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Abstract

Camera-traps have revolutionized the way ecologists monitor biodiversity and population abun-
dances. Their full potential is however only realized when the hundreds of thousands of images
collected can be rapidly classified with minimal human intervention. Machine learning approaches,
and in particular deep learning methods, have allowed extraordinary progress towards this end.
Trained classification models remain rare however, and for instance are only emerging for the Eu-
ropean fauna. This can be explained by the technical expertise they require but also by the limited
availability of large datasets of annotated pictures, which are key to obtaining successful recognition
models.

In this context, we set-up the DeepFaune initiative (https://deepfaune.cnrs.fr), a large-
scale collaboration between dozens of partners involved in research, conservation and management
of wildlife in France. The aim of DeepFaune is to aggregate individual datasets of annotated pictures
to train species classification models based on convolutional neural networks, an established deep-
learning approach.

Here we report on our first milestone, a two-step pipeline built upon the MegaDetector algorithm
for detection (discarding empty pictures and cropping the animal) and a classification model for
18 species or higher-level taxa as well as people and vehicles. The classification model achieved
92% validation accuracy and showed > 90% sensitivity and specificity for many classes. Most
importantly, these performances were generally conserved when tested on an independent out-of-
sample dataset. In addition, we developed a cross-platform graphical-user-interface that allows
running the pipeline on images stored locally on a personal computer.

In conclusion, the DeepFaune initiative provides a freely available (for non-commercial purposes)
toolbox with high performance to classify the French fauna in camera-trap images.

1 INTRODUCTION

Camera-traps have revolutionized the way ecologists monitor biodiversity and population abun-
dances (O’Connell et al., 2011; Howe et al., 2017). Relatively cheap, easy to deploy and au-
tonomous, camera-traps enable to scale-up monitoring efforts dramatically, both in space and time.
The continuous monitoring they provide also facilitates the detection of rare species. Therefore,
and unsurprisingly, deployments of tens to hundreds of camera-traps are now common.

The full potential of camera-traps is however only realized when the hundreds of thousands of
images, many being empty from spurious detections, can be rapidly classified with minimal human
intervention (Chen et al., 2014; Schneider et al., 2019; Wearn et al., 2019; Tuia et al., 2021). Since
the beginning, machine learning approaches, and in particular deep learning methods, have held the
promise to solve this issue. Recent works have confirmed their power: for instance, deep-learning
models developed by different teams (Tabak et al., 2019; Willi et al., 2019; Whytock et al., 2021)
obtained > 90% recall and precision for a number of mammal species of North American ecosystems,
African savannas and tropical forests.

The number of image classification models available to ecologists currently remains low, and
their taxonomic coverage is still limited. So far, most of the image classification models developed
on camera-trap data have been trained, even when based on millions of pictures, using images from
one or two sites collected by a few partners. For instance, Norouzzadeh and colleagues (Norouzzadeh
et al., 2018) trained their model on 3.2 million images taken from the Serengeti Snapshot project
(Swanson et al., 2015) to identify 48 African mammals, yet all data was collected from one large
study area in Serengeti National Park as part of the same monitoring project. Although this can
lead to highly accurate models, when tested on data collected in the same sites, and even provide
models which retain sufficient accuracy on out-of-sample data to be useful for others working at
other sites, such approaches may not always be possible or desirable. For instance, we are not aware
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of any European research group that has either collected such a large camera-trap image dataset
or trained an equally-powerful image classification model on European fauna up to this day. We
believe there is potential in aggregating multiple small datasets from a large number of partners
to obtain sufficiently large training, validation and test datasets to develop efficient classification
models.

The pros and cons of a cross-partner image aggregation strategy, and its ability to lead to
successful models, has yet to be investigated. Recent initiatives such as Wildlife Insights, an online
platform to manage and classify camera-trap images (https://www.wildlifeinsights.org), have
embraced this strategy. Naturally, each initiative will have its own specific design choices which may
represent drawbacks for certain institutional partners. For example, online platforms require the
users to upload their images, and sometimes have non-optional data-sharing policies, an approach
which may not be suitable for certain institutional partners which have legally-bounding contracts
on data collection or privacy concerns.

