittmann’s 
model, this final measure is independent of the model.

The model’s estimates of choice values on each trial were also 
used in an analysis of neural activity; the fMRI signal throughout 
the brain was regressed onto the model’s value estimates using GLM2. 
Our new analysis investigated activity covarying with the values of 
all options. In previous studies, we have used more specific analyses 
to capture activity related to the comparison of the value an option 
that will be chosen and become the focus of attention as opposed to 
the option that will be rejected (24), the activity associated with the 
value of an option unpresented on the current trial but held in 
memory, or the activity associated with the best alternative to the 
current course of action (7). Here, the intention is to perform a more 
general analysis and to capture activity related to the value of any 
choice and, so, that is why we sought activity covarying with the 
values of all options [all three object values (25, 26)] on each trial 
(the option chosen, the option unchosen, and the option that was 
unpresented but held in memory). Note also that this analysis 
(Fig. 4E) should identify the neural correlates of choice values, used 
to guide decisions, that have been learned as a result of credit as-
signment rather than the credit assignment process itself [which, by 
contrast, was examined in the win-stay/lose-shift analyses in Fig. 3 
(C to E)]. However, because they depend on credit assignment for 
their construction, these choice value estimates, even if held in a brain 
area distant from 47/12o, should still be compromised by 47/12o 
TUS. In the sham condition, mean choice value–related activity 
(regardless of whether the choice was taken, rejected, or simply 

Fig. 5. Area 47/12o TUS does not alter GRS impact on behavior or neural activity. (A) Hypotheses: 47/12o TUS (red) should not disrupt GRS representations (illustrated 
as in Fig. 1E). In addition, no effect of aPFC TUS (green) is expected in comparison to the sham control (blue). (B) The influence of the past reward history (abscissa, 
highlighted) on which choice the animal will take next in the sham condition (blue), after 47/12o TUS, and after aPFC TUS. (C) The same analysis is visualized as a histogram. 
(D) The overall influence that GRS has on learning was not different across experimental conditions. This was demonstrated by examining W_RT [the weight exerted 
by GRS when prediction error (PE) learning occurred]. When W_RT is multiplied by the learning rate (how much animals learn on each trial), then this reveals the overall 
influence that GRS has on learning and this is what is plotted here. (E) In sham, parametric variation in GRS was associated with variation in neural activity amygdala, 
operculum but most prominently IA. There was no change in this activity after either 47/12o TUS or aPFC TUS. (F) Effects extracted from IA region shown in inset are 
shown for comparison of sham and 47/12o TUS and comparison of sham and aPFC TUS. As in Fig. 3, separate panels illustrate contrast of sham and 47/12o TUS (i) and 
sham and aPFC TUS (ii) because small differences in model fitting resulted in small differences in effect size estimates in the sham group depending on the comparison 
group when fitting was done (however, careful fitting to either sham versus 47/12o or sham versus aPFC guarded against the possibility that any changes in activity that 
might have been found could have been a consequence of a poor model fit when TUS was applied).
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unavailable on a given trial) was associated with activity in several 
prefrontal locations including orbitofrontal and ventrolateral cortex, 
thalamus, and ACC (Fig. 4E). The activity was reduced after 47/12o 
TUS and the effect reached statistical significance in ACC (Fig. 4E, 
center), a region in which activity has been closely linked to repre-
sentation of choice values and guidance of choice selection (7, 9, 27–29). 
No such effects were seen after aPFC TUS (Fig. 4E, right). Thus, not 
only was behavior less guided by choice values derived from specific 
choice-outcome credit assignment after 47/12o TUS (Fig. 4, B and C), 
but also, in parallel, ACC was less driven by choice values derived 
from specific choice-outcome credit assignment after 47/12o TUS 
(Fig. 4, E to G). Anterior cingulate activity guides monkeys’ value-
based decision-making in many circumstances (7, 27–29). Previous 
work has suggested that it reflects the values of alternative choices 
that the monkey might shift to in the future (7), and further analysis 
confirmed that it was precisely these representations—representations 
of the values of potential alternatives to the current choice in ACC— 
that were compromised by 47/12o TUS (fig. S5). While orbitofron-
tal and ACC, on the other hand, comprise largely separate neural 
networks in the macaque, area 47/12o is one of the few connection 
nodes shared between networks (30).

The picture of results built up so far has emphasized distinct 
roles for 47/12o and ACC and noted the presence of activity related 
to updating of values in WSLS-related analyses in 47/12o and hold-
ing of potential choice values to guide decision repetitions or changes 
in ACC. We examined this account more formally by comparing 
the relative strengths of value-related activity in or adjacent to 
47/12o in the lateral orbital sulcus (square and circle ROIs in Fig. 3D 
and figs. S6 and S7A) and ACC (ROI in Fig. 4E) using a GLM with 
factors of brain area (ACC versus 47/12o) and activity type [average 
value estimated from Wittmann’s (2) reinforcement learning model 
or WSLS-derived updating-related activity]. When we examined 
the sham control data, we found a significant interaction between 
the two factors [circle ROI, left hemisphere: t(156) = 2.128, P = 0.034; 
square ROI, right hemisphere: t(156) = 2.352, P = 0.019; figs. S8 and 
S9] consistent with the WSLS signal being stronger in 47/12o and 
the value signal being stronger in ACC. Further analysis confirmed 
that the WSLS was significantly stronger in 47/12o than in ACC 
[circle ROI, left hemisphere: t(78) = −2.35, P = 0.0209; square ROI, 
right hemisphere: t(78) = −1.81, P = 0.074], although the differ-
ence in strengths of value signals in ACC and 47/12o was not sig-
nificant. This is consistent with the previous observation that the 
average choice value signal was widely distributed and present in 
many areas.

When we compared the average value and WSLS signals in 47/12o 
in the 47/12o TUS, sham control, and aPFC TUS conditions (figs. 
S8 and S9), we found that, while the WSLS signal was significantly 
diminished by 47/12o TUS [circle ROI, left hemisphere: t(78) = −2.35, 
P = 0.0209; square ROI, right hemisphere: t(78) = −3.64, P = 0.0004], 
the average choice value signal did not change across conditions (no 
significant difference across 47/12o TUS, sham control, and aPFC 
TUS conditions). A similar pattern (fig. S10) was apparent in the more 
lateral 47/12o ROI (hexagon in Fig. 3, C to E). Further analyses con-
firmed that the average value signal (for the chosen, unchosen and 
unpresented option) did not change after TUS was applied to the 
47/12o, a result that differs from the corresponding results for the 
ACC, confirming the distinct roles of these two regions.

