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On the Dynamics of Resources Networks -PART I: Single Source, Same Rates

This work develops as a study of the global and individual dynamics of resources networks involving a single source. Finite resources are distributed in equal parcels at each discrete time step. Each node of the resources networks corresponds to an agent that processes the respectively received portion of resources, so that a fraction s is kept into the node, a fraction f is forwarded to connected nodes, a fraction w is transformed into work/results, and a fraction d is wasted (system inefficiency). All agents are assumed to have the same resources distribution scheme (fractions). The considered framework is potentially related to several types of real-world resources networks involving flow of energy, matter or even information, and can also be understood as a type of random walk with sources and sinks. Two reference configurations, called parallel and sequential, are identified, and it is shown that though the overall resources dynamics is completely determined in terms only of the dynamical parameters s and f, the individual signatures can vary markedly with these distinct configurations of these same parameters, as well as with the network topology. An analytical characterization of the overall resources dynamics is then presented. This is followed by additional studies of the effect of the parameters s and f , as well as the network properties, on the respectively obtained individual resource signatures. Uniformly random and a scale free types of networks are respectively considered. Several interesting results are obtained and discussed, including the observation of strong correlations between the resource values and the node degree when s + f is close to 1, while an opposite relationship has been found regarding correlations between the resources values and the distance to the source node. In addition, the considered scale free network tended to promote, at least for the considered structure and assumptions, noticeable correlation between the resource values and the node degree for a more extensive range of the parameters s and f . "... the unending intricacies of the physical world result from the continuous transformation of resources among interconnected components.

Introduction

Though causality (e.g. [START_REF] Pearl | Causality[END_REF][START_REF] Bunge | Causality and modern science[END_REF][START_REF] Da | Continuous and event-driven causality: A simple model-based approach[END_REF]) constitutes arguably one of the most important properties governing the unfolding of dynamic systems, typically the sustaining of the dynamics in these systems requires the availability and use of some respective resources, such as energy, matter, or even information. In a sense, the unending intricacies of the physical result from the continuous transformation of resources among interconnected components.

According to thermodynamics, in the case of energydriven systems, the energetic resources are used up with some respective sub-optimal efficiency by each of the components of the system, a part of which being stored, a portion being converted into some type of work, and a part being eventually transferred to other portions of the system, while some of the resource is wasted (e.g. thermally) as a consequence of the unavoidable non-optimal efficiency.

Though the previous paragraph considered a thermodynamical context, approaches to dynamic systems can be immediately generalized to other types of resources, including matter and information, therefore encompassing a large range of real-world systems. Possible examples include: processing plants of several types, ecologic systems, food-webs, economic systems, devices (e.g. mechanical, electronic, etc.), chemical reactions, transportation vehicles (e.g. airplanes, trains, etc.), and information processing systems (e.g. circuits, computers, and neuronal networks), to name but a few. As possible examples of systems in which the resources correspond to information, we could mention the preservation of oral or recorded knowledge among a group of people, or the aging of cells as a consequence of loss of DNA information. In the latter example, we could understand the subsequent groups of new cells constituting a respective hierarchy along time. Indeed, the resources networks considered in the present work may also encompass trees/hierarchies.

All these systems share the following features: they run on finite resources, they are composed of several interconnected components (or agents), and they are supposed to adhere (hopefully in optimal manner) to specific requirements and demands, especially regarding the respective performance. Given the finite availability of resources characterizing virtually every real-world dynamical system, it becomes of paramount importance to study how the resources are handled by the system which determines, among other possibilities, the time of operation of the system, as well as the respectively obtained results.

The present work is aimed at reporting a network science-based approach to develop a generic framework for study of resource-based systems such as those mentioned in the above paragraphs. More specifically, complex networks are considered in which each node corresponds to an agent receiving and processing a given amount of resources from the respective source or from other agents.

The system dynamics unfolds along time discrete steps. At each of these steps, fractions of the resources received by each agent are: kept in that node (with rate s), used to obtain results such as physical work (rate w), transferred to other connected agents (rate f ), wasted (e.g. thermally) at rate d as a consequence of the inefficiency of the processing by the node. The total fraction of resources remaining at each node after each discrete time step corresponds to α = s + f . The networks considered in this work also include a single source or resources, being represented by respective nodes that have only outgoing connections. Though other schemes are possible, in the present work the resources are distributed equally among the connected agents at constant parcels b along time until the initial amount is fully used up. The respective dynamics is simulated by using mathematic-computational means, yielding complete information about the amount of resources handled by each agent along time.

Though studies of dynamical systems are often performed at equilibrium, the present work aims at taking into account also the initial and final transient dynamics taking place respectively at the beginning of the dynamics, as the agents progress to equilibrium states, and after the supplying of the resources terminates.

Interestingly, the approach developed in the present work to model and study resources networks can also be directly related to the important issue of causality, in the sense of continuous causation (e.g. [START_REF] Da | Continuous and event-driven causality: A simple model-based approach[END_REF]). In this sense, the considered resources networks can be also understood as exerting continuous causality, with the respective signals of interest corresponding to the flow of resources along time discrete steps. This possible complementary interpretation of the addressed resource networks can be more directly appreciated in the case of the resource corresponding to energy, in the sense that the latter has been intuitively associated to causation (e.g. as in electric and electronic circuits and system).

The present work starts by providing a brief review of some works related to the context of the present study. Then, the considered resources networks are described in terms of their agents, source, and parameters, which are then illustrated in terms of two reference topologies, respectively called parallel and sequential that lead to markedly distinct dynamic properties as observed from each of the nodes.

A relatively comprehensive analytical characterization of the overall dynamics taking place in resource networks is the developed and presented. These results, which include the calculation of the equilibrium value and rise time during and after source operation, corroborate that the overall dynamics of the considered networks depend only on the parameters α = s + f and b. However, the individual resource signatures are found to depend on a more sophisticated combination of dynamic and topological parameters, including s and f taken in different combinations as well as the interconnecting properties of the respective networks.

The remainder of the present work then unfolds as a study of the possible features influencing the individual resources dynamics, with emphasis to the topological features of node degree and distance to the source nodes. Several interesting results and findings are reported and discussed which opens many possibilities for further related research, some possibilities of which are then briefly identified as a conclusion to this work.

