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Abstract

In this paper, we present an approach for the design of
complex adaptive systems, based on adaptive multi-agent
systems and emergence. We expound the AMAS theory
(Adaptive Multi-Agent Systems) and its technical working.
This theory gives local agent design criteria so as to
enable the emergence of an organization within the
system and thus, of the global function of the system. We
also present the theorem of functional adequacy witch
ensures that a cooperative self organizing system
performs a suitable work. Applications of this theory in
the multi-agent system framework led us to define the
architecture and a general algorithm for cooperative
agents.

The originality of our approach lies in the very generic
manner our re-organization rules work and that they are
completely independent from the function the system has
to compute.

1. Introduction

When confronted to complex phenomena in natural
and social systems, the main problem of classical
approaches is of course the building of an appropriate
model. For some years now, we successfully used
adaptive multi-agent systems for the solving of dynamic
and complex problems. In this paper we want to describe
our way to build systems when the classic computer
techniques are not suitable, so this paper is about the use
of self-organization as a design basis. An organisation
between the agents enables them to produce a collective
function, that is why, by way of the emergence of
organisations, we think that the important point is the
global function that emerges [5]. The originality of the
AMAS theory (Adaptive Multi-Agent Systems), described
in this article, is that it gives the basis for the design of the
agents by giving criteria that are local to the agents and
that guide their behaviour so as to make their organisation
emerge.

The first part of this paper explains the motivations of
our approach which consists of using emergence and self-

organization as a mean to palliate the weaknesses of
current techniques. The second part explains the AMAS
theory which is the foundation of our way to handle
adaptive MAS, focussing on the functional adequacy
issue. The third part is the technical part associated with
the theory and which guides the design process of self-
organising agents according to the AMAS theory. We then
present the cooperative algorithm which describes the
basic behaviour of a cooperative agent.

1.1. Goals and motivations

The way we usually conceive computational systems
leads to the need, for the designer, to have some important
initial knowledge: first, the exact purpose of the system,
and second, every interaction to which the system may be
confronted in the future. This point of view where we
leave no free margin for the system's operation was
certainly guided by two converging considerations since
the beginning of computer science:

e  to guarantee in the most formal possible way that the
system effectively computes the "right" function,

e to optimise memory capacities, computing speed and
the very limited proprioceptive capacities of the first
computers.

The other side of the coin of this "total control" is an
ever-growing design task for the developer with the
constant increase of computer power and their inter-
connections. That is the reason for the existence of so
many software development techniques, which
nevertheless only manage to slow down — without
stopping — the increase of human energy needed for this
development.

1.2. The evolution of systems

The evolution of computer science forces us to
consider that it is more and more difficult — if not
impossible — not only to control accurately the activity of
software with increasing complexity but also to describe
completely how their work [13]. These two aspects are
exemplified in the notions of autonomic computing and
ubiquitous computing:



1. “Even if we could somehow come up with enough
skilled people, the complexity is growing beyond
human ability to manage it. As computing evolves,
the overlapping connections, dependencies, and
interacting applications call for administrative
decision-making and responses faster than any
human can deliver. Pinpointing root causes of
failures becomes more difficult, while finding ways of
increasing system efficiency generates problems with
more variables than any human can hope to solve.
Without new approaches, things will only get
worse. " [6].

2. “The Ubiquitous Computing era will have lots of
computers sharing each of us. Some of these
computers will be the hundreds we may access in the
course of a few minutes of Internet browsing. Others
will be imbedded in walls, chairs, clothing, light
switches, cars - in everything. Ubiquitous Computing
is fundamentally characterized by the connection of
things in the world with computation. This will take
place at a many scales, including the microscopic”

[11].

Indeed, the notion of distribution due to the Internet or
the Web becomes more and present in many applications.
So you cannot think of having a global control over this
type of applications. Moreover, the power of the
computers enables us to compute more and more complex
applications. This complexity comes from the fact that the
system is composed of many interacting entities that can
be autonomous, heterogeneous and evolutionary [8].
Finally, the many connecting possibilities between the
different hardware imply that we have to take into account
open and heterogeneous environments and systems,
moreover more and more dynamic. One of the
possibilities to counter these difficulties is to give more
autonomy to the software so as to enable it to adapt itself
as good as it can to unexpected events.

