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In this work, we find necessary and sufficient conditions in order that a family of sets {C(t), t ∈ J} be invariant for a Cauchy problem. We prove the existence and uniqueness of the solution using viability for timedependent closed convex sets to the case of non densely defined Cauchy problem. Moreover, we propose several characterizations of conditions that lead to the viability theorem. Finally, a comparison principle for semilinear problems, when the nonlinear part is only defined in a closed convex set, is established.

Introduction

Given a nontrivial time interval J starting at zero and a Banach space X, we consider the following Cauchy problem

     du(t) dt = Au(t) + F (t, u(t)), t ∈ J u(0) = x ∈ X (1)
where A : D(A) ⊂ X → X is an unbounded linear operator and F is a nonlinear operator on a subset of J × X. In finite dimensions, differential systems of the type above are of great importance and the motivation for developing their theory comes from real-world problems. For instance, we refer for example to [START_REF] Arendt | Vector-Valued Laplace Transforms and Cauchy Problems[END_REF][START_REF] Magal | Theory and Applications of Abstract Semilinear Cauchy Problems[END_REF][START_REF] Thieme | Semiflows generated by Lipschitz perturbations of non-densely defined operators[END_REF][START_REF] Vrabie | C 0 -Semigroups and Applications[END_REF].

In many situations of interest, the nonlinear term is defined only on a subset of the Banach space X. Typical examples of such problems are called flow invariance problems [START_REF] Motreanu | Flow Invariance for Differential Equations, and Optimization Problems[END_REF] or viability [START_REF] Carja | Invariance and Applications[END_REF]. We recall that a subset C 0 ⊂ X is said viable with respect to (1) if, for each x ∈ C 0 , at least one solution with initial condition x has values in C 0 . It is said flow-invariant if for each

x ∈ C 0 all solutions with initial condition x have values in C 0 ( [START_REF] Aubin | Viability Theory: New Directions[END_REF][START_REF] Carja | Invariance and Applications[END_REF]). Of course, both notions are equivalent when we have the uniqueness of the solution to [START_REF] Arendt | Vector-Valued Laplace Transforms and Cauchy Problems[END_REF]. Such problems are related to the existence of solutions of differential equations or differential inclusions whose dynamics are restricted to closed subsets of the state space. We refer to [START_REF] Aubin | Viability Theory: New Directions[END_REF] for a complete overview of the applications in biology, economy, and finance.

The flow invariance problem we are interested in has been studied by many authors using various frameworks and techniques. The first flow invariance result is Nagumo's viability theorem for ordinary differential equations [START_REF] Nagumo | über die Lage der Integralkurven gewöhnlicher Differentialgleichungen[END_REF]. This pioneering work has been rediscovered several times in the seventies among others by Brezis [START_REF] Brezis | On a characterization of flow-invariant sets[END_REF], Crandall [START_REF] Crandall | A generalization of Peano's existence theorem and flow invariance[END_REF], Hartman [START_REF] Hartman | On invariant sets and on a theorem of Ważewski[END_REF] and Martin [START_REF] Martin | Differential equations on closed subsets of a Banach space[END_REF]. Since then, many extensions were considered in the literature. Among comparison theorem, differential inequalities, and many other applications, invariant sets for abstract functional differential equations and reaction-diffusion systems have been studied in [START_REF] Jun. Martin | Abstract functional differential equations and reaction-diffusion systems[END_REF][START_REF] Ruan | Reaction-diffusion equations with infinite delay[END_REF]. In the monograph of Motreanu and Pavel [START_REF] Motreanu | Flow Invariance for Differential Equations, and Optimization Problems[END_REF], the authors studied the flow invariance of densely defined semilinear Cauchy problems. They detailed the positive invariance for general closed subset subjected to the tangency condition and also considered the positive invariance of the time-dependent closed subset. Such results are proved for semilinear differential inclusion problems and densely defined Cauchy problems.

For the time-independent closed convex subset, Thieme [START_REF] Thieme | Semiflows generated by Lipschitz perturbations of non-densely defined operators[END_REF] extended the flow invariance for non-densely defined Cauchy problems with a Hille-Yosida linear operator. We mention that the later operator is perturbed by a Lipschitz continuous non-linear map. Magal et al. [START_REF] Magal | Positively invariant subset for non-densely defined Cauchy problems[END_REF] generalize the work in [START_REF] Thieme | Semiflows generated by Lipschitz perturbations of non-densely defined operators[END_REF] to prove a viability theorem for a Cauchy problem with respect to time-independent closed set and for the non-Hille-Yosida case. Motivated by these above works, here we investigate the non-densely defined Cauchy problems of type [START_REF] Arendt | Vector-Valued Laplace Transforms and Cauchy Problems[END_REF], with the Hille-Yosida operator defined on a time-dependent domain. In addition, we characterized the crucial tangency conditions and showed the applicability of our result, based on viability for the time-dependent closed convex sets to the case of non densely defined Cauchy problem. Such results include characterizations of conditions that lead to the viability theorem, the existence and uniqueness of the solution, and the comparison principle for semilinear problems when the nonlinear part is only defined in the positive cone of the Banach space X.

The rest of the work is organized as follows. Section 2 is a presentation of the main result, some basic notations, and materials on the flow invariance of the Cauchy problem. In Section 3, we find some flexible conditions to characterize the subtangential condition. We apply, in Section 4, the result on viability of the Cauchy problem to obtain a comparison principle in addition to the positivity of the solution.

Semilinear Cauchy problem on time-dependent closed sets

The main objective of this section is to recall the notion of a mild solution to the non-densely defined Cauchy problems.

Let A : D(A) ⊂ X → X be a Hille-Yosida linear operator of type (M A , ω A ), i.e., the resolvent set ρ(A) of A contains a ray (ω A , +∞) and R λ (A) := (λI -A) -1 satisfies

∥R λ (A) n ∥ L(X) ≤ M A (λ -ω A ) n , ∀λ > ω A , n = 1, 2, . . .
Let J ⊂ R be a non-trivial interval with min(J) = 0. Le C ⊂ X be a nonempty closed convex subset that meets D(A), and define

C 0 := C ∩ D(A)
which is also a closed convex subset of D(A). For all t ∈ J, we denote by C(t) a non empty closed such that C(t) ⊆ C 0 , and define

C = {(t, x) ∈ J × C 0 : x ∈ C(t)} . Let F : C ⊆ J × C 0 → X and consider the Cauchy problem      du(t) dt = Au(t) + F (t, u(t)), t ≥ t 0 in J u(t 0 ) = x ∈ C(t 0 ) (2) 
where 0 ≤ t 0 < sup(J).

It is worth mentioning that subsets C(t), t ∈ J, are not necessarily convex but the construction of solutions to (2) required the convexity of C 0 . Indeed, we describe a way of approximating solutions that blow up to a finite time. With a convex interpolation, the existence of such mild solutions holds. We can, however, easily release the convexity condition on C 0 by assuming that each C(t) is arcwise connected in a certain sense given below (see [START_REF] Jun. Martin | Abstract functional differential equations and reaction-diffusion systems[END_REF][START_REF] Ruan | Reaction-diffusion equations with infinite delay[END_REF] for more details).

To proceed further, we need the following notion of integral solution for the Cauchy problem on time-dependent closed sets.

Definition 2.1 Let τ > 0 such that [t 0 , t 0 + τ ] ⊂ J. A function u : [t 0 , t 0 + τ ] → C 0 is called an integral solution to (2) with initial condition x ∈ C(t 0 ) at time t = t 0 if u ∈ C([t 0 , t 0 + τ ], C 0 ), u(t) ∈ C(t) for all t ∈ [t 0 , t 0 + τ ] and        t t0 u(s)ds ∈ D(A), ∀t ∈ [t 0 , t 0 + τ ] u(t) = x + A t t0 u(s)ds + t t0 F (s, u(s))ds, ∀t ∈ [t 0 , t 0 + τ ].
We also define the notion of mild solution to (2) which is equivalent to the notion of integral solution [START_REF] Magal | Theory and Applications of Abstract Semilinear Cauchy Problems[END_REF][START_REF] Thieme | Semiflows generated by Lipschitz perturbations of non-densely defined operators[END_REF]. Before proceeding, let us recall that the part

A 0 of A in D(A) is the linear operator A 0 : D(A 0 ) ⊂ X → X with A 0 x = Ax, ∀x ∈ D(A 0 ) := {x ∈ D(A) : Ax ∈ D(A)}.
It is well known that [START_REF] Da Prato | Differential operators with non dense domain[END_REF][START_REF] Magal | Theory and Applications of Abstract Semilinear Cauchy Problems[END_REF][START_REF] Thieme | Semiflows generated by Lipschitz perturbations of non-densely defined operators[END_REF] if A is a Hille-Yosida linear operator of type (M A , ω A ) the A 0

generates a C 0 -semigroup {T A0 (t)} t≥0 on D(A) with ∥T A0 (t)x∥ ≤ M A e ω A t ∥x∥, ∀t ≥ 0, ∀x ∈ D(A). Definition 2.2 Let τ > 0 such that [t 0 , t 0 + τ ] ⊂ J. A function u : [t 0 , t 0 + τ ] → C 0 is called a mild solution to (2) with initial condition x ∈ C(t 0 ) at time t = t 0 if u ∈ C([t 0 , t 0 + τ ], C 0 ), u(t) ∈ C(t) for all t ∈ [t 0 , t 0 + τ ] and u(t) = T A0 (t -t 0 )x + lim λ→+∞ t t0 T A0 (t -s)λR λ (A)F (s, u(s))ds, ∀t ∈ [t 0 , t 0 + τ ].
To ensure the existence and uniqueness of the solution, we will require F to be regular enough.

