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Introduction

The increasing implementation of electronic health records over the last few decades has made a significant amount of clinical data available in electronic format [START_REF] Weng | Clinical Research Informatics for Big Data and Precision Medicine[END_REF][START_REF] Adler-Milstein | Electronic Health Record Adoption In US Hospitals: Progress Continues, But Challenges Persist[END_REF]. Originally, electronic health records were designed to collect and deliver data for health care, administrative, or billing purposes. In addition to these initial uses, they also offer opportunities for data reuse defined as "nondirect care use of personal health information" [START_REF] Safran | Toward a national framework for the secondary use of health data: an American Medical Informatics Association White Paper[END_REF]. Thus, data reuse provides possibilities for research, quality of care assessment, activity management, or public health management [START_REF] Hripcsak | Next-generation phenotyping of electronic health records[END_REF][START_REF] Forrest | PEDSnet: a National Pediatric Learning Health System[END_REF][START_REF] Mcglynn | Developing a data infrastructure for a learning health system: the PORTAL network[END_REF][START_REF] Safran | Reuse of clinical data[END_REF][START_REF] De Moor | Using electronic health records for clinical research: the case of the EHR4CR project[END_REF][START_REF] Lin | Considerations for the analysis of longitudinal electronic health records linked to claims data to study the effectiveness and safety of drugs[END_REF][START_REF] Meystre | Clinical Data Reuse or Secondary Use: Current Status and Potential Future Progress[END_REF].

When conducting research, the traditional approach consists of prospectively and often manually collecting simple and specific data according to the question addressed by the research protocol, using a clinical report form [START_REF] Krishnankutty | Data management in clinical research: An overview[END_REF]. These data correspond to inclusion criteria and variables, that is, outcomes (eg, the length of stay in hospital or survival), exposures (eg, the taking of a drug or a surgery procedure), and adjusting variables (eg, age, sex, and patient history). When performing a prospective study, these data are defined upstream and are then collected manually in routine practice with human expertise, one record at a time, and background is taken into account. If needed, third-party data sources can be queried or caregiver expertise can be sought. This approach is expensive and time-consuming, and it generally results in only a limited sample size for a single use [START_REF] Safran | Reuse of clinical data[END_REF][START_REF] Krishnankutty | Data management in clinical research: An overview[END_REF]. However, the final data set consists of explicit information that does not need further computation.

In contrast, data reuse builds on data sources already available at a low cost and offers a large volume of data [START_REF] Safran | Reuse of clinical data[END_REF]. Despite the many opportunities data reuse offers, its implementation presents many difficulties, and primary data cannot be reused directly. First, data reuse encounters data quality problems that arise from the manner in which the data were entered or collected [START_REF] Weiskopf | Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research[END_REF][START_REF] Safran | Medicine based upon data[END_REF][START_REF] Weiskopf | A Data Quality Assessment Guideline for Electronic Health Record Data Reuse[END_REF][START_REF] Wendl | A Web-Based Tool to Evaluate Data Quality of Reused Health Data Assets[END_REF][START_REF] Wang | Rule-Based Data Quality Assessment and Monitoring System in Healthcare Facilities[END_REF], and it requires a phase of data cleaning to deduplicate, filter, homogenize, or convert raw data [START_REF] Rahm | Data Cleaning: Problems and Current Approaches[END_REF][START_REF] Weng | Clinical data quality: a data life cycle perspective[END_REF]. Moreover, information is not always directly available in the source database and needs to be computed later from raw data when defining an algorithm [START_REF] Murff | Automated identification of postoperative complications within an electronic medical record using natural language processing[END_REF][START_REF] Smischney | Derivation and validation of a search algorithm to retrospectively identify mechanical ventilation initiation in the intensive care unit[END_REF][START_REF] Tien | Retrospective Derivation and Validation of an Automated Electronic Search Algorithm to Identify Post Operative Cardiovascular and Thromboembolic Complications[END_REF][START_REF] Lamer | Methodology to automatically detect abnormal values of vital parameters in anesthesia time-series: Proposal for an adaptable algorithm[END_REF][START_REF] Gabel | Creation and Validation of an Automated Algorithm to Determine Postoperative Ventilator Requirements After Cardiac Surgery[END_REF]. This is generally called "data transformation" [START_REF] Fayyad | From data mining to knowledge discovery in databases[END_REF], "data aggregation" [START_REF] Lamer | Automated Data Aggregation for Time-Series Analysis: Study Case on Anaesthesia Data Warehouse[END_REF][START_REF] Price | DEvis: an R package for aggregation and visualization of differential expression data[END_REF], or "feature extraction" [START_REF] Chazard | Secondary Use of Healthcare Structured Data: The Challenge of Domain-Knowledge Based Extraction of Features[END_REF]. Even if feature extraction often approximately answers the question, the process is not easy and brings methodological issues. Indeed, features are extracted from a static database (already saved and closed) for patients for whom the care event has already been completed years earlier and for a large number of records. All scenarios must be taken into consideration so as to avoid having to modify the extracted records individually and by hand before the analysis. The method of extraction may have substantial effects on the features generated [START_REF] Pasma | Artifact Processing Methods Influence on Intraoperative Hypotension Quantification and Outcome Effect Estimates[END_REF].