However, despite the impact of 47/12o TUS on credit assign-
ment, the impact of GRS on choices (Figs. 1, D and E, and 5A) was 

not affected by 47/12o TUS [t(77) = −1.47; P = 0.144; Fig. 5, B to D]; 
when 47/12o activity was disrupted, behavior was still guided by a 
general sense of how good the environment had been recently 
regardless of the specific choice taken (Fig. 5D; animals carried on 
making the same choices as previously when GRS was high but 
switched when it was low). In a final stage of our analysis, we also 
sought neural activity related to GRS. In the sham condition, it was 
especially prominent in IA [Fig. 5, E (left) and F (left)]. Despite 
spatial proximity to IA, 47/12o TUS had no impact on GRS-related 
activity in IA [Fig. 5, E (center) and F (left)]. In addition, aPFC TUS 
(active stimulation control condition) had no impact on GRS-related 
activity in IA [Fig. 5, E (right) and F (right)]. In summary, 47/12o 
TUS disrupts credit assignment–related processes (Fig. 3), and it 
weakens choice value representations dependent on this credit as-
signment process even when they lie at some distance from 47/12o 
(Fig. 4). However, 47/12o TUS had no effect on the spatially adjacent, 
but distinct, value representation, GRS (the average value of the recent 
environment regardless of the specific choices taken), or the behavioral 
impact of GRS (Fig. 5). The effects of 47/12o are thus specific to 
47/12o and to computational processes dependent on 47/12o.

DISCUSSION
Rewards are primary drivers of behavior. Here, we have focused on 
two distinct reward-related computations and their impact on be-
havior: reward credit assignment and GRS associated with neural 
activity in 47/12o and IA, respectively. By combining noninvasive 
ultrasound stimulation and computational model–informed whole-
brain imaging in macaque monkeys, we were able not only to establish 
the existence of these circuits but also to demonstrate both a cir-
cumscribed impact on activity on the stimulated region and a wider 
impact on the neural signals that depended on that region using 
both simple behavioral measurements (win-stay/lose-shift-related 
analyses, Fig. 3; total rewards received, Fig. 4D) and reinforcement 
learning model–based analyses (Fig. 4, E  to  J). Activity related to 
GRS—the recent history of reward regardless of the specific choices 
taken—was found bilaterally in IA and was unaffected by 47/12o 
TUS (despite IA’s proximity to the 47/12o target region). The 47/12o 
region lies within the larger region identified with credit assign-
ment by Rudebeck and colleagues (23). The WSLS activity that we 
found was present in 47/12o lateral to the lateral orbital sulcus and 
in the lateral orbital sulcus itself. However, it was likely that it ex-
tended into adjacent area 13 l in orbitofrontal cortex and 12 l in the 
ventrolateral prefrontal cortex. It is possible that other parts of area 
47/12 beyond just 47/12o, which extends onto the ventrolateral 
prefrontal surface, make additional contributions to credit assign-
ment and attention-related processes (31, 32). The combination of 
approaches used here allowed us to tease apart the functions of 
areas on the orbitofrontal surface and in cingulate cortex that can 
appear similar in other investigations (33) and furnished a formal 
description of the different choice-outcome specific processes in 
these regions and context learning processes in IA (34). These 
results may also have implications for understanding clinical condi-
tions characterized by alterations in learning and decision-making. 
More generally, the techniques used here add to the range of 
tools for understanding circuit changes in primate models of brain 
function (35, 36), but the noninvasive nature of TUS also suggests 
the possibility of translation of the approach to humans includ-
ing patients.
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MATERIALS AND METHODS
Subjects
Four male rhesus monkeys (Macaca mulatta), here referred to as D, 
E, F, and G, were tested in the experiment (mean weight, 12.65 kg; 
9.9 years of age). They were socially housed (group of four animals) 
and kept on a 12-hour light/dark cycle, with access to water for 
12 to 16 hours on testing days and with ad libitum water otherwise. 
Before task training, the animals underwent aseptic surgery to 
implant an MRI-compatible head post (Rogue Research). The head 
post was necessary to prevent head movement during the TUS and 
imaging data acquisition. All procedures were conducted under 
licenses from the U.K. Home Office in accordance with the U.K.  
Animals (Scientific Procedures) Act 1986 and with the European 
Union guidelines (EU Directive 2010/63/EU).

Behavioral training
All four animals were initially trained to sit in a MRI-compatible 
chair in a sphinx position and perform a computer-based probabi-
listic reward-guided reversal learning task while inside a custom-
made mock scanner, while mock MRI noise was played in the 
background for the full length of the session. These mock conditions 
were implemented to simulate the MRI scanning environment and 
train the animals to tolerate the testing conditions. Similarly, before 
each training sessions, the animals were tested in a mock TUS ses-
sion in which no ultrasonic waves were transmitted through the 
skull. All animals were trained to reach two custom-made infrared 
touch sensors (one located in front of the left hand and one located 
in front of the right hand) to respond to abstract stimuli presented 
on the left and right of a black screen located in front of the animal. 
Touching the left and right sensors effected the choices of the left- 
and right-hand options, respectively. Once the animals reached a 
learning criterion, the animals were moved to the actual MRI scan-
ner where they performed the task with head fixation at over 70% 
accuracy. MRI data acquisition started once animals performed above 
70% accuracy for more than three consecutive times in the MRI 
scanner environment.