In fact, it is well known that with A = 0 the existence of a solution for every continuous F means that the Banach space X is of finite dimension (see Godunov [START_REF] Godunov | Peano's theorem in Banach spaces[END_REF]). For these reasons, the nonlinear operator F is assumed to satisfy the following regularity condition :

(F) The non-linearity F is continuous from J × C 0 to X. We assume in addition that for each τ 0 ∈ J and r 0 > 0, there exists κ := κ(r 0 , τ 0 ) > 0 such that for all t ∈ [0, τ 0 ]

∥F (t, x) -F (t, y)∥ ≤ κ∥x -y∥, ∀x, y ∈ C 0 , ∥x∥ ≤ r 0 , and ∥y∥ ≤ r 0 .
A central role in the present work is played by a subtangential condition and some of its characterizations. In fact, when C 0 is closed and dom(F (t, •)) = C 0 , the Lipschitz condition on the nonlinearity F is not enough to guarantee the existence of solution with value in C 0 in both finite and infinite dimensions. Indeed, when C 0 is closed, the "vector field" F must be tangent to C 0 in a certain sense. More precisely, it is proved in [START_REF] Thieme | Semiflows generated by Lipschitz perturbations of non-densely defined operators[END_REF] that when C(t) = C 0 , for all t ∈ J, and (F) is satisfied then the following subtangential condition is a necessary and sufficient condition for the existence of a solution to [START_REF] Aubin | Viability Theory: New Directions[END_REF] with value in C 0

lim t→0 + 1 t dist (T A0 (t)x + S A (t)F (ℓ, x); C 0 ) = 0 (3) 
where S A (t) : X → D(A) is the bounded linear operator given by

S A (t)y := lim λ→+∞ t 0 T A0 (t -s)λR λ (A)yds, ∀y ∈ X, ∀t ≥ 0. (4) 
Note that when A is densely defined, then (4) takes the following form

S A (t)y := t 0 T A0 (t -s)yds, ∀y ∈ X, ∀t ≥ 0.
Therefore, in the case of the densely defined operator A, equality (3) leads to the classical subtangential condition given in [START_REF] Motreanu | Flow Invariance for Differential Equations, and Optimization Problems[END_REF]. Henceforth, for more convenience, we will use the notation

X 0 = D(A).
The subtangential condition (3) is quite tricky. However, in Section 3, we find a way of overcoming obstacles in some configurations. For instance, we will prove that if C is a distance set or convex and the two below items are satisfied

• X = H is a real Hilbert space with inner product ⟨•, •⟩,

• λ(λI -A) -1 C ⊂ C for all large λ > ω A ,
then the subtangential condition (3) implies the following assertion : if w ∈ X is a normal vector to C at x (in a sense to be precised later) then ⟨w, F (ℓ, x)⟩ ≤ 0.

The above assertion is somehow helpful to better motivate the term subtangential. Thanks to the following result, see [START_REF] Thieme | Semiflows generated by Lipschitz perturbations of non-densely defined operators[END_REF]Lemma 2.9], which provides a sufficient condition for obtaining the subtangential condition (3).

Lemma 2.3

Let C be a nonempty convex subset. Under condition (F), if the following are

verified i) λ(λI -A) -1 (C) ⊂ C for all large λ > ω A ; ii) for each (ℓ, x) ∈ J × C 0 lim t→0 + 1 t dist (x + tF (ℓ, x); C) = 0, ( 5 
)
then the subtangential condition (3) is satisfied.

Remark 2.4

When C is open in X then (5) is always satisfied. This can be obtained by simple arguments. Therefore, only the tangency on the boundary of C is important. Equivalent characterizations to (5) will be given in Section 3.

To obtain the existence of integral solution to (2), we will need a generalization of the subtangential condition (3) for time-dependent sets. This reads as follows (S1) For each ℓ ∈ J and x ∈ C(ℓ)

lim t→0 + 1 t dist (T A0 (t)x + S A (t)F (ℓ, x); C(ℓ + t)) = 0
where S A (t) is defined in [START_REF] Brezis | On a characterization of flow-invariant sets[END_REF].

(S2) If the sequence (t k , x k ) k≥0 ⊂ J × C 0 with x k ∈ C(t k ) converges to (t * , x * ) ∈ J × C 0 then x * ∈ C(t * ).
Note that condition (S2) is a somehow closedness of the family of non empty sets C(t), t ∈ J. Of course when the family of sets is closed and does not depends on t ∈ J then (S2) is automatically satisfied. The following theorem is essentially inspired by [START_REF] Motreanu | Flow Invariance for Differential Equations, and Optimization Problems[END_REF] where the proof has been done in the case of a densely defined Cauchy problem. Let us also mention [START_REF] Jun. Martin | Abstract functional differential equations and reaction-diffusion systems[END_REF][START_REF] Ruan | Reaction-diffusion equations with infinite delay[END_REF] where such a problem has been applied respectively to the system of reaction-diffusion equations with infinite delay. Here is the main result of this paper.

Theorem 2.5 Let {C(t) ⊆ C 0 : t ∈ J} be a family of closed sets such that C(t) is non empty for each t ∈ J and C 0 is closed and convex. Assume that conditions (F), (S1) and (S2) are satisfied.

Then for each x ∈ C(t 0 ) and 0 ≤ t 0 < sup(J), there exists a unique maximally defined integral (mild) solution to (2) with initial condition x at time t = t 0 .

To throw some light on the definition of the family of subsets C(t), t ∈ J and some existing literature, we mention that when C(t) = C 0 , for all t ∈ J, Theorem 2.5 has been proved in [START_REF] Thieme | Semiflows generated by Lipschitz perturbations of non-densely defined operators[END_REF] while [START_REF] Magal | Positively invariant subset for non-densely defined Cauchy problems[END_REF] obtained a more general version of this theorem by assuming that A is not Hille-Yosida and C 0 is only closed. However, note that the result in [START_REF] Magal | Positively invariant subset for non-densely defined Cauchy problems[END_REF] is based on the fact that the nonlinear map F is defined in the whole J × X. 

u(ℓ + t) = T A0 (t)x + lim λ→+∞ ℓ+t ℓ T A0 (ℓ + t -s)λ(λI -A) -1 F (s, u(s))ds, ∀t ∈ [0, τ ].
Hence, for all t ∈ (0, τ ]

dist(T A0 (t)x + S A (t)F (ℓ, x); C(ℓ + t)) ≤ ∥u(ℓ + t) -T A0 (t)x + S A (t)F (ℓ, x)∥, that is 1 t dist(T A0 (t)x + S A (t)F (ℓ, x); C(ℓ + t)) ≤ 1 t ∥v(t)∥ with v(t) := lim λ→+∞ ℓ+t ℓ T A0 (ℓ + t -s)λ(λI -A) -1 [F (s, u(s)) -F (ℓ, x)]ds. Since ∥v(t)∥ ≤ M 2 A ℓ+t ℓ e ω A (ℓ+t-s) ∥F (s, u(s)) -F (ℓ, x)∥, ∀t ∈ (0, τ ] it follows that lim t→0 + 1 t dist(T A0 (t)x + S A (t)F (ℓ, x); C(ℓ + t)) = 0.
The rest of the proof of our main Theorem will be given in Section 5.

Characterization of the subtangential condition

In this section, we give several characterizations of (5) that will be useful in the sequel. These equivalent characterizations will be used in Section 4 to show how to derive general conditions for the monotony of the semiflow generated by ( 2) and comparison principles. To begin with, we first introduce some definitions.

Definition 3.1 A subset C ⊆ X is called a distance set if for each x ∈ X \ C there exists y ∈ C such that dist(x; C) = ∥x -y∥. Remark 3.2 It is worth noting that a distance set is closed. Definition 3.3 Let C ⊆ X be a closed subset. A vector v ∈ X is said to be tangent to C at x ∈ C if lim t→0 + 1 t dist(x + tv; C) = 0.
The above notion of tangency is usually called tangency in the sense of Federer. The tangency in the sense of Bouligand is defined similarly by replacing the "lim" by "lim inf". We can notice that if v ∈ X is tangent to C at x ∈ C in the sense of Federer, then it is tangent to C at x ∈ C in the sense of Bouligand. We now prove an equivalent definition to the tangent vector that turns out to be useful in the development of this section. This reads as follows.

Lemma 3.4 Let C ⊆ X be a closed subset. Then the following properties are equivalent:

i) The vector v ∈ X satisfies

lim t→0 + 1 t dist (x + tv; C) = 0.
ii) There exists a map θ : [0, +∞) → X such that

x + tv + tθ(t) ∈ C, ∀t ≥ 0 and lim t→0 + θ(t) = 0. iii) For each sequence (t n ) n≥0 ⊂ [0, +∞) such that lim n→+∞ t n = 0, there exists a sequence (θ n ) n≥0 ⊂ X such that x + t n v + t n θ n ∈ C, ∀n ≥ 0 and lim n→+∞ θ n = 0.
Proof. It is obvious that ii) implies iii). We prove in the following that i) is equivalent to ii) and iii) implies i). Assume i). Then for each t > 0 there exists

u(t) ∈ C such that dist (x + tv; C) ≤ ∥u(t) -x -tv∥ < dist (x + tv; C) + t 2 .
Therefore,

lim t→0 + ∥u(t) -x -tv∥ t = 0.
Thus, ii) follows by setting

θ(t) := u(t) -x -tv t , ∀t > 0 and lim t→0 + θ(0) = 0. Assume ii). Then we have for each t ≥ 0 dist (x + tv; C) ≤ ∥[x + tv] -[x + tv + tθ(t)]∥ ≤ t∥θ(t)∥
and i) follows. The implication iii) =⇒ i) can be done similarly by using the sequential characterization of the limit.