Lastly, the heterogeneity of local data models and vocabularies complicates the pooling of data and the sharing of algorithms, tools, and results [START_REF] Breil | Multilingual Medical Data Models in ODM Format: A Novel Form-based Approach to Semantic Interoperability between Routine Healthcare and Clinical Research[END_REF][START_REF] Pivovarov | Identifying and mitigating biases in EHR laboratory tests[END_REF][START_REF] Krumm | The need for harmonized structured documentation and chances of secondary use -results of a systematic analysis with automated form comparison for prostate and breast cancer[END_REF][START_REF] Dhombres | Interoperability between phenotypes in research and healthcare terminologies--Investigating partial mappings between HPO and SNOMED CT[END_REF][START_REF] Dugas | Portal of medical data models: information infrastructure for medical research and healthcare[END_REF]. Initiatives have emerged to promote the reuse of data through "large-scale clinical data sharing and federation" and the implementation of common data models (CDMs) [START_REF] Xu | A Comparative Assessment of Observational Medical Outcomes Partnership and Mini-Sentinel Common Data Models and Analytics: Implications for Active Drug Safety Surveillance[END_REF][START_REF] Garza | Evaluating common data models for use with a longitudinal community registry[END_REF][START_REF] Klann | Data interchange using i2b2[END_REF][START_REF] Hume | Current applications and future directions for the CDISC Operational Data Model standard: A methodological review[END_REF][START_REF] Liyanage | Common Data Models (CDMs) to Enhance International Big Data Analytics: A Diabetes Use Case to Compare Three CDMs[END_REF]. Observational Health Data Sciences and Informatics (OHDSI) is a community developed from the Observational Medical Outcomes Partnership (OMOP) [START_REF] Stang | Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership[END_REF][START_REF] Overhage | Validation of a common data model for active safety surveillance research[END_REF][START_REF] Hripcsak | Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers[END_REF][42]. The OMOP CDM is dedicated to observational studies, medical product safety surveillance, comparative effectiveness research, and patient-level predictive modeling. In this context, the OHDSI community shares methods and tools for the use of the OMOP CDM, which standardizes the structure and vocabulary of observational data. Around 2000 collaborators from 74 countries were involved in the OHDSI community in mid-2022 [START_REF]Observational Health Data Sciences and Informatics[END_REF]. Analyses could be successfully applied on this model and be used at different data sites around the world [START_REF] Suchard | Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis[END_REF][START_REF] Burn | Deep phenotyping of 34,128 adult patients hospitalised with COVID-19 in an international network study[END_REF].

Beside clinical data tables, which are appropriate for the storage of individual low-level records (ie, procedure_occurrence, condition_occurrence, and measurement), the OMOP CDM was extended with 5 tables to store derived elements [START_REF] Belenkaya | Extending the OMOP Common Data Model and Standardized Vocabularies to Support Observational Cancer Research[END_REF]. In particular, the EPISODE table stores the abstracted episodes of care previously defined [START_REF]Conversion of Diagnosis and Chemotherapy Data in Electronic Health Records to Episode-based Oncology Extension of OMOP-CDM[END_REF][START_REF] Warner | HemOnc: A new standard vocabulary for chemotherapy regimen representation in the OMOP common data model[END_REF] and allows the extraction of chemotherapy episodes from drug records in order to compare anticancer treatment trajectories [START_REF] Jeon | Characterizing the Anticancer Treatment Trajectory and Pattern in Patients Receiving Chemotherapy for Cancer Using Harmonized Observational Databases: Retrospective Study[END_REF].

Feature extraction methods are poorly described when applied to compute secondary information from retrospective databases. They also lack an approach to store features in a persistent way in a data warehouse. The purpose of this article is to propose a standardized description of the steps and transformations that could help researchers to implement and document feature extraction, and improve the reproducibility of retrospective studies. It also includes identifying how features could be stored in the schema of a data warehouse implemented with the OMOP CDM.

