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Validation of Machine Learning Prediction Models

Luc PRONZATO∗ and Maria-João RENDAS

Abstract
We address the estimation of the Integrated Squared Error (ISE) of a predictor η(x) of an unknown function f learned

using data acquired on a given design Xn. We consider ISE estimators that are weighted averages of the residuals of the
predictor η(x) on a set of selected points Zm. We show that, under a stochastic model for f , minimisation of the mean
squared error of these ISE estimators is equivalent to minimisation of a Maximum Mean Discrepancy (MMD) for a non-
stationary kernel that is adapted to the geometry of Xn. Sequential Bayesian quadrature then yields sequences of nested
validation designs that minimise, at each step of the construction, the relevant MMD. The optimal ISE estimate can be
written in terms of the integral of a linear reconstruction, for the assumed model, of the square of the interpolator residuals
over the domain of f . We present an extensive set of numerical experiments which demonstrate the good performance and
robustness of the proposed solution. Moreover, we show that the validation designs obtained are space-filling continuations
of Xn, and that correct weighting of the observed interpolator residuals is more important than the precise configuration
Zm of the points at which they are observed.

keywords and phrases: Model Validation, Bayesian Quadrature, Maximum Mean Discrepancy, Experimental Design.

1. INTRODUCTION AND MOTIVATION

This paper proposes a methodology to estimate the qual-
ity of an interpolator learned on a given experimental design.
More precisely, we suppose that data gathered on the points
of an experimental design Xn = {x1, . . . ,xn} with n points
in a compact set1 X has been used to build a predictor of
the value of the function f : X → R that produced the
collected samples.

We denote by yn = (f(x1), . . . , f(xn))
⊤ the vector col-

lecting the n evaluations of f at the design points xi, by
Fn = (Xn,yn) the learning dataset, and by ηFn

(x) the re-
sulting prediction of f(x). The quality of ηFn

is assessed
through a widely used measure of the precision of interpo-
lators, the Integrated Squared Error (ISE):

ISE(ηFn) =

∫
X

[ηFn(x)− f(x)]
2
µ(dx) . (1.1)

In the definition above the (user-defined) measure µ enables
penalization of the interpolation errors over regions of X
which are considered to be of particular importance. We
stress that we consider that the experimental design Xn –
also referred to as the “learning design” – is given, making
no assumptions on how it is has been chosen.

Estimation of the integral (1.1) must necessarily resort to
the evaluation of the prediction error ε(x) = ηFn(x)− f(x)
over only a finite set of points Zm = {z1, . . . zm} ⊂ X ,
which we designate by “validation design”. The integral is

∗Corresponding author.
1We will often consider X = [0, 1]d.

then approximated by replacing µ by a point mass mea-
sure ζ = ζ(w,Zm) =

∑
i wiδzi

supported on Zm only. We
generically refer to ζ as the validation measure, using the
notation ζm to make explicit the dependency on the size of
the validation set. Although ζ is not necessarily the uniform
distribution supported on Zm, and with a slight abuse of
terminology, we refer to the corresponding ISE estimators

ÎSE(ηFn ; ζ) =

m∑
i=1

wi [ηFn(zi)− f(zi)]
2
, (1.2)

as empirical ISE estimators.

We address the choice of the validation measure ζ –
both of the validation design Zm and of the validation
weights w – and investigate the properties of the resulting

estimates ÎSE(ηFn
; ζ) given by (1.2). The algorithms pre-

sented are iterative, defining increasing sequences of nested
validation designs Zm ⊂ Zm+1 ⊂ Zm+2 ⊂ · · · such that

the performance of ÎSE(ηFn ; ζ) improves as m increases. A
preliminary version of this work has been presented in [5],
in the context of a comprehensive comparison of validation
methodologies.

The paper is organised as follows. Section 2.1 first relates
the ISE estimators (1.2) to other ISE estimators. Then, as-
suming that the interpolated function f is a realisation of a
Gaussian process with known moments, we present in Sec-
tion 2.2 a computable criterion R(ζ,Fn) that evaluates the
precision of empirical estimators of the form (1.2). In Sec-
tion 3 we discuss optimisation of R(ζ,Fn), detailing appli-
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cation of related existing algorithms to the specific condi-
tions of the validation problem of interest here, and pro-
viding an instrumental interpretation of the corresponding
“optimal” empirical ISE estimators. Since the “optimal” val-
idation measure depends on the assumed GP model, the
robustness and performance of the validation methodology
presented are investigated numerically in Section 4, lead-
ing to two major conclusions. One concerns the validation
weights w, stating that the contributions of the individual

errors ε(zi) to ÎSE(ηFn ; ζ) must be down-weighted – with
respect to taking ζ to be the uniform distribution over Zm

– to avoid overestimation of ISE(ηFn). The second concerns
the geometry of the validation design Zm, whose optimal-
ity is seen to be much less important that correct choice of
the weights w. Based on these numerical studies we propose
a default choice for the covariance kernel of the GP model
used, including its scale parameter. Finally, Section 5 sum-
marises our findings and proposes some directions for future
studies.

2. A CRITERION FOR VALIDATION
MEASURES

Since f is unknown, we can at best expect to find an
ISE estimator that will perform well for most functions f
consistent with Fn. To characterise this set of functions
we adopt the Gaussian process framework – briefly recalled
below – enabling us to subsequently derive a criterion to
choose the validation measure ζ.

Before doing that, the next section puts our approach
in perspective in relation to other (non-parametric) model
validation methods.

2.1 Empirical ISE estimation

Non-parametric estimation of the ISE of a computational
model learned on a dataset Fn is most commonly done using
Fn itself. In cross-validation (CV), see e.g. [3, 2], the resid-
uals εcvi = yi − ηFn\(xi,yi)(xi) at each data point (xi,yi) of
a predictor fit to all other n− 1 points of Fn are computed,
and the ISE is estimated by their average:

ÎSEcv =
1

n

n∑
i=1

(εcvi )
2
. (2.1)

The setup considered in this paper is in some sense dual
of CV. On the one hand, CV requires more information
about η, assuming the ability to build the n new predic-
tors ηFn\(xi,yi) (one for each point that is “left out”) and
assumes thus knowledge of how ηFn

is learned, while we
consider ηFn

as a black-model delivered by a third party,
using an undisclosed modelling approach. On the other
hand, CV requires no any additional observations of f , while

ÎSE(ζ,Fn) requires m new evaluations, one at each point of
Zm.

Given the observations of f over a validation set Zm, a
straightforward estimate of the ISE is the simple arithmetic
mean of the squared values of the m residuals εi = f(zi)−
ηFn(zi) observed over the zi ∈ Zm:

ÎSEun =
1

m

m∑
i=1

ε2i , (2.2)

a special case of (1.2), obtained by letting ζ be the uniform
distribution over Zm: ζ = (1/m)

∑
i δzi , with δa denoting

the unit point-mass at x = a.
Let pη denote the (unknown) probability density of the

residuals ε(x) when x ∼ µ. For expression (2.2) to be
a Monte Carlo estimate of the ISE integral, the observed
ε(Zm) = {εi}mi=1 must be a plausible i.i.d.2 sample from pη,
which is generally not true. Consider for instance that Zm

is a space filling continuation of Xn, sampling the regions of
X the most distant from Xn. In this situation we can an-
ticipate that ε(Zm) will be biased towards the upper limit

of the support of pη, and thus that ÎSEun will over-estimate

ISE. The contribution of the observed residuals to ÎSE must
thus be adjusted, counterbalancing this poor sampling of re-
gions where the weakest residual values are expected. The
validation measures ζ proposed in this paper automatically
implement this variable residual scaling, relying on a prior
stochastic model for f to infer how well the observed ε(Zm)
are expected to be representative of the errors over the en-
tire X . It follows from the above that there is no reason
for imposing that the validation measure ζ be a probability
distribution i.e., that

∑
i wi = 1. Our methodology drops

this common constraint, defining an un-normalised measure
ζ adjusted to the geometry of Zm relative to Xn. To corrob-
orate this choice, note that when ηFn

is an interpolator, so
that ε(xi) = 0 for all xi ∈ Xn, incorporation of these n zero
residuals in (2.2), which should lead to a better estimator
of ISE(ηFn

), yields

ÎSE
⋆

un =
1

m+ n

m∑
i=1

ε2i < ÎSEun ,

for which
∑

i wi = m/(n+m) < 1.