Making machines more autonomous is a way to
simplify the task of the designer. Formal theories can help
us to represent and reason about time, space and dynamics
of an evolving world. However, we can also consider that
such specifications are useless or even impossible in some
situations:

e The system's environment is dynamic, making it
ineffective to enumerate exhaustively all the
situations the system may encounter.

e The system is open and therefore dynamic because it
is constituted of a shifting number of components.

e The task the system has to achieve is so complex that
we cannot guarantee a perfect design.

e  The way by which the system may achieve the task it
has been assigned is difficult or even impossible to
apprehend globally by the designer.

The ability for artificial systems to confront really
unexpected situations (like the ones resulting from a lack
of spatial or temporal knowledge) implies a research
mainline that leads to a different system design method
than the traditional global top-down approach based on
the modelling of the world [7].

2. The AMAS Theory

The first paragraph explains the central role of the
system’s organisation for its global function. The second
one brings the theoretical justification of the
interdependence that can exist between a cooperative local
behaviour and the functional adequacy of the collective
global function.

2.1. Adapt the system by its parts

By specifying a priori a model for a system that will
have to deal with unexpected events, you constrain
(maybe inopportunely) the space of possibilities. Since
Bertalanffy [1], many authors have studied systems of
different order that cannot be apprehended by studying
their parts taken separately: “We may state as
characteristic of modern science that this scheme of
isolable units acting in one-way causality has proven to
be insufficient. Hence the appearance, in all fields of
science, of notions like wholeness, holistic, organismic,
gestalt, etc., which all signify that, in the last resort, we
must think in terms of systems of elements in mutual
interaction.".
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Figure 1. Interacting agents constitute the system.

Following this view, we consider that each part Pi of a
multi-agent system S achieves a partial function fp; of the
global function fs (figure 1). fs is the result of the
combination of the partial functions fp;, noted by the

operator "o". The combination being determined by the
current organisation of the parts, we can deduce fs = fp; o



fp, o ... o fp,. As generally fp, o fp, # fp, o fp;, by
transforming the multi-agent organisation, you change the
combination of the partial functions and therefore you
modify the global function fs. Therefore, this is a way to
adapt the system to the environment. A pertinent
technique to build this kind of systems is to use adaptive
multi-agent systems. As usually meant Wooldridge by
“multi-agent systems” [12], we will be referring to
systems constituted by several autonomous agents,
plunged in a common environment and trying to solve a
common task.

2.1. The theorem of functional adequacy

We define the functional adequacy of a system by the
fact that a system adequately carries out the task for what
it was conceived.

Theorem. For any functionally adequate system, there is
at least a co-operative internal medium system that fulfills
an equivalent function in the same environment.

The demonstration of this theorem in [3] results from
the application of the following axiom and the four
lemmas. For each of them we have added a short textual
explanation.

Axiom. 4 functionally adequate system has no antinomic
activity on its environment.

The veracity of this assertion could be proved if we are
an external observer of all the systems and their
environments in order to avoid any perturbation. This
cannot exist in our physical world'.

Lemma 1. 4 cooperative system is functionally adequate.

A cooperative system has only beneficial activities for
its environment. Without any antinomic activity for these
systems, the previous lemma can be used.

Lemma 2. For any functionally adequate system S there
exists at least a cooperative system S* which is also
functionally adequate in the same environment.

The demonstration uses a thinking experiment in order
to construct the system S* from the initial system S. It has
four steps: specifying an algorithm to construct a
cooperative system, showing the termination of the
algorithm, proving that the new system realizes a function

! This axiom plays a similar role as the Church’s thesis for
the class of effective computable functions.

equivalent from the system S, concluding that this is a
right functionally adequate system S*.

Lemma 3. Any system having an internal cooperative
medium is functionally adequate.

An internal medium of a system contains all its parts
and physical supports needed to their exchanges. A system
with cooperative internal medium has only cooperative
exchanges with its environment because these exchanges
are a subset of its parts interactions.

Lemma 4. For any cooperative system, there exists at
least a cooperative internal medium system that is also
functionally adequate in the same environment.

The method is identical to the lemma 2. The reasoning
process involves all the system parts. The cardinality of
the parts is assumed finite for any real system.