Methods

Overview

This study involved the following 3 main steps: (1) the collection of relevant study cases that applied feature extraction and were based on the automatic and secondary use of data; [START_REF] Adler-Milstein | Electronic Health Record Adoption In US Hospitals: Progress Continues, But Challenges Persist[END_REF] the standardized description of the feature extraction process, including the concepts, their characteristics, and the methods that were common to the study cases; and (3) the proposal of convenient tables to store features in the OMOP CDM.

Ethics Approval

This study did not require ethics approval as no personal data were collected and no interventions were implemented.

Collection of Study Cases

We were seeking examples of retrospective observational studies for which feature extraction operations had to be implemented. These studies did not need to be conducted for a specific field of research, during a defined time period, or using a particular data model. The prerequisite was to have transformed raw data into usable information and to be able to describe the process. We focused on studies performed with structured data and did not investigate feature extraction from unstructured data such as text, images, videos, or sound. We contacted researchers from 7 teams involved in data reuse in France between September 1, 2021, and December 31, 2021.

We conducted individual interviews and obtained handwritten notes. The researchers were asked to describe (1) the objective of the study, (2) the database they used (ie, claims or clinical database), (3) the nature of the data and the terminologies, (4) the difficulties they encountered when extracting information from raw data, (5) the features they had to extract to achieve the objectives of the study, (6) the use they made of the features in the study (ie, inclusion criteria, explanatory variables, or response variables), and [START_REF] Safran | Reuse of clinical data[END_REF] the steps that composed the feature extraction and the parameters that characterized the features.

The inclusion criteria define the characteristics that subjects must have to be included in a study. They usually include age, type and stage of a disease, and surgical procedure. The response variable is the target of a question in the study or experiment. It is usually survival, length of hospital stay, recovery, or complication of a disease. The explanatory variable is that variable whose changes might affect the response variable. It may be exposure to an event or to a treatment.

The studies were carried out on the following 2 types of databases: claims databases and hospital clinical databases. These 2 sources are relational databases with a tabular format. Each table contains only 1 entity (eg, patients, stays, and diagnoses), and each row corresponds to 1 record. The tables are linked together by the mechanism of foreign keys, allowing the identification of all the data of a patient or a stay, whatever the category. Most of the columns are structured data (ie, 1 type and 1 value per cell). These databases are usually queried using the SQL language. They can then be processed with programming languages, such as R and Python, to recalculate new essential information or to adapt the structure of the data to be able to analyze them more easily.

The claims databases were the French national hospital discharge database, referred to as Programme de médicalisation des systèmes d'information (PMSI) [START_REF] Boudemaghe | Data Resource Profile: The French National Uniform Hospital Discharge Data Set Database (PMSI)[END_REF], and the French national claims database, referred to as Système National des Données de Santé (SNDS) [START_REF] Scailteux | French administrative health care database (SNDS): The value of its enrichment[END_REF]. These nationwide databases collect standardized discharge reports for all inpatient stays in French nonprofit or for-profit hospitals. They include individual-level data about the dates of admission and discharge, the hospital code number, the sector code and outcome (ie, discharge, hospital transfer, and death), social demographics (ie, gender, age, and place of residence), diagnoses, and medical procedures performed during the hospital stay. The diagnoses are coded according to the French version of the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD10). The medical procedures are documented according to the Classification Commune des Actes Médicaux (CCAM). In addition to these data, the SNDS database includes consumption of care outside the hospital (ie, pharmacy visits, general medical reimbursements, and nursing care). Prescribed medications are documented with the Anatomical Therapeutic Chemical (ATC) system, an international classification system, or with the Code Identifiant de la Présentation (CIP13).

The clinical databases were local hospital data warehouses collecting all information about laboratory results, medical procedures, diagnoses, and types of medical units and transfers between them. Two databases included the details of anesthesia procedures (ie, the steps of the surgical procedures, drug administrations, and signals recorded by the equipment in the operating room, eg, mean arterial pressure, heart rate, and tidal volume) [START_REF] Lamer | Development of an anesthesia data warehouse: Preliminary results[END_REF]. In these databases, vocabularies are local terminologies developed by the software editor and updated by the physician during practice. They cover drugs, measurements, and steps of the surgical procedure. The last database was the Medical Information Mart for Intensive Care III database, a large open-source medical record database of critical care stays, publicly available in PhysioNet [START_REF] Goldberger | PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[END_REF][START_REF] Johnson | MIMIC-III, a freely accessible critical care database[END_REF]. Diagnoses are documented with the International Statistical Classification of Diseases and Related Health Problems, 9th Revision (ICD9), and the procedures are documented with the Current Procedural Terminology.