We report here on the DeepFaune initiative (https://deepfaune.cnrs.fr). This initiative
aims at (1) aggregating camera-trap images from many French institutions or research groups to
create a common and large-scale dataset, made available to the whole community when possible,
(2) developing a deep-learning based species classification pipeline that can also identify empty
pictures, using a two-step approach based on running MegaDetector (Beery et al., 2019) to detect
and crop animals in images followed by predicting from a convolutional neural network (CNN)
model trained to classify the cropped images using the database built in (1), and (3) providing a
free graphical-user-interface (GUI) so that non-computer savvy partners can run the classification
model on self-hosted images with standard personal computers.

2 METHODS

2.1 Partners and data collection

The initiative brings together 38 partners (see the complete list at https://deepfaune.cnrs.fr),
mostly composed of institutions managing protected areas, hunting federations or academic research
groups across hexagonal France (Fig.1). Of the thirty-eight interested, thirty provided camera-
trap images or videos, originating from various monitoring projects (e.g. general monitoring of
Alpine fauna, monitoring of the burrows of badgers) or opportunistic surveillance (e.g. to assess
the presence of wolves). One additional partner joined the project, after initial data collection,
providing annotated pictures to use as an out-of-sample dataset for a stringent test of the model’s
accuracy (see below).

Figure 1: Distribution of the DeepFaune partners in France
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2.2 Dataset

After removing corrupted or not fully annotated files, we gathered and sorted 422,765 annotated
pictures and 4,460 annotated videos. These included either one of the 134 animal species identified,
a person, a vehicle, or were empty, i.e. had no animal, person or vehicle visible. In some instances,
annotation was made at a higher taxonomic level than the species level (e.g. bird, rodent). The
number of medias provided by each partner varied a lot, from 20 videos to more than 140,000
images. As we wanted to train our model for camera-trap images, we converted videos into images
by retaining one frame per second out of the 5 first seconds of each video.

We restricted our study to the identification of vehicles, people and 18 animal classes that were
common enough in the images we had gathered: badger, bird, chamois (alpine and pyrenean), cow,
dog, felinae (domestic/wild cat and lynx), red fox, ibex (alpine only), lagomorph, micromammal,
mustelidae, mouflon, red deer, roe deer, sheep, squirrel, wild boar and wolf. We assumed that an
image could contain only one of these classes. After keeping the relevant images, our final dataset
was composed of 352,751 annotated images, including 2.1 % of empty images.

Our out-of-sample dataset originated from 27 camera traps installed in 11 different locations
distributed along two altitudinal gradients in the Alps, France. It was made of 25,836 annotated
pictures, containing images of humans (but no vehicles) and 16 identified animal species (felinae
and mouflon were lacking), and 34.5% of empty images.

2.3 DeepFaune identification pipeline

To avoid shortcut learning, we chose to rely on a two-step approach: (step 1) detecting animals,
persons or vehicles in images and filtering out empty images, and (step 2) using a CNN model to
identify the species detected in the image. This approach has been the leading approach encountered
in successive iWildcam competitions (Beery et al., 2021).

2.3.1 Filtering empty images with MegaDetector

We used MegaDetector v4.1 https://github.com/microsoft/CameraTraps/ (Beery et al., 2019)
to detect animals, people or vehicles that were present in each image. MegaDetector v4.1 is based
on the image detection model Faster-RCNN (Ren et al., 2016), which allowed us to produce one
cropped image per animal that was detected (there were potentially multiple individuals in a given
image) or per human/vehicle. Therefore, we were able to filter out empty images as a first step.
We used a threshold of 0.9 to only retain the elements which were detected with the highest scores.
After this step, we remained with a dataset of 270,611 cropped images. Indeed, we observed that
some images were annotated as containing an animal but this animal was very hard to distinguish.
This was observed on images containing small animals (e.g. rodents, birds) which were detected
far from the camera trap but visible to expert human eyes. This was also the case when images
were annotated by humans using consecutive images. A single image containing a small part of an
animal can be annotated by a human observer given the other images preceding or following the
focal image. As a consequence, MegaDetector (Beery et al., 2019) was sometimes unable to find an
animal on all the images of a given sequence.