A Brief Review of Related Works

The present work is intrinsically about scientific modeling (e.g. [START_REF] Peterson | Petri Net Theory and the Modeling of Systems[END_REF][START_REF] Heinz | Mathematical Modeling[END_REF][START_REF] Da | Analyzing and modeling real-world phenomena with complex networks: a survey of applications[END_REF][START_REF] Da | Modeling: The human approach to science[END_REF][START_REF] Da | An ample approach to modeling[END_REF]). More specifically, mathematical constructions are developed in order to model and/or optimize systems involving the distribution and processing of finite resources. Examples of related modeling approaches include but are not limited to [START_REF] Chen | Discrete flow networks: Bottleneck analysis and fluid approximations[END_REF][START_REF] Herty | Modeling, simulation, and optimization of traffic flow networks[END_REF][START_REF] Danila | Transport optimization on complex networks[END_REF][START_REF] Tkačik | Optimizing information flow in small genetic networks[END_REF][START_REF] Herlich | Optimizing energy efficiency for bulk transfer networks[END_REF][START_REF] Dai | Optimal topology design for dynamic networks[END_REF][START_REF] Fang | Vmplanner: Optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers[END_REF][START_REF] Xi | Optimizing resources allocation for fog computingbased internet of things networks[END_REF].

The models developed in the present work are also directly related to the concept of flow and diffusion in complex networks, a subject that has been addressed in several works including but by no means limited to [START_REF] Lovász | Random walks on graphs[END_REF][START_REF] Noh | Random walks on complex networks[END_REF][START_REF] Zinn-Justing | From random walks to random matrices[END_REF][START_REF] Berg | Random Walks in Biology[END_REF][START_REF] Da | Correlations between structure and random walk dynamics in directed complex networks[END_REF]. In particular, the developed models incorporate drains (or sinks) to the flow of resources, therefore being related to works involving directed networks as those described in [START_REF] Lambiotte | Random walks, markov processes and the multiscale modular organization of complex networks[END_REF][START_REF] Takaguchi | Cycle and flow trusses in directed networks[END_REF][START_REF] Souza | Topology and dynamics in complex networks: The role of edge reciprocity[END_REF], among other interesting approaches.

Another context relevant to the present work consists in developments aimed at studying the relationship between complex networks topology and dynamics, which include [START_REF] Bornholdt | Topological evolution of dynamical networks: Global criticality from local dynamics[END_REF][START_REF] Newman | The structure and dynamics of networks[END_REF][START_REF] Herrera | General coevolution of topology and dynamics in networks[END_REF] among other possibilities.

Resources Networks

We shall henceforth understand resources networks as corresponding to complex networks in which nodes may correspond to agents or sources of resources. For simplicity's sake, the current work assumes that only one of the network sources is used as a resource source. In principle, the nodes could interconnect in any manner, but we will restrict our attention to a networks consisting of a single strongly connected component, in which there is a path between any of the non-source nodes, while the source node send (but not receives) resources to at least one of the other nodes.

Figure 1 illustrates a source, represented by a double circle, driving a total of n respectively attached agents. At each discrete time step t, a parcel b of resources is shared equally among the n nodes, so that each of them receives an identical amount of resources equal to b/n. Resources parcels are released from the source into the network according to the above indicated schedule until it becomes depleted, which happens after T = 1/b discrete time steps. The amount of resources S [t] at the respective source therefore changes according to the following difference equation:

S [t+1] = max{0, S [t] -b} (1) 
with S [t=0] = 1, so that the sources is completely depleted after T time steps.

Each of the nodes implementing the resources nework agents are as that shown in Figure 2. i is converted into useful work; (iii) the fraction

f i = f i,k r [t]
i is forwarded to the neighboring nodes k = 1, 2, . . . , m; and (iv) the fraction d i r

[t]

i is lost into the drain shown as a triangle ('thermal inefficiency').

The total amount of resources received by each node i from the source and/or other agents at a given time step t corresponds to:

r [t] i = n j r i,j (2) 
out of the current amount of resources

x [t]
i in node i, a fraction s is kept at the node i, a fraction f is forwarded to the nodes k = 1, 2, . . . , m attached to i in identical portions

f k = f m x [t] i . f = m k f k (3) 
The amount of resources that stays in the node and that forwarded to other nodes corresponds to the portion

α = s + f of x [t]
i that is conserved within the network. The new amount of resources at node i at the next discrete time instant t + 1 can then be expressed as:

x [t+1] i = s x [t] i + r [t] i (4)
At the same time, a fraction e = w + d of the current resources x

[t]

i at node i is dissipated or drained into two sub-fractions: one fraction w implementing useful work/results, and another d understood as wasted resources.

In order to account for all above types of destinations of the amount of resources x

[t] i at node i at discrete time t, we henceforth impose:

s + f + w + d = s + f + e = 1
(5)

The efficiency with which the amount wx

[t] i of work/results can be obtained out of the dissipated resources ex

[t]
i is henceforth expressed as:

ε = 100 w e % ( 6 
)
Given that in this work we assume that all agents have the same dynamical parameters s, f, w and d, it follows that all them will also have identical efficiencies ε defined as above.

Two Reference Configurations

In this section we will consider two basic topologies of resources networks associated to two main types of resources distributions, namely: parallel example in Fig. 3) and sequential (example in Fig. 5). In particular, these two types of interconnections between processing agents can be used as prototypical references to better understand the dynamics of resources in more intricate network such as those studied in Section 6.

Let us start with the parallel organization illustrated in Figure 3. Here, we have all four agents (nodes) received resources directly from a single source implemented by node 5. In addition, the nodes are interconnected in a ring so that the fraction of forwarded resources can be conserved. In addition, this configuration can be observed to be characterized by all nodes having exactly the same interconnecting patterns, being undistinguishable one another as far as this property is concerned. i , i = 1, 2, . . . , N , as observed at each of the four involved agents while considering s = 0.2, f = 0.6 and b = 1/60. Three dynamic regimes can be identified: (a) initial transient T 1 , (b) equilibrium E; and final transient T 2 . Interestingly, the equilibrium period is achieve as the system continuously receives resources from the source and, once its action terminates, the system converges to null equilibrium through exponential decay. As could be expected, the obtained resources signatures are identical as a consequence of the completely symmetric interconnectivity of the nodes. Because the individual resources signatures are necessarily identical, adding up to a respective overall signature, they can be immediately obtained by dividing the latter by the number of agents. This type of configuration is then characterized by null dispersion of dynamic signatures. A similar situation arises when all the four agents are mutually interconnected into a single clique.