Experimental task
Testing was conducted in a horizontal bore 3T MRI scanner with 
the animals head fixed to the MRI-compatible chair. Animals were 
required to learn the continually changing reward probabilities as-
sociated with three choice options and to adapt their behavior to 
maximize the amount of reward received. On each trial, two of the 
three possible stimuli were presented. Animals had to learn the re-
ward probability associated with each choice option by choosing 
between the two options presented on the screen at each trial and 
monitoring whether a reward was received for making the choice. 
The three stimuli used to represent the three options were novel in 
each testing session (Fig. 1), and each testing session took place on 
a different day. The task consisted of a probabilistic reward-guided 
reversal learning task inspired by tasks originally designed to study 
reinforcement learning (22, 37, 38). Choice options were allocated 
pseudo-randomly to the right- and left-hand sides of the screen and 
the animals responded by reaching a right or left infrared sensor 
placed in front of each of their hands. The rewards were delivered 
probabilistically, and the probabilities associated with the three op-
tions fluctuated throughout the session, with the probability of two 
of the options reversing toward the middle of a session (Fig. 1). At 
each time point during the task, animal faced one “high probability 

option” and two “low probability options.” When deciding between 
the two low probability options, animals chose the one that carried 
the highest expected value as estimated on the basis of past reward 
history. This manipulation ensured a more balanced number of 
positive and negative outcomes.

To control for reward schedule-induced biases in the animals’ 
choice preferences, two macaques were presented with one reward 
schedule and the other two with a second reward schedule with 
matching reward rates for the three stimuli. Thus, in both reward 
schedules, the probability range for option A was 90 to 10%, the prob-
ability range for option B was 70 to 30%, and the probability range 
for option C was 10 to 90%.

As mentioned above, although three choice options were presented 
in each session, only two of them could be chosen on each trial 
(Fig. 1). This manipulation requires the animals to learn the contin-
gency between the selected choice option and the subsequent out-
come. Thus, to maximize the amount of reward received, the animals 
are required to use these choice option-outcome associations to 
guide behavior. Moreover, the probabilistic nature of the task re-
quired animals to continually monitor the outcomes that followed 
choices of each option chosen. For instance, in a given trial, the 
macaque may have chosen the stimulus associated with the highest 
likelihood of reward but may not have been rewarded for making 
that choice. The choice’s valuation should reflect not only what 
happened on that trial but also whether outcomes were delivered 
recently when the same choice was taken. The animals had also to 
keep track of outcomes received in previous trials because only two 
of the three options were presented on any given trial. This task is, 
therefore, ideal for investigating the capacity of animals to integrate 
the past history of choice option-outcome conjunctions to guide 
future behavior. Furthermore, the probabilistic nature of the stimu-
lus presentation on each trial prevents the animal from predicting 
which option will be presented in the next trial.

After making their decision, if an option selected led to a reward 
(as per the programmed reward contingencies associated with each 
option; Fig. 1), then the unselected option disappeared and the cho-
sen option remained on the screen and a juice reward was delivered. 
If an option selected led to no reward, then no juice was delivered. 
The outcome phase lasted for 1.5 s. Each reward was composed of 
two 0.6-ml drops of blackcurrant Ribena juice (25% blackcurrant 
Ribena and 75% water) delivered by a spout placed near the animal’s 
mouth during scanning. Each animal performed up to 200 trials 
per session.

Each animal underwent two experiments for a total of 20 sessions 
in each one (four animals × five sessions). Experiment 1 consisted 
in two separate conditions: One condition used TUS targeted to 
lOFC area 47/12o. In the other condition no stimulation was ap-
plied (sham). Sham and TUS days were interleaved and counter-
balanced in order. To ensure that the behavioral effects of TUS were 
not induced by nonfocal modulation of activity in prefrontal cortex, 
we ran an additional control experiment (experiment 2), but this 
time, targeting a separate prefrontal area—aPFC before the animals 
underwent the same task. Experiment 2 also consisted of two sepa-
rate conditions: one control condition in which no stimulation was 
applied (sham) and the active control condition in which TUS was 
applied to a control area aPFC. “Again, sham and TUS days were in-
terleaved and counterbalanced in order”. In each experiment, each of 
the four animals performed five sessions, and the order of experi-
ments was counterbalanced across animals (two animals performed 
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experiment 1 first and then experiment 2, and two animals performed 
experiment 2 before experiment 1). Thus, each animal performed 
five sessions of the sham condition that were interleaved with five 
session of the TUS condition (five 47/12o TUS sessions in experi-
ment 1 and five aPFC TUS sessions in experiment 2) in the MRI 
scanner. Because there were no differences in sham performance in 
experiments 1 and 2, all sham data were combined in the final anal-
yses. No statistical methods were used to predetermine sample sizes 
but our sample sizes are similar to those reported in previous publi-
cations (7, 9, 11, 25). The experiment was controlled by Presentation 
software (Neurobehavioral Systems Inc., Albany, CA).

Transcranial focused ultrasound stimulation
A single-element piezoelectric ultrasound transducer (H115-MR, 
diameter of 64 mm, Sonic Concept) with a 51.74-mm focal depth 
was used with a coupling cone filled with degassed water and sealed 
with a latex membrane (Durex). The ultrasound wave frequency was 
set to the 250-kHz resonance frequency, and 30-ms bursts of ultra-
sound were generated every 100 ms with a digital function genera-
tor (Handyscope HS5, TiePie Engineering). Overall, the stimulation 
lasted for 40 s. A 75-W amplifier (75A250A, Amplifier Research) 
was used to deliver the required power to the transducer. A TiePie 
probe connected to an oscilloscope was used to monitor the voltage 
delivered. The recorded peak-to-peak voltage was constant throughout 
the stimulation session. Voltage values per session ranged from 130 to 
136 V and corresponded to a peak negative pressure ranging from 
1.17 to 1.29 MPa, respectively, as measured in water with an in-house 
heterodyne interferometer (39).