2.3.2 Training a CNN model to classify images amongst 18 animal species, people
and vehicles

We developed a CNN model to classify images amongst the 20 classes retained in the dataset: the
18 animal species of interest, as well as people and vehicles. The model was trained on the images
cropped during the previous stage using MegaDetector. Since our original images were annotated, it
was possible to annotate any cropped image using the annotation of its parent image. For instance,
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if MegaDetector detected two animals in an image annotated as ’wild boar’, we considered that the
two resulting cropped images contained a wild boar. The output of the CNN model is, for each
image processed, a prediction score expressing the certainty of the attribution of the image to each
class. A score of 1 in one class indicates that the model is certain that an object of this class is
present in the image. Conversely, a score of 0 in one class indicates that the model is certain that
an object of this class is not present in the image.

Building independent train and validation datasets. CNN models require independent
training and validation datasets to learn successfully, and as commonly done we split the whole
image dataset into a train dataset containing 90 % of the images, and a validation dataset con-
taining the rest. One issue that could arise during this split is that pictures collected within the
same sequence (i.e. a batch of pictures taken a few seconds apart) are used in both the train and
validation datasets, which would threaten their independence. As we obtained pictures collected
with many different camera-trap models, there was no consistency in the EXIF information that
we could use, and in particular could not always obtain the date information. We chose to use the
image filenames instead. We used a heuristic based on text mining in the R package stringdist

to compare filenames to each other. We considered that two files were not independent if their
filenames were too similar, i.e. if their similarity was above 0.9, which was conservative. This way,
we were certain that there was no image from a given sequence or video that were present in both
the train and the validation datasets.

Coping with class imbalance. Class imbalance, i.e. the fact that the number of images per
class differs), is known to affect both training and validation (Johnson and Khoshgoftaar, 2019).
Here we propose a novel approach that combines downsampling and upsampling. At each epoch,
we downsampled the class which was overrepresented down to a multiple of the rarest class. We
chose to have a ratio of 5 between the number of images of the most common class and the number
of images of the rarest class. This was estimated for every epoch, such that every image is seen by
the model if we fit the model for enough epochs. As a consequence, images of the rarest classes
were used in many epochs and can thus be considered upsampled whereas those of the most common
classes are downsampled. This way, the optimization problem was different at every epoch, but more
balanced. We considered that the stochasticity induced by the sampling process at each epoch had
a positive impact on the model fit procedure and we observed a continuous reduction in model loss
through epochs.

We used the same idea to handle imbalance during validation, and used the same ratio of 5 to
create a more balanced validation dataset, which was not changed among epochs. This enabled us
to compute what we called a balanced validation accuracy.

Training with transfer learning and image augmentation. We used transfer learning using
an EfficientNetB3 model (Tan and Le, 2019) that was pre-trained on Imagenet, with a resolution
of 300 × 300, using TensorFlow-Keras. Additionally, we performed image augmentation using the
imgaug Python library (https://github.com/aleju/imgaug). Each image in each batch was mod-
ified with a random set of transformations such as horizontal flip, affine transformations, gray scale
transformation, blurring, brightness or contrast changes. We used the softmax output as prediction
score. We estimated the model for a maximum of 120 epochs, monitored the overall balanced vali-
dation accuracy and stopped the estimation when it did not increase with a patience of 10 epochs.
This procedure took about half a day with 8 CPUs and a Titan X GPU. We also report sensitivity
(the true positive rate, i.e. the % of images with species i that are correctly classified as showing
species i) and specificity (the true negative rate, i.e. the % of images without species i that are
correctly classified as not showing species i).
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2.4 Predictive performance on out-of-sample data using sequences

We investigated the ability of our two-step pipeline to perform accurate identification of species in
an out-of-sample dataset, i.e. in images taken in contexts that have never been seen during the
training stage (in other words, images from new camera traps deployed at new locations). The
out-of-sample dataset contained pictures of most classes used in the training of the model, but for
mouflon, felinae, cow and vehicles.

We first assessed the quality of the detection step based on Megadetector, using the rate of
false negative (FN) detection – not detecting a species on an image where a human detected it – as
metric. A high FN rate indicates that Megadetector commonly fails to detect the animal, person or
vehicule in the picture. We compute the FN rate at the image and sequence level. A false negative
sequence is one for which all images of the sequence are false negative.