The theorem is easily obtained by operations of
surjection and inclusion of the systems sets defined in the
lemmas (functionally adequate, cooperative, cooperative
internal medium). This result allows focusing only on very
particular systems (those with cooperative internal
mediums) to obtain functionally adequate systems in a
given environment. They have several properties [4]:

e A cooperative system in the environment is
functionally adequate, which prevents it to know the
global function that it has to realize in order to adapt
itself.

e  This theory does not impose any goal on the system.
According to its perceptions of the environment, it will
act so as to keep its behavior cooperative according to
its skills, representations of itself, other agents and
environment.

e The feedback concept is not constraining in this
theory because the system must only evaluate if the
changes taking place in the medium are cooperative
from its point of view without knowing if these changes
are dependent on its own past actions.

Nevertheless, the theories are not in the technology,
even if they are embodied in it. We will see that the agents
and multi-agents are a technological framework that is
essential for the application of the AMAS theory.

3. The AMAS Technology

In this chapter, we show how this theory can be applied
to adaptive multi-agents systems. We explain the basic
behaviour of an agent facing locally uncooperative
situation and the consequence at the organization level.



3.1. The architecture of an AMAS agent

The objective is to design systems that do the best they
can when they encounter difficulties. These difficulties
can be seen like exceptions in traditional programs. From
an agent point of view, we call them Non Co-operative
Situations (NCS). The designer has to describe not only
what an agent has to do in order to achieve its goal but
also which locally detected situations must be avoided and
if they are detected how to suppress them (in the same
manner that exceptions are treated in classical programs).
More precisely three kinds of non co-operative situations
can be detected by the agent:

e when a perceived signal coming from the
environment is not understood or is ambiguous,

e when perceived information does not produce any
activity of the agent,

e when the conclusions are not useful to others.

A co-operative agent in the AMAS theory has the four
following characteristics. First, an agent has activity
autonomy: an agent has the ability to decide to say “no” or
start some activity. Secondly, an agent is unaware of the
global function of the system; this global function emerges
(of the agent level towards the multi-agent level). Thirdly,
an agent can detect non-cooperative situations and acts to
return in a co-operative state. And finally, a cooperative
agent is not altruistic in the meaning that an altruistic
agent always seeks to help the other agents. It is
benevolent i.e. it seeks to achieve its goal while being
cooperative. Generally, five parts are essential for a co-
operative agent for a coherent collective behavior to be
observed starting from the aggregation of individual
behaviors.

1. Skills are knowledge of a particular field which
enables the agent to perform the partial function
which is assigned to him. No technical constraint is
imposed for the development (production system,
object-oriented method ...).

2. Representation of itself, other agents and environment
confers to the agent a belief on what the agent knows
of itself, others and of its environment.

3. The social attitude enables the agent to modify its
interactions with other agents. This is based on what
we call the cooperation: if an agent detects a non-
cooperative situation, it acts to return to a cooperative
state.

4. An interaction language is necessary for agents to
communicate directly or not.

5. Aptitudes are capacities an agent possesses to reason
on its representations and its knowledge.

More formally, the behaviour of an AMAS agent can
be described as an algorithm based on the one found in the
section 4.

3.2. The macro-level organization

For a multi-agent system, implementing this adaptation
implies that the designer only has to take care of the agent
by giving it the means to decide autonomously to change
its links with the other agents. We start from the principle
that, to have a good behaviour, the elements that
constitute a system have to be "at the right place, at the
right time" in the organisation. To achieve this, each agent
is programmed to be in a cooperative situation with the
other agents of the system. Only in this case, an agent
always receives relevant information for it to compute its
function, and it always transmits relevant information to
others. The designer provides the agents with local criteria
to discern between cooperative and non-cooperative
situations. The detection and then elimination of non-
cooperative situations between agents constitute the
engine of self-organisation.

Thus, depending on the real-time interactions the
multi-agent system has with its environment, the
organisation between its agents emerges and constitutes an
answer to the aforementioned difficulties (indeed, there is
no global control of the system). In itself, the emergent
organisation is an observable organisation that has not
been given first by the designer of the system. Each agent
computes a partial function fp;, but the combination of all
the partial functions produces the global emergent
function fs. Depending on the interactions between
themselves and with the environment, the agents change
their interactions i.e. their links. This is what we call self-
organisation.