The 40-s TUS train was applied several minutes before each test-
ing session using what has been referred to as an “offline” proce-
dure. This protocol has previously been shown to modulate neural 
activity for up to 2 hours (6, 8), and the temporal separation between 
TUS application and task performance makes it difficult to attribute 
any TUS effects to any possible auditory distraction during the task. 
Monkeys sat in an MRI-compatible chair in a sphinx position with 
their heads fixed to the chair through the implanted head post. Each 
animal’s head was registered to a frameless stereotaxic Brainsight 
Neuronavigation system (Rogue Research, Montreal, Canada) in 
advance of the session using a previously acquired T1-weighted image. 
The anatomical localization of fiducial markers used for each animal 
was also acquired at the same time as the collection of the T1-weighted 
image for that monkey. The registration of the fiducial markers to 
the T1-weighted image of each animal made anatomically precise spa-
tial navigation within the brain of each subject possible, and, there-
fore, the same exact area could be identified and stimulated in each 
session. The transducer was positioned using the Brainsight Neuro-
navigation system so that the focal spot was centered on the targeted 
brain region. In experiment 1, the targeted brain region was in caudal 
lOFC area 47/12o [Montreal Neurological Institute (MNI) coordi-
nates x = −16, y = 8, z = −3; x = 16, y = 8, z = −3], in a region ana-
tomically overlapping with the lOFC ROI discussed by Chau and 
colleagues (11). In experiment 1, to ensure complete modulation of 
activity in 47/12o, bilateral stimulation was applied to the same region 
in each hemisphere. In the control experiment 2, TUS was instead 
applied to aPFC (MNI coordinates x = 0, y = 23, z = 11) correspond-
ing to the target previously stimulated in a separate resting-state 
fMRI experiment (8). As in the protocol reported by Verhagen et al. 
(8), TUS was applied once for 40 s on the midline through the inter-
hemispheric fissure. As we previous showed (8), the TUS parameters 

used in the current study generated a beam of ultrasonic waves with 
a 10-mm-wide diameter that targeted aPFC in both hemispheres 
with a single sonication.

The ultrasound transducer/coupling cone montage was directly 
positioned on previously shaved skin on which conductive gel 
(SignaGel Electrode, Parker Laboratories Inc.) had been applied. The 
coupling cone filled with degassed water and gel applied to the skin 
was used to ensure ultrasonic coupling between the transducer and 
the animal’s head. Following stimulation, the monkeys were moved 
to the MRI scanner for testing. The TUS procedure lasted for 20 min 
on average.

In each experiment, sham sessions were interleaved with TUS 
sonication days and completely mirrored a typical stimulation session 
(the experimental laboratory setting was the same as were the proce-
dures involved in preparing for stimulation such as neuronavigation 
and cone positioning and application of the cone to the shaved skin 
on the head of the animal) except that sonication was not triggered.

To test for the specificity of 47/12o TUS, in experiment 2, 20 sham 
and 20 aPFC TUS (four animals × five sessions) sessions were col-
lected using the same experimental design as in experiment 1. TUS 
and control days were interleaved in one of two pseudo-random 
orders that were counterbalanced across animals in each experiment 
(order 1: S, S, R, T, R, T, R, T, R, T, R, T, R, S, R, S, R, S; order 2: T, 
T, R, S, R, S, R, S, R, S, R, S, R, T, R, T, R, T) where T, S, and R stand 
for TUS, sham, and rest days, respectively.

Statistical analyses
To analyze the behavior of the animals in the three experiments and 
estimate the effects of no ultrasound stimulation (sham), 47/12o TUS, 
and aPFC TUS on reward-guided learning and decision-making, 
we used multiple linear or logistic regressions as implemented in 
MATLAB. For logistic functions, we used a logit link with categorical 
predictors. All regressors were normalized to ensure between-session 
and between-condition commensurability of the regression coeffi-
cients. For each session, one  regression weight was extracted for 
each regressor. These were then tested for statistical significance across 
all animals/sessions. All data were shown as means ± SEM. Proba-
bilities of P < 0.05 were considered as significant.

Win-stay/lose-shift analyses for behavioral analyses
To estimate the effect of 47/12o TUS and aPFC TUS on behavior, 
we examined how each animal’s current choice was influenced by 
choices they had made and outcomes they had received in the prior 
trial when that choice was last available. We analyzed different strate-
gies using logistic regressions analysis to determine which combi-
nation of factors best explained choice:

1) Win-stay/lose-shift strategy: maintenance of the same choice 
on the next trial (“stay”) after a reward outcome on the current trial 
(“win”), coded as 1 and shifting to the alternative choice (“shift”) 
after a no-reward (“lose”) outcome on the current trial coded as −1, 
this is done separately for each potential stimulus (A, B, and C) and 
the regressions coefficients are then averaged;

2) Win-stay AND lose-shift strategies: same as previous but en-
coded as separate regressors. These represent adaptive behaviors;

3) Win-shift AND lose-stay strategies: shifting to the alternative 
choice (shift) after a reward (win) outcome on the current trial and 
maintenance of the same choice on the next trial (stay) after a 
no-reward outcome on the current trial (lose), encoded as separate 
regressors. These represent maladaptive behaviors.
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Credit assignment matrices
Logistic regression analysis of the animals’ choices used methods 
identical to those used previously (22, 23, 40). To determine how 
recently made choices and recently received outcomes influenced 
subsequent choices, we conducted three separate logistic regression 
analyses for A, B, and C, alternatives that the animal could select. All 
analyses followed the same logic as described here for choice A: We 
first constructed vectors for choices made to A (coded as 1) and 0 
otherwise (choices B and C). We then formed regressors based on 
all possible combinations of choices and reward from the recent 
past, trials n − 1 to n − 4. For each choice-outcome interaction, the 
regressors were set to 1 when the animal chose A and/or was re-
warded and set to 0 otherwise. Nans were used when the choice was 
not on the screen. A logistic regression was then fit to these 16 ex-
planatory variables (EVs) (i.e., 4 by 4 matrix of all combination of 
previous choices and outcomes from preceding four trials). Of these, 
the nine predictors constructed from the three most recent trials were 
of interest, whereas the remaining seven that involved n − 4 trials were 
included to remove the influence of longer term choice/reward trends.

Reinforcement model architecture
We fitted the full model specified in our previous work (2) on our 
data. The code for the model can be found at https://osf.io/358cg/?view_
only=0e6fda7925364d86930374cd4ae4a59f.