We then explored the classification accuracy of the CNN-based classification step of the pipeline.
We predicted the species present at the scale of the sequence, not at the scale of the individual
image. Indeed, as commonly done by practitioners in the field, camera traps were set to take three
successive images when triggered. Additionally, it is common that animals stay several seconds
near the camera, triggering it multiple times in a row. Such events however require a single species
identification. In this dataset, we could obtain the date and time of each image using the EXIF
information. We considered that two images taken less than a few seconds apart, at the same site,
could be considered to represent a sequence of images that captured the same event. Here we chose
a threshold duration of 20s to consider that two images belongs to the same sequence. To obtain
the classification at the sequence level, we first computed the prediction score for each image of the
sequence that was not predicted as empty. We then averaged these scores and considered that the
class with the highest average score was the predicted class for the sequence. Images that were not
in a sequence were classified using their own prediction score.

2.5 The DeepFaune graphical user interface

In our pipeline, MegaDetector represented a bottleneck as it is very slow when used on a CPU
(about 20 to 40 second per image in our experiments on various personal computers). We therefore
developed a much faster alternative using Yolo v4 (Bochkovskiy et al., 2020), exploiting the cropped
images used in this study as a training set for object detection. We then implemented the two-step
approach developed in the present study using this alternative detector (about 1 second per image)
and our CNN classifier inside a free graphical user interface available at https://deepfaune.cnrs.
fr. This interface only requires the installation of Python v3 and its TensorFlow v2 module.

3 RESULTS

3.1 Performance of the CNN model on the validation dataset

We obtained an overall balanced validation accuracy of 92%. Sensitivities and specificities were
generally good to very good, > 90% in many instances (Table 1). Among issues to be resolved in
the future, we observed identification mismatches between the different ungulate species, mainly
on images where only a part of the animal was present (for instance, the back of a roe deer was
recognized as a red deer). Without surprise, the lower performance among ungulates was observed
for ibex and mouflon for which we had less than a thousand images in the train dataset. The
model performed very badly on micromammals, and we observed that they were often mistaken for
mustelidae, suggesting that this effect could also partly explain the poor model performance for this
class. Finally, the quality of the classification of dog and people was only medium, likely because
many images containing one of this class also contained the other (e.g. hunters with dogs).
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Class Nb images Nb images Sensitivity (%) Specificity (%)
in train in validation in validation in validation

badger 5412 707 95 98
ibex 732 241 95 79
red deer 38739 4701 97 95
chamois 44210 4311 98 97
roe deer 24365 3215 95 95
dog 8045 1180 90 88
squirrel 3599 440 89 97
felinae 1472 283 93 96
human 12561 947 88 87
lagomorph 5086 676 91 97
wolf 4844 424 86 95
micromammal 953 11 39 53
mouflon 497 60 78 95
sheep 5121 510 97 98
mustelide 2316 377 75 67
bird 39819 4738 99 97
red fox 20437 2398 95 96
wild boar 18242 2559 97 97
cow 2020 297 95 99
vehicle 3622 342 81 97

Table 1: Classification performance metrics computed on the validation dataset

3.2 Performance of the whole pipeline on the out-of-sample dataset

During the detection stage based on MegaDetector, we observed that FN rate on individual images
where generally near or below 10% for the largest species, but much higher for smaller species
(Figure 2): the FN rate were above 25% for mustelidae, micromammals, and reached near 50% for
birds. We note however that the magnitude of the difference differed between species, but was likely
important enough for a number of them to justify using the sequence level since the detection stage.

The CNN-based classification step achieved a overall balanced validation accuracy of 92.5%, and
an overall validation accuracy (i.e. for the whole unbalanced validation dataset) of 95%. The best
performance was achieved for human, squirrel and for large ungulates, with specificity and sensitivity
being greater than 90% for red deer, roe deer, chamois, and to a lesser extent for wild boar and ibex
(Table 2). There however remains some mismatches between these species (see Appendix S1), with
for instance 16 sequences of red deer being classified as roe deer. Surprisingly, performance remained
good for micromammals and we did not encounter the low performance noted for this taxa with
the validation dataset (see Table 1). Specificity for red fox was low, with ten and eight sequences
of wild boar and red deer predicted as red fox, respectively. This was not expected, given the very
high performance achieved for this species in the validation dataset. Finally, the performance for
images containing a wolf was low, indicating that our model might be under-performing for this
species. Manual inspection revealed that vegetation in the foreground could be the source of this
issue (see Figure 4), which therefore might be specific to this dataset. Also, and unexpectedly, we
observed very few confusions between wolf and dog, suggesting that our model could distinguish
between the two.
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Figure 2: False negative rates obtained with MegaDetector on the out-of-sample dataset, computed
at the scale of individual images or at the scale of image sequences. A false negative image is when
the image of an animal was predicted as empty by MegaDetector. A false negative sequence is a
sequence of images for which all the images are false negative. By construction, the false negative
rate is necessarily lower or equal for sequences than for images.