Standardized Description of the Feature Extraction

In the second step, we performed a hierarchical analysis of the task (HAT) [START_REF] French | Chapter 6 -Task analysis[END_REF]. A HAT allows an understanding of the tasks that users need to accomplish in order to achieve certain goals. These tasks may be decomposed into several levels of subtasks, up to having atomic operations. In this study, we carried out a HAT to (1) understand the steps and transformations that the researchers had to implement to transform raw data into features and (2) identify the successive states of data, from raw data to features, describing the complexity and time dependency.

To do so, we asked them to describe the raw data they had at the beginning, and which were the different transformations they had to chain to obtain features. At each step, we described the complexity and time dependency. We have illustrated the succession of subtasks for each case study, in collaboration with the researcher involved in the study. From the obtained task descriptions and illustrations, we grouped the tasks according to the types of input and output data. Lastly, we propose a description of these different states and transformations, based on what was common to the study cases.

Evaluation of Feature Storage Possibilities in the OMOP CDM

In the last part, we studied the existing tables of the OMOP CDM that could allow the storage of features without losing information, that is, with adequate fields. In the reverse case, we would propose new tables to conform to the OMOP standard.

We would also define the attributes that would have to respect the OMOP standard and keep track of how features were computed to ensure the reproducibility of the studies.

Results

Collection of Study Cases

Among the 15 people we contacted, 3 did not answer and 2 reported not performing feature extraction. Based on the semistructured interviews, we collected 8 retrospective and observational studies from teams in 3 French university hospitals (Amiens, Lille, and Rouen) and the French high authority of health. Two of the studies were multisite studies, 4 used claims databases, and 5 used clinical databases.

The features identified represented different types of variables used for conducting retrospective analyses: inclusion criteria, explanatory variables, and response variables. Generic features were (1) occurrences of diagnoses, medical procedures, and age as inclusion criteria; (2) occurrences of medical procedures, occurrences of drug administrations, and transformations of vital signs as explanatory variables; and (3) hospital and intensive care mortality, hospital stay duration, and passage in intensive care as response variables. The study cases and the more complex features reported by the researchers are described in Table 1.

These various study cases were based on complex (ie, heterogeneous, multidimensional, unbalanced, and time-dependent) raw data. The heterogeneity of these raw data comes from the diversity of the variables involved to extract secondary computed features. The first 5 study cases (SC1-5) used measurements and transformed vital signs (arterial pressure and heart rate) or ventilatory signals (partial pressure of oxygen and tidal volume), SC6 and SC7 used drug administrations, and SC7 used laboratory results. In addition to their heterogeneity, the databases are multidimensional, which implies that the tables that compose them have different dimensions (ie, statistical units). Thus, each patient will have a different number of records in the other tables (procedures, diagnoses, measurements, drugs, etc), depending on the length of hospital stay, the care received, and the duration of follow-up. This number of different records from one patient to the other should however be reduced to one line per statistical unit of the study. Next, the modalities of variables are numerous and unbalanced, that is, each terminology has thousands of codes, some of which are widely used, while others are almost never needed. As a result, at the time of feature extraction, these thousands of codes generate as many columns, with, for example, features reporting the code as absent/present or the number, or reporting the number of times it has been documented. At last, raw data are time-dependent variables, that is, variables that are not necessarily constant over the course of the study. 

Standardized Description of the States and Transformations Related to Feature Extraction

Figure 1 provides the complete description of SC6. First, raw records of administrative data were transformed into a new type of record corresponding to the occurrence of hospital stay (step 1). We will refer to this period as "track" in the rest of the manuscript. Then, this track was transformed to obtain a second track representing the 90 days before hospital stay (90_days) (step 2). Drug administrations included in the Laroche list were identified from raw records, and the periods of administration of drug A and drug B were computed based on the dates of administration and the duration of treatment, in steps 3 and 4, respectively. Similar tracks were computed for all drugs included in the Laroche list, but for the clarity of the figure, we have chosen to illustrate only the first 2 drugs. After these 4 steps, comparisons between tracks were realized successively. This allowed comparisons of the tracks of administration of drug A and drug B to track 90_days, in steps 5 and 6, respectively. The results were joined in a common track to obtain the tracks of the administration of Laroche list items during track 90_days (step 7). Lastly, the number of distinct items was counted to obtain the final feature, that is, the number of drugs from the Laroche list administered in the 90 days preceding the hospital stay. 

States and Transformations

Based on the study cases and the HAT, we identified that data went through 2 states (track and feature) and benefited from 2 transformations (track definition and track aggregation). Table 3 summarizes the differences between the raw data, track, and feature, as well as the definitions of the 2 transformations. The whole process of feature extraction is illustrated for several types of raw data in Figure 2, and is fully described below.