We now make a link between the tangent vector to C at x ∈ C and the normal vector to C at x ∈ C. Before proceeding, we introduce the following definition due to Bony [START_REF] Bony | Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées[END_REF].

Definition 3.5 (Bony) A vector w ∈ X is an outer normal vector to C at x ∈ C if the following properties are satisfied

: i) There exists x 0 ∈ X \ C and r > 0 such that B(x 0 , r) ⊂ X \ C; ii) B(x 0 , r) ∩ C = {x} ; iii) w = 1 h (x 0 -x)
for some h > 0. The following lemma gives another characterization of an outer normal vector to a set. Lemma 3.6 Let w ∈ X and x ∈ C ⊂ X be given. The following properties are equivalent:

i) There exists h > 0 such that B(x + hw, h∥w∥) ∩ C = {x}; ii) w ∈ X is an outer normal vector to C at x ∈ C. Proof. Assume that i) is satisfied with h > 0. Since x / ∈ B(x + hw, h∥w∥) it follows that B(x + hw, h∥w∥) ⊂ X \ C. Setting x 0 = x + hw (i.e. w = 1 h (x 0 -x)) and r = h∥w∥, we conclude that ii) holds true. Assume that ii) is satisfied. Note that x 0 = x + hw and B(x 0 , r) ⊂ X \ C. Since x ∈ C, we have ∥x -x 0 ∥ = h∥w∥ ≥ r. Moreover, using the fact that x ∈ B(x 0 , r) there exists (z n ) ⊂ B(x 0 , r) such that z n → x when n → +∞. As a consequence ∥z n -x 0 ∥ = ∥z n -hw -x∥ <

r and by

letting n → +∞ we obtain h∥w∥ ≤ r. This shows that h∥w∥ = r and the proofs are completed.

In preparation for the lemma that gives the relationship between a tangent vector to a set and an outer normal vector, we recall the following result.

Lemma 3.7 ([19])

Let a, b ∈ R with a < b. Let f : [a, b] → R be continuous such that f (a) = 0.
Assume that there exists c ≥ 0 such that

lim inf h→0 + f (t + h) -f (t) h ≤ cf (t), ∀t ∈ [a, b)
with the possible exception of some countable set

D ⊂ (a, b). Then f (t) ≤ 0 for all t ∈ [a, b].
Using ideas from Crandall [START_REF] Crandall | A generalization of Peano's existence theorem and flow invariance[END_REF] together with Lemma 3.7 we can prove the following lemma.

Lemma 3.8 (Crandall)

Let X be a real Hilbert space with a norm induced by the inner product ⟨•, •⟩. Let C be a distance set or convex and x ∈ C be fixed. Then the following properties are

equivalent: i) v ∈ X is a tangent vector to C at x i.e. lim t→0 + 1 t dist(x + tv; C) = 0;
ii) For each outer normal vector w ∈ X to C at x ∈ C we have ⟨w, v⟩ ≤ 0.

Proof. Since any closed convex set in a Hilbert space is a distance set, we only need to prove that the lemma holds true when C is a distance set. Assume that condition i) is satisfied. Then by Lemma 3.4, there exists a map θ : (0, +∞) → X such that

x + tv + tθ(t) ∈ C, ∀t ≥ 0 and lim t→0 + θ(t) = 0.
Let w ∈ X be an outer normal vector to C at x ∈ C. Thus there exists h > 0 such that

B(x + hw, h∥w∥) ∩ C = ∅.
From where we obtain

∥x + tv + tθ(t) -[x + hw]∥ ≥ h∥w∥, ∀t ≥ 0 hence t∥v + θ(t)∥ 2 -2 ⟨v + θ(t), hw⟩ ≥ 0, ∀t ≥ 0.
The property ii) follows by letting t → 0 + . Next, we assume that ii) is satisfied. Recall that C is a distance set. Then there exists a map y

: [0, +∞) → C such that dist (x + tv; C) = ∥x + tv -y(t)∥ (6) that is ∥x + tv -z∥ ≥ ∥x + tv -y(t)∥, ∀z ∈ C, ∀t ≥ 0. ( 7 
)
Thus setting

w(t) = x + tv -y(t), ∀t ≥ 0, (8) 
it follows from (7) that

∥w(t) + y(t) -z∥ ≥ ∥w(t)∥, ∀z ∈ C, ∀t ≥ 0,
which means that w(t) is an outer normal vector to C at y(t). Therefore, we have by assumption

⟨w(t), v⟩ ≤ 0, ∀t ≥ 0. (9) 
From ( 6) and ( 8), we see that to prove item i), it is enough to show that 1 t ∥w(t)∥ → 0 when t → 0 + . To do this, we note that for t, h ≥ 0, using the fact that y(t) ∈ C we have from [START_REF] Da Prato | Differential operators with non dense domain[END_REF] that

∥w(t + h)∥ 2 ≤ ∥x + (t + h)v -y(t)∥ 2 = ∥hv + w(t)∥ 2 = h 2 ∥v∥ 2 + ∥w(t)∥ 2 + 2h ⟨w(t), v⟩ hence ∥w(t + h)∥ 2 -∥w(t)∥ 2 ≤ h 2 ∥v∥ 2 + 2h ⟨w(t), v⟩ , ∀t, h ≥ 0.. Using (9) we have 2h ⟨w(t), v⟩ ≤ 0 for t, h ≥ 0 so that ∥w(t + h)∥ 2 -∥w(t)∥ 2 ≤ h 2 ∥v∥ 2 , ∀t, h ≥ 0.
To complete the proof, we note that the map t → ∥w(t

)∥ = dist(x+tv, C) is continuous providing that t → ∥w(t)∥ 2 is continuous. Moreover ∥w(0)∥ 2 = 0 and lim inf h→0 + ∥w(t + h)∥ 2 -∥w(t)∥ 2 h ≤ 0, ∀t ≥ 0. ( 10 
)
Lemma 3.7 implies that ∥w(t)∥ 2 ≤ 0 for all t ≥ 0 that is ∥w(t)∥ 2 = 0 for all t ≥ 0. The proof is completed.

Remark 3.9 If there exists h > 0 such that B(x + hw, h∥w∥) ∩ C = {x} then we have

B(x + ϵw, ϵ∥w∥) ∩ C = {x}, ∀ϵ ∈ [0, h].
This is a consequence of the fact that ∥x

+ ϵw -y∥ ≥ ∥x + hw -y∥ -∥(ϵ -h)w∥ ≥ h∥w∥ -(h - ϵ)∥w∥ = ϵ∥w∥ for all ϵ ∈ [0, h] and y ∈ C.
The next lemma gives another characterization of the outer normal vector which will motivate the subsequent lemmas.

Lemma 3.10 Let X be a real Hilbert space with a norm induced by the inner product ⟨•, •⟩.

Assume that C is convex and let x ∈ C be given. Then the following properties are equivalent: i) w ∈ X and ⟨w, x -y⟩ ≥ 0 for all y ∈ C;

ii) w ∈ X is an outer normal vector to C at x.

Proof. Assume that i) is satisfied. Then we have for all

y ∈ C ∥w + x -y∥ 2 = ∥w∥ 2 + ∥x -y∥ 2 + 2 ⟨w, x -y⟩ ≥ ∥w∥ 2 , that is y / ∈ B(w + x, ∥w∥). Since x ∈ B(w + x, ∥w∥) it follows that B(w + x, ∥w∥) ∩ C = {x}.
This proves ii). Let us now assume that ii) holds true. Thus, there exists h > 0 such that

B(x + hw, h∥w∥) ∩ C = {x} and B(x + hw, h∥w∥) ∩ C = ∅.
From where we deduce that

∥y -x -hw∥ ≥ h∥w∥, ∀y ∈ C. ( 11 
)
In light of Reamark 3.9, we can assume that h ∈ (0, 1] so that for each ϵ ∈ (0, 1), the convexity of C ensures that

x + ϵh(y -x) ∈ C, ∀y ∈ C (12)
Therefore, using [START_REF] Magal | Theory and Applications of Abstract Semilinear Cauchy Problems[END_REF] and ( 12) we obtain

∥x + ϵh(y -x) -x -hw∥ ≥ h∥w∥, ∀ϵ ∈ (0, 1), ∀y ∈ C that is ∥ϵ(y -x) -w∥ ≥ ∥w∥, ∀ϵ ∈ (0, 1), ∀y ∈ C hence ϵ∥y -x∥ 2 + 2 ⟨w, x -y⟩ ≥ 0, ∀ϵ ∈ (0, 1), ∀y ∈ C.
The result follows by letting ϵ → 0 + .