4 DISCUSSION

The DeepFaune initiative represents a successful multi-partner collaboration to aggregate camera-
trap images and build one of the first pipelines readily available to automatically classify camera-trap
images collected in Europe. Our current model allows for predicting the presence of 20 different
classes in camera-trap images (animal species or higher order taxa, as well as humans and vehicles).
When used in conjunction with MegaDetector, it enables to analyze datasets in which empty images
are numerous. Although we did use the standard approach of transfer learning, we implemented a
number of tricks to deal with class imbalance and the independence of train and validation datasets
that could be useful to others. Ultimately, our species classification model performed extremely
well on the validation dataset and provided robust results on out-of-sample data. Additionally, we
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Taxa Sensitivity (%) Specificity (%)
in out-of-sample with in out-of-sample with

sequences (or images∗) sequences (or images∗)

badger 100 (93) 60 (37)
ibex 95 (71) 96 (96)
red deer 79 (72) 92 (70)
chamois 90 (88) 96 (90)
roe deer 94 (88) 95 (88)
dog 100 (93) 48 (07)
squirrel 92 (83) 93 (79)
felinae - -
human 95 (92) 99 (98)
lagomorph 84 (72) 88 (55)
wolf 67 (62) 44 (29)
micromammal 85 (84) 96 (93)
mouflon - -
sheep 84 (70) 64 (96)
mustelide 84 (77) 53 (51)
bird 95 (96) 85 (44)
red fox 94 (88) 59 (39)
wild boar 88 (84) 89 (64)
cow - -
vehicle - -

Table 2: Classification performance metrics computed on the out-of-sample dataset, using images
or sequences. ∗Assessment of model performance at the image level is here not fair to the model, as
people who annotated the images had the complete image sequence in hand and made deductions.

(a) Predicted as roe deer (0.97) (b) Predicted as roe deer (0.91) (c) Predicted as dog (0.75)

Figure 3: Using sequences decrease the false positive rate. A sequence of three images of a roe deer,
taken over a 10-seconds interval (and cropped by MegaDetector). The third image is misclassified
as a dog, but the average score at the sequence scale is highest for roe deer.

built a graphical user interface (GUI) so that partners can run the model locally on regular personal
computers and automatically sort their newly acquired images based on the model predictions.
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(a) Predicted as roe deer (score
0.67) in a sequence of 1 image

(b) Predicted as bird (score 0.93)
4 times in a sequence of 5 images

(c) Predicted as red deer (score
0.75) in a sequence of 1 image

Figure 4: Examples of sequences where the animal is not correctly identified as a wolf by our
pipeline, possibly due to vegetation in the foreground.

4.1 Model performance and relevance for ecological studies

There are currently very few species-recognition models available for European fauna, and our
results could therefore be used to benchmark future works.

Even by deep-learning classification standards, the quality of our model appears very good and
compares favorably with results from similar exercises conducted on fauna from other continents.
For instance, overall accuracy of 97%, 78% and 94% on validation datasets were respectively reported
in studies on North American fauna (Tabak et al., 2019), Central African fauna (Whytock et al.,
2021) and East African fauna (Norouzzadeh et al., 2018). Our model also improves on the one
reported by Carl and colleagues (Carl et al., 2020), which is one of the rare models focused on
European fauna, as we achieved much higher accuracy at the species level.

We managed to obtain good results, despite the moderate size of our dataset by deep learning
standards, by overcoming a number of obstacles. Firstly, the large imbalance (two orders of magni-
tude more images of chamois than ibex, for example) would have biased the classification towards
the most common species. We therefore implemented an original approach combining downsam-
pling and upsampling techniques that successfully prevented the emergence of a relationship between
identification performance and the number of images per class. Secondly, deep learning models are
known to be able to learn ’shortcuts’ (Geirhos et al., 2020). In our context, this would correspond
to learning contextual elements (e.g. snow, peculiar vegetation) that would be associated with the
species, rather than learning to recognize the species itself. To avoid this potential issue, we chose
to classify cropped images, and not whole images (as opposed to Whytock et al. (2021)), with an
additional procedure of image augmentation.

