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ABSTRACT
In this work, we propose to use a state-of-the-art evolutionary
algorithm to set the discretization thresholds for gene expression
profiles, using feedback from a classifier in order to maximize the
accuracy of the predictions based on the discretized gene expression
levels, while at the same time minimizing the number of different
profiles obtained, to ease the understanding of the expert. The
methodology is applied to a dataset containing COVID-19 patients
that developed either mild or severe symptoms. The results show
that the evolutionary approach performs better than a traditional
discretization based on statistical analysis, and that it does preserve
the sense-making necessary for practitioners to trust the results.

CCS CONCEPTS
• Applied computing → Life and medical sciences; • Com-
puting methodologies → Machine learning; Bio-inspired ap-
proaches.
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1 INTRODUCTION
As the SARS-CoV-2 pandemic continues, there have been 378 mil-
lion cases with 5.67 million deaths as of February 1st, 2022 [11].
Given the size of the outbreak, one of the major problems is the lack

of the necessary medical equipment for care of patients, in contrast
to the number of infected people. Considering the number of cases,
different studies have tried to elucidate the differences between
severe and mild cases using omics data, to quickly predict whether
a patient will be in need of intensive care, and efficiently allocate
the available medical resources: literature reports several exam-
ples, using DNA methylation [5], mRNA gene expression and/or
microRNA data. The correct allocation and availability of hospital
beds is considered a crucial factor for lowering COVID-19 mortality
rates by several sources in literature [3].

Although the use of multi-omics data had had different degrees
of success for diagnostic and prognostic purposes in general, trans-
lating the results into meaningful diagnostic tests or biomarkers
for clinical practice is still challenging. To make sense of the data,
medical practitioners often resort to the creation of gene expres-
sion profiles, discretizations of gene expressions, where each value
is assigned to a category, for example under- or over-expressed.
Categories are usually evaluated using thresholds based on the
mean values of gene expressions from healthy controls as a base-
line. While this procedure can help the sense making of the experts,
such a discretization leads to loss of information and could poten-
tially impair classification performance.

In this paper, we propose an evolutionary approach to the dis-
cretization of gene expression data, in order to obtain gene ex-
pression profiles that both provide good classification results and
can be easily interpreted by domain experts. To this aim, we set
a state-of-the-art evolutionary algorithm to optimize the thresh-
old for discretization of each gene expression, aiming to maximize
classification accuracy after discretization, and at the same time
minimizing the number of different patient profiles produced.

The proposed approach is tested on real-world data from 138
patients, including the information from 60,671 genes, and com-
pared against a more classical discretization approach based on
mean values of gene expression from healthy controls. The results
show that the methodology is effective in identifying 12 genes that
are highly correlated with responsiveness to treatment, and it is
able to discretize their gene expression levels into gene expression
profiles, not only helping to increase the classification accuracy,
but offering a human-interpretable explanation of the development
of mild or dire symptoms from a COVID-19 infection.

2 PROPOSED APPROACH
We introduce a novel approach for the discretization of gene ex-
pression data to obtain gene expression profiles, interpretable by
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domain experts. After a step of feature selection, the most relevant
genes are discretized with thresholds optimized by an EA, with the
objectives of maximizing classification accuracy and minimizing
the number of different profiles in the discretized dataset.

2.1 Feature Selection
In a first step, our objective is to select the most meaningful genes to
correctly predict andmodel COVID-19 patients’ severity (mild/severe).
We apply the REFS algorithm, which uses the feedback of an ensem-
ble of classifiers to rank each feature depending on its usefulness
for the process of classification. Then, the lowest-scoring features
are removed, and the classification/ranking is repeated, until the
average classification accuracy falls below a user-defined threshold.
REFS is usually run multiple times, due to the random values used
by some of the classifiers included in the ensemble.

2.2 Evolutionary Discretization
From the results of REFS algorithms we obtain a set of features.
Nevertheless the values of the selected features are difficult to read
for a clinician to take decisions. Therefore, instead of showing each
feature as a continuous value, we use EAs to categorize the values
into under and over expression, optimizing the thresholds for each
selected feature (gene).

Once we have a reduced set of variables 𝑉 = {𝑣0, 𝑣1, 𝑣2, ..., 𝑣𝑛},
given by the REFS algorithm, we use EAs to transform the input
variables into over and under expressed values, labeled as 0 and
1, respectively: in other words, the EA will generate a vector of
thresholds 𝐼 = {𝑡0, 𝑡1, 𝑡2, ..., 𝑡𝑛} to discretize each variable. A visual
example of the transformation from a gene expression dataset to
gene expression profiles is reported in Fig. 1.