From the above Lemma 3.10 we can see that if X is a real Hilbert space and C is convex then w ∈ X is an outer normal vector to C at x ∈ C if and only if

⟨w, x⟩ = sup y∈C ⟨w, y⟩ .
This motivates the following lemma where a specific case has been proved in [START_REF] Redheffer | Flow-invariant sets and differential inequalities in normed spaces[END_REF] when C is a positive cone. We show that it still holds true when C is a closed convex set.

Lemma 3.11 Assume that C is closed and convex. Let v ∈ X and x ∈ C be given and fixed.

Then the following properties are equivalent: i) There exists θ : [0, +∞) → X such that x + tv + tθ(t) ∈ C for all t ≥ 0 and θ(t) → 0 when

t → 0 + ; ii) lim t→0 + 1 t dist (x + tv; C) = 0; iii) For each x * ∈ X * with x * (x) = sup y∈C x * (y) we have x * (v) ≤ 0; iv) For each x * ∈ X * with x * (x) = inf y∈C x * (y) we have x * (v) ≥ 0.
Proof. The equivalence between i) and ii) is already obtained in Lemma 3.4. The equivalence between iii) and iv) follows from the equivalence

x * (x) = sup y∈C x * (y) ⇐⇒ -x * (x) = inf y∈C -x * (y).
Next, we prove that ii) is equivalent to iv). Assume that ii) is satisfied. Then there exists θ : [0, +∞) → X such that x + tv + tθ(t) ∈ C for all t ≥ 0 and θ(t) → 0 when t → 0 + . Let

x * ∈ X * with x * (x) = inf z∈C
x * (z). Then we have

x * (x + tv + tθ(t)) ≥ x * (x), ∀t ≥ 0 =⇒ x * (v + θ(t)) ≥ 0, ∀t ≥ 0 so that x * (v) ≥ 0.
Assume that iv) is satisfied. Let us note that the convexity of C implies that for each h > 0 and y ∈ C we have

x + t h (y -x) ∈ C, ∀t ∈ [0, h] (13) so that dist (x + tv; C) ≤ ∥x + tv -(x + t h (y -x))∥ = t h ∥x + hv -y∥, t ∈ [0, h], ∀y ∈ C. ( 14 
)
In the following, we show that there is a contradiction if ii) does not hold true. This will be done by using the Hann-Banach separation theorem for convex sets. Assume that ii) does not hold true. This means that there exists ϵ > 0 and a sequence (t n ) n≥0 ⊂ (0, +∞) such that

lim n→+∞ t n = 0 and dist (x + t n v; C) ≥ t n ϵ, ∀n ≥ 0. ( 15 
)
Consider the set

D 0 = {y ∈ X | there exists h > 0 such that ∥x + hv -y∥ < hϵ} .
The set D 0 is non empty because x + hv ∈ D 0 for each h > 0. Moreover, D 0 is convex and open in X. We now show that D 0 ∩ C = ∅. In fact if y ∈ D 0 ∩ C then there exists h > 0 such that ∥x + hv -y∥ < ϵh. Moreover for n large enough we have t n ∈ [0, h] and (13) implies that dist (x + t n v; C) < t n ϵ which contradict [START_REF] Motreanu | Flow Invariance for Differential Equations, and Optimization Problems[END_REF]. Therefore, the Hann-Banach separation theorem for convex sets ensures that there exists x * ∈ X * and α ∈ R such that

x * (z 1 ) < α ≤ x * (z 2 ), for all z 1 ∈ D 0 and z 2 ∈ C.
Therefore, x * (x) ≥ α and

x + hv ∈ D 0 , ∀h > 0 =⇒ x * (x + hv) < α, ∀h > 0 hence letting h → 0 + we obtain x * (x) ≤ α providing that x * (x) = α. As a consequence, we obtain x * (x) = inf z∈C x * (z). Moreover, we have

x + hv ∈ D 0 , x * (x + hv) < α and x * (x + hv) = x * (x) + hx * (v) = α + hx * (v) providing that α + hx * (v) < α, h > 0 =⇒ hx * (v) < 0, h > 0 =⇒ x * (v) < 0
which is a contradiction to iii).

Some consequence of Theorem 2.5 in comparison theory

In this section, we will give conditions to obtain the nonnegativity of the solutions as well as the monotony with respect to the initial condition of the semilinear Cauchy problem (2) when C(t) = X 0+ for all t ∈ J, where X 0 = D(A). We also derive the comparison of solutions of semilinear problems, upper and lower solutions. Henceforth, we assume that the Banach space X has a positive cone X + . Let us note that similar results have been obtained in [START_REF] Magal | Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models[END_REF] for the nondensely defined Cauchy problem by using a different approach. We recall that X + is a positive cone of X if it is a closed convex subset of X such that X + ∩ (-X + ) = 0 and; for all λ ∈ R + ,

x, y ∈ X + we have x + y ∈ X + , λx ∈ X + . The positive cone X + induced a partial order in X that is for all x, y ∈ X we have

y ≥ x ⇐⇒ y -x ∈ X + ⇐⇒ x ≤ y.
Note that X 0+ := X 0 ∩ X + = D(A) ∩ X + is also a positive cone of the Banach space X 0 .

Existence of nonnegative solutions

In this section, we will give criteria for the existence of a nonnegative solution to the semilinear Cauchy problem (2). Since X 0+ is closed convex, the existence of a nonnegative solution to [START_REF] Aubin | Viability Theory: New Directions[END_REF] is a direct consequence of the positive invariance of X 0+ . The main contribution of this section is to give general and flexible sufficient conditions. We start first by stating the theorem which is a consequence of the Theorem 2.5, follows by a discussion of these sufficient conditions.

Theorem 4.1 Under the condition (F), the following properties are equivalent: i) For each x ∈ X 0+ there exists a unique maximally defined nonnegative solution to (2)

ii) For each ℓ ∈ J and x ∈ X 0+ lim

t→0 + 1 t dist (T A0 (t)x + S A (t)F (ℓ, x); X 0+ ) = 0. ( 16 
)
Using Lemma 2.3 one knows that a sufficient condition to satisfy [START_REF] Nagumo | über die Lage der Integralkurven gewöhnlicher Differentialgleichungen[END_REF] is that there exists ω > 0 such that (λI -A) -1 X + ⊆ X + for all λ > ω and lim

t→0 + 1 t dist (x + tF (ℓ, x); X + ) = 0, ∀(ℓ, x) ∈ J × X 0+ . ( 17 
)
In the following, we give an equivalent condition to [START_REF] Redheffer | Flow-invariant sets and differential inequalities in normed spaces[END_REF]. In fact, this will be obtained by using the results in the Section 2. To do so, we recall that the dual cone X * + is defined by

X * + = {x * ∈ X * : x * (x) ≥ 0, ∀x ∈ X + } .
The following lemma holds true.

Lemma 4.2 For each x ∈ X 0+ the following properties are equivalent:

i) lim t→0 + 1 t dist (x + tF (ℓ, x); X + ) for all ℓ ∈ J;
ii) For each x * ∈ X * + with x * (x) = 0 we have x * (F (ℓ, x)) ≥ 0, for all ℓ ∈ J. Proof. Taking advantage of Lemma 3.11 to prove the equivalence between i) and ii), we can prove that ii) is equivalent to

If x * ∈ X * with x * (x) = inf y∈X+ x * (y) then x * (F (ℓ, x)) ≥ 0, ∀ℓ ∈ J. ( 18 
)
Assume that ( 18) is satisfied. Let x * ∈ X * + with x * (x) = 0 be given. Then we have inf

y∈X+ x * (y) = 0 = x * (x)
and [START_REF] Ruan | Reaction-diffusion equations with infinite delay[END_REF] implies that x * (F (ℓ, x)) ≥ 0. Assume that ii) is satisfied. Let x * ∈ X * be given such that x * (x) = inf y∈X+ x * (y). Then we have 0 = x * (x) and 0 ≤ x * (y), ∀y ∈ X + that is x * ∈ X * + and x * (x) = 0 so that x * (F (ℓ, x)) ≥ 0. Remark 4.3 In addition to the condition λ(λI -A) -1 X + ⊆ X + for large λ, we may have the following condition (CM) For each r > 0 and τ 0 > 0 there exists λ > 0 such that

F (t, x) + λx ∈ X + , ∀x ∈ X 0+ , ∥x∥ ≤ r, t ∈ [0, τ 0 ].

It is easy to see that if the condition (CM) is satisfied then condition ii) of Lemma 4.2 is satisfied

but the converse is not true even in finite dimension. The following example from Walter [START_REF] Walter | Some new aspects of the line method for parabolic differential equations[END_REF] make it clear. For X = R 3 and

X + = {(x 1 , x 2 , x 3 ) ∈ R 3 : x 2 1 + x 2 2 ≤ x 2 3 and x 3 ≥ 0} let F (x 1 , x 2 , x 3 ) = (-x 2 , x 1 , 0).

We clearly have

F (1, 0, 1) + λ(1, 0, 1) = (λ, 1, λ) / ∈ X + , ∀λ > 0. Let y = (y 1 , y 2 , y 3 ) ∈ X * = R 3 \ {0} and (x 1 , x 2 , x 3 ) ∈ X + such that ⟨y, x⟩ = x 1 y 1 + x 2 y 2 + x 3 y 3 = 0. Then we have y = h(-x 1 , -x 2 , x 3 ) with h > 0 so that ⟨y, F (x)⟩ = -hx 2 x 1 + hx 1 x 2 + hx 3 0 = 0.
We conclude this section by giving the following theorem.