The other reference topology of resources network considered in the present work is exemplified in Figure 5 respectively to a single source and 4 nodes/agents connected as a ring. Unlike the topology in Figure 3, there is no longer a perfect topologically symmetry between the involved nodes, because the attachment of the source only to node 1 breaks the previous symmetry. As a consequence, distinct individual resources signatures could be expected to take place at each of the involved nodes.

Distinct individual resources signatures have indeed verified in the simulated individual signatures shown in Figure 6, obtained using the same parameters s = 0.2 and f = 0.6 as before. Though all the obtained signa- tures closely (but not exactly) share the same three dynamic regimes, not only among themselves but also with the signatures in Figure 4, each of the obtained signatures has a distinct equilibrium value while also presenting some variations regarding their position along the time-axis as well as some differences in shape, especially at the beginning of the transient periods T 1 and T 2 . Also of interest is the fact that the signatures are more distinct one another within T 1 and E than inside T 2 , the latter consisting of mostly similar exponential decays.

There are several implications of having different individual signatures in a resource network, including the fact that this will imply different resource loads into the respective agents. Unless these agents have their capabilities adapted to the respectively received amount of resources, most of them will result overdimensioned. Another result of particular relevance regards the fact that the amounts of resources found within each successive agent i = 1, 2, 3, 4 along the period E decrease steadily. This is indeed expected because less resources tend to be passed to subsequent agents long the considered ring topology. At the same time, the equilibrium values can be verified not follow a simple geometric progression between themselves.

Figure 7 illustrates individual resources signatures obtained for nine respectively indicated combinations of the parameters s and f while considering the resource network topology in Figure 5, all with b = 1/60. Several interesting results can be observed from the individual signatures in Figure 7. First, we have a quite distinct shape of individual signatures obtained for α ≈ 1, corresponding to the configurations shown in (a-d), as compared to the signatures obtained for the other configurations shown in the figure. This is a direct consequence of the configurations in (a-d) operating near the situation α = 1, in which all injected resources are preserved within the network. As a consequence, a slow increase of the network resources is observed, being followed by a relatively slow exponential decay in the configurations (b-d). No equilibrium regime can be identifies in the cases (a-d). In all other situations, the individual signatures undergo a relatively sharp increase (T 1 , followed by an equilibrium period E, and the final transient period T 2 .

Observe also the varying separations between the individual signatures obtained in each of the nine considered parameter configurations shown in Figure 7. Also interesting is to observe that the swap between s and f , illustrated in the situations (e) and (i) imply in markedly distinct distributions of individual signatures. Now, let us consider the two-stages chained resources network shown in Figure 8. For simplicity's sake, we shall refer to the equilibrium values at the two successive nodes as x and y. So, we have the following:

x = sx + f y + b y = f x + sy
from the second equation:

y = f x 1 -s
substituting into the first equation:

x = s x + f f x 1 -s + b ⇒ ⇒ x = (1 -s) b 1 -2s + s 2 -f 2
So that: The following relation between the equilibrium resource values at the first and second stages can now be derived:

x eq = (1-s) b 1-2s+s 2 -f 2 y eq = f b 1-2s+s 2 -f 2
γ = x eq y eq = 1 -s f = 1 -s 1 -s -e = s -1 s + e -1 (7) 
An analogous approach can be used to chained resource networks involving N nodes, leading to the same ratio γ. Therefore, the sequence of equilibrium values in a ring configuration as shown in Figure ?? follows a geometric progression with rate 1/γ.

Analytical Characterization of the Overall Dynamics

So far, we have considered only the unfolding of the system dynamics as observed from each of the involved agents. However, it is also important to consider the overall amount of resources R(t) to be found within the dynamical system at any discrete time t = 0, 1, . . .. Figure 9 depicts R(t) for the system configuration in Figure 5, which is the same for the system in Figure 3 as they share the same parameter configuration s = 0.2, f = 0.6 and b = 1/60. As could be expected, the overall amount of resources along time also presents the same previously observed regimes T 1 , E and T 2 . Interestingly, however, the total curve is much smoother than the individual curves in Figure 6. Actually, as it will be developed in this section, the overall dynamics of the resources networks considered in the present work depends only on the parameters b and α = s + f . This follows from the fact that: (i) all agents are assumed to have the same parameters s and f ; and (ii) the resources are released at constant portions b.

The networks are henceforth assumed to be strongly connected, so that the resources released from the source can reach any of the possible network agents (nodes other than that assigned as source).

Indeed, each parcel b of resource released into the system will inevitably be conserved in the system with flow b(s + f ), while the portion be = b(w + d) will be sinked (wasted or transformed into work/results). This interesting property of the considered resources networks allow them to be subsumed in terms of the simplified model shown in Figure 10, allowing exact calculation of the over-all resources dynamics as described in the remainder of this section. The type of resources networks adopted in the present work allow their overall resources dynamics be exactly modeled in terms of the simple subsumed model presented in this figure, which involves the source, a subsumed node with the same rates as the individual nodes, and a sink corresponding to the resources converted into work/result and wasted as a consequence of the system inefficiency. Recall that e = w + d. Interestingly, the specific topology of each of the considered networks will have no effect whatsoever on the overall resources dynamics, but will still imply intricate distributions of individual resources observed at each of the involved agents/nodes. We start with the basic time-discrete master equation governing the network dynamics, without source (unforced) but with initial condition x [t=0] = b, which yields:

x [t+1] = (s + f )x [t] = αx [t] (8) 
x

[t=0] = b (9) 
where x [t] is the state of node 1 at discrete time instant t = 0, 1, . . . , T = 1/b. Now, consider the ansatz :

x(t) = ge ht (10) 
From the initial condition, we derive:

x(t = 0) = ge h0 = g = b, (11) 
so that:

x(t) = be ht ⇒ ⇒ be h(t+1) = be ht e h = α be ht ⇒ ⇒ e h = α ⇒ ⇒ h = ln α = β (12) 
Therefore, the time-discrete, exact solution of the considered master equation can be expressed as:

x [t] = be βt , t = 0, 1, . . . 0, t = -1, -2, . . . (13) 
The overall resources dynamics R(t) can now be derived by applying the linear superimposition principle between the exponential solution above respectively to each successive parcel of resources b, leading to:

R(t) = t τ =0 x [τ ] = = t τ =0 be βτ = b t τ =0 e βτ (14) 
which corresponds to a geometric sum with r = e β , so that we readily obtain:

R(t) = b e β(t+1) -1 e β -1 = b e β(t+1) -1 α -1 ( 15 
)
which holds for t = 0, 1, . . . , T = 1/b. From then onwards, we apply Equation 16 using the total amount of resources at time t = T as initial condition. Therefore, we have the following solution considering an amount b of resources being inject along t = 0, 2, . . . , T :

R(t) = b e β(t+1) -1 α-1 , t = 0, 1, . . . , T R(T ) e β(t-T ) , t = T + 1, T + 2, . . . ( 16 
)
Equation 17 above allows several interesting information about the overall resources dynamics to be calculated with full precision. For instance, the maximum overall amount of resources at the network at all times t = 0, 1, . . . , T can be immediately obtained as: which corresponds to a geometric sum with r = e β , so that we readily obtain:

R(T ) = b e β(T +1) -1 α -1 (17) 
The total of resources in the system for T → ∞ can be obtained as:

lim t→∞ R(t) = R eq = b 1 -α = b e (18) 
where e = 1 -α. This result can also be obtained by considering the following equilibrium discrete-time equation:

R [t+1] eq = R [t] eq = αR [t] eq + b ⇒ (1 -α)R [t] eq = b (19) 
In addition, the rise time t r after which the amount of resources in the system reaches 0.9R eq can be calculated as:

R(t r ) = 0.9 R eq = b e β(tr+1) -1 α -1 ⇒ ⇒ 0.9 b e = b 1 -e β(tr+1) e ⇒ ⇒ 0.9 = 1 -e β(tr+1) ⇒ ⇒ e β(tr+1) = 0.1 ⇒ ⇒ t r = ln 0.1 β -1 ( 20 
)
Figure 11 presents the rise time t r (a) and the equilibrium resources value R eq in terms of the parameter α. Interestingly, both these properties can be observed to increase abruptly near α = 1 -approximately along the interval [0.9, 1.0) -corresponding to a region where the resources is mostly conserved within the network, without being converted into work/results or wasted. Therefore, two markedly distinct types of overall dynamics can be observed for values of α in the intervals (0, 0.9) and [0.9, 1.0). The model of the overall resources dynamics developed in the present section can be enhanced by taking into account the formulation of the ring configuration of agents presented in Section 4. More specifically, the nodes of a given network are first organized into a respective subsumed ring structure (in case it exists), by considering the respective topological distance from the agent nodes to the source node without sending resources to the first group (i.e. those nodes receiving resources directly fro the source), until the last level involving nodes sending resources to the first group. Each of these groups of nodes, in case they exist, will then correspond to a respective module whose dynamics can be related to the overall dynamics of the constituent nodes in the identified modules.

These subsumed groups will then be understood as subsequent agents in the simple ring model in Section 4, and have their overall (sum) resource dynamics governed by the respective solution of that simpler subsumed configuration. However, the individual signatures within each of the subsequent groups will still be diverse and influenced by additional topological properties within each module, especially the node degree and eventually associated weights (strengths).

An analogous modeling approach can be developed for subsuming networks into more general topologies, such as those in which nodes belonging to successive modules can send connections to the first node.

Uniformly Random and Scale Free Resources Networks

As developed in the previous section, the overall resources dynamics R(t) unfolded in the types of resources networks considered in this work, and under the respective assumptions, depends only on the rate parameters α and b, being completely irrespective to the choice of the source, number of agents or the way in which they are interconnected. However, as already observed in Section 4, a completely different situation is determined in these same networks when the resources dynamics is observed respectively to each individual agent or node, with a diversity of curves being obtained even for a simple pipeline resource network as that in Figure 5. These preliminary results motivate us to investigate further the possible influence on the individual dynamics not only of the the type interconnection between the agents, but also of the configurations of the rate parameters s, f , and b.

In the present section, we approach this interesting problem while considering two prototypical types of interconnectivity: (a) uniformly random networks, and (b) scale free networks, which are here represented by the the Erdős-Rényi (ER) and Barabási-Albert (BA) models, respectively (e.g. [START_REF] Barabási | Emergence of scaling in random networks[END_REF][START_REF] Da | Characterization of complex networks: A survey of measurements[END_REF][START_REF] Newman | Networks: An introduction[END_REF]).

In order to avoid combinatorial explosion of network parameters, we henceforth restrict our study to networks with N = 30 nodes and average degree k = 4. In the case of the ER networks, only the maximum connected component is used. In addition, all networks are henceforth assumed to be undirected. The total amount of initially provided resources is 1 in all simulations, being released through successive parcels of b = 1/60 (T = 60). More general cases will be considered in future works.

The following results are obtained by generating a given network of ER or BA type, selecting one of its node to correspond to the source of resources, and then simulate the distribution dynamics described in the previous sections. Interestingly, though the local interconnecting properties of the node selected to act as source can strongly influence the individual dynamic signatures, as seen in Section 5 they have no influence whatsoever on the overall signature obtained for the network.

Figure 12 depicts dynamic properties of the individual resources signatures obtained for an ER resource network with N = 50 nodes, one of them (with degree 6) implementing the source, and k = 4. Recall that the location of the source tends to have a relatively minor influence on the observed dynamics given that most nodes in an ER network will have similar degree. The results in Figure 12 were obtained for s = 0.2, f = 0.5 and b = 1/60. i , all of them however characterized by the dynamic regimes T 1 , E, and T 2 . Resources are delivered from the source at constant parcels of b = 1/60 during 61 subsequent discrete time steps t = 0, 1, . . . , T = 60. The configuration α = 0.7 which, together with b, defines the overall resources dynamics implied (from Eq. 20) in a relatively short T 1 with only 5 discrete steps. All individual resources signatures have dynamic regimes similar to that obtained for the overall resources signature. Interestingly, a group of 6 individual signatures can be observed in Figure 12(a), corresponding to the respective network nodes receiving resources directly from the source. . The two obtained clusters refer to the 6 nodes directly attached to the source, and the other nodes.