2.2 Choosing the validation measure: a
GP-based criterion

The estimation error |ÎSE(ηFn
; ζ) − ISE(ηFn

)| is not a
computable criterion that we can optimise to choose ζ. A
possible approach would be to consider that f belongs to
some class of functions S and optimise the worst estima-
tion performance over all f ∈ S. Here we follow an alterna-
tive and simpler route, assuming that f is a realization of
a Gaussian Process (GP), or Gaussian Random Field, and
minimising a moment of the ISE estimation error under the
assumed model.

2independent and identically distributed.
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Assume thus that f is a sample function Fx from a
GP indexed by X , with known second-order characteristics
E{FxFx′} = σ2K(x,x′): f ∼ GPf (m(x), σ2K(x,x′)). Ker-
nel K is supposed to be Strictly Positive Definite (SPD),
and, for the sake of simplicity, we consider that m(x) =
E{Fx} = 0 for all x ∈ X . Extension of the material pre-
sented below to the case of a linearly parameterized mean,
with E{Fx} = β⊤h(x) for a vector β of unknown param-
eters and a vector h(x) = (h1(x), . . . , hp(x))

⊤ of p known
functions of x is possible via some adaptation.

Under the assumption above ISE(ηFn) given by (1.1) is

a random variable. The statistical moments of ÎSE(ηFn ; ζ)
under this stochastic model for f provide computable and
pertinent criteria to chose ζ. We use the Mean Squared

Error (MSE) of ÎSE(ηFn
; ζ) given Fn,

R(ζm,Fn) = E

{[
ISE(ηFn

)− ÎSE(ηFn
; ζm)

]2∣∣∣∣Fn

}
= E

{[∫
X

[Fx − ηFn
(x)]2 (ζm − µ)(dx)

]2∣∣∣∣∣Fn

}
,

as a criterion to choose the validation design: ζ⋆m(Fn) ∈
argminζm R(ζm,Fn).

The GP assumption defines a prior distribution for f ,
which given Fn can be updated into the posterior distri-
bution of its values over the unobserved points, with mean
E{Fx|Fn} = k⊤

n (x)K
−1
n yn and covariance E{FxFx′ |Fn} =

σ2K|n(x,x
′), with K|n defined by

K|n(x,x
′) = K(x,x′)− k⊤

n (x)K
−1
n kn(x

′) ≥ 0 , (2.3)

for any x, x′ in X , where

kn(x) = (K(x,x1) . . . ,K(x,xn))
⊤

{Kn}i,j = K(xi,xj) , i, j = 1, . . . , n .

The n× n matrix Kn is SPD as K is SPD (we assume that
the xi in Xn are pairwise distinct). Note that K|n(xi,x) =
0 for all x ∈ X and all xi ∈ Xn. The Integrated Mean
Squared Error (IMSE) is thus

IMSE(Fn) =

∫
X

E
{
[ηFn

(x)− f(x)]
2 |Fn

}
µ(dx)

=

∫
X

E
{[
ηFn

(x)− k⊤
n (x)K

−1
n yn

]2 |Fn

}
µ(dx)

+σ2

∫
X

K|n(x,x)µ(dx) .

IMSE(Fn) is minimum when ηFn
(x) is the posterior mean

kn(x)
⊤K−1

n yn. This minimum value depends only on the
learning design Xn and is given by

IMSE⋆(Xn) = σ2

∫
X

K|n(x,x)µ(dx) ≤ IMSE(Fn) . (2.4)

In this situation, direct calculation yields R(ζm,Fn) =
R(ζm,Xn), with

R(ζm,Xn) = σ4

∫
X 2

K |n(x,x
′)(ζm − µ)(dx)(ζm − µ)(dx′)

= σ4EK|n
(ζm − µ) , (2.5)

proportional to the energy of the signed measure ζm −µ for
the kernel K |n(x,x

′) = (1/σ4)E
[
ε2(x)ε2(x)′

∣∣Fn

]
, a scaled

version of the second order moment of the squared residuals.
Under GPf ,

K |n(x,x
′) = 2K2

|n(x,x
′) +K|n(x,x)K|n(x

′,x′) . (2.6)

This still means that R(ζm,Xn) is proportional to the
squared Maximum Mean Discrepancy (MMD) between the
measures ζm and µ for the kernel K |n [16, Def. 10]. Under
the GP modelling framework assumed we are thus lead to

ζ⋆m(Fn) ∈ argmin
ζm

EK|n
(ζm − µ) ,

with K |n(x,x
′) given by (2.6).

When ηFn
does not interpolate yn, and under the same

GP for f , similar developments still give R(ζm,Fn) =
σ4EK|n

(ζm − µ), with now

K |n(x,x
′) = 2

[
K|n(x,x

′) + 2 δ̂n(x)δ̂n(x
′)
]
K|n(x,x

′)

+
[
δ̂2n(x) +K|n(x,x)

] [
δ̂2n(x

′) +K|n(x
′,x′)

]
,

where δ̂n(x) = k⊤
n (x)K

−1
n yn − ηFn

(x). In the following,
we always consider that ηFn

is the optimal interpolator
kn(x)

⊤K−1
n yn, and thus that (2.6) holds.

Kernels K |n present a number of features which are not
shared by the most commonly used GP kernels. The as-
sumption that ηFn

is an interpolator, i.e. ε(xi) = 0, implies
that K |n(xi,x) = 0 for all x ∈ X and all xi ∈ Xn. The
squared error process is thus non-stationary, with a spatial
coherency structure that is strongly dictated by the geome-
try of Xn. Adapting the validation weights wi to this corre-

lation structure dictates the performance of ÎSE(ηFn
; ζm) in

a critical manner. Yet, as the numerical studies of Section 4
show, exploiting the particular shape of Kn when choosing
the validation points Zm is less critical (as long as they do
not fall in the vicinity of Xn).

Finally, notice that K |n is PD. Indeed, the Hadamard
product C◦2

n with elements {C◦2
n }i,j = C2(xi,xj), i, j =

1, . . . , n, is PD when the matrixCn with elements {Cn}i,j =
C(xi,xj) is PD. Hence, the positive definiteness of K|n im-

plies that K2
|n is PD, which in turn implies that K |n is also

PD.
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3. MINIMISATION OF EK|n

We address now the minimisation of EK|n
(ζm − µ) with

respect to ζm.
We drop the two constraints usually imposed on weights:

besides the sum-of weights-equals-one constraint (see Sec-
tion 2.1), we also do not impose wi ≥ 0. Imposing positivity
would be natural if the observations were noisy independent
random samples of the interpolation error, but here the εi
are noise-free and, more importantly, strongly linked by a
coherency structure dictated by both the regularity char-
acteristics of f and the quality of ηFn

as an interpolator.
Nonetheless, our numerical experiments show that the wi

are almost always positive; see for example Figures 12 and
13.