Theorem 4.4 Suppose that condition (F) holds and there exists ω > ω A such that (λI -A) -1 X + ⊂ X + for all λ > ω. Assume in addition that one of the following condition hold: i) For each (ℓ, x) ∈ J × X 0+ we have lim

t→0 + 1 t dist (x + tF (ℓ, x); X + ) = 0;
ii) For each x * ∈ X * + with x * (x) = 0 we have x * (F (ℓ, x)) ≥ 0, for all ℓ ∈ J;

iii) For each r > 0 and τ 0 > 0 there exists λ > 0 such that F (t, x) + λx ∈ X + for every x ∈ X 0+ and ℓ ∈ [0, τ ] with ∥x∥ ≤ r;

Then for each x ∈ X 0+ there exists a unique nonnegative maximally defined integral (mild) solution to (2).

Comparison of solutions and monotony

The comparison theorem and the monotony are very helpful in studying the boundedness of the solutions as well as their asymptotic behavior. We will see that this is again a consequence of the theory developed in Section 4. Let A : D(A) ⊂ X → X be a Hille-Yosida linear operator of type (M A , ω A ) possibly with non dense domain and G : [0, +∞) × X 0 → X be given. Consider the semilinear Cauchy problems

     du(t) dt = Au(t) + G(t, u(t)), t ≥ t 0 u(t 0 ) = x ∈ X 0+ . ( 19 
)
We make the following assumption.

Assumption 4. [START_REF] Carja | Invariance and Applications[END_REF] We assume that:

i) G is Lipschitz continuous on bounded sets of [0, +∞) × X 0+ ;
ii) There exists ω > ω A such that λ(λI -A) -1 X + ⊂ X + for all λ > ω and

lim t→0 + 1 t dist(x + tG(ℓ, x); X + ) = 0, ∀(ℓ, x) ∈ [0, +∞) × X 0+ .
Then, the following result holds Theorem 4.6 Let X be a Banach lattice with X + a normal cone. Let Assumption 4.5 be satisfied. Assume in addition that there exists v ∈ C([0, +∞), X 0+ ) satisfying

v(t) ≥ T A0 (t -t 0 )v(t 0 ) + lim λ→+∞ t t0 T A0 (t -s)λR λ (A)G(s, v(s))ds, t ≥ t 0
and for all ℓ ≥ 0, x ∈ [0, v(ℓ)] we have

lim t→0 + 1 t dist(v(ℓ) -x + t[G(ℓ, v(ℓ)) -G(ℓ, x)]; X + ) = 0. ( 20 
)
Then for each t 0 ≥ 0 and x ∈ [0, v(t 0 )] the exists a unique integral (mild

) solution u ∈ C([t 0 , +∞), X 0+ ) to (19) with 0 ≤ u(t) ≤ v(t), ∀t ≥ t 0 .
Proof. Consider the following time-dependent closed sets

C(t) := {x ∈ X 0+ : 0 ≤ x ≤ v(t)} , ∀t ≥ 0.
The subsets C(t), t ≥ 0 clearly satisfy closedness condition that is for a convergent sequence (t n , x n ) to (t * , x * ) with x n ∈ C(t n ) we have x * ∈ C(t * ). Let x ∈ C(ℓ) be given for some ℓ ≥ 0 i.e 0 ≤ x ≤ u(ℓ). Since X is a Banach lattice it follows that X 0 is also a Banach lattice with positive cone X 0+ . Thus, we have from [10, Lemma 2.1] that lim

t→0 + 1 t dist(T A0 (t)x + S A (t)G(ℓ, x), C(t + l)) ≤ lim t→0 + 1 t dist(w 1 (t, ℓ, x), X 0+ ) + lim t→0 + 1 t dist(w 2 (t, ℓ, x), X 0+ )
with

w 1 (t, ℓ, x) := T A0 (t)x + S A (t)G(ℓ, x)
and

w 2 (t, ℓ, x) := v(ℓ + t) -T A0 (t)x -S A (t)G(ℓ, x).
Thanks to Assumption 4.5 and Lemma 2.3 we have lim

t→0 + 1 t dist(w 1 (t, ℓ, x), X 0+ ) = 0.
Recall that for each t > 0 we have

S A (t)y = lim λ→+∞ ℓ+t ℓ T A0 (ℓ + t -s)λR λ (A)yds, ∀y ∈ X.
Thus, for each t > 0 we have

v(ℓ + t) ≥ T A0 (t)v(ℓ) + lim λ→+∞ ℓ+t ℓ T A0 (ℓ + t -s)λR λ (A)G(s, v(s))ds ≥ T A0 (t)v(ℓ) + lim λ→+∞ ℓ+t ℓ T A0 (ℓ + t -s)λR λ (A)[G(s, v(s)) -G(ℓ, v(ℓ))]ds + lim λ→+∞ ℓ+t ℓ T A0 (ℓ + t -s)λR λ (A)G(ℓ, v(ℓ))ds so that w 2 (t, ℓ, x) ≥ T A0 (t)[v(ℓ) -x] + lim λ→+∞ ℓ+t ℓ T A0 (ℓ + t -s)λR λ (A)[G(s, v(s)) -G(ℓ, v(ℓ))]ds + lim λ→+∞ ℓ+t ℓ T A0 (ℓ + t -s)λR λ (A)[G(ℓ, v(ℓ)) -G(ℓ, x)]ds ≥ T A0 (t)[v(ℓ) -x] + S A (t)[G(ℓ, v(ℓ)) -G(ℓ, x)] + lim λ→+∞ ℓ+t ℓ T A0 (ℓ + t -s)λR λ (A)[G(s, v(s)) -G(ℓ, v(ℓ))]ds.
Hence, it follows that for each t > 0

dist(w 2 (t, ℓ, x), X 0+ ) ≤ dist(T A0 (t)[v(ℓ) -x] + S A (t)[G(ℓ, v(ℓ)) -G(ℓ, x)], X 0+ ) + lim λ→+∞ ℓ+t ℓ ∥T A0 (ℓ + t -s)λR λ (A)[G(s, v(s)) -G(ℓ, v(ℓ))]∥ ds.
Next, we note that lim

t→0 + 1 t lim λ→+∞ ℓ+t ℓ ∥T A0 (ℓ + t -s)λR λ (A)[G(s, v(s)) -G(ℓ, v(ℓ))]∥ ds = 0
and infer from (25) and Lemma 2.3 that

lim t→0 + 1 t dist(T A0 (ℓ)[v(ℓ) -x] + S A (t)[G(ℓ, v(ℓ)) -G(ℓ, x)], X 0+ ) = 0.
Thus, using Theorem 2.5 one knows that for each t 0 ≥ 0 and each x ∈ C(t 0 ) there exists a maximally defined integral solution u ∈ C([t 0 , t 0 + τ ), X 0+ to [START_REF] Terp | Flow-invariant sets[END_REF] such that u(t) ∈ C(t) for all t ∈ [t 0 , t 0 +τ ). Finally using the fact the the cone X + is normal and the inequality 0

≤ u(t) ≤ v(t)
for all t ∈ [t 0 , t 0 + τ ) we deduce that the solution is globally defined in [0, +∞), and this ends the proof of the theorem.

Using similar arguments as in the proof of Theorem 4.6 we obtain the following result.

Theorem 4.7 Let X be a Banach lattice. Let Assumption 4.5 be satisfied. Assume in addition that there exists v ∈ C([0, +∞), X 0+ ) satisfying

v(t) ≤ T A0 (t -t 0 )v(t 0 ) + lim λ→+∞ t t0 T A0 (t -s)λR λ (A)G(s, v(s))ds, t ≥ t 0
and for all ℓ ≥ 0, x ∈ [v(ℓ), +∞) we have

lim t→0 + 1 t dist(x -v(ℓ) + t[G(ℓ, x) -G(ℓ, v(ℓ))]; X + ) = 0. ( 21 
)
Then for each t 0 ≥ 0 and x ∈ [v(t 0 ), +∞) the exists a unique maximally defined integral (mild)

solution u ∈ C([t 0 , t 0 + τ ), X 0+ ), τ > 0, to (19) with v(t) ≤ u(t), ∀t ∈ [t 0 , t 0 + τ ).
Moreover, as consequences of Theorems 4.6 and 4.7, we have the following estimates Theorem 4.8 Let X be a Banach lattice with X + a normal cone. Let Assumption 4.5 be satis-

fied. i) Let b ∈ D(A) ∩ X 0+ such that Ab + G(t, b) ≤ 0, ∀t ≥ 0 ( 22 
)
and for all ℓ ≥ 0, x ∈ [0, b]

lim t→0 + 1 t dist(b -x + t[G(ℓ, b) -G(ℓ, x)]; X + ) = 0. ( 23 
)
Then for each t 0 ≥ 0 and x ∈ [0, b] the exists a unique integral (mild

) solution u ∈ C([t 0 , +∞), X 0+ ) to (19) with, 0 ≤ u(t) ≤ b, ∀t ≥ t 0 . ii) Let a ∈ D(A) ∩ X 0+ such that Aa + G(t, a) ≥ 0, ∀t ≥ 0 ( 24 
)
and for all ℓ ≥ 0, x ∈ [a, +∞)

lim t→0 + 1 t dist(x -a + t[G(ℓ, x) -G(ℓ, a)], X + ) = 0. ( 25 
)
Then for each t 0 ≥ 0 and x ∈ [a, +∞) the exists a unique maximally defined integral (mild)

solution u ∈ C([t 0 , t 0 + τ ), X 0+ ), τ > 0, to (19) with, a ≤ u(t), ∀t ∈ [t 0 , t 0 + τ ).
Proof. The proof of item i) of the theorem relies on a suitable application of Theorem 4.6. To do so, let us set v(t) = b for all t ≥ 0 and note that

v ′ (t) = Av(t) + G(t, v(t)) -Ab -G(t, b), ∀t ≥ 0
hence for all t ≥ t 0 we have

v(t) = T A0 (t -t 0 )v(t 0 ) + lim λ→+∞ t t0 T A0 (t -s)λR λ (A)[G(s, v(s)) -Ab -G(t, b)]ds ≥ T A0 (t -t 0 )v(t 0 ) + lim λ→+∞ t t0 T A0 (t -s)λR λ (A)G(s, v(s))ds.
The result follows from Theorem 4.6.

