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Abstract 

Background: Genotyping and sequencing technologies produce increasingly large numbers 

of genetic markers with potentially high rates of missing or erroneous data. Therefore, the 

construction of linkage maps is more and more complex. Moreover, the size of segregating 

populations remains constrained by cost issues and is less and less commensurate with the 

numbers of SNPs available. Thus, guaranteeing a statistically robust marker order requires 

that maps include only a carefully selected subset of SNPs. 

Results: In this context, the SeSAM software allows automatic genetic map construction 

using seriation and placement approaches, to produce (1) a high-robustness framework map 

which includes as many markers as possible while keeping the order robustness beyond a 

given statistical threshold, and (2) a high-density total map including the framework plus 

almost all polymorphic markers. During this process, care is taken to limit the impact of 

genotyping errors and of missing data on mapping quality. SeSAM can be used with a wide 

range of biparental populations including from outcrossing species for which phases are 

inferred on-the-fly by maximum-likelihood during map elongation. The package also includes 

functions to simulate data sets, convert data formats, detect putative genotyping errors, 

visualize data and map quality (including graphical genotypes), and merge several maps into 

a consensus. SeSAM is also suitable for interactive map construction, by providing lower-

level functions for 2-point and multipoint EM analyses. The software is implemented in a R 

package including functions in C++. 

Conclusions: SeSAM is a fully automatic linkage mapping software designed to (1) produce 

a framework map as robust as desired by optimizing the selection of a subset of markers, and 

(2) produce a high-density map including almost all polymorphic markers. The software can 

be used with a wide range of biparental mapping populations including cases from 
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outcrossing. SeSAM is freely available under a GNU GPL v3 license and works on Linux, 

Windows, and macOS platforms. It is available as Additional file 1 and can be downloaded 

together with its user-manual and quick-start tutorial from ForgeMIA (SeSAM project) at 

https://forgemia.inra.fr/gqe-acep/sesam/-/releases 

Key-words: genetic mapping, linkage, automated software, seriation, marker order 

robustness 

 

Background 

Genetic linkage maps are representations of positions of polymorphic genetic elements along 

chromosomes, based on allele co-segregation patterns. Map distances are calculated from 

the frequency of meiotic crossovers between two linked loci; in the first historical maps, such 

frequencies were inferred from the segregation of phenotypes determined by two linked 

genes [1]. With the development of DNA technologies, the number of genetic markers 

increased, allowing genetic maps to become saturated, which means that any locus on the 

genome is significantly linked with at least one marker of the map [2, 3]. Linkage maps initially 

played an important role in unraveling the general organization of genomes [4], and in spite of 

genome sequencing becoming more and more accessible for structural genomics, they are 

still of great use e.g. for QTL detection via linkage or association studies, to help the orienting 

and placing of sequence contigs during genome assembly [5], or to detect errors a posteriori 

in assembled genomes [6]. 

In practice, genetic maps are built from observing the allelic segregation of polymorphic 

markers in mapping populations produced by different types of crossing schemes [7]. 

Biparental populations are the most frequently used, typically based on either two 

homozygous parents or two (partly) heterozygous parents as in the case of Cross-Pollinated 

https://forgemia.inra.fr/gqe-acep/sesam/-/releases
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(CP) populations of many forest or fruit trees. The latter case involves more complex 

algorithms because current genotyping technologies do not directly provide long haplotype 

information, so the phase between multi-locus allelic configurations is unknown and must be 

inferred [8, 9]. Populations obtained from homozygous parents can be backcross (BC) or 

Doubled-Haploids (DH) which are very similar to BC with regards to map estimation, F2 to Fn, 

Recombinant Inbred Lines (RIL) [10], or Intermated Recombinant Inbred lines (IRIL) 

populations. IRILs include some generations of random intermating between the F2 and the 

inbreeding generations, thereby increasing the number of crossovers captured and thus the 

resolution of the map for a given population size [11, 12].  