Figure 12(c) illustrates the scatterplot between the distance from each network node to the source and the respectively individual resources signatures x

[t=50] i , observed at t = 50. A substantially higher Pearson correlation coefficient magnitude value has been obtained for this relationship between the respectively considered topological and dynamical properties. In addition, three clusters can be observed, corresponding to the nodes that are at successive distances 1, 2 and 3 from the network source node. Despite the relatively high Pearson correlation coefficient obtained, it should be observed that the relationship between the distance to the source and the observed x

[t=50] i is actually not actually linear. The intense negative correlation observed between the two considered properties indicates that the individual resources signatures at t = 50 tend to reduce markedly with the distance from the source. At the same time, these reductions tend to become smaller with the successive distances.

The ER network for which the dynamical results shown in Figure 12 have been obtained is shown in (d). The source node is shown in blue, and the other nodes are represented in gray-levels (from black to white) reflecting the respective values x

[t=50] i . The six nodes directly attached to the source node can be immediately identifies by respectively clearer gray-levels.

All in all, the results derived from Figure 12 plainly indicate that, though the overall resources dynamics is completely determined by α and b irrespectively of any topological property of the network as well as placement of the source node, the individual resource signatures can result markedly diverse, reflecting many topological properties of the network, including the node degree and distance to the source. It has been verified as well that the total number of network nodes and respective average degree can also have strong influence on the obtained individual signatures.

Moreover, the specific values of s and f , and not only their respective sum α = s + f , can influence the individual resource signatures. This is illustrated in Figure 13, obtained for the same network as in the previous case, but now assuming s = 0.5, f = 0.2 instead of s = 0.2, f = 0.5 as in the previous example. Interestingly, the observed changes are mostly related to an upscaling of the individual signatures x

[t]

i , implying in a relative distancing between the two observed groups in (a-c). Observe also the resulting more compact clusters, e.g. in Figure 13(c). Figure 14 presents the dynamical resource dynamic signatures and respective relationships with topological properties for the same network as before, but now considering s = 0.2, f = 0.79 and b = 1/60 as respective dynamic parameter configuration. This configuration implies α = 0.99, which is very close to the situation in which the resources are fully conserved forever in the resources network. This configuration falls plainly in the interval [0.9, 1.0), already discussed in Section 5, in which an abrupt change of resources networks can be observed.

Compared to the results in Figures 12 and13, completely distinct results can now be readily observed. To begin with, markedly different shapes of individual resource signatures can now be seen in (a), involving a long initial transient period T 1 , followed immediately by the final transient regime T 2 . Indeed, no equilibrium regime can be observed for this configuration, because a steady increase of resources is observed at each node as the resources are liberated from the source and, as soon as this flow ends, the individual signatures immediately began to decrease. In other words, the network is either storing most of the resources or slowly releasing the stored amounts. It follows that the dissipated fraction of re- sources e = w + d is of critical importance for allowing an equilibrium regime to take place in the type of resources networks considered in the present work.

Another interesting result is that, compared to the individual signatures in Figures 12 and13, those now obtained are substantially less dispersed, not even forming the cluster respectively to the 6 network nodes directly attached to the resources source.

As shown in Figure 14(b), completely distinct scatterplot has also been obtained respectively to the relationship between the topological parameter node degree and the dynamic parameter x

[t=50] i . More specifically, now we have a particularly strong Pearson correlation coefficient with value approaching full correlation. Yet, two relatively well-separated groups, both of which intrinsically correlated, can also be observed in Figure 14(b), one of them corresponding to the 6 nodes received resources di-rectly from the source.

Of additional interest is the fact that, for α = 1, we have from previous results (e.g. [START_REF] Da | Correlations between structure and random walk dynamics in directed complex networks[END_REF]) that full correlation should be observed, after the dynamics reaches equilibrium, between the resources at each node and the respective node degree.

Regarding the relationship between the distance to the source node and the dynamic variable x

[t=50] i , we can observe an opposite effect, in the sense that a much weaker magnitude of Pearson correlation coefficient has been obtained compared either to the value obtained for the relationship between x

[t=50] i and the degree in the case of this example, or even the Pearson correlation coefficient magnitude observed for the previous two examples. At least for the specific configuration leading to the results in Figure 14, it seems that the increase of the relationship between x

[t=50] i and the node degree has been achieved at the expense of the respective correlation with the distance to the source node.

Compared to the respective results in Figures 12(d on the distance to the source is markedly small in the case of alpha ≈ 1, at the same time that the strong correlation is established between x

[t=50] i and the node degrees. Thus, the gray-levels in Figure 14(d) most reflect the degrees of the respective nodes.

All in all, though restricted to a single ER network with source fixed at the same node and concerning a few parametric configurations, several interesting results have been presented and discussed in the present section. Of particular interest, we have the confirmation that the individual resources signatures can be influenced by many more factors than the respective overall signature, which depends only on α and b. In addition to being influenced by the network topology, it has also been confirmed that the simple swap between s and f , without changing α, can lead to substantial magnitude changes in the observed individual resources signatures. The critical influence of having α in the interval [0.9, 1.0) has also been conclusively illustrated.

In order to better understand the influence of the parameters s and f on the resulting resources individual dynamics, we consider systematic respective combinations in an ER and a BA network.

7 Systematic Variation of the Dynamic Parameters s and f

Now, we study the individual resources signatures in an ER and in a BA network while systematically considering systematic combinations between 21 equally spaced values of s = 0.1 and f so that α = s + f < 1. At the same time, the interesting dynamical properties discussed in the previous section are summarized in terms of the average standard deviations of the observed dynamic variable x

[t=50] i (a), as well as the Pearson correlation coefficients between the latter and the degree (b) and the distance to the source node (c). The results obtained respectively to an ER network for N = 50 and k = 8 are presented in Figure 15. The results respective to a BA network with the same size and average degree are depicted in Figure 16. Only the lower diagonal of the shown matrices are valid as the respective entries correspond to the adopted situation α = s + f < 1.