Finally, a similar argument applies for the proof of item ii) as a direct application of Theorem 4.7.

Now, let us give a comparison of two mild solutions to Cauchy problems. Let H : [0, +∞) × X 0+ → X be given and consider the semilinear Cauchy problem

     dv(t) dt = Au(t) + H(t, v(t)), t ≥ t 0 v(t 0 ) = y ∈ X 0+ . ( 26 
)
Concerning the map H, we will require the following assumption.

Assumption 4.9 We assume that:

i) H is Lipschitz continuous on bounded sets of [0, +∞) × X 0+ ; ii) For all (ℓ, x) ∈ [0, +∞) × X 0+ we have lim t→0 + 1 t dist(x + tH(ℓ, x), X + ) = 0.
Theorem 4.10 Let Assumptions 4.5 and 4.9 be satisfied. Assume in addition that one of the bellow conditions holds:

i) For each ℓ ∈ J, x, y ∈ X 0+ with x -y ∈ X 0+ we have, lim t→0 + 1 t dist (x -y + t(G(ℓ, x) -H(t, y)); X + ) = 0;
ii) For each x * ∈ X * + with x * (x) = x * (y) and x ≥ y we have, x * (G(ℓ, x)) ≥ x * (H(ℓ, y)), for all ℓ ∈ J;

iii) For each r > 0 and τ 0 > 0, there exists λ > 0 such that, if x, y ∈ X 0+ and ℓ ∈ [0, τ 0 ] with ∥x∥, ∥y∥ ≤ r and x ≥ y then,

H(ℓ, x) -G(ℓ, y) + λ(x -y) ∈ X + ;
therefore, for all t 0 ≥ 0 and x, y ∈ X 0+ with x -y ∈ X 0+ the mild solutions u and v, respectively of ( 19) and (26), satisfy u(t) -v(t) ∈ X 0+ in the common interval of existence.

Proof. The proof will be done by applying Theorem 2.5. To do this, let us consider the semilinear Cauchy problem

     dw(t) dt = Aw(t) + F (t, w(t)), t ≥ t 0 w(t 0 ) = w 0 ∈ X 0+ (27) 
where F : J × X 0+ → X is given by

F (t, z) = G(t, v(t) + z) -H(t, v(t)), ∀(t, z) ∈ [0, +∞) × X 0+ .
It is clear that F satisfies the condition of Theorem 4.4. Therefore for each initial condition w 0 ∈ X 0+ at time t = t 0 , there exists a unique maximally defined nonnegative integral solution to (27). The proof is completed by observing that w is a solution to (27) with initial condition

x -y if and only if u = w + v.

Proof of Theorem 2.5

The proof of Theorem 2.5 is lengthy and will be done throughout several steps and lemmas. To begin with, let us fix some conditions that will be assumed satisfied in this section. In the sequel, we will only prove local existence since the proof of the maximality is similar to [START_REF] Ruan | Reaction-diffusion equations with infinite delay[END_REF][START_REF] Jun. Martin | Abstract functional differential equations and reaction-diffusion systems[END_REF][START_REF] Thieme | Semiflows generated by Lipschitz perturbations of non-densely defined operators[END_REF]. Let

x 0 ∈ C 0 and t 0 ∈ J be given and fixed. Without loss of generality, we set t 0 = 0. Let r 0 > 0 be fixed such that ∥x 0 ∥ < r 0 . Let 0 < τ < sup(J). From condition (F) there exists κ := κ(r 0 , τ ) > 0 such that

∥F (t, x) -F (t, y)∥ ≤ κ∥x -y∥, (28) 
for all t ∈ [0, τ ], x, y ∈ C 0 and ∥x∥ ≤ r 0 , ∥y∥ ≤ r 0 . Next, set

M 0 := 2κr 0 + sup t∈[0,τ ] ∥F (t, x 0 )∥, so that ∥F (t, x)∥ ≤ M 0 , ∀t ∈ [0, τ ], x ∈ C 0 , with ∥x∥ ≤ r 0 . ( 29 
)
We next prove that there exists an integral solution u ∈ C([0, τ ], C 0 ) to (2) with τ ∈ [0, τ ] and

u(t) ∈ C(t) for all t ∈ [0, τ ]. More precisely let us fix τ > 0 small enough such that sup 0≤t≤τ ∥T A0 (t)x 0 -x 0 ∥ + τ 0 e ω + A (τ -s) [M 2 A M + M A ]ds + ∥x 0 ∥ ≤ r 0 (30) 
with ω + A = max{ω A , 0}.

Construction of the knots

Proposition 5.1 Let ϵ ∈ (0, 1) be given. There exists a sequence

(t k , y k ) k≥0 ∈ [0, τ ] × C 0 such that y k ∈ C(t k
) and the set

I k :=                    η ∈ (0, ϵ) : ∥F (t, y) -F (t k , y k )∥ ≤ ϵ, y ∈ C 0 , t ∈ [t k , t k + η] with ∥y -y k ∥ ≤ η 1 η dist (T A0 (η)y k + S A (η)F (t k , y k ), C(t k + η)) < ϵ 2 sup 0≤t≤η ∥T A0 (t)y k -y k ∥ ≤ ϵ                    (31)
is nonempty for every k ≥ 0 and the following properties hold true:

i) For every k ≥ 0 we have t k+1 = min(t k +η k , τ ) with ηk ∈ (η k /2, η k ) and η k = sup(I k ) ∈ (0, ϵ];
ii) y 0 = x 0 , t 0 = 0 and for every k ≥ 0 we have

y k ∈ C(t k ) with          y k+1 = T A0 (t k+1 -t k )y k + S A (t k+1 -t k )F (t k , y k ) + (t k+1 -t k )H k , ∀k ≥ 0 H k ∈ X 0 and ∥H k ∥ ≤ ϵ 2 , ∀k ≥ 0. ( 32 
)
Proof. Fix t 0 = 0. Note that for k = 0 and y 0 = x 0 ∈ C 0 the following set

I k :=                    η ∈ (0, ϵ) : ∥F (t, y) -F (t k , y k )∥ ≤ ϵ, y ∈ C 0 , t ∈ [t k , t k + η] with ∥y -y k ∥ ≤ η 1 η dist (T A0 (η)y k + S A (η)F (t k , y k ), C(t k + η)) < ϵ 2 sup 0≤t≤η ∥T A0 (t)y k -y k ∥ ≤ ϵ                    (33)
is nonempty and bounded so that η 0 := sup(I 0 ) > 0, is well defined. Let η0 ∈ (η 0 /2, η 0 ) and set

t 1 = min (t 0 + η0 , τ ) . Since t 1 -t 0 ∈ [0, η0 ] it follows that 1 t 1 -t 0 dist (T A0 (t 1 -t 0 )y 0 + S A (t 1 -t 0 )F (t 0 , y 0 ), C(t 1 )) < ϵ 2
providing that there exists y 1 ∈ C(t 1 ) such that

1 t 1 -t 0 ∥T A0 (t 1 -t 0 )y 0 + S A (t 1 -t 0 )F (t 0 , y 0 ) -y 1 ∥ ≤ ϵ 2 .
Thus, setting

H 0 := 1 t 1 -t 0 [y 1 -T A0 (t 1 -t 0 )y 0 -S A (t 1 -t 0 )F (t 0 , y 0 )] ∈ X 0 (34) 
it follows that

∥H 0 ∥ ≤ ϵ 2
and

y 1 = T A0 (t 1 -t 0 )y 0 + S A (t 1 -t 0 )F (t 0 , y 0 ) + (t 1 -t 0 )H 0 ∈ C 0 .
The result follows by induction on k ≥ 1.