The usual process for genetic map construction involves three successive steps [13] 

corresponding to (1) determination of linkage groups (when the map is saturated, linkage 

groups correspond to chromosomes), (2) ordering of markers in each linkage group, and (3) 

estimation of genetic distances between adjacent ordered markers. A lot of algorithmic effort 

has been made in particular for the ordering step, because as soon as the number of markers 

is not very small, it becomes unfeasible to evaluate an objective function for each possible 

order (m!/2 orders if m is the number of markers). This problem, which is very similar to the 

Traveling Salesman Problem [14], is usually addressed in mapping softwares via different 

heuristics to escape this combinatorial explosion (see some examples in [13, 15–18] ; non-

exhaustive list shown as Supplementary Table S1 in Additional file 2). The ordering 

algorithmic problem obviously becomes more difficult with recent genotyping technologies 

(including genotyping-by-sequencing) which can produce millions of SNPs. But with such 

technologies, an even more limiting issue is that whatever the algorithm, the information 

allowing ordering lies in the crossovers arising in the population, and thus scales up only with 

population size, which is generally much more expensive to increase than marker number. A 
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consequence is that if one wants to fix a minimum threshold for a robustness statistical 

criterion (for instance the minimum logarithm of odds (LOD) between the best order found and 

any other order), the number of markers in the map will be limited for a given population type 

and size: the higher the threshold, the lower the number of markers which can be included in 

the map. For usual levels of threshold (e.g. LOD=3) and large data sets, the maximum 

number of markers in the map will most often represent only a fraction of the SNPs available. 

The problem then translates into chosing the largest subset of markers which allows the order 

to be statistically robust at a given threshold. Here we propose the SeSAM (Seriation-based 

Suite for Automatic Mapping) package as a way to address the genetic mapping problem from 

this perspective. 

Another consequence of the evolution of genotyping technologies is the number of missing 

data and/or genotyping errors, which can vary a lot depending on the approach used. For 

example, genotyping using low-coverage NGS sequencing [19–21] can produce many 

missing data which, depending on the protocol used for library preparation, can be distributed 

differently in the genome in different individuals of the mapping population. This is of particular 

concern for linkage analysis because detecting crossovers between two markers requires 

valid data in both markers. In multipoint estimations however, it is possible to impute part of 

the missing information for instance through Expectation-Maximization (EM) [22] algorithms, 

and it is possible to make use of data for genotype likelihoods [23], but beyond a certain level 

of missing data, map estimation always becomes challenging. The problem of genotyping 

errors is even more important when the number of markers becomes very large: each 

miscalled allele can produce a singleton interpreted as the result of two crossovers, thus for a 

given rate of genotyping errors, the more markers in the map, the more dramatically map 

length will be artificially inflated, and marker ordering altered [24]. A number of algorithms 
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identify singletons and putative erroneous data; replacing them by missing data limits their 

effect on the mapping outcome [25–28]. Conversely, it is also possible to identify markers that 

have a very low probability of displaying genotyping errors based on redundancy ("twins" 

approach [29–31]). 

Numerous software tools have been developed for genetic mapping (see non-exhaustive list 

as Supplementary Table S1 in Additional file 2). Many of them feature sophisticated 

algorithms for marker ordering, some even include several different algorithms which can be 

compared to each other to assess the robustness of their outcome (see for instance [15] ). 

Most of the time, the main goal is to achieve optimal performances for finding the best order 

between all markers of a given linkage group (sometimes the 2nd, 3rd, etc... best maps are 

also provided). In some cases however, particularly (but not only) when population size is 

limited, an interesting alternative is the "bin-mapping" strategy [32–34]. In that approach, (1) a 

framework core skeletal map including only a subset of selected markers is produced to 

ensure an order robustness statistically supported at a desired threshold. The larger the 

mapping population, the more markers are included in this framework map. (2) Then all 

remaining polymorphic markers are placed within one of the bins delimited by the framework 

markers and their relative map position is calculated within the bin. Thus even though the 

order between close "placed" markers is not statistically supported, the order between each 

placed marker and the framework markers is. This strategy has several advantages: (1) the 

position of all markers can still be estimated precisely, while escaping the challenging 

computational problem of ordering too many markers, (2) the number of markers may 

become as high as desired, the computation time will remain close to linear with that number, 

(3) the uncertainty on the order of very close placed markers has no consequence on the 

estimated map length, and thus that uncertainty is no longer a problem for many applications. 
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In practice, such a bin-mapping strategy is usually carried out through an interactive process 

between an expert user and computer programs. Tools have been developed to automate the 

placing step [33], but to our knowledge, there is today no integrated software able to carry out 

a complete automated mapping process based on the bin-mapping strategy. So here we 

propose the SeSAM package, which automatically chains all steps necessary for genetic map 

construction based on this approach (Figure 1), the two main steps being: (1) producing a 

framework map by selecting an optimal subset of markers from the initial data set, so order 

robustness can be statistically supported, and (2) producing a total map by placing all 

remaining polymorphic markers one by one into that framework. In the first step, the 

determination of linkage groups is done during the elongation of an ordered low-density high-

robustness map (scaffold map) through a seriation-based algorithm (Figure 1A) [35, 36], after 

which iterative densification of that scaffold leads to adding as many markers as possible 

while keeping the order robust at the desired threshold, which produces the framework map 