Three value estimates [Q(A), Q(B), and Q(C)] tracked the rewards 
received for choosing each of the three stimuli that were presented 
in each session. Note that each session used new stimuli to avoid 
carry over effects. All Q values were initialized at 0.5 at the start of 
each session, and the chosen stimulus was updated at the time of 
feedback delivery. As in our previous report, the model entertained 
a memory trace of reward that was unlinked to specific choices 
made (R-trace). R-trace was updated on every trial on the basis of 
the discrepancy between R-trace and the observed outcome, scaled 
by a learning rate R

	​ R-​trace​ t+1​​  =  R-​trace​ t​​ + ​α​ R​​(​r​ t​​ − R-​trace​ t​​)​	 (1)

Note that the R-trace calculation was independent of the specific 
choices taken, and hence, only knowledge about the actual sequence 
of outcomes was required to calculate R-trace. R was bound be-
tween 0 and 1. R-trace was initialized at zero. R-trace influenced Q 
value updates directly. It was inserted directly into the calculation of 
the prediction error (PE) scaled by a weight parameter wR, which 
was allowed to range between −1 and 1. For example, if option A 
was chosen on trial t, then its PE and value update for the chosen 
option would be calculated on the basis of the reward r (0 or 1 for 
reward and no reward) and R-trace as follows

	​​ PE​ t​​(A) = ​r​ t​​ + ​w​ R​​ R-​trace​ t​​ − ​Q​ t​​(A)​	 (2)

                           ​​Q​ t+1​​(A) = ​Q​ t​​(A) + α ​PE​ t​​(A)​	 (3)

 was bound between 0 and 1. We refer to the decision variable 
(DV) based on these Q values as DVRL. It reflected the evidence for 
making a rightward choice. Note that the identity of the left and 
right choice (whether they were options A, B, or C) was pseudo-random. 
Below, we explain how the actual DV lastly used was constructed by 
combining DVRL with a number of choice memory traces: information 
about the history of stimuli chosen regardless of rewards received 

[choice stimulus trace (CS-trace)] and the history of locations chosen 
regardless of the rewards received [choice location trace (CL-trace)]. 
DVRL also contained a free parameter accounting for a side bias in 
choice (bound between −1 and 1).

Both choice memory traces were initialized at zero at the start of 
a session and updated in the following ways. The CL-trace was up-
dated on every trial on the basis of the discrepancy between the ac-
tual choice location (L), coded as −1 or 1 (for the right and left sides, 
respectively), and the CL-trace, scaled by a learning rate CL

	​ CL-​trace​ t+1​​  =  CL-​trace​ t​​ + ​α​ CL​​(​L​ t​​ − CL-​trace​ t​​)​	 (4)

The CS-trace decayed exponentially from one trial to the next one 
with a given rate determined by a free parameter CS (41, 42). How-
ever, the CS-trace for the chosen option was set to 1 at the end of the 
trial. For example, the decay of the CS-trace for a stimulus A on 
trial t was calculated as

	​ CS-​trace​ t​​(A) = ​λ​ CS​​ CS-​trace​ t−1​​(A)​	 (5)

CL-trace and CS-trace required only knowledge of the choice 
location and choice stimulus, respectively, ignoring the sequence of 
outcomes experienced over the course of a session. CS and CL 
were bound between 0 and 1.

The choice memory traces exerted their influence on learning 
and choice scaled by weight parameters. In all cases (also R-trace), 
the weight parameters could be positive, zero, or negative, meaning 
that the magnitude and direction of influence of the memory traces 
were determined empirically during model fitting. CL-trace and 
CS-trace were added to the DV. The CL-trace could be added 
directly, because it was already coded in terms of spatial location 
similarly to the DV itself (although inverted). For the CS-trace, the 
influence on choice was determined by the difference in CS-trace 
between right and left stimulus. Note that the CS-trace difference 
was added to the DV after the trial-wise decay but before the update 
of the chosen stimulus

	​ CL-​bonus​ t​​  =  − CL-​trace​ t​​​	 (6)

	​ CS-​bonus​ t​​  =  CS-​trace​ t​​(right) − CS-​trace​ t​​(left)​	 (7)

	​​ DV​ RL,t​​  = ​ DV​ RLsimple,t​​ + ​w​ CL​​ CL-​bonus​ t​​ + ​w​ CS​​ CS-​bonus​ t​​​	 (8)

Note that positive values of wCL indicate that the DV of the cur-
rent trial would be biased toward the same location as the direction 
of previous choices, and positive values of wCS indicate that the DV 
would be swayed toward the stimulus with the highest CS-trace. 
That is, positive values of wCL and wCS reflect a tendency to repeat 
predominant previous choice locations and predominant previous 
choice stimuli, respectively. R-trace was directly added to the PE 
calculation as described above.

The final DV was filtered through a standard softmax function 
to calculate the probability of a rightward choice

	​​ p​ t​​(right) = ​  1 ─ 
1 + ​e​​ −β×​DV​ RL,t​​​

 ​​	 (9)
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The inverse temperature parameter  was bound between 0 and 
positive infinity. The probability of the observed choice on each tri-
al was calculated as

	​​ ​p​ t​​(choice ) = ​{​​​
​p​ t​​(right),  if right option is chosen

​   
1 − ​p​ t​​(right),  otherwise

 ​ ​​	 (10)

Model fitting
We used an iterative maximum a posteriori approach previously 
described (2, 43). This method provides a better estimation than a 
single-step maximum likelihood estimation (MLE) alone by being 
less susceptible to the influence of outliers. It does this via imple-
menting two levels: the lower level of the individual subjects and the 
higher-level reflecting all the data from the different session types, 
either sham and 47/12o or sham and aPFC, aggregated across all the 
subjects. In this way, we ensured that the parameters fitted were 
equally appropriate to both the sham data and the TUS data (either 
47/12o or aPFC TUS) when comparisons were made between them. 
This ensured, for example, that, if there was less choice value related 
activity after 47/12o TUS in an fMRI analysis, then it could not be 
explained away as simply a consequence of a poorer model fit to the 
47/12o TUS data than to the sham data (44). It is for this reason that 
separate choice value effects and GRS effects are shown for the 
sham group in Figs. 3, I and J, and 4F. In each case, the sham condi-
tion effects have either been estimated when the model included the 
sham and the 47/12o TUS conditions or sham and aPFC condi-
tions. However, as can be seen, there are only very small differences 
in the effect estimates derived from either model-fitting procedure.