The step of track definition aims at reducing the dimensions of raw data to the statistical unit of the study, which is the element of the population on which the statistical study is conducted. The statistical unit may refer to not only a patient, but also a hospital, hospital stay (SC6), specialized unit stay (SC1), or a procedure (SC2, SC3, SC4, and SC5), depending on the purpose of the study. During track definition, the data may be rebuilt or computed based on operations such as the selection of variables and values, the mappings between codes of terminologies (SC6 and SC7), the detection of the passage of values beyond a threshold (SC2 and SC3), or the application of any other expert rule (SC5, SC6, and SC7).

Track is an intermediate state between raw data and features.

It results from the first operation and remains a time-dependent signal, defined by a statistical unit, a type of track, a value, or a set of values. The type of track may be the passage in a care unit, the administration of a drug, a health condition characterized by a diagnosis, or a heart rate signal. The value represents the track state, with a binary value for an on/off state or a quantitative value for a signal. Conditional operations may also be applied between tracks to generate new ones (eg, for detecting the simultaneous administration of 2 drugs). Based on this definition, Table 4 presents the tracks for the 8 study cases.

The step of track aggregation extracts final information from tracks during a specified period of interest. The extraction method reduces the multidimensionality and releases from the dependence on time. These methods are usual statistical functions (eg, minimum, maximum, mean, median, count, duration, and delay).

The period of interest is defined by a start date and an end date, which may come from different sources as follows: the administration of a drug, the step of a procedure, the visit with a health care professional, or the visit to a health care unit. For each date, there could be more than one candidate event. For example, in SC3, the start of the anesthesia procedure may be documented with 4 different events as follows: induction event, hypnotic administration, intubation, and mechanical ventilation. In the same way, the end of the anesthesia procedure may be defined by the following 2 events: extubation or the end of the anesthesia event. In this case, a priority rule based on expert knowledge or an aggregation operation (first or last event) selects the main event. Lastly, a time interval may be added to the start and end dates of the period to create an artificial period as follows: the 90 days preceding or following hospitalization (SC6).

At the end of the process, feature is a single value associated with a label (the feature name). In a feature, time is implicit and is no longer formalized by a date in the record. It may be sometimes represented in the name of the variable, with, for example, the mean value of arterial pressure before induction (eg, mean_map_before_induction). It may also be represented in the value of the feature itself (eg, for a delay or a duration). The feature depends greatly on the context of the study; thus, in SC2 and SC3, the same raw signal produces 2 distinct features that depend on the extraction methods and the periods of interest. Table 5 describes the features identified in our 8 study cases, according to the statistical unit, period, signal, and extraction method. 

Evaluation of Feature Storage Possibilities in the OMOP CDM

Five tables already exist in the OMOP CDM (DRUG_ERA, DOSE_ERA, CONDITION_ERA, EPISODE, and EPISODE_EVENT) for storing elements derived from raw data [START_REF] Belenkaya | Extending the OMOP Common Data Model and Standardized Vocabularies to Support Observational Cancer Research[END_REF]. These tables cover the storage of spans of time when the patient is exposed to a specific drug ingredient (DRUG_ERA), when the patient is exposed to a constant dose of a specific drug ingredient (DOSE_ERA), or when the patient is assumed to have a given condition (CONDITION_ERA). These existing tables are suitable for pharmacoepidemiology studies with the comparison of periods of drug exposure and the resulting adverse events or evolution of the disease. The studies require only diagnosis and medication data from the tables CONDITION_OCCURRENCE and DRUG_EXPOSURE [START_REF] Stang | Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership[END_REF].

However, other types of data also need to be retransformed to obtain usable information for statistical analysis (in particular, procedures, measurements, biology results, or any types of steps in patient care). At this point, 2 alternatives allow other types of derived elements to be stored. The first approach involves adding an era table for each raw information that can be transformed into an era (ie, a measurement era, procedure era, biology era, etc). The second approach involves proposing a generic era table that would cover all types of raw data. With these 2 approaches, there would still be a lack of storage for the final features, which do not have the same structure as eras or episodes, since they are only an association of a value and a label, independent of time.