(Figure 1B). During this process, putative genotyping errors are detected and put aside to limit 

artifactual inflation of map length and ordering flaws. Finally, the remaining markers are 

placed on the framework (Figure 1C). 

 

Implementation 

SeSAM is implemented as a R package, which allows to easily chain map construction to any 

other input data formatting (or map output exploiting) R script. The package includes C++ 

functions for its most computation-intensive parts (e.g. likelihood computations, EM 

algorithms). A detailed description of all algorithms and functions of SeSAM is provided in the 

user manual available as Additional file 3, and also from ForgeMIA at 

https://forgemia.inra.fr/gqe-acep/sesam/-/releases. The main functionality of SeSAM lies in 

https://forgemia.inra.fr/gqe-acep/sesam/-/releases
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the function autoMap(), which is a completely automated pipeline going through different main 

steps carried out by the following functions: loadData(), which reads and checks segregation 

data, generateSeeds(), which draws the seed markers used to initiate the seriation process, 

buildScaffold(), which extends a highly robust sparse map by seriation from the seed markers, 

assignment(), which assigns all polymorphic markers to a linkage group, buildFramework(), 

which densifies the scaffolds with the maximum possible number of markers while keeping a 

given statistical level of order robustness to the framework map, and placement(), which adds 

all remaining markers to the framework map without ensuring a statistical value for order 

robustness. Missing data are imputed in all multipoint calculations via an EM algorithm, and 

putative genotyping errors are detected and taken into account via two different methods. 

Finally, the SeSAM package includes a toolbox of functions to perform various types of format 

conversions on data files, interactive step-by-step custom mapping processes, and 

assessment of map and data quality through different types of graphs. More detailed 

information about these different functions is available as Supplementary Text S1 in 

Additional File 2, and in the reference user manual available as Additional file 3 together with 

a quick-start guide. 

 

Results and Discussion 

Behavior with number of markers and population size was assessed by simulating data 

sets for different population types, numbers of markers, and numbers of individuals. SeSAM 

was run on a desktop computer using 4 cores Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (2 

threads per core) under the Debian 11 Linux OS, using SeSAM default parameters. The 

scripts and data used to produce these benchmarking results are available in Additional file 4. 

Computation time for total maps construction was more or less linear with the number of 
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markers for F2 and CP populations (Figure 2). It was also close to linear with the number of 

individuals of the F2 population, but close to quadratic with the number of individuals for the 

CP population (Figure 3). Finally, Figure 4 shows that CP data sets necessitate substantially 

longer computation time than other population types, which is expected due to the extra 

phasing process required for such data. 

To assess the quality of the maps produced by SeSAM, we generated arbitrary reference 

maps with different marker densities and used them to simulate segregation data. Then, for 

different numbers of individuals or markers (same maps as for Figures 2 and 3), we 

measured the deviation from colinearity (through Spearman’s rank correlation) and the map 

length ratio between the framework (or total) map computed from these segregation data and 

the initial reference map. Finally, we measured the inclusion rate, that is the proportion of 

markers in the data set that could be included in the map (see Supplementary Tables S2 and 

S3 in Additional File 2). We see that in F2 or CP populations, the framework maps were 

always perfectly colinear to the reference map. The total maps were also perfectly colinear to 

their reference map, except for the F2 population with only 50 individuals. The map length 

ratios were always between 0.88 and 1.03 for the framework map except for very small F2 

and CP populations (50 individuals) for which the scaffold could not meet the robustness 

criteria up to the extremities of the chromosomes and thus dropped some terminal regions. 