Briefly, for this procedure, we initialized group-level Gaussians 
as uninformative priors with means of 0.1 (plus some added noise) 
and variance of 100. During the expectation, we estimated the mod-
el parameters for each subject using an MLE approach calculating 
the log-likelihood of the subject’s series of choices given the model. 
We then computed the maximum posterior probability estimate 
given the observed choices and given the prior computed from the 
group-level Gaussian and recomputed the Gaussian distribution 
over parameters during the maximization step. We repeated expec-
tation and maximization steps iteratively until convergence of the 
posterior likelihood summed over the group or a maximum of 800 
steps. Convergence was defined as a change in posterior likelihood 
of <0.001 from one iteration to the next. Note that bounded free 
parameters (for example, the learning rates) were transformed from 
the Gaussian space into the native model space via appropriate link 
functions to ensure accurate parameter estimation near the bounds.

MRI data acquisition
Awake animals were head-fixed in a sphinx position in an MRI-
compatible chair. fMRI data were collected using a whole-body 3T 
MRI scanner with a custom-made four-channel phased-array local 
receive coil in conjunction with a radial transmit coil (Dr. H. Kolster, 
Windmiller Kolster Scientific, Fresno, CA, USA). Whole-brain blood-
oxygen-level-dependent (BOLD) fMRI data were acquired using a gra-
dient echo T2* echo planar imaging (EPI) sequence with 1.5-mm3 
isotropic voxel size resolution, repetition time (TR) = 2.28 s, echo time 
(TE) = 30 ms, and flip angle = 90°, and reference images for artifact 
corrections were also collected. Proton density–weighted images using 
a gradient-refocused echo (GRE) sequence (TR = 10 ms, TE = 2.52 ms, 
and flip angle = 25°) were acquired as references for body motion 
artifact correction. T1-weighted magnetization-prepared rapid gradient 

echo images (0.5-mm3 isotropic voxel size resolution, TR = 2.5 ms, 
TE = 4.01 ms, inversion pulse time = 1.1 s, and flip angle = 8°) were 
acquired in separate anesthetized scanning sessions [anesthesia in-
duction via intramuscular injection of ketamine (10 mg/kg), xylazine 
(0.125 to 0.25 mg/kg), and midazolam (0.1 mg/kg)] before the be-
ginning of the testing sessions.

MRI data preprocessing
Magnetic resonance images were preprocessed and analyzed us-
ing tools from the FMRIB Software Library (FSL) (45) and the 
Magnetic Resonance Comparative Anatomy Toolbox (MrCat; www.
neuroecologylab.org). The T1-weighted images were processed in an 
iterative fashion cycling through a macaque-optimized implementa-
tion of FSL’s brain-extraction tool (BET), radio frequency (RF) bias-
field correction, and linear and non-linear registration (FLIRT and 
FNIRT) to the Macaca mulatta McLaren template in F99 space as im-
plemented in MrCat. The GRE image was used to carry out the T2* 
EPI image reconstruction by an offline-SENSE reconstruction method 
(Dr. Kolster, Windmiller Kolster Scientific, Fresno, CA, USA).

A T1-weighted group template of the four animals included in 
the study was constructed by cycling through a two-iteration ap-
proach of (i) registration to the initial McLaren template in F99 
space, (ii) group averaging, and (iii) registration to the new group 
template. Specifically, tools from Advanced Normalization Tools 
(ANTs), as implemented in MrCat, were used for the creation of the 
group template. At each step, the resulting group template was regis-
tered to the source template, thus avoiding drift and retaining regis-
tration to F99 space. All coordinates reported (in millimeters) refer 
to F99 space, and results are visualized on the group template.

Despite head fixation during the EPI acquisition, occasional 
movements of the animals’ limb and body may cause a distortion in 
the main (B0) magnetic field in a time-varying manner, thereby 
producing nonlinear motion-related artifacts in the phase-encoding 
direction (anterior-posterior) on a slice by slice basis, such as ghost-
ing artifacts, misaligned slices, and signal loss. Additional causes of 
magnetic field distortion and signal loss in nonhuman primate im-
aging may be induced by magnetic susceptibility differences in tis-
sue, spatially inhomogeneous magnetic field and spatial differences 
in the proximity of the head from the RF coils. To correct for these 
artifacts, using a processing pipeline implemented in MrCat, each 
slice was registered, first linearly and then nonlinearly to a robust 
reference based on EPI volumes from the same time series with least 
distortion. This registration and slice alignment processes were per-
formed volume by volume. To avoid overfitting, the degrees of free-
dom were constrained in several ways: because distortions are the 
strongest along the phase-encoding direction, here, anterior-posterior, 
only distortions along this direction were considered; registration 
was initialized using priors from temporally neighboring slices; 
low-order solutions were preferred over high-order registration 
(rigid > affine > nonlinear); nonlinear degrees of freedom were reg-
ularized using b-splines. Additional volumes concomitant with any 
occasional event in the scanning room that may have caused a po-
tential disruption in the main magnetic field were also removed.

Subsequently, the slice-registered average functional image (EPI) 
was iteratively linearly and nonlinearly registered to the high-
resolution structural reference (T1-weighted) of each subject, which 
was then registered to the group-specific template using FSL and 
ANTs tools (45–47). Automatized brain-extraction of the EPI time 
series was based on brain masks obtained in the high-resolution 
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structural space. Last, to increase signal-to-noise ratio, EPI images 
were spatially smoothed using a 3-mm kernel (full width at half 
maximum) and temporally high-pass–filtered (cutoff, 100 s) to 
remove slow-moving trends. First-level whole-brain analyses (see 
below) were performed on the motion-corrected low-resolution 
images in the original acquisition/native space for each session; the 
statistical maps for each contrast were then transformed from 
acquisition/native to the group-template standard space with a single 
resampling by ANTs for group-level analysis.