Since for a given f and ηFn the validation residuals
are deterministic, repeating validation points or choosing
zi ∈ Xn brings no additional information. We thus restrict
Zm to configurations of m distinct points in X \Xn. The
minimisation of EK|n

(ζm−µ) with respect to the parameters

of ζm is a non-linear optimisation problem over a large di-
mensional space (m(d+1) scalar parameters when X ⊂ Rd).
As briefly evoked in the introduction, rather than fixing up-
front the sizem of the validation design, we are interested in
finding nested sequences of validation designs, generated by
a sequence of identical steps, each one increasing the design
size by one:

Zm+1 = Zm ∪ {zm+1} , (3.1)

where zm+1 is restricted to Xm = X \ {Zm ∪Xn}.

Before we present in Section 3.2 the sequential Bayesian
quadrature algorithm that performs this iterative construc-
tion, greedily decreasing EK|n

(ζm − µ) at each step, we

present background on relevant literature on iterative en-
ergy (or, equivalently, MMD) minimisation.

3.1 Background

Kernel herding (KH) [19] can be seen to correspond to the
Frank-Wolfe conditional gradient algorithm [1] applied to
MMD minimisation, that is, to the vertex-direction method
with predefined step-length, commonly used in optimal ex-
perimental design since the pioneering work of H.P. Wynn
[20] and V.V. Fedorov [4]. It is an accretive method3, gener-
ating a sequence z1, z2, . . . which can be incrementally grown
to any target size m.

In Bayesian quadrature (BQ) [11, 15] the goal is to choose
samples that best approximate an integral by exploiting the
assumption that the integrated function is the realisation of
a GP. Sequential BQ (SBQ) sequentially expands the set of
sampled points by adding a new sample at the point that

3However, it does not provide the optimal design for a fixed m: the
construction of one-shot m-point designs minimizing a MMD criterion
is considered for instance in [10, 14]; we do not develop this aspect
here.

decreases the variance of the integral estimate the most.
This variance is shown to be the MMD between the target
integral measure and the discrete measure that implements
the quadrature rule for the kernel of the assumed GP model.

KH and SBQ are closely related, see e.g. [8], both at-
tempting to minimise the same MMD. The two techniques
embed the problem in consideration in the RKHS of a pos-
itive definite kernel that is chosen to reflect the character-
istics of the underlying data distribution (in the original
formulation of KH) or of the integrated functions (in SBQ).
As stressed in [8], a major distinction between the two tech-
niques concerns the weights assigned to each sample, which
are uniform for standard KH, while they are optimally se-
lected in SBQ. The two methods differ both in complex-
ity and performance: SBQ is superior to standard (uniform
weight) KH, this improvement coming at the cost of an in-
creased complexity, O(n) for KH and O(n2) for SBQ when
constructing an n-point design; see [12].

Experiments combining the two methodologies, by using
the optimal BQ weights for a design found by standard KH,
show that correct weighting is more critical than sample
placement [8], affecting in particular the algorithm’s con-
vergence rate: KH has performance similar to SBQ for small
design sizes, but displays worse performance as design size
grows.

The validation setup of this paper coincides with the
framework assumed by BQ, our final goal being to estimate
an integral from a small number of samples, and we also
resort to a GP assumption. As in BQ, the weights of our
empirical estimator do not need to sum to 1 and are not
necessarily positive, and the optimal solution minimises an
MMD. Placing the GP assumption not directly on the func-
tion we wish to integrate – in our case ε2(x) – but on the
interpolated f , leads to the identification of the pertinent
MMD kernel under our validation framework as the non-
stationary kernel K |n, whose structure encodes the geome-
try of the learning design Xn.

Both KH and BQ assume that the RKHS kernel is charac-
teristic, meaning that the corresponding MMD between two
probability measures is zero if and only if these two measures
coincide. Kernel K |n is not characteristic, and in particular
it cannot differentiate between measures that differ only over
the finite set Xn, where K |n is zero. However, as we stressed
before, since we know that ε(x) = 0 for x ∈ Xn, the set of
target measures over which we optimise EK|n

(ζm−µ) all put
zero mass on Xn, and thus it still makes sense to minimise
it.

3.2 Greedy optimisation of EK|n
(ζm − µ)

In this section we briefly present the SBQ method, rein-
terpreting it in the validation setup of interest to us.

By noting that EK|n
(ζm−µ) is quadratic in the {wi}mi=1,

the weights w̃(Zm) that minimise it for a given Zm can be
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seen to be given by

w̃(Zm) = K |n(Zm,Zm)−1PK|n
(Zm) , (3.2)

where the m×m matrix K |n(Zm,Zm) has generic element

K |n(zi, zj) and the i-th entry of the m-dimensional column
vector PK|n

(Zm) is the potential of µ associated with kernel

K |n at validation point zi:[
PK|n

(Zm)
]
i
= PK|n

(zi) =

∫
X

K |n(zi,x)µ(dx) . (3.3)

Remembering that σ4K |n(x,x
′) = E

[
ε2(x)ε2(x′)|Fn

]
,

PK|n
(z) can be recognised as

PK|n
(z) =

1

σ4
E
[
ε2(z) ISE(ηFn)

∣∣Fn

]
. (3.4)

Define

ε̂2Fn
(x|Zm) = K |n(x,Zm)K |n(Zm,Zm)−1ε2(Zm) . (3.5)

Under the posterior model, i.e., given Fn, ε̂2Fn
(x|Zm) is

the Minimum MSE (MMSE) linear estimate of ε2(x) given
the residuals observed over Zm. When the weights wi of

the validation measure are given by (3.2), ÎSE has thus the
following simple and enlightening expression:

ÎSE(ηFn
,Zm) =

∑
i

w̃i(Zm)ε2(zi) =

∫
X

ε̂2Fn
(x|Zm)µ(dx) .

(3.6)
Note that the weights w̃i(Zm), and thus the estimator

ÎSE(ηFn ,Zm) itself, are independent of σ2. The estima-

tors ε̂2Fn(x|Zm) and ÎSE(ηFn ,Zm) rely on the assumed
GP model GPf for f , but as explained in [17, Sect. 3.2],
model misspecification has a much smaller effect on lin-
ear predictions than on evaluation of the MSE. One im-
portant strength of the approach is thus that our estimator
of ISE(ηFn

) does not require estimation of the MSE associ-
ated with a prediction. As shown in Appendix A, this is no
longer the case when one attempts at removing the bias of

ÎSE(ηFn
,Zm), which leads to estimators that are much less

robust to model misspecification.
For a given ζm define Em (x) = EK|n

(ζ⋆m+1 − µ), the en-

ergy for measure ζ⋆m+1 having support Zm+1(x) = Zm∪{x}
and optimal weights w̃(Zm+1(x)) given by (3.2). If ζm =
ζ(w̃(Zm),Zm), and for x ∈ Xm, we have

Em (x) =EK|n
(ζm − µ)−(

PK|n
(x)−K |n(x,Zm)K |n(Zm,Zm)−1PK|n

(Zm)
)2

s2(x)
,

where,

s2(x) = K |n(x,x)

−K |n(x,Zm)K |n(Zm,Zm)−1K |n(Zm,x)

=
1

σ4
E

[(
ε2(x)− ε̂2Fn

(x|Zm)
)2

∣∣∣∣Fn

]
.