Lemma 5.2 Let (t k , y k ) k≥0 ∈ [0, τ ] × C 0 with y k ∈ C(t k ) be the sequence provided in Proposition 5.1. Then we have the following properties:

i) For all k > m ≥ 0 we have

y k = T A0 (t k -t m )y m + k-1 i=m lim λ→+∞ ti+1 ti T A0 (t k -s)λR λ (A)F (t i , y i )ds k-1 i=m ti+1 ti T A0 (t k -t i+1 )H i ds (35)
ii) For all k ≥ 0 we have ∥y k ∥ ≤ r 0

iii) For all k > m ≥ 0 we have

∥y k -T A0 (t k -t m )y m ∥ ≤ M 2 A t k tm e ω A (t k -s) (M + M A e ω A s )ds (36)
iv) For all k ≥ 0 we have

∥y k+1 -y k ∥ ≤ M 0 ϵ (37)
with

M 0 := 1 + e ω + A [M 2 A M + M A ]. (38) 
Proof. We first prove item i). Setting L k y := T A0 (t k+1 -t k )y, ∀k ≥ 0, ∀y ∈ X 0 and

f k := S A (t k+1 -t k )F (t k , y k ) + (t k+1 -t k )H k , ∀k = 0, 1, . . . ,
it follows that

y k+1 = L k y k + f k , k = 0, 1, . . .
Using the discrete-time variation of constants formula together with the semigroup properties we obtain for all k > m

y k = T A0 (t k -t m )y m + k-1 i=m T A0 (t k -t i+1 )[S A (t i+1 -t i )F (t i , y i ) + (t i+1 -t i )H i ].
Next, observe that for i = m, . . . , k -1

T A0 (t k -t i+1 )S A (t i+1 -t i )F (t i , y i ) = lim λ→+∞ T A0 (t k -t i+1 ) ti+1-ti 0 T A0 (t i+1 -t i -s)λR λ (A)F (t i , y i )ds = lim λ→+∞ ti+1-ti 0 T A0 (t k -t i -s)λR λ (A)F (t i , y i )ds = lim λ→+∞ ti+1 ti T A0 (t k -s)λR λ (A)F (t i , y i )ds so that y k = T A0 (t k -t m )y m + k-1 i=m lim λ→+∞ ti+1 ti T A0 (t k -s)λR λ (A)F (t i , y i )ds k-1 i=m ti+1 ti T A0 (t k -t i+1 )H i ds. (39) 
To prove ii), we argue by induction. By construction y 0 = x 0 and ∥x 0 ∥ ≤ r 0 . For k ≥ 1, assume that ∥y i ∥ ≤ r 0 for i = 0, . . . , k -1. Since ϵ ∈ (0, 1), ∥H i ∥ ≤ ϵ ≤ 1 and ∥F (t i , y i )∥ ≤ M for all i = m, . . . , k -1 it follows that for each s

∈ [t i , t i+1 ] ∥T A0 (t k -s)λR λ (A)F (t i , y i )∥ ≤ M A e ω + A (t k -s) λM A λ -ω A M, i = m, . . . , k -1.
and

∥T A0 (t k -t i+1 )H i ∥ ≤ M A e ω A (t k -ti+1) ≤ M A e ω + A (t k -s) .
Therefore for k > m it follows from (39) that

∥y k -T A0 (t k -t m )y m ∥ ≤ k-1 i=m ti+1 ti e ω + A (t k -s) [M 2 A M + M A ]ds ≤ t k tm e ω + A (t k -s) [M 2 A M + M A ]ds (40) 
and for m = 0 in (40) we obtain

∥y k -T A0 (t k )x 0 ∥ ≤ t k 0 e ω + A (t k -s) [M 2 A M + M A ]ds ≤ τ 0 e ω + A (τ -s) [M 2 A M + M A ]ds.
Hence

∥y k ∥ ≤ ∥y k -T A0 (t k )x 0 ∥ + ∥T A0 (t k )x 0 -x 0 ∥ + ∥x 0 ∥ ≤ sup 0≤t≤τ ∥T A0 (t)x 0 -x 0 ∥ + τ 0 e ω + A (τ -s) [M 2 A M + M A ]ds + ∥x 0 ∥.
and we infer from (30) that ∥y k ∥ ≤ r 0 . The proof of iii) is already included the proof of ii) by (40). Now we proceed to the proof of iv). Note that

y k+1 -y k = y k+1 -T A0 (t k+1 -t k )y k + T A0 (t k+1 -t k )y k -y k , ∀k ≥ 0
and by construction

∥T A0 (t k+1 -t k )y k -y k ∥ ≤ ϵ.
Using (40) we have

∥y k+1 -T A0 (t k+1 -t k )y k ∥ ≤ t k+1 t k e ω + A (t k+1 -s) [M 2 A M + M A ]ds ≤ (t k+1 -t k )e ω + A (t k+1 -t k ) [M 2 A M + M A ]
and since 0 ≤ t k+1 -t k ≤ η k ≤ ϵ we obtain

∥y k+1 -y k ∥ ≤ ϵ + ϵe ω + A ϵ [M 2 A M + M A ].
Lemma 5.3 There exists (t * , y * ) ∈ [0, τ ] × C(t * ) such that t k → t * and y k → y * as k → +∞.

Proof. To prove the lemma, we notice that by construction the sequence (t k ) is non decreasing and bounded above so that there exists t * ∈ [0, τ ] such that t k → t * as k → +∞. To prove that (y k ) is a convergent sequence, we will show that it is a Cauchy sequence. Indeed, using (36) we have for all k ≥ j > m 

∥y k -y j ∥ ≤ ∥y k -T A0 (t k -t m )y m ∥ + ∥T A0 (t j -t m )y m -y j ∥ +∥T A0 (t k -t m )y m -T A0 (t j -t m )y m ∥ ≤ t k tm e ω + A (t k -s) [M 2 A M + M A ]ds + tj tm e ω + A (tj -s) [M 2 A M + M A ]ds +∥T A0 (t k -t m )y m -T A0 (t j -t m )y m ∥ so that lim sup k,j→+∞ ∥y k -y j ∥ ≤ 2 t * tm e ω + A (t * -s) [M 2 A M + M A ]
η k = 0. ( 42 
)
Moreover, using the fact that y * ∈ C(t * ) we also have

lim h→0 + 1 h dist (T A0 (h)y * + S A (h)F (t * , y * ), C(t * )) = 0. ( 43 
)
Let K be the compact set defined by

K := {y k , F (t k , y k ), y * , F (t * , y * ) : k ≥ 0} . ( 44 
)

Construction of the approximate solution

Let us now proceed to the construction of the approximate mild solutions. To this end, we define

for k = 0, . . . , n ϵ -1 the map w ϵ k : [t k , t k+1 ] → X by w ϵ k (t) := t k+1 -t t k+1 -t k y k + t -t k t k+1 -t k y k+1 , ∀t ∈ [t k , t k+1 ]. (53) 
Since w ϵ k is constructed by a convex combinaison of y k and y k+1 , it follows from Lemma 5.2 that

     w ϵ k (t) ∈ C 0 and ∥w ϵ k (t)∥ ≤ r 0 , ∀t ∈ [t k , t k+1 ] w ϵ k (t k ) = y k and w ϵ k (t k+1 ) = y k+1 . ( 54 
)
Moreover using (37) and (53), we also have

∥w ϵ k (t) -y k ∥ ≤ M 0 ϵ, ∀t ∈ [t k , t k+1 ] (55) 
with M 0 the constant defined in (38). From ( 53), ( 54) and (55) it is now easy to see that the map w ϵ : [0, τ ] → X defined by

w ϵ (t) := w ϵ k (t), ∀t ∈ [t k , t k+1 ] (56) 
is continuous in [0, τ ] and satisfies

           w ϵ (t) ∈ C 0 and ∥w ϵ (t)∥ ≤ r 0 , ∀t ∈ [0, τ ] w ϵ (t k ) = y k , k = 0, . . . , n ϵ ∥w ϵ (t) -y k ∥ ≤ M 0 ϵ, ∀t ∈ [t k , t k+1 ], k = 0, . . . , n ϵ -1. (57) 
The next, step is to show that the map w ϵ defined in (57) is an approximate solution to (2) that is

ω ϵ (t) -T A0 (t)x 0 -lim λ→+∞ t 0 T A0 (t -s)λR λ (A)F (s, ω ϵ (s))ds = O(ϵ)
and that it converges to a unique solution to (2).

Convergence of the approximate solution

We proceed into three steps. In the first step, we show that that map v ϵ : [0, τ ] → C 0 defined by

v ϵ (t) := ω ϵ (t) -T A0 (t)x 0 -lim λ→+∞ t 0 T A0 (t -s)λR λ (A)F (s, ω ϵ (s))ds, ∀t ∈ [0, τ ] (58) 
is of order ϵ uniformly in [0, τ ]. This means that w ϵ : [0, τ ] → C 0 is an ϵ-approximate mild solution to (2). In the second step, we prove that w

ϵ : [0, τ ] → C 0 converges to w ∈ C([0, τ ], X).
In the third step we prove that w(t) ∈ C(t) for all t ∈ [0, τ ].