Whole-brain fMRI analysis
After transforming each statistical map for each of the four animals 
from native space to the group-template standard space, group-level 
statistical analyses of the functional data were performed adopting 
GLM and tools implemented in FSL (45, 47). Analysis at the group 
level was performed on the whole-brain using mixed-effects analy-
sis on the basis of FSL’s FMRIB’s Local Analysis of Mixed Effects 
(FLAME) 1 + 2. As already noted, to increase the number of fMRI 
sessions available and improve the quality of the analysis, sham ses-
sions from both experiment 1 (n = 20; five sessions per animal) and 
experiment 2 (n = 20; five sessions per animal), thereby creating a 
pool of 40 no-stimulation sham sessions that were contrasted with 
either 20 47/12o TUS sessions (five sessions per animal) or 20 aPFC 
TUS sessions. Note that the order of sham, 47/12o TUS, and aPFC 
TUS sessions was counterbalanced. As a consequence of postpre-
processing abnormalities in the EPI signal, one 47/12o TUS session 
was excluded, and a final sample of 19 47/12o stimulation sessions 
was used. The large number of sessions made it possible to estimate 
robust mixed-effects statistics and model within-subject and between-
subjects variances separately, thereby treating each monkey as a 
random effect. This modeling approach allows consideration of each 
monkey as if it was randomly sampled from the general population, 
therefore making it possible to make inferences not only about the 
sample of individuals tested but also about the population from which 
the samples were drawn. Nuisance regressors were used to capture 
additional noise-related variance in the EPI data. These nuisance 
regressors were intended to (i) identify noisy volumes after the slice 
alignment preprocessing step and potential signal loss at the vol-
ume level, (ii) capture non-linear effects of the motion-related mag-
netic field distortions, and (iii) detect potential remaining variance 
in motion-related magnetic field distortions. All analyses were conducted 
on the whole forebrain but excluded the midbrain and hindbrain 
where preliminary analyses suggested that there was signal distortion.

Whole-brain GLMs
All analyses at the group level were performed on the whole-brain 
using mixed-effects analysis on the basis of FSL’s FLAME 1 + 2, 
treating subject as random effects. In the GLM comparing sham and 
47/12o TUS, the weight of sham and 47/12o TUS sessions were ad-
justed (sham = 1; lOFC TUS = 2.1) because of the exclusion of one 
47/12o session due to postpreprocessing abnormalities in the EPI 
signal (see above).

All parametric regressors were normalized to ensure between-
session, between-subject, and between-condition commensurability 
of the regression coefficients. For each session, one  regression weight 
was extracted for each regressor. These were then tested for statistical 
significance across all animals/sessions. Cluster-based inference was 
performed in all analyses on the basis of a cluster-defining threshold 
of Z > 2.3 with a Gaussian Random Field (GRF)–corrected threshold 

of P = 0.05. According to this model, the following GLMs were 
implemented.
GLM1—Neural activity related to adaptive  
behavioral strategies
We aimed to identify neural activity associated with the use of an 
adaptive behavioral strategy in the sham condition and after TUS of 
either 47/12o or aPFC. To optimize reward intake, animals should 
increase the frequency with which they repeat the same choice after 
it has led to a reward in the past (adaptive win-stay strategy) and 
they should switch away and not repeat a choice that did not lead 
to a reward (adaptive lose-shift strategy). At the same time, the ani-
mals should avoid switching away from choices that resulted in a 
reward in the past (maladaptive win-shift strategy) and avoid staying 
with a choice that did not lead to a reward (maladaptive lose-stay 
strategy) (fig. S1). We, therefore, used BOLD imaging as measured 
by fMRI, to compare neural activity associated with the use of adap-
tive choice strategies (win-stay and lose-shift) as opposed to mal-
adaptive ones (win-shift and lose-stay). We also examined whether 
this activity was changed after 47/12o TUS or aPFC TUS. A hemo-
dynamic response function (HRF)—a gamma convolution function 
(mean, 3 s; SD, 1.5 s)—was used to capture the peak of the BOLD 
signal. This resembled the HRF used in previous macaque fMRI 
studies (7, 9, 11).

GLM1 included an unmodulated decision constant regressor (DEC) 
time-locked to the onset of the decision (when stimuli appeared on 
screen) with a duration set to the reaction times of each trial. Six 
parametric regressors, capturing variance in the BOLD signal under-
lying the encoding of either the win-stay (WS) or lose-shift (LSh) 
“adaptive” strategies in relation to the choice that would be made on 
the very next occasion the same choice was offered (WST1 and 
LShT1; note that the very next occasion on which the choice taken 
was offered again might not be on the very next trial). In addition to 
looking at how the most recent experience of reward influenced 
whether animals stayed with a choice or switched away from it on 
the next occasion it was offered, we also looked at the impact of re-
ward delivery/nondelivery on the choices taken further in the future 
on subsequent occasion that the choice was offered and the occa-
sion after that on which it was offered. Thus, we examined win-stay/
lose-shift behavior on the subsequent occasion that the same choice 
was offered again (WST2 and LShT2) and on the occasion after 
that, when the same option was offered again (WST3 and LShT3). 
As well as using these six regressors to capture adaptive behavioral 
strategies, we also used six additional parametric regressors to cap-
tured variance in the BOLD signal related to the behavioral mal-
adaptive strategies win-shift (WSh) and lose-stay (LS). As for the 
regressors encoding adaptive behavioral strategies one, two, or three 
trials into the future, maladaptive behavioral strategies were also 
indexed in relation to the choice that would be made on the very 
next occasion the same choice was offered (WShT1 and LST1), on 
the subsequent occasion that the same choice was offered again 
(WShT2 and LST2), or the subsequent occasion after that when the 
same option was offered again (WShT3 and LST3). The regressors 
were normalized (mean, 0; SD, 1) and time-locked at the time of feed-
back. Two unconvolved categorical regressors for leftward (UNCleft) 
and rightward (UNCright) responses were time-locked at the time of 
feedback with a duration of TR (2.28 s) to capture motion-induced 
distortion in the magnetic field during the response (7). One con-
volved categorical regressors for left minus right responses time-locked 
at the time of response; this captured variance in neural activity related 
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to responding to one hand or the other. A contrast was used to iden-
tify activity related to the adaptive behavioral strategies (win-stay/
lose-shift across all three intervals; on the first, second, and third 
occasions on which the same choice option subsequently appeared) 
after controlling for the activity related to maladaptive behaviors 
(win-shift/lose-stay across all three intervals; on the first, second, 
and third occasions on which the same choice option subsequent-
ly appeared)