The next validation point is thus a maximiser of the second
term in Em (x), which can equivalently be written as

zm+1 ∈ argmax
x∈Xm

E
[
ISE(ηFn)

(
ε2(x)− ε̂2Fn(x|Zm)

)∣∣∣Fn

]
E

[(
ε2(x)− ε̂2Fn

(x|Zm)
)2

∣∣∣∣Fn

] .

(3.7)

The numerator measures how much ISE(ηFn
) and the

error of ε̂2Fn
(z|Zm) as an estimate of ε2(x) are statisti-

cally associated. Points where this term is large are good
candidates to extend the current design. The denominator
penalises points x where ε2(x) is estimated with a large
MSE, tending to keep zm+1 away from the boundaries of
X (where the uncertainty is in general large), as the nu-
merical studies presented later will show.

The recursive extension of the validation measure is ini-
tiated with Z1 = {z1} solution of

z1 = max
x∈(X \Xn)

PK|n
(x)2

K |n(x,x)
. (3.8)

In practice, a finite set XL ⊂ X , for instance the L first
elements of a low-discrepancy sequence in X , of a regular
grid in X if d is not too large, is substituted for X in (3.7)
and (3.8). The determination of zm+1, m ≥ 0, then requires
the evaluation of PK|n

(x) for all x ∈ XL \Xn. This calcula-

tion is done once for all, at the initialisation of the algorithm.
In the numerical examples of Section 4, PK|n

= PK|n,µ
is re-

placed by PK|n,µL
, with µL the uniform (discrete) measure

uniform on XL, see Appendix C for details. When K is
a tensor-product kernel and µ is uniform on X = [0, 1]d,
PK|n

(x) can often be calculated explicitly; see Appendix B.

With the aid of a one-dimensional example we formulate
now a number of comments about the expected behaviour

and properties of the estimators ÎSE obtained by repeated
application of (3.7) – to extend Zm to Zm+1 – and (3.2) –

fixing the weights of ζm+1, and thus ε̂2Fn(x|Zm+1) for the
subsequent design extension. The red bold curve in the top
panel of Figure 1 plots the squared residuals ε2(x) of the
interpolator ηFn for the function f plotted in the bottom
panel (where ηFn

and f are in red and green, respectively),
trained on the learning design of size 10 indicated by the
red stars. The blue and green curves on the top panel are

the squared residuals ε̂2Fn
(x|Zm) predicted by two distinct

ζm (m = 10), both generated using (3.7) and (3.2), but
assuming distinct kernels K(x,x′): Cauchy (in blue) and
Matérn 3/2 (in green), with range parameters θ as indicated
in the legend4 The (nearly coincident) validation designs

4The exact definition of these kernels is given in Appendix C.
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Figure 1: Top: ε(x) (red) and ε̂2Fn(x|Zm) (blue and green)
for two distinct GP models. Down: f , η and Xn.

Zm are indicated by the squares and circles filled with the
corresponding colours.

Remark first that as anticipated both designs Zm have
no points in the boundaries of X , even if the uncertainty
affecting ε2(x) is large in those regions. Those familiar with
optimal interpolation using monotonically decreasing sta-
tionary covariance kernels may be surprised by the fact that
in intervals between learning points containing no validation
points (e.g. around x ≃ 0.3) the interpolated squared resid-

ual is non-zero, i.e., ε̂2Fn
(x|Zm) > 0. This is a consequence

of the particular shape of kernel K |n, strongly dictated by
the geometry of Xn, which has larger values between resid-
ual values at pairs of points at large distance than the orig-
inal K, as shown in Figure 2. For z1 ≃ 0.1 ∈ Zm, the figure
plots normalised versions of both the assumed (stationary)
signal correlation K(z1 − x) (in thin coloured lines) as well
as kernel K |n(z1,x) (bold lines), with the same colour code

as in Figure 2. The similarity of the two K |n allows us to
expect that the estimator will have some robustness with
respect to the assumed GP model. The numerical studies
presented in Section 4 confirm this expectation.

Above, we recognised ε̂2Fn
(x|Zm) as the MMSE linear

estimator of ε2(x) given ε2(Zm). Being agnostic with respect
to the expected values of the involved random variables, es-

timators ε̂2Fn
(x|Zm), and thus ÎSE, are biased. We investi-

gate in Appendix A the possibility of exploiting knowledge
of the first moments, namely E

[
ε2(x)

∣∣Fn

]
= σ2K|n(x,x)

and E [ ISE(ηFn)|Fn] = IMSE(Fn), to replace ε̂2Fn(x|Zm)
in (3.6) with an unbiased estimator. Unfortunately, bias cor-
rection comes at the price of loosing robustness with respect
to the assumed GP model for f , as we might expect given
the explicit dependency on σ2 of both expected values. Thus,
the unbiased estimators in Appendix A cannot be consid-

ered as instrumental alternatives to ÎSE, and we will not
consider them in the numerical study of Section 4.

4. NUMERICAL EXPERIMENTS

Section 4.1 presents numerical studies that demonstrate

the robustness of ÎSE with respect to the assumed GP model,

Figure 2: K |n(z1,x)/K |n(z1, z1) (bold lines) and
K(z1,x)/K(z1, z1) (thin lines) for the Cauchy and Matérn
kernels used in Figure 1 (same colour code) and z1 ≃ 0.1.

with ζm found by SBQ. Section 4.2 confirms the importance
of using K |n to define the energy minimised by SBQ. We
then study, in Section 4.3, the impact of using KH, which
has slightly smaller computational complexity, rather than
SBQ, to find the validation support of ζm, concluding that
it leads to worse performance and is subject to numerical
instability. Finally, Section 4.4 illustrates via some examples
the properties of the validation measures, in particular their
space-filling properties and the fact that they down-weight
the observed squared residuals. In all examples X = [0, 1]d,
with d = 1, 2 or 3. Use of larger values of d lead to similar
conclusions, see [13].

Our analysis resorts to simulations from several (zero
mean) GP models, and the MSE of the ISE estimates is

approximated by averaging the squared errors of ÎSE
(i)

on
M = 500 realisations {f (i)}Mi=1 of the assumed GP model.
We reserve the notation Q(·, ·; θ0) for the kernel of the GP
model from which is f sampled, θ0 being thus “the true”
scale parameter. The scale parameter is adapted to the size
of the learning design, θ0 = n1/d, such that good interpo-
lation performance over X can be attained with n points.
Designs Xn are always space-filling, and ηFn

is the opti-
mal Bayesian interpolator for the simulated GP model. See
Appendix C for details.

K(·, ·; θ) denotes the kernel of the GP model assumed
by the design algorithm that produces ζm, with θ its scale
parameter. In all numerical examples we will always con-
sider σ2 = 1. The influence of θ is studied for θ ∈[
n1/d/4,max(n1/d, 2 (n+m)1/d)

]
, an interval that always

contains

θc(n,m, d) = (n+m)1/d

(as well as θ0 = n1/d). All plots consider the normalisation
θ/θc, such that θc ↔ 1 in the plots shown. In all plots of this
section the special symbols in the plotted curves indicate
that the design algorithm uses θ = θ0, the scale parameter
of the simulated GP model.
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4.1 Robustness with respect to assumed GP
model

We address robustness by studying how much the MSE of

ÎSE is affected by model mismatch. Figure 3 plots empirical
estimates of R(ζm,Fn). Kernel Q is the Matérn 3/2 kernel,
Xn has n = 10 points and d = 1, θ0 = n. The panels
correspond to different values of the regularity parameter –
ν = 1/2, 3/2, 5, from left to right – of the Matérn kernel K.