Regarding the standard deviation of the dynamic variables x

[t=50] i , whose averages for all network nodes are shown in Figures 15(a) and 16(a), we have moderately larger value (0.0023) obtained for the latter type of network. This is reasonable given the larger node degree variation typically found in a BA network with the same parameters as an ER counterpart. Interestingly, the dispersion of x

[t=50] i decreases steadily as one moves away from the main diagonal toward the lower triangular portion of the resulting matrices for both types of network. This means that the largest diversity of x [t=50] i values are found for relatively large values of α, while also increasing with the dynamical parameter s.

The obtained averages of the Pearson correlation coefficient between the variable x [t=50] i and the network node degrees, shown in Figures 15(b) and 16(b), indicate a substantially different situation between the ER and BA networks. More specifically, in the former case, we have that this correlation decreases abruptly as one moves away from the main diagonal into the lower triangular portion of the matrix. At the same time, the correlations near the main diagonal tend to increase for smaller values of s. Thus, the considered ER resource network is characterized by strong relationship between the resource values x

[t=50] i and the node degree for large values of α = s + f and relatively small values of s, while a much less definite relationship between these two variables are otherwise observed.

A completely distinct situation is verified in the case of the considered BA network, which resulted in a much more homogeneous distribution of Pearson correlation values throughout the lower triangular portion of the respectively resulting matrix in Figure 16(b), which also tends to increase for smaller values of s. This result has special relevance, as it indicates that, at least for the considered network and respective assumptions adopted in this work, BA resource networks tend to be characterized by having a substantially stronger relationship between the resource values x

[t=50] i and the node degrees than in the case of the ER network.

Similar results have been obtained for the considered ER and BA network concerning the Pearson correlation between x

[t=50] i and the distance to the source, as shown in Figures 15(c) and 16(c). Interestingly, in both cases it is possible to observe that the correlation tends to decrease as one moves away from the main diagonal toward the lower triangular part of both matrices. Therefore, an opposite trend can be observed regarding the correlations between the dynamic variable x

[t=50] i and the topologic parameters corresponding to the node degree and the distance to the source. This effect, which had already been observed in the examples discussed in Section 6, indicates that the resource dynamics taking place within the interval [0.9, 1.0) are characterized by strong correlation between x

[t=50] i and the node degree and weak correlation between x

[t=50] i and the distance to the source for both the ER and BA networks, while an opposite relationship is observed within the interval (0.0, 0.9). This can be explained by the fact that, in both types of networks operating in the interval [0.9, 1.0), the values x the nodes to receive small amounts of resources at each discrete time step. In addition, the extension of cases with noticeable correlations in Figure 18 also underwent a relative reduction, being more constrained near to the main diagonal than the distribution of values in Figure 16.

In order to discuss the effect of the average node degree on the individual resource dynamics of ER and BA networks, Figures 19 and20 

Concluding Remarks

Several real-world (as well as model-theoretic) systems involve the distribution of a finite amount of resources among the respective components, which handles these resources so that, at each time instant: (i) a fraction s of the resources is retained, (ii) a fraction f is transferred to other components, (iii) a fraction w is converted into work or other types of results, and (iv) a fraction d is wasted. While the first two actions act toward conserving the resources into the system; the later two implement a drain of resources. The efficiency of each component can then be quantified in terms of the ratio ε = w/e.

Because the resources can be understood to be of any type -including energy, matter, and even informationthe above mentioned systems can be related to varying levels of adherence to real-world system including processing plants of several types, ecology and food-webs, economic systems, devices (e.g. mechanical, electronic, etc.), chemical reactions, transportation (e.g. cars, bicycles, trains, etc.), as well as information processing systems (e.g. circuits, computers, and neuronal networks), among many other possibilities.

The present work aimed at developing a modeling approach of the above type of systems so that global and local dynamical properties of the resource amounts along discrete time steps could be estimated and analyzed. The importance of this type of approach cannot be overemphasized because of its potential for better understanding and managing resources in a wide range of resources systems, here represented in terms of respective complex networks.

Several interesting results have been reported in the present work, which are specific to the resources networks considered in this work and the respectively adopted topologies and parameter configurations, including the following:

[1] -Identification of two reference topologies: Several aspects of the dynamics of resources networks can be understood from the perspective of two prototypical topologies, namely parallel and sequential. While the former is characterized by all agents having identical individual signatures, the latter typically leads to markedly or even (complementary) distinct signatures;

[2] -Overall dynamics depends only of two dynamic parameters: It has been verified that the overall resources signature of the resources networks addressed in the present work depend only on the parameters α and b, irrespectively of other dynamic parameters or the topological features of the respective networks;

[3] -Derivation of full analytical results for overall dynamics: Analytical results have been obtained for characterizing the overall resources signature, as well as several respective important properties including equilibrium value and rise time;

[4] -Identification of an abrupt transition between parameter configurations: The obtained individual signatures undergo an abrupt change as one moves from values of α in the intervals [0, 0.9] to values in the interval [0.9, 1.0). This suggests a critical effect of the parameter α on the respective distribution of resource in the considered networks;

[5] -Individual dynamics not only on α = s + f , but also on several other factors: It has been found that not only the specific values of the parameters s and f can influence the individual signatures, but that the latter is highly influenced by the network topology. This means that different models of interconnectivity can lead to markedly distinct individual signatures, therefore motivating further analysis of how the topology of the resources networks determines their individual resource signatures;

[6] -No, or short equilibrium regimes are observed for both ER and BA networks operating near α = 1: In these cases, most of the injected resources remain for a relatively long time within the network, precluding the onset of noticeable equilibrium regime for the considered value of b, so that the final transient period T 2 almost immediately follows the initial transient regime T 1 ;

[7] -Observation of larger diversity of individual signatures for α ≈ 1: It has been verified that the standard deviation of the resource values x

[t=50] i tend to be larger near the parameter configurations with α ∈ [0, 0.9] than for the other possible configurations. At the same time, this diversity of individual dynamics also tends to increase with the parameter s. This suggests that resource networks operating with high conservation tend to present more diversified resource values along its dynamics; tend to be strongly related to the node degree in the case of relatively high resources conservation: It has been observed that resources networks operating near α = 1 present strong Pearson correlation coefficients between the resource values and the node degree. Thus, in these cases that individual dynamic property can be predicted with a relatively high level of accuracy from the degree of the respective nodes;