	​​  

GLM1 = ​​ 1​​ DEC + ​​ 2​​ WST1 + ​​ 3​​ WST2 + ​​ 4​​ WST3+

​    
​​ 5​​ LShT1 + ​​ 6​​ LShT2 + ​​ 7​​ LShT3 + ​​ 8​​ WShT1+

​    ​​ 9​​ WShT2 + ​​ 10​​ WShT3 + ​​ 11​​ LST1 + ​​ 12​​ LST2+​    

​​ 13​​ LST3 + ​​ 14​​ UN ​C​ left​​ + ​​ 15​​ UN ​C​ right​​ + ​​ 16​​ LminusR + 

​​	

GLM2—Neural activity related to choice value
The second fMRI analysis (Fig. 4) followed from the first set of be-
havioral and neural findings that credit assignment and credit 
assignment–related activity was impaired after 47/12o TUS (Fig. 3). 
This result suggests a deficit in the animal’s capacity to credit the 
value of the outcome received after making a decision to the correct 
choice option, thereby leading to an impairment in the animal’s ca-
pacity to update choice value estimates and to use these estimates to 
guide decisions. Regressors were built using the reinforcement learn-
ing model described by Wittman and colleagues (2), as summarized 
above. As in GLM1, GLM2 included an unmodulated decision constant 
regressor (DEC) time-locked to the onset of the decision (when stimuli 
appeared on screen) with a duration set to the reaction times of each trial. 
One additional binary regressor with duration equal to a Dirac delta 
function of 100 ms was time-locked at the time of feedback onset to 
capture variance in the BOLD signal associated with the outcome, 
namely, receipt minus nonreceipt of reward (REWminusNOREW). To 
capture variance explained by distortions in the magnetic field caused 
by the response action, two unconvolved categorical regressors for 
leftward (UNCleft) and rightward (UNCright) responses were time-
locked at the time of feedback with a duration corresponding to the 
TR (2.28 s). In addition, to regress out variance associated with distor-
tions co-occuring with the outcome receipt, two additional uncon-
volved categorical regressors for receipt of reward (UNC_reward) or 
no reward (UNC_noreward) were time-locked at the time of feedback 
with a duration corresponding to the TR (2.28 s).

All the following regressors were convolved with the HRF, as de-
scribed above (see the “Reinforcement model architecture” section). A 
parametric regressor aimed to capture choice location (cClo) was nor-
malized and time-locked at the time of response. Three fully parametric 
regressors were time-locked at the time of decision and were modu-
lated by the expected value of the chosen (choV), unchosen (uncV), 
and unpresented (unpV) options based on the reinforcement learn-
ing model described above (2). Further regressors were derived from 
the same model. Two parametric regressors were intended to capture 
CL-trace and the choice trace associated with the unpresented option 
(unpCT). They were normalized and time-locked at the time of deci-
sion. An additional parametric regressor modeled the comparison 
between the stimulus choice traces (CS-traces) associated with cho-
sen and unchosen options (choT-uncT). It was also time-locked at the 
time of decision and normalized. Two parametric regressors time-
locked at the time of feedback onset and normalized captured vari-
ance in the BOLD signal explained by the reward trace (R-trace) in 
trials in which reward was either received (rewTreward) or not received 
(rewTnoreward) for making a choice.

Contrasts were used to identify activity related to (i) the expected 
value signal associated with all the choice options regardless of their 
identity and (ii) combined reward trace signal regardless of whether 
a reward was received or not (illustrated as GRS in Fig. 5)

	
​​ 

GLM2  = ​ β​ 1​​ DEC + ​β​ 2​​ choV + ​β​ 3​​ uncV + ​β​ 4​​ unpV+

​    
​β​ 5​​ choT − uncT + ​β​ 6​​ unpCT + ​β​ 7​​ locT+

​    ​β​ 8​​ REWminusNOREW + ​β​ 9​​ UNC _ reward + ​β​ 10​​ UNC _ noreward+​     
​β​ 11​​ ​c​ Clo​​ + ​β​ 12​​ rewTreward + ​β​ 13​​ rewTnoreward+

​   

​β​ 14​​ UN ​C​ left​​ + ​β​ 15​​ UN ​C​ right​​ + ε

  ​​	

ROI analyses
Additional analyses were performed on ROIs centered on regions 
showing the highest significant differences in ventral prefrontal 
cortex activity between sham and 47/12o TUS sessions. As these 
analyses rely on coordinates estimated from contrast activation 
maps resulting from previously mixed-effects whole-brain GLMs, 
they are here reported primarily for visualization purposes.

ROIs were manually defined as a 1.5-mm-radius spherical ROI on 
the group-template image in F99 space (48) and warped back to each 
individual session’s EPI image. Activity within the mask was averaged 
across all voxels and the mean time course was extracted (table S1 and 
the Supplementary Materials). For GLM1, ROIs were placed in or ad-
jacent to the lateral orbital sulcus in or adjacent to 47/12o (left hemi-
sphere: x = −19.5, y = 9.5, z = −3; right hemisphere: x = 11, y = 9.5, 
z = 1; left hemisphere: x = −11, y = 13, z = 3.5). For GLM2, the ROI was 
placed over the ACC/anterior medial frontal cortex (right hemisphere: 
x = 5, y = 22, z = 14) and IA cortex (left hemisphere: x = −18, y = 3.5, 
z = −1). Average values of activity within each ROI were extracted 
from each session. A total number of 40 sham, 19 47/12o sessions, and 
20 aPFC sessions were used. Effect sizes for single sessions and aver-
ages within each condition (sham, 47/12o TUS, and aPFC TUS) were 
extracted for visualization as mean and SEM estimates.

Software availability
FSL can be downloaded from https://fsl.fmrib.ox.ac.uk/fsl/fslwiki. 
Tools from ANTs, as implemented in MrCat, can be found at www.
rbmars.dds.nl/lab/toolbox.html. Figures were made using tools in 
FSL, Adobe, and Biorender.com.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg7700

View/request a protocol for this paper from Bio-protocol.
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