The three curves in each plot correspond to different sizes
of Zm: m ∈ {5, 10, 20} (in blue, red and brown, respec-
tively), plotting R as a function of θ. The black stars in-
dicate θ = θ0. Comparison of the three panels confirms the
anticipated robustness of the estimator. When K has higher
regularity than Q, as in the rightmost panel (ν = 5/2), the
curves are almost identical to the central panel, where the
correct model is used. However, the assumption of a less
regular model, as in the leftmost panel, may significantly
degrade performance. The estimators are reasonably robust
with respect to precise choice of the scale parameter if values
θ ≃ θc are used.

Figure 4 reproduces the same study for simulations from
a process with a Cauchy kernel and larger Zm: m ∈
{10, 20, 30} (left to right). As in previous figure, K is the
Matérn kernel and the three panels correspond to different
smoothness parameters ν ∈ {1/2, 3/3, 5/2}. Here the sim-
ulated model has a weaker regularity than the models as-
sumed, and a noticeable performance degradation is now ob-
served for the smaller designs and the more regular Matérn
kernel with ν = 5/2. Similar results were obtained when
simulating from other models and for higher values of d.

Finally, Figure 5 shows, for the same validation designs

Zm as in Figure 3, the MSE of ÎSEun given by equation
(2.2), estimated over 500 realisations of a GP with the
same Matérn 3/2 model. We can see that proper residual
weighting leads to a significant decrease of the estimation
error, which is nearly one order magnitude larger in Figure
5 than for the optimal BQ designs of Figure 3.

The experiments in this section suggest a rule-of-thumb
to chose the kernel used by the design algorithm: K should
model functions with a reasonably large degree of smooth-
ness (Matérn 3/2 was found to be a good compromise), with
a scale parameter θ dependent on the sizes of the learning
and validation sets. For the Matérn family used in our ex-
periments a good choice is θ ≃ (n + m)1/d, automatically
adjusting to the actual total number of residual samples.

4.2 Impact of K |n

Our main novel contribution is the identification of K |n
as the kernel that appears in the MMD that the validation
measure ζm, both its weights and its support, must min-
imise. One may question the importance of using the non-
stationary conditional kernel K |n to find Zm, instead of di-
rectly using kernel K. We now compare the performance of

the empirical estimator ÎSE with Zm determined by SBQ for
kernel K |n, as in Section 3.2, which from now on we denote

by ζBQ⋆, with use of a validation measure ζBQK whose sup-
port Zm is incrementally found by SBQ for kernel K, the
continuation of Xn that is optimal to integrate the function
f . Independently of how Zm was found, the validation mea-

sures ζm used by the estimators ÎSE always have optimal
weights given by (3.2).

Figures 6 (d = 1) and 7 (d = 3) show the empirical MSE

of ÎSE for ζBQ⋆ (black lines) and ζBQK (red lines) observed
when Q is the Matérn 3/2 kernel (top) and the Cauchy ker-
nel (bottom), for a learning design of size n = 10 d. From
left to right, K is a Matérn kernel with ν = 1/2, 3/2 and
5/2. The size of the validation designs,m ∈ {10 d, 20 d, 30 d},
is indicated by the line symbols (+, ⋆ and ◦, respectively).
We can see that the two estimators display similar perfor-
mance and robustness with respect to mis-modelling. When
m is small ζBQ⋆ often yields smaller MSE, see top curves,
but the red and black curves are almost coincident for the
larger values of m. These results, which are representative
of those obtained for other choices of Q and d, indicate that
correct residual weighting is more important than the de-
tailed placement of the validation points Zm.

Note that, in the configurations tested, the default rule-
of-thumb for the choice of K and θ presented in Section 4.1
leads indeed to good and stable performance.

4.3 Comparison with Kernel Herding

Considering only validation measures ζ with uniform
weights (1/m), standard KH also minimises an MMD, in-
crementally extending Zm with the point that minimises
the numerator of the second term of the BQ criterion, see
equation (3.7). Since KH has smaller complexity than SBQ,
and the results of the previous section suggest that optimal
choice of Zm is less important than correct determination
of the weights wi, we compare now ζBQ⋆ to two other vali-
dation measures, whose designs Zm are found by extending
Xn by KH: ζKHK , that performs KH for kernel K, and ζKH⋆

that considers kernel K |n. As we will see, the SBQ design
is a superior alternative, both in terms of performance and
numerical stability, to the KH designs.

Since ζKHK considers only, at each step, measures with uni-
form weights, and ζKH⋆ does not take into account the op-
timal weights that will be applied when Zm is extended to
Zm+1, we can expect the following ranking of these estima-
tors:

R(ζKHK ;Fn) ≥ R(ζKH⋆;Fn) ≥ R(ζBQ⋆;Fn) , (4.1)

which has already been remarked in [8].
Figures 8 and 9 plot, for d = 1 and d = 2, respectively,

the MSE of estimators ÎSE that use ζBQ⋆, ζKH⋆ and ζKHK .
Kernels (Q and K) and designs sizes m are as in the pre-
vious examples, see the figures’ captions. We can see that
ζBQ⋆ has virtually always smaller MSE than the validation
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Figure 3: MSE of ÎSE. Statistics over 500 realisations. Q is a Matérn 3/2 kernel; K is a Matérn kernel with ν = 1/2 (left),
ν = 3/2 (middle) and ν = 5/2 (right); d = 1.

Figure 4: MSE of ÎSE. Statistics over 500 realisations. Q is a Cauchy kernel, K is as in Figure 3; d = 1.

Figure 5: MSE of ÎSEun. Statistics over 500 realisations for the example in Figure 3

measures using validation designs Zm found by KH, in par-

ticular for small design sizesm and the more regular models,

and appears to be more robust with respect to the choice of

the GP kernel. We remark that the design found by KH for

kernel K |n, i.e., the validation measure ζKH⋆ (in blue), often

leads to the poorest performance. That use of K |n may lead

to worse performance than simply using K has already been

noticed in [5], where only validation sets generated with KH

were considered.

Our experiments reveal that the designs ζKH⋆ can some-
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Figure 6: MSE of ÎSE for ζBQ⋆ (black) and ζBQK (red) for m ∈ {10, 20, 30}. From left to right ν = 1/2, 3/2, 5/2. Statistics
over 500 realisations. Top: Q is the Matérn 3/2 kernel, bottom: Q is the Cauchy kernel; d = 1.

times lead to very large errors. This happens when KH
places design points close Xn, which are subsequently given
very large weights. In fact, the implementation of standard
KH for kernel K |n needs careful handling of possible rep-
etition of design points, as already noted in [13] where
an algorithm is proposed to accommodate this eventual-
ity. As shown there, this corresponds to situations where,
when adding a new point to the current design Zm, the to-
tal mass of the optimal uniform measure over Zm+1 must
be decreased. Since our implementation simply imposes
zm+1 ̸∈ (Xn ∪ Zm), a grid point very close to Xn ∪ Zm

is chosen in these situations, as shown below.