For this reason, on the one hand, the table TRACK could complement the model and store intermediate data (ie, all types of tracks and eras), which would ultimately be used to compute features, and on the other hand, the table FEATURE could extend the OMOP CDM for storing secondary computed data from measurements, procedures, observations, and stays, which would be used for the analysis and would need to be stored on a long-term basis. These 2 new conceptual tables are illustrated in Figure 3. They comply with the OMOP guidelines in terms of field name and table organization [START_REF] Episode | Observational Health Data Sciences and Informatics[END_REF]. For both tables, foreign keys reference the person, the visit, the visit details, the main concept (TRACK_CONCEPT_ID and FEATURE_CONCEPT_ID), and the type of this concept (TRACK_TYPE_CONCEPT_ID and FEATURE_TYPE_CONCEPT_ID). Similarly, the 2 tables provide core fields to store continuous values (VALUE_AS_NUMBER) or categorical values (VALUE_AS_CONCEPT_ID). The specificity of TRACK involves the preservation of the time dimension through the fields TRACK_START_DATE and TRACK_END_DATE. In the FEATURE table, in the case where a patient could present the same feature several times (eg, on different days), a foreign key to the EPISODE table allows differentiation of the occurrences of a feature [START_REF]Conversion of Diagnosis and Chemotherapy Data in Electronic Health Records to Episode-based Oncology Extension of OMOP-CDM[END_REF]. Both tables also have the usual fields to store the source values expressed with local vocabularies. 

RenderX

Discussion

Principal Findings

In this article, we propose a standardized description of the feature extraction process, which is implemented when transforming heterogeneous, multidimensional, and time-dependent raw data into valuable information for conducting observational retrospective studies. The process combines 2 steps (track definition and track aggregation). Track definition aims at transforming raw data into multiple tracks representing the periods of interest or reconstructing a signal. Track aggregation computes usable information from a final track for applying an extraction method during a period of interest. The resulting features are the 1-dimensional and time-independent variables that will be included in the statistical analysis.

By dividing the feature extraction into these 2 steps, the difficulty is managed during track definition. The first step aims at creating tracks, with a common unit adequate for the statistical unit of the study and a homogeneous temporal scale. Tracks then allow the application of an infinite number of complex transformations, such as the mapping of concepts for the detection of drug-drug interactions (SC7). These transformations require great expertise with regard to the data and are mainly implemented on a custom basis. On the contrary, track aggregation is a very simple operation, with a finite number of possibilities.

Strengths of the Study

The definitions of the transformations are based on various cases, and they were carried out on different databases from several centers. Feature extraction is the algorithmic translation of expert knowledge. Our work shows that this process requires the sequencing of several transformations, including, for track definition, the choice of (1) a time-dependent signal or an already available track, (2) a statistical unit, (3) a type of track, and (4) a value or a set of values, and track aggregation is the final transformation based on (5) a track, which is performed during (6) a period of interest and involves [START_REF] Safran | Reuse of clinical data[END_REF] an extraction method. The formalization and documentation of these 7 items should enhance the reproducibility of studies and the sharing of features between collaborators, by removing the ambiguity about what is being calculated.

Limits

In this study, we focused on feature extraction based on expert rules and did not take into account feature extraction based on deep learning techniques [START_REF] Liang | Text feature extraction based on deep learning: a review[END_REF][START_REF] Lecun | Deep learning[END_REF]. In this case, although the aim is also to reduce the dimensionality of the source data, there is no need to interpret features, which are often abstract and designed to result in the best prediction model without being interpreted [START_REF] Lecun | Deep learning[END_REF]. Recent advances in natural language processing [START_REF] Peters | Deep contextualized word representations[END_REF][START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF][START_REF] Brown | Language Models are Few-Shot Learners[END_REF] could be leveraged to automatize the extraction of relevant clinical features from clinical text [START_REF] Alsentzer | Publicly Available Clinical BERT Embeddings[END_REF]. Once the feature of interest has been well defined, a small annotation campaign should be conducted to fine-tune and evaluate pretrained model performances. Afterwards, the extracted feature can be integrated in our workflow as a new structured piece of information. The impressive results of large language models suggest that a few labeled examples are sufficient to fine-tune these models [START_REF] Copara | Contextualized French Language Models for Biomedical Named Entity Recognition[END_REF]. Three limitations must be explored before using these models. First, due to the variability of the wordings of clinical concepts, it has not been proved that a large language model can capture every targeted feature. Second, the computing intensiveness is incompatible with large-scale information retrieval. Third, the ability to conduct quick targeted annotation campaigns for precise clinical terms requires appropriate tooling and processes. We have not provided any use cases involving text. However, both tracks and features could be constructed from, for example, the presence of a symptom or the reporting of a scale in a consultation report. Such extraction from raw text raises the question of the automatic detection of specific concepts in text and the performance of the tools used for this.

Although some features, such as the length of stay, are generic and frequently used, the majority remain dependent on the study context. The period of interest and the extraction method are proxies for what is expected by the clinician or researcher, and the feature would need to be manually evaluated to ensure its validity [START_REF] Jeon | Characterizing the Anticancer Treatment Trajectory and Pattern in Patients Receiving Chemotherapy for Cancer Using Harmonized Observational Databases: Retrospective Study[END_REF].