Similar behaviours were observed for the total maps. All markers of the data sets could be 

included into the total maps except in the case of the F2 population of 50 individuals for which 

the framework did not cover the whole of the chromosomes as seen before. On the other 

hand, when looking at the framework maps, we see as expected that their inclusion rate 

increases with population size, and decreases with the number of markers. 
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Sensitivity to data quality was assessed by simulating data sets with increasing rates of 

genotyping errors up to extremely high rates (20%). We chose to distribute false data rates 

uniformly across markers and individuals, although the simulatePop() function of SeSAM is 

able to use Gamma distributions which allow to slide continuously from L-shaped to almost 

symmetrical distributions. The effect of increasing rates of erroneous data on map quality is 

shown in Figure 5 for F2 and CP populations without and with activating the error correction 

option of SeSAM. In both populations, the artefactual inflation of the map due to the 

genotyping errors is strongly reduced by the error correction algorithm, although high rates of 

errors cannot be completely corrected, particularly in CP populations. However, in most real 

data sets, error rates are generally expected to be under 5%, so in such cases, SeSAM 

correction mostly avoids significant map inflation due to such errors.  

Comparison with other existing softwares. To assess how the level of map quality 

achieved by SeSAM compares with that of other mapping softwares currently available, we 

generated simulated data sets with different numbers of individuals and markers, and ran 

them with SeSAM as well as with four different programs: IciMapping, ASMap, MapDisto, and 

TSPmap (see Supplementary Table S4 in Additional File 2). We also tried to use HighMap, 

but we could not obtain the software from the address mentioned in the paper. All tools tested 

excepted TSPmap produced high-quality total maps, showing high colinearity and similar 

lengths when compared to the theoretical map used to simulate the segregation data. 

However, with increasing numbers of markers (>= 10,000), we couldn't get some of the 

softwares complete the mapping (see Supplementary Table S4 in Additional File 2). 

Computation times varied a lot between programs, with Lep-map performing much faster than 

all others, and SeSAM being in the average of the remaining ones. Overall, SeSAM produces 

maps with at least similar quality as the other softwares tested. Using SeSAM thus allows to 
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have a fully automatic tool to produce total maps with a level of quality similar to most other 

software currently available, but contrary to those other programs, in addition to producing a 

total map with all polymorphic markers, SeSAM also automatically selects an optimally large 

subset of markers to produce a framework map statistically robust at any desired LOD 

threshold. 

Examples with biological data. To illustrate how SeSAM can perform with real biological 

data, mapping results obtained from five anonymized experimental data sets from agricultural 

plant species are presented in Additional File 2 as Supplementary Table S5 and 

Supplementary Figures S1 to S5. The corresponding anonymized data sets are available as 

Additional File 5. The number of markers included in the framework map was always lower 

than the total number of polymorphic markers, because no more markers could be included 

without losing the order robustness at the given default LOD threshold (3.0). In BC_ano, 

RIL1_ano, and CP_ano data sets, which have small population sizes, the frameworks include 

less markers than in F2_ano and RIL2_ano, which have larger populations (see 

Supplementary Table S5 in Additional File 2). This is expected because there are more 

informative crossovers contributing to the order information in the latter. Moreover, the 

backcross-derived BC_ano data contain less crossovers (only one effective meiosis) than the 

other populations, which contributes to the fact that relatively few markers could be 

incorporated to the BC_ano framework map. Finally, with similar population sizes, the 

CP_ano map included less markers in its framework map than RIL1_ano. This is partly due to 

the fact that not all 2-point marker configurations are informative in CP populations (e.g. there 

is no linkage information between one male pseudo-backcross marker and one female 

pseudo-backcross marker). As expected, the number of markers in the framework map is thus 

commensurate with population size and population type since this ensures statistically 
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supported marker orders. Considering now the total maps obtained after placement, they 

include almost all polymorphic markers for all data sets, the few non-mapped markers being 

unlinked to any linkage group, or linked to several linkage groups with similar LODs. 

To visualy assess the quality of maps produced, SeSAM generates heat maps of pairwise 2-

point LOD matrices. If the quality of the map is good, such heat maps should display a 

smooth decreasing gradient when going away from the diagonal (see left panels of 

Supplementary Figures S1 to S5 in Additional File 2). Another useful graph generated by 

SeSAM to assess map quality is the Marey map, which represents the genetic positions vs 

the physical positions of the markers. The derivative of the Marey map curve gives the local 

values of recombination rate along the chromosomes (called recombination landscape). If the 

quality of both physical and genetic maps is high, Marey maps are supposed to be smooth 

and always increasing (see right panels of Supplementary Figures S2 to S5 in Additional 