Figure 10 shows the designs Zm, m = 10, for Matérn ker-
nels with θ = θ0, and regularity parameter (top to bottom
panels) ν = 1/2, 3/2 and 5/2. The vertical red lines indi-
cate Xn and the black stars, blue circles and red squares
the position of points of ζBQ⋆, ζKH⋆ and ζKH, respectively. A
vertical offset is used to facilitate the visualisation of each
design (from top to bottom, ζKHK , ζKH⋆ and ζBQ⋆). Remark
first that the SBQ designs are always space-filling continu-
ations of Xn, presenting a good stability with respect to ν,
mainly moving points closer to the boundaries of X when
ν increases. The other two designs place a few points in the
vicinity of Xn.

4.4 Properties of the design measures ζBQ⋆

For the same set of kernels K and design sizes considered
in Figure 3 (with d = 1 thus), we plot in Figure 11 the sum
of the design weights, S(θ) =

∑
i wi(θ), as a function of the

(normalised) scale parameter of K. K is always a Matérn
kernel, with regularity parameter ν = 1/2, 3/2, 5/2 (top to
bottom), as indicated in the legends. The learning design
Xn (n = 10) is the same for all cases.

Three values of m are considered, m = 10, 20 and 30
(blue, red and cyan curves, respectively). In each curve the
black squares indicate the value θ0 = n1/d. We can see that
S(θ) increases with m. For θ larger than a certain value S
becomes nearly constant and smaller than (note that the
value of the scale parameter θc prescribed by our rule of
thumb, which corresponds to the normalised value of θ equal
to one) is always inside this interval) while for θ = n1/d,
under the more regular model with a Matérn 5/2 kernel, S
may be larger than 1.

Figures 12, 13 and 14 present the designs for three values
of θ: θ = n1/d (the value used in the simulations of Figure
3, and indicated by the squares in Figure 11), for the value
prescribed by our rule of thumb, θ = (n + m)1/d, and for
θ = 2 (n+m)1/d, the upper limit considered in Figure 3. In
the Figures the weights of ζm are shown multipliedm, to en-



10 L. Pronzato and M .J. Rendas

Figure 7: MSE of ÎSE for ζBQ⋆ (black) and ζBQK (red) for m ∈ {20, 40, 60}. Top: Q is a Matérn 3/2 kernel; bottom: Q is
the Cauchy kernel. K is always a Matérn kernel, from left to right ν = 1/2, 3/2, 5/2. d = 3

Figure 8: MSE of ÎSE for ζBQ⋆ (black solid lines), ζKHK (red dashed lines) and ζKH⋆ (dotted blue lines), for m = 10 (+),
m = 20 (⋆) and m = 30 (◦). From left to right ν = 1/2, 3/2, 5/2. Q is a Matérn 3/2 kernel; d = 1.

able comparison. The distinct kernels K correspond to the

three panels, as indicated in the Figure (regularity increas-

ing from top to bottom). The dotted black vertical lines (the

same in the three panels) indicate the learning design Xn.

The colours code the validation design size: m = 10 in blue,

m = 20 in red and m = 30 in cyan. Remark the striking

similarity of the validation measures obtained for the differ-

ent kernels in Figure 13 and 14, supporting our observations

concerning the robustness of the estimator. The Figures also

show that the validation designs are, as expected, space fill-

ing continuations of Xn, and that as m grows (remember

Z10 ⊂ Z20 ⊂ Z30) the holes of Xn ∪ Zm are refined. Note,

however, the slow rate of population of the immediate neigh-

borhood of Xn, Zm tending first, as m grows, to refine the
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Figure 9: MSE of ÎSE for ζBQ⋆ (black solid lines), ζKHK (red dashed lines) and ζKH⋆ (dotted blue lines), for m = 10 (+),
m = 20 (⋆) and m = 30 (◦). From left to right ν = 1/2, 3/2, 5/2. Q is a Matérn 3/2 kernel; d = 2.

Figure 10: Designs for θ = θ0 in Figure 8. From top to
bottom: ν = 1/2, 3/2, 5/2. Xn: red ∗; ZBQ⋆

m : black ∗; ZKH⋆
m :

blue ◦ and ZKH
m : red □.

Figure 11: S =
∑

i wi for measure ζBQ⋆, n = 10.

interior of the wider holes of Xn. For the Matérn 5/2 ker-
nel and θ = n1/d a few weights, corresponding to validation
points close to Xn, become very large, see Figure 12, ex-
plaining that S(θ) may be larger than one on the bottom
panel of Figure 11. Analysis of the validation measures ob-
tained assuming the larger value of θ in Figure 14 shows that
as the assumed correlation length increases ζBQ⋆ tends to a
uniform measure, all weights having now a similar value.
We note that even in this situation, use of the BQ measure,
which down-weights the squared residuals, leads to a smaller
error than use of the simple uniform measure over Zm, as
the comparison of Figures 3 and 5 in Section 4.1 has shown.

5. CONCLUSIONS

The paper presents an estimator for the ISE of an inter-
polator based on knowledge of the design on which it has
been learned, defined as the ISE for a finitely supported
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Figure 12: ζBQ⋆ in Figure 11, θ = n1/d.

Figure 13: ζBQ⋆ in Figure 11, θ = (n+m)1/d.

validation measure. The estimator proposed is the optimal
MSE linear estimator under the assumption that the inter-
polated function is a realisation from a Gaussian process
with known statistical moments. The support and weights
of the validation measure are found by minimising an MMD
for a non-stationary kernel that is adapted to the learning
design, and a nested sequence of validation designs is greed-
ily determined by SBQ. A default rule is proposed to select
the covariance kernel of the assumed model.

The interpretation of the ISE estimator in terms of an
interpolation of the squared residuals explains the utmost
importance of accounting for the correct shape of their sec-
ond order moment. Moreover, it unriddles the observed ro-
bustness of the estimator with respect to the covariance of
the assumed GP model.

The work presented suggests several directions for future

Figure 14: ζBQ⋆ in Figure 11, θ = 2 (n+m)1/d.

developments. One concerns the determination of indica-
tors of the quality of the ISE estimate itself, ideally given
by the risk function that is optimised. These could both
be used to define stopping rules, indicating that incorpo-
ration of further residual observations should not yield a
significant improvement on the confidence of the current
ISE estimate, or to flag poor performance of the current
interpolator, and trigger its update including some of the
residuals observed over Zm in the learning dataset Fn. A
major difficulty is related to the dependency of the MSE of
the interpolator on the assumed process covariance, which is
known to be difficult to estimate. A possible source of subop-
timality of the estimator presented concerns the restriction
to a linear estimator. The extension to more general esti-
mators while preserving at the same time the robustness
property of the method forms a challenging objective. Fi-
nally, we believe that the analysis presented here suggests
possible approaches to define (down-)weighted CV estima-
tors with better performance than standard ones.
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Figure 15: Bias of ε̂2, x ∈ X . (simulations from Cauchy and
Matérn 3/2 kernels).

APPENDIX A. BIAS CORRECTION

Under the assumed GP model for f|Fn
estimator

ÎSE(ηFn ,Zm) has a non-zero bias:

B(Zm) = E
[
ÎSE(ηFn ,Zm)− ISE(ηFn)

∣∣∣Fn

]
= σ2w̃(Zm)Tk|n(Zm)− IMSE⋆(Xn) .

with k|n(Zm) the m-dimensional column vector with com-
ponents [k|n]i = K|n(zi, zi) (see equation (2.3)), and
IMSE⋆(Xn) given by (2.4).