Step 1: In this step, we do estimate v ϵ on [0, τ ]. To this end, note that for t ∈ [t k , t k+1 ] with k = 0, . . . , n ϵ -1 we have

v ϵ (t) = ω ϵ (t) -T A0 (t -t k ) T A0 (t k )x 0 + lim λ→+∞ k-1 i=0 ti+1 ti T A0 (t k -s)λR λ (A)F (t i , y i ) -lim λ→+∞ T A0 (t -t k ) k-1 i=0 ti+1 ti T A0 (t k -s)λR λ (A)[F (s, ω ϵ (s)) -F (t i , y i )]ds -lim λ→+∞ t t k T A0 (t -s)λR λ (A)F (s, ω ϵ (s))ds
and recalling that This shows that w ϵ : [0, τ ] → C 0 , ϵ ∈ (0, 1) is a Cauchy sequence in C([0, τ ], X). Since C 0 is closed, there exists w ∈ C([0, τ ], C 0 ) such that lim ϵ→0 + w ϵ (t) = w(t) in C([0, τ ], C 0 ). Therefore, using (58) and (64) and letting ϵ → 0 + we obtain w(t) = T A0 (t)x 0 + lim λ→+∞ t 0 T A0 (t -s)λR λ (A)F (s, w(s))ds, t ∈ [0, τ ].

y k = T A0 (t k )x 0 + k-
Step 3: Let t ∈ [0, τ ] be fixed. Recall that, by construction, for each ϵ ∈ (0, 1) there exists a sequence (t k , y k ) k∈{0,...,nϵ} such that t k+1 -t k ≤ ϵ and t nϵ = τ . Since t ∈ [0, τ ] there exists k ϵ ∈ {0, . . . , n ϵ -1} such that t ∈ [t kϵ , t kϵ+1 ]. This means that for each ϵ ∈ (0, 1) there exists 

k ϵ ∈ N such that            0 ≤ t kϵ ≤ t ≤

  But here, sets C(t), t ∈ J, are only assumed to be closed subsets of a convex set. Let us show the necessity of the condition (S1) first. It is a consequence of the following result.

	Lemma 2.6 Let {C(t) ⊆ C 0 : t ∈ J} be a family of closed sets such that C(t) is non empty for
	each t ∈ J. Assume that condition (F) is satisfied. If for each x ∈ C(t 0 ) and 0 ≤ t 0 < sup(J),
	there exists a unique maximally defined integral (mild) solution to (2) with initial condition x at
	time t = t 0 then (S1) is verified.
	Proof. Let x ∈ C(ℓ) with ℓ ∈ J. Then there exists τ > 0 such that u ∈ C([ℓ, ℓ + τ ], C 0 ) is a
	solution to (2). This means that u(ℓ + t) ∈ C(ℓ + t) for all t ∈ [0, τ ] and

T

  A0 (t k -s)λR λ (A)F (t i , y i )ds A0 (t k -t i+1 )H i ds we obtainv ϵ (t) = ω ϵ (t) -T A0 (t -t k )y k A0 (t -s)λR λ (A)[F (s, ω ϵ (s)) -F (t i , y i )]ds A0 (t -s)λR λ (A)F (s, ω ϵ (s))ds + Note that for each t ∈ [t k , t k+1 ] ∥ω ϵ (t) -T A0 (t -t k )y k ∥ ≤ ∥ω ϵ (t) -y k ∥ + ∥y k -T A0 (t -t k )y k ∥ ≤ ∥ω ϵ (t) -y k ∥ + sup 0≤s≤t k+1 -t k ∥y k -T A0 (s)y k ∥and we infer from (57) and the definition of the sequence (t k , y k ) in Proposition 5.1 together with t Since s ∈ [0, τ ] and ω ϵ (s) ∈ C 0 with ∥ω ϵ (s)∥ ≤ r 0 , the inequality (29) implies that∥F (s, ω ϵ (s))∥ ≤ M, ∀s ∈ [0, τ ]. (62)Now combining (60) (61) and (62), it is easy to obtain from (59) that for all t ∈ [t k , t k+1 ]∥v ϵ (t)∥ ≤ M 0 ϵ + ϵ + A e ω A (t-s) (κM 0 ϵ + ϵ)ds A e ω A (t-ti+1) ϵds ≤ M 0 ϵ + ϵ + t k M 2 A e ω + A τ (κM 0 ϵ + ϵ)ds +(t -t k )In this step, we prove that the map w ϵ ∈ C([0, τ ], C 0 ) converges when ϵ → 0 + . Let ϵ, δ ∈ (0, 1). Then using (58) we obtainw ϵ (t) -w δ (t) = v ϵ (t) -v δ (t) + lim

	1 i=0 T k-1 lim λ→+∞ ti+1 ti k-1 i=0 ti+1 ti M 2 i=0 ti+1 ti + t t k M 2 A e ω + A (t-s) M ds + ≤ M 0 ϵ + ϵ + k-1 i=0 ti+1 ti M 2 A e ω + k-1 i=0 A τ (κM 0 ϵ + ϵ)ds ti+1 ti M A e ω A (t-ti+1) ϵds T -lim λ→+∞ k-1 i=0 ti+1 ti + t t k M 2 A e ω + A τ M ds + k-1 i=0 ti+1 ti M A e ω + A τ ϵds T -lim λ→+∞ t t k k-1 i=0 ti+1 ti T A0 (t -t i+1 )H i ds + t t k M 2 A e ω + k-1 ti+1 A (t-s) M ds + i=0 ti M t t k M 2 A e ω +	(59)
		t
	λ→+∞	0

k+1 -t k ≤ η k to obtain ∥ω ϵ (t) -T A0 (t -t k )y k ∥ ≤ M 0 ϵ + ϵ, ∀t ∈ [t k , t k+1 ], k = 0, . . . , n ϵ -1.

(60)

Furthermore, for s ∈ [t k , t k+1 ], k = 0, . . . , n ϵ -1 we also have

∥F (s, ω ϵ (s)) -F (t k , y k )∥ ≤ ∥F (s, ω ϵ (s)) -F (s, y k )∥ + ∥F (s, y k ) -F (t k , y k )∥ ≤ κ∥y k -ω ϵ (s)∥ + ∥F (t k , y k ) -F (s, y k )∥

hence using (57) and the definition of the sequence (t k , y k ) in Proposition 5.1 combined with

s -t k ≤ t k+1 -t k ≤ η k we obtain ∥F (t k , y k ) -F (s, ω ϵ (s))∥ ≤ κM 0 ϵ + ϵ, ∀s ∈ [t k , t k+1 ], k = 0, . . . , n ϵ -1. (

61

) A τ M ds + t k M A e ω + A τ ϵds ≤ M 0 ϵ + ϵ + τ M 2 A e ω + A τ (κM 0 ϵ + ϵ) +(t k+1 -t k )M 2 A e ω + A τ M + τ M A e ω + A τ ϵ (63)

and since by construction

t k+1 -t k ≤ η k ≤ ϵ we obtain ∥v ϵ (t)∥ ≤ ϵM 1 , ∀t ∈ [t k , t k+1 ], k = 0, . . . , n ϵ -1

(64)

with

M 1 := M 0 + 1 + τ M 2 A e ω + A τ (κM 0 + 1) + M 2 A e ω + A τ M + τ M A e ω + A τ . (

65

)

It is now clear from (64) and (65) that

∥v ϵ (t)∥ ≤ ϵM 1 , ∀t ∈ [0, τ ]. (

66

)

Step 2:

T

  A0 (t -s)λR λ (A)[F (s, ω ϵ (s)) -F (s, ω δ (s))]ds, ∀t ∈ [0, τ ]. ]and by Gronwall's lemma, we get∥w ϵ (t) -w δ (t)∥ ≤ 2M 1 (ϵ + δ)e κ0t , ∀t ∈ [0, τ ], with κ 0 := M 2 A e ω + A τ κ.

	Recalling that by construction we have
	∥w ϵ (t)∥ ≤ r 0 , ∀t ∈ [0, τ ]
	it follows from (28), (58) and (64) that
	∥w

ϵ (t) -w δ (t)∥ ≤ ∥v ϵ (t) -v δ (t)∥ + t 0 M 2 A e ω A (t-s) κ∥w ϵ (s) -w δ (s)∥ds ≤ 2M 1 (ϵ + δ) + t 0 M 2 A e ω A (t-s) κ∥w ϵ (s) -w δ (s)∥ds ≤ 2M 1 (ϵ + δ) + t 0 M 2 A e ω + A τ κ∥w ϵ (s) -w δ (s)∥ds, ∀t ∈ [0, τ

  t kϵ+1 t kϵ+1 -t kϵ ≤ ϵ t kϵ ∈ [0, τ ] so that t kϵ → t when ϵ → 0 + . Next, we note that ∥w(t) -y kϵ ∥ ≤ sup s∈[0,τ ] ∥w(t) -w ϵ (t)∥ + ∥w ϵ (t) -y kϵ ∥ and by using (57) we obtain ∥w(t) -y kϵ ∥ ≤ sup s∈[0,τ ] ∥w(t) -w ϵ (t)∥ + M 0 ϵ. lim ϵ→0 + t kϵ = t and lim ϵ→0 + y kϵ = w(t) which implies by hypothesis that w(t) ∈ C(t).

	Therefore

Next, using (43) and (44) it follows that

is non empty and we set η * = sup(I * )

4

. This ensures that [η * , 2η * ] ⊂ I * . Using the convergence of the sequences (η k ) and (t k , y k ), respectively to 0 and (t * , y * ) it follows that there exists k 0 ≥ 1 large enough such that

Next, we introduce the sequence

and observe that

Note that (48) implies that s k / ∈ I k for all k ≥ k 0 . Moreover, we have for all k ≥ k 0

Thus, using (45) and (49) it holds that if |t -t k | ≤ s k and ∥y -

Hence, the above inequalities (48) and (50) ensure that we must have

Recalling that from (47) we have t k + s k = t * + η * and by letting k → +∞ in (51) we obtain

which contradict the fact that η * ∈ I * . This proves that there exists n ϵ ≥ 0 such that t k = t nϵ = τ for all k ≥ n ϵ . To conclude to the stationarity of (y k ), we use the relationship