Even if SNOMED CT (Systematized Nomenclature of Medicine -Clinical Terms) and ICD10 propose aggregate concepts, such as "Hypotension following procedure" (SNOMED CT code 16055431000119108), "Decreased mean arterial pressure" (SNOMED CT code 31013001), or "Hypotension" (ICD10 code I95), these concepts are only a part of the label of a feature, and they do not document how to compute the feature or mention the period (ie, surgery, anesthesia, intensive care unit stay, or first day of hospitalization). Standardized concepts that fully document features are yet to be defined in these terminologies.

At present, we cannot judge the generalization of our proposal. However, this study is the first to propose a standardized description of feature extraction from structured databases. The approach remains to be evaluated by comparing it with other study cases, particularly from other countries. The next step of this project is the implementation of an R package with functions dedicated to the definition and aggregation of tracks. This package would rely on the OMOP CDM and allow reproducibility of feature extraction. Attention will need to be paid to the physical implementation of the 2 tables and, in particular, to the storage of tracks, which can be voluminous and can impact performance with regard to queries and response times. Finally, it would be relevant to implement a data mart with features arranged in columns (when they are still stored in rows in the feature table) to gain time when building tables to construct cohorts.

Conclusions

We have clarified the process of feature extraction implemented when conducting retrospective observational studies. We identified 2 transformations (track definition and track aggregation) to transform complex raw data into tracks and features. Track definition requires high expertise, but reduces the complexity of data and simplifies the reduction of time dimensionality during track aggregation.
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 6 Raw data: Drug administration 3 Track: Drug B Selection of drugs included in the Laroche list Raw data: Drug administration 4 Track: Drug A (Laroche)/90 days before hospital stay Intersection of the 2 tracks Track: 90 days before hospital stay + Track: Drug A 5 Track: Drug B (Laroche)/90 days before hospital stay Intersection of the 2 tracks Track: 90 days before hospital stay + Track: Drug B Drug Laroche list/90 days before hospital stay Union of the 2 tracks Track: Drug A (Laroche)/90 days before hospital stay + Track: Drug B (Laroche)/90 days before hospital stay 7 Feature: Number of drugs from the Laroche list prescribed in the 90 days before hospital stay Count distinct (drug Laroche list/90 days before hospital stay) Track: Laroche list/90 days before hospital stay 8

Figure 2 .Table 4 . 5 PatientSC8:Table 5 .

 2455 Figure 2. Feature extraction process transforming raw data into features.

  c VKA: vitamin K antagonist.

  d DDI: drug-drug interaction.

  e INR: international normalized ratio. f COPD: chronic obstructive pulmonary disease. g FRE: functional respiratory exploration.

Figure 3 .

 3 Figure 3. Data model for the storage of periods and features in a relational database, compliant with the Observational Medical Outcomes Partnership (OMOP) common data model. FK: foreign key; PK: primary key.

Table 1 .