By noting that ε̂2Fn(x|Zm) is also the optimal
MMSE estimator under the zero mean model GP0 =
GP(0,K |n) (necessarily linear, since the model is Gaus-
sian), equation (3.6) suggests that B(Zm) may be nega-

tive: ε̂2Fn(x|Zm) being optimal for GP0 = GP(0,K |n),
it should tend to have smaller values than estima-
tors that consider the correct first posterior moment,
i.e., GP(σ2K|n(x,x), σ

4K |n(x,x
′)). Figure 15 displays

the bias (1/M)
∑

i

(
(ε̂2Fn

)(i)(x|Zm)− (ε2)(i)(x)
)
observed

overM = 500 realisations from several GP models, support-
ing this conjecture (simulations are from the models consid-
ered in Figure 1).

Simply subtracting B(Zm) from the biased linear estima-
tor yields the following unbiased affine estimator

ÎSEaffine(Xn,Zm) =

m∑
i=1

w̃iε
2(zi)−B(Zm)

= IMSE⋆(Xn) + w̃T∆m . (A.1)

where ∆m collects the mean corrected squared residuals at
the validation points: ∆m(zi) = ε2(zi) − σ2K|n(zi, zi), i =
1, . . . ,m.

Alternatively, a linear (instead of affine) unbiased solu-
tion can be found by using weights w(Zm) that minimise
the same quadratic cost function, but under the zero bias
constraint. This leads to the following additive correction of

the optimal weights of the biased linear estimator ÎSE:

wlinear(Zm) = w̃(Zm)

−
σ2w̃(Zm)k|n(Zm)− IMSE⋆(Xn)

σ2k|n(Zm)T t
t , (A.2)

where t = K |n(Zm,Zm)−1k|n(Zm).

Denote by ÎSEbiased the empirical ISE estimator that uses
the validation measure presented in section 3.2, and let

ÎSElinear denote the linear unbiased estimator with weights
given by (A.2).

As (A.2) is linear and ε̂2Fn
(x|Zm) in (3.5) is the MMSE

linear estimate of ε2(x) given Fn, ÎSElinear will necessarily

perform worse than ÎSEbiased when using the correct model

for f . Similarly, ÎSEaffine performs better than ÎSEbiased

for the right model for f . In fact, the numerical experi-

ments presented below show that ÎSElinear and ÎSEaffine

have both bad performance and poor robustness: as both
estimators explicitly incorporate the uncertainty predicted
by the posterior distribution, they inherit, as we will see, the
well known sensitivity of modelled prediction uncertainty
with respect to the assumed model.

We performed M = 500 simulations from a GP with ker-
nel Q(·, ·; θ0), the Matérn kernel with regularity parameter
ν = 3/2 and θ0 = n, over domain X = [0, 1]d (d = 1).

The corresponding optimal Bayesian interpolators η
(i)
Fn

all
use the same learning design Xn of size n = 10 (see details
in Appendix C).

Let ÎSE
(i)

c (Kθ), c ∈ {biased, affine, linear} denote the

estimate ÎSEc(η
(i)
Fn

) when the validation measure assumes
kernel K(·, ·; θ). Figures 16 and 17 plot the average of these
estimates. In Figure 16 K = Q, while in Figure 17 measures
ζm are based on Matérn kernels with ν ∈ {1/2, 5/2}. In both
figures the horizontal dashed black lines indicate ISE, the
empirical average of ISE(i)(ηFn

) over theM realisations, and
the solid black curve is IMSE⋆(Xn; θ), predicted by kernel
K(·, ·; θ). The three panels correspond to increasing design
sizes m = 5, 10, 20 (from left to right).

The correct θ0 can be identified in Figure 16 as the
value at which the black solid and dashed lines intersect:
IMSE⋆(Xn; θ0) = ISE. We can see that for the correct pa-
rameter value the unbiased estimates (red and green curves)
both have the correct mean, while the biased estimator (blue
line) has, as foreseen, a negative bias. For θ ̸= θ0 all three
estimators have a non-zero bias, which decreases when m
grows as the estimators become less dependent on the prior
stochastic model for f . For large design sizes, the two linear
estimates (blue and green curves) have nearly the same bias,
showing that bias correction is mainly relevant for small
validation designs. As anticipated, the unbiased estimates
display a larger sensitivity with respect to model mismatch

than the original ÎSEbiased(θ), which displays a remarkably
stable behaviour with respect to θ.

In Figure 17 wrong values of ν of K(·, ·) are assumed by
the design algorithm. In the top row ν = 1/2, less regular
than Q, while in the bottom row ν = 5/2, more regular than
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Figure 16: IMSE⋆(Xn; θ) (black), ISE (dashed), ÎSEbiased(θ) (blue), ÎSEaffine(θ) (red) and ÎSElinear(θ) (green). From left
to right m = 5, 10, 20. Q and K are the Matérn 3/2 kernel.

Figure 17: IMSE⋆(Xn; θ) (black), ISE (dashed), ÎSEbiased(θ) (blue), ÎSEaffine(θ) (red), ÎSElinear(θ) (green). From left to
right m = 5, 10, 20. Q is the Matérn 3/2 kernel; K is the Matérn kernel with parameter ν = 1/2 (top) and ν = 5/2
(bottom).

the simulated model. While a much larger bias is observed
for the exponential (ν = 1/2) model in the top row, the
curves in the bottom panels are similar to those in Figure
16), indicating that the estimator can accommodate a model
that assumes a higher regularity. The robustness of BQ with
respect to models assuming higher regularity than the true
one has been previously noted in [9]. Finally, remark that

ÎSEbiased has a remarkably stable behaviour, and that its
bias is often the smallest amongst all three estimators.

Unless a high confidence can be given to the assumed GP
model, including its scale parameter, the lack of robustness
of the unbiased estimators prevents their use. For small de-
sign sizes, where bias correction could indeed be important,
guaranteeing the fidelity of the assumed model is in general
impossible, severely limiting the practical interest of the un-

biased estimators discussed here.

APPENDIX B. POTENTIAL PK|n
(z) FOR

TENSOR-PRODUCT
KERNELS ON [0, 1]d

B.1 Factorisation in the general case

A key difficulty for the algorithmic construction of a val-
idation design by SBQ (see Section 3.2) or KH (see Sec-
tion 4.3) is the calculation of PK|n

(x) = PK|n,µ
(x) for many

x in order to choose zm+1. However, when K is a tensor-
product kernel, PK|n,µ

can be calculated explicitly.

Since µ is uniform on X = [0, 1]d, we can write µ(dx) =∏d
i=1 µ1(dxi) with µ1 the uniform measure on [0, 1] and x =
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(x1, . . . , xd)
⊤. When K(x,x′) =

∏d
i=1Ki(xi, x

′
i), with x =

(x1, . . . , xd)
⊤ and x′ = (x′1, . . . , x

′
d)

⊤, we have

PK,µ(x) =

d∏
i=1

∫
Xi

Ki(xi, x
′
i)µ1(dx

′
i) =

d∏
i=1

PKi,µ1(xi) .

One may refer to [18] for connections between positive-
definiteness properties of the Ki and those of K. The ex-
pression of PKi,µ1

(·) is available for many kernels Ki; see
[14] and the references therein.