Overall, class-specific sensitivities and specificities are high enough for the model to be useful
for many specific studies, some of which we highlight now: (1) automatized monitoring of large
ungulates, a guild of important management interest in Europe. Ungulates are indeed generally
very well classified by the model, with sensitivity and specificity values above > 90% for most species
(as explained in the Results section, performance for ibex and mouflon will likely improve as new
pictures are added in the database). These results suggest that our model could be a useful tool to
facilitate studies investigating the effects of management practices on locally abundant ungulates
(e.g. can wild boar population dynamics be controlled by hunting?), or the dynamics of prey
under predation (e.g. do roe deer populations decrease as wolves return?); (2) monitoring large
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mammalian communities. Although generally our model did not obtain accuracy levels as high as
for ungulates for the other classes, the model’s performance and taxonomic coverage suggest that it
could be useful to automatically sort out hundreds of thousands of pictures for a range of taxonomic
groups. This could prove especially useful in studies looking at the impact of anthropization on
large mammal communities for example. A human intervention would still be required to manually
verify the pictures for which prediction scores are low or to identify the species present in images
where the model classifies at a higher taxonomic level (e.g. mustelids), but this effort should be
dramatically reduced when using our model; (3) quantifying human disturbance levels. Classes
related to human activities (human, dog, vehicle) are generally not as well identified as others, as
we had only a limited number of images for these classes, and with limited diversity. Getting more
images of people from partners might be difficult given privacy-aware policies and legislation, so we
aim to solve this issue in the future by mining authorized images of people online or using existing
datasets. As MegaDetector now directly integrates the classification of people with good success
(Fennell et al., 2021), we might rely on it in the future for this class. The current model performance
should however be sufficient to already build reliable metrics estimating human activities along wide
gradients.

We emphasize here that even though sensitivities and specificities might be generally high,
caution should be exerted when using the model to classify them, as relevant pictures might have
been discarded at the detection stage by MegaDetector. This is clearly demonstrated by our out-
of-sample test on bird pictures, which can be well classified by the model (arguably at this broad
taxonomic level) but will often be discarded at the detection stage as the size of the bird is too small
for MegaDetector to identify its presence. Pictures of micromammals are also often mistakenly
discarded by MegaDetector, but this is less problematic as the model performs poorly on these
anyway, and therefore no false confidence should occur. Taxa that require particular attention are
squirrels and mustelids.

Importantly, the general high quality of the results of our two-step pipeline (detection+classification)
was conserved when applied to an out-of-sample dataset. It is a common error to take model re-
sults on validation datasets at face value and assume similar accuracies will be observed in new
applications. Previous studies (Whytock et al., 2021) have shown that this is not the case, with
often dramatic declines in accuracy, to the point where the usefulness of the model could sometimes
be called into question. Our out-of-sample test, based on heterogeneous images from 11 locations
spread over two altitudinal gradients in France, suggests that this is not the case here. Additionally,
this out-of-sample test was designed to test the applicability of our pipeline to real-world scenar-
ios. It revealed that (1) although MegaDetector is generally efficient, the rate of false negatives,
i.e. when the image is assumed empty and thus discarded, can be significant (> 25%) for small
animals, micromammals and birds in particular. This is a critical point that should be kept in mind
when designing studies and interpreting results with our model, and warrants specific attention and,
ideally, study-specific quantifications; (2) using the average prediction score over temporally-close
pictures (i.e. sequence) can improve classification results if classification at the sequence-level is
sufficient. This arose because, over a few pictures, at least one image is likely to be classified very
reliably by the model (e.g. prediction score > 0.95), increasing largely the average prediction score
for this class, and successfully identifying the animal present in all images of the same sequence.
Also, confusion between species are less likely to occur over several images. Sequences of pictures
are commonly used in camera-trapping to account for differences in fields of detection, camera
views, and generally to increase chances of getting at least one identifiable picture of the animal
triggering the camera-trap. We demonstrate here that this approach can be leveraged when using
classification models. Our work also highlights that, when using sequence-based identification, the
performance of classification models trained without sequence information are likely to be under-
estimated in contrast to what can be achieved at the sequence level. In the future, sequence or
temporal information could be directly integrated into the training step, as done in context CNN
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models (Beery et al., 2020; Beery et al., 2021; Tuia et al., 2021). We could not use this approach
here as many partners provided data without information about the specific trapping sites where
the pictures came from. We therefore could not reconstruct the sequences in the training dataset
from the EXIF time-stamp information.