[9] -Relatively high correlations have been observed between the individual values x

[t=50] i and the distances to the source node for both ER and BA networks for values of α departing from 1: Except for the cases in which α ≈ 1, it has been observed that x

[t=50] i tends to be related to the distance to the respective source node, which is explained in the light of the sequential reference model (item [START_REF] Pearl | Causality[END_REF] above) yielding decreasing individual signatures along the successively connected nodes; and the node degree for most of the valid configurations of the dynamic parameters s and f . This suggests that the hubs in the BA network implement an effective distribution of the resources delivered from the respective source among the other nodes with smaller degrees in the network, therefore relatively diluting the effect of the distance to the source on the dynamics and leading to the values of x In addition, we have that the addressed resource networks provide an interesting example of a simple linear system which can produce complex distribution of individual dynamics.

Though the reported developments provide an illustration of how a simple model of a specific, though important, type of dynamics related to resources processing, can lead to an impressive diversity of interesting and even surprising concepts and results, it should be kept in mind that the latter are but a source of insights about possible phenomena underlying real-world systems, to be further investigated and validated including by using complementary and more specific approaches.

The diversity of insights and results originating from the present work paves the way to a large number of related future developments, of which we shall mention only a few examples. Of particular interest would be to consider resource networks involving multiple sources, including situations involving more than one type of resource, as well as agents with heterogeneous dynamic parameters. These prospects should be addressed in a possible forthcoming study. In addition, a better understanding of the several parameters and issues determining the individual resources signatures could be achieved by varying the size and average degree of the networks in a more systematic manner, as well as considering additional network types including geographical and modular structures, as well as weighted networks.

Though the present work assumed the resources to be released at equal parcels along successive time steps, it is also possible to consider other releasing schedules, such as sum of random exponentials being related to the Gamma distribution. Another potentially promising approach would be to apply coincidence similarity approaches (e.g. [START_REF] Da | On the self-coincidence structure of networks[END_REF][START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | A brief guide to the coincidence similarity and its applications[END_REF]) as a means to identify relationships between resource networks nodes presenting similar individual resources signatures.

Another particularly enticing possibility, noticeable for its recursiveness, would be to apply the concepts and results reported in the present work to study how science itself develops as propelled up by the existing knowledge and provided support resources, including grants and involved personnel. This issue is of special relevance because related results could contribute to making scientific development even more effective, which could in itself establish a positive feedback in improving our knowledge about the use of finite resources. An equally challenging project would be to integrate more closely the critically important issues of resources usage with that of causality.

Figure 1 :

 1 Figure 1: The distribution, among the n nodes attached to a source, of the the parcel of resources b released by the source at each discrete time step t. Each of the n nodes receives an equal amount b/n of resources.

Figure 2 :

 2 Figure 2: The basic dynamics at each node i in the resources networks as considered in the present work involves receiving, at each time instant t, an amount r i = j r [t] j , j = 1, 2, . . . , n, from sources or other nodes, which is then distributed according to four following possible manners: (i) the fraction s i r [t] i remains at node i; (ii) the fraction w i r [t]

Figure 3 :

 3 Figure 3: Example of parallel resources network including four agents (nodes) received resources directly from the respective source (node 5) and being interconnected in a ring. Observe the complete symmetry of interconnections, in the sense that all agents are identically interconnected in this topology. The fraction of resources transferred from one agent to the next is shown as f , while a fraction s remains at each agent.

Figure 4

 4 Figure 4 illustrates the individual resources signatures x [t]

Figure 4 :

 4 Figure 4: Identical individual resource dynamics signatures x [t] i at nodes indicated by i are obtained in the case of parallel resources networks such as that in Fig. 3 as a consequence of the perfect interconnecting properties of each of the involved agents (nodes), except for the source node. This example assumed s = 0.2, f = 0.6, and b = 1/60. All individual signatures are characterized by three dynamical regimes: (a) initial transient T 1 , (b) equilibrium E; and final transient T 2 .

Figure 5 :

 5 Figure 5: Example of sequential resources network involving 4 agents/nodes and a single source at node 5, which is attached only to agent 1, therefore breaking the interconnecting symmetry. The fraction of resources transferred from one agent to the next is shown as f , while a fraction s remains at each agent.

Figure 6 :

 6 Figure 6: The three dynamical regimes typically undergone by the agents: (a) the initial transient period T 1 , along which the agents are filled with resources; (b) the equilibrium E period; and (c) the final transient period T 2 along which the agents become empty of resources. Typically, resources are released from the respective source at constant amounts along the time intervals T 1 and E. The dynamics shown here was obtained from the resource network in Fig. 5 assuming s = 0.2, f = 0.6 (thus α = 0.8), e = 0.2, and b = 1/60.

Figure 7 :

 7 Figure 7: Examples of individual resources signatures obtained for the resource network topology in Fig.5respectively to nine different configurations (shown as respective titles) between the dynamic parameters s and f . In all cases, we have b = 1/60. Even though all these configurations share the same overall resources signature (sum of all individual signatures), an impressive diversity of individual signatures can be observed for the combinations of dynamic parameters considered in this figure. Of particular interest is the abrupt changes in the type of obtained individual signatures observed as α = s + f progresses through the values 1.00, 0.98, 0.95 and 0.90 as shown from (a) to (d). Though in all cases the signatures decrease in magnitude along the agents/nodes i = 1, 2, 3 and 4, the respective subsequent values can be verified to follow a geometric progression. Please refer to the text for additional discussion.
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 8 Figure 8: A resource network involving a ring with two agents.

Figure 9 :

 9 Figure9: The total amount of resources R(t) within the system configuration in Fig.5along the time t, assuming s = 0.2, f = 0.6 and b = 1/60. As in the case of the dynamics observed for each individual agent, the obtained dynamics also involves the three previously identified regimes T 1 , E, and T 2 . This curve can be obtained by adding each of the individual resource curves in Fig.6

Figure 10 :

 10 Figure10: The type of resources networks adopted in the present work allow their overall resources dynamics be exactly modeled in terms of the simple subsumed model presented in this figure, which involves the source, a subsumed node with the same rates as the individual nodes, and a sink corresponding to the resources converted into work/result and wasted as a consequence of the system inefficiency. Recall that e = w + d. Interestingly, the specific topology of each of the considered networks will have no effect whatsoever on the overall resources dynamics, but will still imply intricate distributions of individual resources observed at each of the involved agents/nodes.