 1 Description of study cases involving feature extraction for retrospective observational studies.

	Study case	Objective of the study	Features needed to achieve the objectives of the study
	SC1: Detection of hyperox-emia in mechanically ven-tilated patients	To evaluate the effect of hyperoxemia on ICU a mortality, during the first 24 h of ICU stay, in mechanically ventilated patients with septic shock according to the SEPSIS-3 criteria [56]	Explanatory variable: Weighted average of PaO 2 b for mechanically ventilated patients with septic shock ac-cording to the SEPSIS-3 criteria. The measurements
			are recorded at irregular intervals. The signal is recon-
			structed to give one measurement per second.
	SC2: Duration of hypoten-	To evaluate the impact of early blood pressure control in heavy	Explanatory variable: Duration of arterial pressure
	sion during heavy surgery	surgeries on in-hospital mortality and length of stay	spent with a drop of 10% from the average value,
			during the procedure.
	SC3: Duration of hypoten-	To characterize the effect of hypotension during cesarean section	Explanatory variable: Duration of systolic arterial
	sion during cesarean sec-	with spinal anesthesia on fetal pain	pressure with a drop of 20% from a reference value
	tion with spinal anesthesia		between induction and birth for a cesarean section with
			spinal anesthesia. The reference value is the mean
			value of the systolic arterial pressure between arrival
			in the operating room and the induction.
	SC4: Heart rate and admin-	To assess the evolution of heart rate before and after the admin-	Explanatory variables: The median, minimum, and
	istration of atropine	istration of atropine (a medication used to treat bradycardia)	maximum values of heart rate are computed during 2
			periods of 10 minutes, designed around the administra-
			tion of atropine.
	SC5: Compliance with	To evaluate whether the recommendations in terms of ventilation	Explanatory variable: End-tidal volume <8 mL/kg of
	ventilatory guidelines	in the operating room have been carried out [57]	ideal body weight during surgery.
	SC6: Potentially inappro-	To measure the impact of a therapeutic optimization intervention	Explanatory variable: Number of drug administrations
	priate medications	on hospital readmission in frail older people included in an integrated care pathway on PIM c prevalence and	from the French Laroche list [58] (potentially inappro-talization. priate medications) in the 90 days preceding the hospi-
			Number of drug administrations from the French
			Laroche list in the 90 days following the hospitaliza-
			tion.
	SC7: Drug-drug interac-tions	To estimate the probability of the occurrence of INR d changes for each DDI e rule involving VKA f [59]	Explanatory variable: Administration of VKA with another drug defined in a DDI rule. Raw ATC g codes are mapped to wider categories by taking into account
			the active substances and the administration route. The
			period of interest started the day after the 2 drugs had
			been administered together and ended 4 days after the
			first of the 2 drugs was discontinued.
			Response variable: VKA potentiation with at least one value of INR ≥5 or VKA inhibition with at least one value of INR ≤1.5.
	SC8: Compliance with	To assess the percentage of suspect COPD patients having func-	Explanatory variable: Suspect COPD patients defined
	guidelines for COPD h pa-tients	tional respiratory exploration for diagnosis	as patients aged more than 40 years with one of several of the following treatments: bronchodilators, 3 antibi-otic therapies for respiratory infection, or nicotinic
			substitutes.

a ICU: intensive care unit. b PaO 2 : partial pressure of oxygen. c PIM: potentially inappropriate medication.

d INR: international normalized ratio. e DDI: drug-drug interactions. f VKA: vitamin K antagonist. g ATC: Anatomical Therapeutic Chemical.

h COPD: chronic obstructive pulmonary disease.

Table 2

 2 summarizes these transformations, as well as the input and output data of each transformation. Standardized descriptions of all other study cases and feature extraction processes are available in Multimedia Appendix 1 and Multimedia Appendix 2.

Table 2 .

 2 Input data, transformations, and output data for each step involved in the feature extraction of study case 6 (potentially inappropriate medications).

	Step	Input data	Transformation	Output data
	1	Raw data: Hospital stay	Selection of fields "admission date" and	Track: Hospital stay
			"discharge date"	
	2	Track: Hospital stay	Computing the previous 90 days	Track: 90 days before hospital stay
			Selection of drugs included in the Laroche	Track: Drug A
			list	

Table 3 .

 3 Definitions and comparisons of the states and transformations involved in the feature extraction.

	JMIR MEDICAL INFORMATICS			Lamer et al
	States and transformations	Description	Example	Time dimension	Complexity
	Raw data (state)	Heterogeneous, multidimensional, and time-dependent	Raw measurements of	Yes	Yes
		low-level clinical data: demographic data, patient flow,	mean arterial pressure		
		laboratory results, drug administrations, procedures, diag-			
		noses, and measurements.			
		The time dimension is always beside the value as an at-			
		tribute.			
	Track definition (transfor-	Reduction of the initial dimensions to the statistical unit	Resampling of the signal	Yes	Reduced
	mation)	and standardization of the data representation through an			
		infinite possibility of operations with high expert knowl-			
		edge.			
		Conservation of the time dimension.			
		Conditional operations may be performed on tracks to			
		generate new tracks.			
	Track (state)	Homogeneous and time-dependent signal, defined by a	Resampled signal with one	Yes	No
		homogeneous statistical unit, a type of track, and a set of	measurement per second		
		time-stamped values.			
		The time dimension remains beside each track.			
	Track aggregation (trans-	Reduction of the time dimension: a period of interest, a	Aggregation (minimum	Reduced	No
	formation)	track, and an extraction method based on a finished number	and mean values) of mea-		
		of operations (minimum, maximum, median, sum, count,	surements recorded be-		
		etc).	tween the start and end of		
		The time dimension is reduced to obtain a single value,	the anesthesia procedure		
		with time embedded in the variable name or inside the			
		value.			
	Feature (state)	Time-independent high-level information with dimension-	Minimum and mean values	Implicit	No
		ality identical to the statistical unit of the study, defined by	of mean arterial pressure		
		a label and a value.	during the anesthesia pro-		
		The time dimension has become implicit in the value (eg,	cedure		
		in a delay or a duration) or name of the variable (eg, a value			
		at day 1).			
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