The discretization will be optimized with respect to two criteria:
classification accuracy, to be maximized; and number of different
profiles, to beminimized. Thus, the fitness function for an individual
𝐼 will be given by:

𝑓 (𝐼 ) = 𝑤𝑝 · 1.0
1.0 +𝐴(𝑋,𝑦) +𝑤𝑟 · 𝑛𝑝 (1)

where𝑋 is the discretized dataset,𝑦 is the vector with the known
labels (mild/severe symptoms) for each sample,𝐴(𝑋,𝑦) is the classi-
fication accuracy (number of correct label predictions by a classifier
over total number of samples), 𝑛𝑝 is the number of different profiles
in the dataset after discretization, and𝑤𝑝 and𝑤𝑟 are weights. The
fitness function is to be minimized, as the ideal candidate solution
features both high accuracy and low number of different profiles,
to ease the sensemaking of the domain experts.

3 EXPERIMENTAL EVALUATION
The proposed approach is implemented in Python 3, relying on
the cma package for CMA-ES and the scikit-learn [9] package
for classification. All the code and data needed to reproduce the
experiments is freely available in the GitHub repository: https:
//github.com/albertotonda/ea-discretization-health.

Figure 1: Example of discretization of gene expression data
to gene expression profiles, using a threshold value of 0.46
to distinguish between over- and under-expressed genes.

3.1 Data
From the gene expression omnibus (GEO) repository, we select
dataset GSE169687 that contains 138 samples of mRNA from pe-
ripheral blood of COVID-19 patients at different time points, and
14 healthy controls. We only consider the 138 samples from pa-
tients, with either mild/moderate (n=109) or severe/critical (n=29)
symptoms. For each sample we have 60,671 ensemble genes, and
we divide the dataset into 2 groups, where we assign the label 0
to patients with mild/moderate symptoms and 1 to patients with
severe/critical symptoms.

3.2 Feature Selection
We run the REFS algorithm 10 times, and we get a reduction from
60,671 to 12 features (highlighted as the optimal trade-off in Fig. 2).
This translates to the expression levels shown in Fig. 3.

Figure 2: 10 runs of the REFS algorithm. The solution consid-
ered as the best compromise between accuracy and number
of features is marked with a red line (n=12).

3.3 Profile Generator
The EA selected for the profile generator is the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [7], considered the state
of the art for numerical optimization of non-convex functions with
continuous values. After a few trial runs, the algorithm is set with
the following parameters: 𝑁 = 12, ` = 100, 𝑥0 = {0.5, 0.5, ...0.5},
𝜎0 = 0.1, 𝑤𝑝 = 1.0, 𝑤𝑟 = 10−5, all default stop conditions, and
Logistic Regression as the classifier chosen to compute classification
accuracy𝐴 for the fitness function described in Eq. 1. The choice of
Logistic Regression is motivated by its effectiveness and training
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Figure 3: Heatmap of normalized gene expression data, show-
ing the values of each patient for the 12 most important
features selected by the REFS algorithm.

speed, making it one of themost suitable algorithms for our scenario.
The classifier is run in a 10-fold cross-validation at each evaluation,
in order to obtain a more reliable estimate of accuracy.

In order to provide a comparison, we also compute profiles based
on a classical technique of the domain, using the gene expression
levels of the healthy controls as a reference to discretize the gene
expressions of the patients.

A possible downside to our methodology is to create discretiza-
tion thresholds that are uniquely tailored to the classifier used for
the fitness function, in this case, Logistic Regression, and lose gener-
ality. In order to test the generality of our method, we transform the
data using all the resulting thresholds and compute mean accuracy
in a 10-fold cross-validation, using Logistic Regression and seven
other state-of-the-art classifiers. The results available in Table 1
show that even classifiers not included in the fitness function show
high levels of accuracy, providing evidence against overfitting. The
number of profiles obtained by each discretization, in comparison
to the global accuracy is shown in Fig. 4.

Figure 4: Runs of the EA profile generator. The best solution
found by the proposed approach is marked in red (n=48).
The solution computed using the classical technique of con-
sidering the gene expression levels of healthy controls as
references is marked in orange (n=122).