Before deriving the expression of PK|n,µ
(x) we introduce

some notation. Denote by ΩK,n the n × n matrix with re-
spective elements

{ΩK,n}j,k =

d∏
i=1

βKi
(xji, xki) ,

and by ωK,n(x) the vector with j-th component

{ωK,n(x)}j =
d∏

i=1

βKi(xji, xi) ,

where xji (respectively, xki) is the i-th component of xj

(respectively, xk), and

βKi(r, s) =

∫
X

Ki(r, t)Ki(s, t)µ1(dt) , i = 1, . . . , d .

Then, using (2.6), direct calculation gives

PK|n,µ
(x) = 2PK2,µ(x)− 4k⊤

n (x)K
−1
n ωK,n(x)

+2 k⊤
n (x)K

−1
n ΩK,nK

−1
n kn(x)

+
[
1− k⊤

n (x)K
−1
n kn(x)

] [
1− trace(K−1

n ΩK,n)
]
.

The expressions of PK2,µ1
(x) and βK(u, v), x, u, v ∈ [0, 1],

for µ1 uniform on [0, 1] and Ki(x, x
′) a Matérn 3/2 ker-

nel (C.1) are given in Section B.2, making the expression
of PK|n,µ

(x) available in closed form when K(x,x′) is the

product of uni-dimensional Matérn 3/2 kernels and µ is uni-
form on X = [0, 1]d. Similar calculations can be conducted
for other kernels. The expression of EK|n

(µ), which appears

in the expansion of R(ζm,Xn), see (2.5), can be obtained in
closed form in a similar way; see [13].

B.2 The Matérn 3/2 case

When Ki(x, x
′) = K

3/2
Matérn(|x − x′|) given by (C.1) with

θ = γ/
√
3, we have [6]

PKi,µ1(x) = Sγ(x) + Sγ(1− x) ,

with Sγ(x) =
1
γ [2−(2+γx)e−γx], x ∈ [0, 1]. Straightforward

but lengthy calculation gives

PK2
i ,µ1

(x) = Tγ(x) + Tγ(1− x) ,

with Tγ(x) = 1
4 γ [5 − (5 + 6 γx + 2 γ2x2)e−2 γx], x ∈ [0, 1].

Also, the expressions βKi(u, v) = Bγ(u, v) − Cγ(u, v) −
Cγ(1− u, 1− v), u, v ∈ [0, 1], with

Bγ(u, v) =
e−γ|u−v|

6 γ

[
15 (1 + γ|u− v|) + 6 γ2|u− v|2

+γ3|u− v|3
]
,

Cγ(u, v) =
e−γ(u+v)

4 γ

[
5 + 3 γ(u+ v) + 2 γ2uv

]
,

permit to calculate PK|n,µ
(x) explicitly.

APPENDIX C. DETAILS ON NUMERICAL
EXPERIMENTS

C.1 GP models

Let {f(x)}x∈X , f(x) ∈ R be a real d-dimensional
stochastic process defined over the compact index set X ⊂
Rd. {f(x)}x∈X is a Gaussian process with mean func-
tion µ(·) and covariance kernel K(·, ·), noted {f(x)}x∈X ∼
GP(µ(·),K((·, ·), if for any finite n ∈ N, and any X =
{x1, . . . ,xn} ⊂ X , the collection of random variables
{f(xi), i = 1, . . . , n} is a n-dimensional normal random vec-
tor, i.e.

{f(xi), i = 1, . . . , n} ∼ N (µX,KX) ,

where µX ∈ Rd has i-th component [µX]i = µ(xi), and
the n× n matrix KX has generic (i, j) element

[
KX

]
(i,j)

=

K(xi,xj).
In Section 4 we assume that {f(x)}x∈X ∼

GP(µ(·),K(·, ·)). All Gaussian models considered in
the numerical experiments presented assume a zero
mean, i.e., µ(·) ≡ 0, and are defined over X = [0, 1]

d
.

Besides, only stationary and isotropic processes are
considered, i.e., all covariance kernels K satisfy
K(x,x′) = Ψ(x− x′) = ψ (∥x− x′)∥).

The experiments presented resort to several parametric
families for the process kernel K, namely, the Cauchy kernel
KCauchy as defined in [7], and the Matérn kernels Kν

Matérn

with regularity parameter ν ∈ {1/2, 3/2, 5/2}, as defined
below. For all kernels θ ∈ R+ is the scale parameter, and for
the Cauchy kernels (ρ, γ) are the long distance dependency
and the shape parameters, respectively. Below, ℓ = ∥x− x′∥.

ψCauchy(ℓ) = (1 + (θ ℓ)γ)
−ρ/γ

,

ψ
1/2
Matérn(ℓ) = e−θ ℓ ,

ψ
3/2
Matérn(ℓ) =

(
1 +

√
3θ ℓ

)
e−

√
3θ ℓ , (C.1)

ψ
5/2
Matérn(ℓ) =

(
1 +

√
5θ ℓ+

5

3
(θ ℓ)2

)
e
√
5θ ℓ .

For the Cauchy kernel, we set ρ = γ = 1, and thus a rational
kernel with bandwidth determined by θ.



16 L. Pronzato and M .J. Rendas

The parameter θ0 of the simulated GP model is depen-
dent of the size of the learning design of Fn: θ0 = n1/d. This
will guarantee the numerical stability of the KH algorithm
used to define Xn (see below), and that the interpolator ηFn

will have a moderate error level.

C.2 Sampling from a GP processes

The material in Section 4 presents the average perfor-
mance of the ISE estimators overM = 500 simulations from
an assumed GP model. These simulations are supported in
a dense finite subset of X of size L = 212: XL ⊂ X . If
d = 1 XL is an uniform grid, and, for d ≥ 2, a scrambled
low-discrepancy Sobol sequence.

Generation of realisations from the GP model requires
factorisation of the matrix KXL

collecting the values of ker-
nel K over the pairs of points of XL:

f (i)(t) = K−1/2u , u ∼ N
(
0, I|T |

)
, t ∈ T .

When L is very large this may lead to numerical instabilities
for some parameter values, due to near singularity of K.
In that case, our simulated signals are the optimal MSE
estimate (under the simulated GP) of samples obtained as
above over a smaller dense subset XM of X , of size M =
103 d:

{u(i)(x)}x∈XM
∼ N (0, IM )

−→ {f (i)(x)}x∈XM
→ {f̂ (i)(x)}x∈X .

The simulated functions are thus slightly smoother than the
actual realisations from the assumed GP. We believe, how-
ever that this does not compromise the validity of our con-
clusions.

C.3 Learning design Xn, Interpolator ηFn, ISE
estimates

In Section 4, for each GP kernel K and design size n, Xn

is always the space-filling design obtained by standard KH
for kernel K. For each realisation f (i), its interpolator η

F
(i)
n

is the optimal interpolator for the assumed GP model using

the learning data F
(i)
n = (Xn, f

(i)(Xn)),

η
F

(i)
n
(x) = k|n(x,Xn)

TK|n(Xn,Xn)
−1f (i)(Xn) .

Simulated residuals are thus ε(i)(x) = f (i)(x) − η
F

(i)
n
(x).

For a validation measure ζm = (w,Zm) the MSE of the

corresponding estimate ÎSE is approximated as

R̂(ζ) =
1

M

M∑
i=1

(
ÎSE

(i)
− ISE(i)

)2

,

where

ÎSE
(i)

=

m∑
i=i

wiε
2
η

F
(i)
n

(zi), ISE(i) =
1

L

∑
ti∈XL

(ε(i)(ti))
2 .
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