File 2). The large flat regions observed with BC_ano, F2_ano, RIL2_ano, and CP_ano 

typically correspond to the low peri-centromeric recombination rates. For the BC_ano data set 

however (see Supplementary Figures S1 in Additional File 2), the Marey map is non-

monotonic. Since the 2-point linkage matrix indicates a high-quality genetic mapping, the 

quality of the physical map may be questionable here. Elsewhere, the case of the RIL1_ano 

data set illustrates the possibilty of using a previously existing genetic map to guide the 

choice of the seed markers to initiate the seriation process, when no physical map is 

available. In such cases, the ‘phyMap.txt’ file actually contains a genetic map, so the ‘Marey 

map’ obtained has an almost constant slope, but it may also be used to compare 

recombination landscapes between different crosses. 
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Finally, using the same general algorithm as SeSAM, but with earlier generations of codes, 

we already produced genetic maps used in several published studies on Maize [6, 34, 37–42], 

Pea [43–45], and Faba bean [46].  

 

Conclusions 

Compared to existing mapping software, SeSAM is to our knowledge the only one to carry out 

a completely automatic bin-mapping procedure producing first a mid-density framework map 

from an optimized subset of markers which allow the order to be statistically supported at the 

desired statistical threshold, and then a high-density total map including nearly all 

polymorphic markers, but preserving the global structure and length of the framework map. 

SeSAM is freely available to all users, including the source code, and is compatible with 

Linux, macOS, or Windows platforms. 

 

Availabillity and requirements 

Project name: SeSAM 

Project home page: https://forgemia.inra.fr/gqe-acep/sesam 

Operating systems: GNU Linux, macOS (>=10.13), Windows10 

Programming language: R, C++ 

Other requirements: the following C++ libraries are required when compiling the package from 

source: gmp, boost-dev, boost-math (>= 1.56). 

License: GNU GPL v3 

Any restrictions to use by non-academics: none 

https://forgemia.inra.fr/gqe-acep/sesam
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List of abbreviations 

CP: Cross-pollinated 

BC: Back-cross 

DH: Doubled-haploid 

EM: Expectation-maximization 

IRIL: Intermated recombinant inbred line 

LOD: Logarithm of odds 

RIL: Recombinant inbred line 

SNP: Single-nucleotide polymorphism 
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Figures legends 

 

Figure 1. General algorithm of automatic map construction in SeSAM. A: Construction of the 

scaffold map by seriation. B: Densification of the scaffold to produce the high-robustness 

framework map. C: Placement of all polymorphic markers to produce the high-density total 

map. 

 

Figure 2. SeSAM computation time for automatic total map construction, as a function of the 

density of markers in a F2 (black circles and line) and in a CP (red triangles and line) 

population of 100 individuals. Data were simulated using the SeSAM function simulatePop() 

for two chromosomes (100 and 200 cM) with markers regularly spaced. Lines were obtained 

from linear regression y=a.x+b (a=0.007, b=1.9 for F2 and a=0.035, b=3.4 for CP).  

 

Figure 3. SeSAM computation time for automatic total map construction, as a function of the 

number of individuals in a F2 (black circles and line) and in a CP (red triangles and line) 

population. Data were simulated using the SeSAM function simulatePop() for two 

chromosomes (100 and 200 cM) with markers regularly spaced at a density of 1 marker/cM. 

For F2, the line was obtained from linear regression y=a.x+b (a=0.022, b=0.99). For CP, the 

line was obtained from non-linear regression y=a.x²+b.x+c (a=0, b=0.066, c=0.99). 

 

Figure 4. SeSAM computation times for automatic total map construction for different types of 

mapping populations of 200 individuals. Data were simulated using the SeSAM function 

simulatePop() for two chromosomes (100 and 200 cM) with markers regularly spaced at a 

density of 1 marker/cM. Error bars indicate 95% confidence intervals based on nine 

independent replicates with different seeds for the random number generator used to simulate 

the data. 

 

Figure 5. Map length ratio between the framework map and the simulated reference map 

after SeSAM automatic map construction, as a function of the percentage of genotyping 

errors in a F2 (left panel) or CP (right panel) population of 200 individuals, without and with 

activating the genotyping error correction option of SeSAM (black circles and red triangles 

respectively). Data were simulated using the SeSAM function simulatePop() for two 
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chromosomes (100 and 200 cM) with markers regularly spaced at a density of 1 marker/cM, 

with increasing proportions of genotyping errors uniformly distributed along chromosomes. 