From the results, we consider the best run as the solution gener-
ating 48 different profiles, with an average classification accuracy of
0.9817 over the 8 classifiers. Our framework clearly outperforms the
more traditional approach of discretizing profiles based uniquely

Table 1: Discretization strategies compared, using the accu-
racy from different state-of-the-art classifiers, in a 10-fold
cross-validation. Mean and (stdev) indicate the mean results
obtained by the best individual of each of the 20 runs of the
EA profile generator. Healthy indicates the discretization
performed using healthy controls as reference for the thresh-
olds in the gene expression levels. Best is the performance of
the best individual produced by the EA profile generator. 9
Genes Transformation shows again the performance of the
best individual produced by the EA profile generator, consid-
ering only 9 genes instead of 12

Mean (stdev) Healthy Best 9 Genes
Transformation

Gradient Boosting [6] 0.9395 (0.0200) 0.8846 0.9703 0.9484
Random Forest [2] 0.9461 (0.0171) 0.9137 0.9703 0.9637
Logistic Regression 0.9608 (0.0198) 0.9060 0.9929 0.9929
Passive Aggressive Classifie [4] 0.9403 (0.0291) 0.8484 0.9929 1.0000
Stochastic Gradient Descent [13] 0.9344 (0.0298) 0.8764 0.9780 0.9709
Support Vector Machines (linear) [10] 0.9768 (0.0147) 0.8978 1.0000 0.9929
Ridge [8] 0.9372 (0.0203) 0.8918 0.9786 0.9418
Bagging [1] 0.9344 (0.0179) 0.8923 0.9703 0.9484

Mean accuracy 0.9462 0.0143 0.8889 0.9817 0.9699
Mean #Profiles 45.4 8.9129 122.0 48.0 45.0

on the gene expression data from healthy controls, both from the
point of view of classification accuracy and number of different pro-
files created after discretization. Transforming the dataset using the
thresholds of the best individual found during the 20 experimental
runs (Table 2) results in the heatmap shown in Fig. 5 where we have
only values of 0 or 1, corresponding to under- or over-expressed
genes.

Table 2: Generated thresholds for each of selected gene, con-
sidering the best individual obtained over the 20 runs.

Ensemble ID Gene ID Thresholds
ENSG00000198826 ARHGAP11A 0.0032
ENSG00000170298 LGALS9B 0.3639
ENSG00000214548 MEG3 0.1874
ENSG00000287576 - 0.4734
ENSG00000240403 KIR3DL2 0.1129
ENSG00000214174 AMZ2P1 0.0005
ENSG00000214460 TPT1P6 0.0746
ENSG00000263551 - 0.2120
ENSG00000220785 MTMR9LP 0.6295
ENSG00000224227 OR2L1P 0.0371
ENSG00000186523 FAM86B1 0.0012
ENSG00000155657 TTN 0.3101

Now, using the transformed dataset with the best thresholds
found (Table 2) we are able to apply the REFS algorithm again
(Fig. 6), which reduces even further the number of genes to (n=9) to
separate between the two groups with a global accuracy of 0.9699,
reducing even further the number of profiles from 48 to 45 (Fig. 7).

4 DISCUSSION
The results presented in Table 1 clearly show that the proposed
approach outperforms the more traditional discretization method-
ology, both concerning the classification accuracy and the number
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Figure 5: Heatmap produced by applying the set of thresholds
identified by the best individual produced by the EA profile
generator to the considered dataset.

Figure 6: 10 runs of the REFS algorithm on the dataset dis-
cretized by the thresholds found by the best individual. The
solution with the best compromise between accuracy and
number of features is marked with the red line at n=9.

Figure 7: Heatmap obtained after applying the thresholds
represented by the best individual found to the dataset, con-
sidering only the 9 most representative genes.

of profiles produced after discretization. Furthermore, the excellent
accuracy results in a 10-fold cross-validation for several classifier
provide evidence that using just Logistic Regression as part of the
fitness function does not overfit the discretization thresholds to a
single classifier.

Of the 12 genes selected by the proposed approach, 2 of them
are novel transcripts: ENSG00000263551 and ENSG00000287576.
Both are listed as lncRNA (long, non-coding RNA) in gene cards
database [12], and there is no information available related to the
subject matter, as for ENSG00000214460 (TPT1P6 gene). This could
potentially be a lead for new research on the subject, as they have
never been previously associated with any particular biological
function in literature, to the best of our knowledge.

5 CONCLUSIONS AND FUTUREWORKS
In this paper, we presented a novel evolutionary approach to the dis-
cretization of gene expression data, in order to obtain interpretable
gene expression profiles, that can also lead to good classification
accuracy when used with ML classifiers. The results on a real-world
dataset related to COVID-19, with patients exhibiting either mild
or severe symptoms, seem promising, with the proposed technique
performing better than a more classical approach based on a com-
parison with healthy controls. In addition, we generated a set of
rules given 9 specific genes to be used as a guide to decide whether
a patient will present severe symptoms.

While very promising, the results from 20 repeated runs of the
proposed approach show some variance in both accuracy and num-
ber of different profiles obtained by the discretization of the gene
expression dataset.

Future works will include experiments with a multi-objective
fitness function, and testing the proposed methodology on different
real-world applications in the health domain.
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