Figure 11 :

 11 Figure 11: The rise time tr (a) and the equilibrium overall resource Req (b) in terms of thw parameter α = s + f = 1 -e. Both these properties undergo an abrupt increase near α = 1, for which full conservation of the resources is observed. The insets present respective zoomed out visualizations of the respective curves.
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 12 Figure 12: Example of individual resources dynamic properties obtained for an ER resource network with topological parameters N = 50 nodes, average degree k = 4, and dynamical parameters s = 0.2, f = 0.5 and b = 1/60. Shown in this figure are: (a) the several obtained individual resources signatures x [t] i ; (b) the scatterplot between the node degree and the individual resources amounts at t = 50; (c) the scatterplot between the distance from each node to the source and the individual resources amounts at t = 50; and (d) the considered ER network where the source has been indicated in blue while the agents gray levels (from black to white) correspond to the respective individual resources amounts at t = 50. The Pearson correlation coefficients of the scatterplots in (b) and (c) are respectively indicated.

Figure 12 (

 12 b) depicts the scatterplot between the degree of the network nodes and the respectively individual resources signatures x [t=50] i , observed at t = 50. These two properties are characterized by a particularly small Pearson correlation coefficient of just 0.0634, indicating little relationship between the topological property of node degree and the dynamical property x [t=50] i

Figure 13 :

 13 Figure 13: Example of individual resources dynamic properties obtained for an ER resource network with topological parameters N = 50 nodes, average degree k = 4, and dynamical parameters s = 0.5, f = 0.2 and b = 1/60. Though having the same parameter α = 0.7, a distinct distribution of individual resources signatures can now be observed as a consequence of swapping the values of the dynamical parameters s and f . Different Pearson correlation coefficient values have also been obtained.

Figure 14 :

 14 Figure 14: Example of individual resources dynamic properties obtained for an ER resource network with topological parameters N = 50 nodes, average degree k = 4, and dynamical parameters s = 0.2, f = 0.5 and b = 1/60. Observe that the parameter α = s + f = 0.99 adopted in this example is very close to the configuration leading to full preservation of the resources within the network, also implying particularly strong correlation between the individual amount of resources and the node degrees at the equilibrium of the respectively obtained resources dynamics. Shown in this figure are: (a) the several obtained individual resources signatures; (b) the scatterplot between the node degree and the individual resources amounts at t = 50; (c) the scatterplot between the distance from each node to the source and the individual resources amounts at t = 50; and (d) the considered ER network where the source has been indicated in blue while the agents gray levels (from black to white) correspond to the respective individual resources amounts at t = 50. The Pearson correlation coefficients of the scatterplots in (b) and (c) are respectively indicated.

  ) and 13(d), the distribution of the values x [t=50] i among the nodes in the visualized network now results more uniformly distributed, becoming much more difficult to spot the 6 nodes receiving resources directly from the source as in the two previous examples. That is mainly because the dependence of x [t=50] i

  by the respective node degrees, which are not necessarily related to the distance to the source. 8 Effects of Network Size and Average Node Degree In the previous section, the effects of systematic variations of the parameters s and f on the individual dynamics were considered respectively to ER and BA networks with N = 50 and k = 8. In order to have some indication on the possible effects of the parameters N and k , in the present section we consider experiments analogous to those shown in Figures 15 and 16, but adopting N = 200 nodes and N and k = 40. Figures 17 and 18 present these results respectively an ER and an BA networks with N = 200 and k = 8. Comparatively to the results derived for N = 50, it can be observed that smaller values have been obtained for the average standard deviation of x [t=50] i (a), as well as the magnitudes of the Pearson correlations with the node degree (b) and distance to the source (c). These reductions are related to the fact that a larger network is less effectively influenced by a single source, implying most of

Figure 15 :

 15 Figure 15: Dynamical properties of an ER network with N = 50 and k = 4, considering averages among all the nodes except the source. The average standard deviation of the individual amount of resources at t = 50 (a), and the average Pearson correlation coefficients obtained between those resource values and the degree (b) and distances to the source (c). The averages/standard deviation of the non-zero values are also shown respectively. All original values of the latter case are negative. The values in the three cases are shown to the third power of their magnitude in order to visually emphasize their variation.

Figure 16 :

 16 Figure16: Same as in Fig.15, but respectively to a BA network with the same number of nodes and average degree.

  present results about the individual signatures obtained respectively to ER and BA networks with N = 50 and k = 30. Compared to the results shown in Figures 15 and 16, we can observe, for both the ER and BA cases, that smaller standard deviations of x [t=50] i have now been obtained at the same time that both averages of the Pearson correlation coefficient have become larger in magnitude. The reduction of the average standard deviation of x [t=50] ican be related to the more uniform distribution of resources implemented by a respectively larger average degree. The increases of the average Pearson correlation coefficients follows probably from the fact that more agents in these networks tend to receive noticeable amounts of resources at each discrete time step.

Figure 17 :

 17 Figure 17: Same as in Figure 15, but respectively to a ER network with N = 200 and average node degree k = 8.

Figure 18 :

 18 Figure 18: Same as in Figure 16, but respectively to a BA network with N = 200 and average node degree k = 8.

Figure 19 :

 19 Figure 19: Same as in Figure 15, but respectively to a ER network with N = 50 and average node degree k = 30.

Figure 20 :

 20 Figure 20: Same as in Figure 16, but respectively to a BA network with N = 50 and average node degree k = 30.

[ 8 ]

 8 -The individual resource values x [t=50] i

[ 10 ]

 10 -The correlation between the individual values x [t=50] i and the node degrees is more extensive in BA networks than in ER counterparts: Interestingly, when compared -please refer to Figs. 15(b) and 16(b), to the ER network the considered BA network led to relatively higher correlations between the resource values c x [t=50] i

  [t=50] i to reflect more closely the respective node degrees.
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