4.2 Lessons learned from a successful multi-partner initiative

One of the main strengths of the DeepFaune initiative lies in the creation of a nation-wide network
among key actors in French biodiversity research, conservation and management. Under the lead
of an academic research group originating from two distinct laboratories, 30 partners have shared
camera-trap pictures and videos allowing to build what is likely to be one of the largest databases
of camera-trap medias in France, in both numbers (over 420,000 photos and 4,400 videos) and
taxonomic coverage.

This success should not hide the technical challenges of working with such a large number of
actors. Building the picture database clearly revealed the intricacies of dealing with multiple, high-
volume data transfers as well as with the strong heterogeneity in data acquisition and organization
among the partners. The devil is in the details, and harmonizing directory, file and species names
were all very time-consuming tasks that had to be dealt with by combining automatic (e.g. bash
scripts) and manual interventions. Partner-specific data management appears as one of the strongest
barriers to creating efficient large-scale datasets that do not depend on a single monitoring program
(as opposed to the SerengetiSnapshot dataset for instance). Interestingly however, some of our
individual partners were actually members of the same institution: for example, we received data
from several national parks, which belong to the same institution (Parc Nationaux de France).
Similarly, several teams from the Office National de la Biodiversité shared data, all having different
formats. In such case, it would seem beneficial for the master institution to provide detailed data
management guidelines that would allow standardized data management internally. In this context,
centralized data management platforms that enforce data standardization, developed either within
institutions or at national or international levels, might facilitate future works.

Having numerous and diverse partners is however key to ground our work in the reality of
end-users, as the DeepFaune initiative was originally conceived to develop an easy-to-access tool of
sufficient quality for field practitioners. Beyond the data collection stage, a regular communication
between the leading academic team and the partners was critical to identify key expectations and
potential difficulties in appropriation. Expectations shared by all partners were two-fold: (1) all
partners expected a high performance of the classification of empty pictures for the pipeline to
be useful, as these usually represent a large share of collected pictures. In the current version
of the pipeline, we rely on MegaDetector and are thus bound to its own performance, which are
generally good; (2) the pipeline should be easy to implement and run on a standard personal
computer. This is long-standing issue in the distribution of deep-learning models, as even when
training is not required and only predictions expected, the installation of libraries necessary for
computation (e.g. Tensorflow) can be difficult. Uploading pictures on an online platform running
its own servers naturally solves this issue, but we found that many partners were not tempted
by this approach, in particular because of the need to upload gigabytes of images online, and
sometimes because of the data sharing policies that could be enforced by the platforms. In the
face of this, we decided to develop a Python-based GUI running the model, which can easily be
launched on both Windows and Linux computers. Feedback from the partners will be critical to
ensure that our approach is a credible solution. The developments of the GUI can be followed at
https://plmlab.math.cnrs.fr/deepfaune/software.

An aspect for which partners’ expectations sometimes differ concerns the classification model
and how we use its prediction to sort pictures. What makes an ’optimal’ sorting of pictures might
in fact vary between partners. Some partners are interested in minimizing false negatives over
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false positives. This can be the case when studying sensitive species, such as wolves, as positive
classifications will in any case be verified manually. For other studies, the balance between false
positives and false negatives may matter less. This is generally the case in occupancy modeling
studies of common species (Gimenez et al., 2021). We also foresee that prediction scores will, in a
near future, be directly used in the inference process allowing the uncertainty of the classification
to be propagated into the estimation of any metric of interest. Irrespective of whether this will
be successful or not, in response to this diversity of needs, we decided to let the users decide of a
threshold of the prediction score below which the images will not be classified and requires manual
inspection. We believe that this approach gives an important level of flexibility and that users will
be able to learn what threshold works best for them by trial-and-error.

4.3 Conclusion

In conclusion, our work provides a rather successful classification model of the European fauna in
camera-trap images, and which can be easily used by practitioners on self-hosted images using a
standard personal computer. Such an approach contrasts with some recent developments that favor
cloud-computing. Our work however remains a work-in-progress and feedbacks on the use of the
model and its GUI, as well as annotations of images for which the model failed, should allow to
improve the toolbox further.
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Figure S1: Confusion matrices of the predictions of the CNN-based classifier on the out-of-sample
dataset. Images were first cropped with MegaDetector.
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