Lines were obtained by non-linear regression y=a*sqrt(x)+b*x+c (values of (a,b,c) without and 

with genotyping error correction, leading to respectively (1.09, -0.06, 0.64) and (0.07, 0.025, 

0.89) for F2, and respectively (0.93, -0.049, 0.64) and (0.20, 0.022, 0.84) for CP). Error bars 

indicate 95% confidence intervals based on five independent replicates with different seeds 

for the random number generator used to simulate the data. Dotted lines indicate the 

theoretical outcome of a perfect genotyping error correction (y=1). 

 

 

 

 

Additional Files 

 

Additional file 1 

Additional_file_1.zip 

Compressed archive (.zip) 

SeSAM 1.0.1 Packages for Linux, Windows, and macOS platforms. 

The archive contains the following folders and files: 

README     Instructions to install SesSAM on different platforms. 

GNU_Linux/sesam-1.0.1.tar.gz  R package including all R and C++ source codes. 

Use this archive to install SeSAM on GNU Linux. 

Windows10_R4.1.x/SeSAM_1.0.1.zip R package, binary build for Windows10 with R 4.1.x 

Windows10_R4.2.0/SeSAM_1.0.1.zip R package, binary build for Windows10 with R 4.2.0 

Windows10_R4.2.1/SeSAM_1.0.1.zip R package, binary build for Windows10 with R 4.2.1 

macOS/SeSAM_1.0.1.macos.tgz  R package, binary build for macOS with R 4.2.x 

 

Additional file 2 

Additional_file_2.pdf 

Printable document format (.pdf) 

Supplementary Data. 

The file contains the following Supplementary Text, Tables and Figures: 
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Supplementary Text S1: Description of the main functions used in SeSAM 

Supplementary Table S1: Non-exhaustive list of software tools available for linkage mapping. 

Supplementary Table S2: Quality assessment of the maps produced using SeSAM in the 

benchmarks presented in Figure 2. 

Supplementary Table S3: Quality assessment of the maps produced using SeSAM in the 

benchmarks presented in Figure 3. 

Supplementary Table S4: Comparison of the quality of maps produced by SeSAM and four of 

the other mapping softwares listed in Supplementary Table S1. 

Supplementary Table S5: Summary of maps obtained with SeSAM using experimental data 

sets from three agricultural plant species. 

Supplementary Figure S1: Map quality assessment graphs for SeSAM when using the 

BC_ano experimental data set (BC1 population). 

Supplementary Figure S2: Map quality assessment graphs for SeSAM when using the 

F2_ano experimental data set (F2 population). 

Supplementary Figure S3: Map quality assessment graphs for SeSAM when using the 

RIL1_ano experimental data set (RIL population). 

Supplementary Figure S4: Map quality assessment graphs for SeSAM when using the 

RIL2_ano experimental data set (RIL population). 

Supplementary Figure S5: Map quality assessment graphs for SeSAM when using the 

CP_ano experimental data set (CP population from heterozygous outbred parents). 

 

Additional file 3 

Additional_file_3.zip 

Compressed archive (.zip) 

The archive contains two files: 

SeSAM_user-manual.pdf   Reference User Manual in printable document format (.pdf)  

SeSAM_Quick-Start_tutorial.R R script to quickly learn and test most SeSAM functions 

 

Additional file 4 

Additional_file_4.zip 

Compressed archive (.zip) 

SeSAM Benchmarking Scripts 
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The archive contains the data and scripts used to carry out the benchmarking of SeSAM 

based on simulated data sets and to produce Figures 2, 3, 4, 5, and Supplementary Tables 

S2 and S3. 

 

Additional file 5 

Additional_file_5.zip 

Compressed archive (.zip) 

Experimental Data Sets 

The archive contains the following anonymized experimental mapping data sets from 

agricultural plants, used to produce the maps presented in Supplementary Table S5 and 

Supplementary Figures S1 to S5: 

BC_ano_segData.raw 

BC_ano_phyMap.txt 

F2_ano_segData.raw 

F2_ano_phyMap.txt 

RIL1_ano_segData.raw 

RIL1_ano_phyMap.txt 

RIL2_ano_segData.raw 

RIL2_ano_phyMap.txt 

CP_ano_segData.gen 

CP_ano_phyMap.txt 

 