By principle, the emerging purpose of a system is not
recognizable by the system itself, its only criterion must
be of strictly local nature (relative to the activity of the
parts which make it up).

4. Neocomputation or the future issues for
the Amas theory

In this section we present and explain the cooperative
algorithm that arises from AMAS-related considerations
and analyze its relevance for open computational systems.

4.1. The cooperative algorithm

The following algorithm (figure 2) may be viewed as a
formal representation of the cooperative attitude of the



agents exposed previously: according to the AMAS
theory, agents have to be able to detect when they are in a
non cooperative situation and in which way they can act to
come back in a cooperative situation. There are two main
possible “states” to which the decision process could be
faced: either the set of applicable cooperative actions-
related to perceptions- is not empty, or it is. In the first
instance, the agent chooses the highest priority action
among the selected ones; otherwise the agent is in non
cooperative situation and has to select the highest priority
action according to the situation perceived. Following
such an algorithm, agents always try to stay in a
cooperative situation and so the whole system converges
to a cooperative state within and with its environment.
This leads -according to the theorem of functional
adequacy- to an adequate system.

Thus, this algorithm describes the typical decision
process of a generic AMAS agent. But the non
cooperative situations and the actions which could be
applied to solve them are not generic: designers have to
write their own- and so specific- non cooperative
situations set and related actions for each kind of agent
they wish the system to contain. This work must be
performed during the design of agents: the designer must
find exhaustively all the non cooperative situations which
could occur for each kind of agent and, for each one, find
the relevant actions which could solve the lack of
cooperation.

4.2. Amas and open computational systems
As seen in the algorithm of an Amas agent, its behavior

depends only on its skills, the current state of the world,

and the beliefs about other agents; there is no need of

information about the global goal of the system. Two
classes of systems can be designed:

e If we suppose an Amas system composed of a finite
set of agent classes (fully specified at the initial design
phase), because the new agents skills remain constant,
the agent entities can easily appear and disappear
dynamically without any agent modification. The

system adapts to unexpected change in the
environment by modifying only its internal
organization.

e In the other cases, agents have some learning
capabilities. Thus the agents in contact must be able to
change their beliefs about each other in order to act
cooperatively in the future. By viewing each piece of
belief as an autonomous entity, the ability to learn on
the beliefs level can also be seen as an Amas self-
organization process (this discussion is outside of the
scope of the paper).

An Amas system adapts its behavior in a totally
decentralized way, and is able to provide coherent global
behavior because its entities have a “cooperative will”. In
our opinion, decentralized adaptation and coherent global
behaviour assurance are the basic requirement for open
computational systems defined as “complex and dynamic
structures of autonomous entities”. We put in this field all
the applications we call neocomputation applications,
namely: autonomic computing, pervasive computing,
ubiquitous computing, emergent computation, ambient

function */

if fireCooperativeAction <> @ then
for each (c,a) € fireCooperativeAction do

the non cooperative state */
for each (c,a) € fireNCS do

endif
endfor
endif
return null
End function action

ccP /* ¢ is a subset of percepts */

ach /* a is an action */

SR c SkillRules /* SR is the subset of applicable behaviors from the skill rules */

BR C BeliefRules /* BR is the subset of applicable behaviors from the belief rules on other agents */
NCSR < NonCooperativeSituationRules /* NCSR is the set of applicable behaviors in the current non cooperative situation */
R = SR U BR U NCSR ¢ Behavior Rules /* R is the total set of applicable behaviors */

(c,a) / ¢ € Pand a Cc A /* (c,a) is a behavior */

(c1,al) (c2,a2) /* express a priority relation of the behavior (cl,al) on (c2,a2) */

/* The action function allows the agent to decide what action is relevant at the present time according to the perceptions p */

Function action (p:P) : A
var fire :f(SR) /* fire is the set of possible behaviors obtained from the f function */
var fireCooperativeAction : f'(BR) /* fireCooperativeAction is the set of possible cooperative behaviors obtained from the f’

var fireNCS : f£" (NCSR) ) /* fireNCS is the set of behaviors deleting the current non cooperative situations obtained
from the f” function */
var a :A
begin
fire := {(c,a) / (c,a) € SR, pec}
fireCooperativeAction := {(c',a) / (c,a) € fire and (c',a) € BR and c'=c U c" et p e c U c" }

/* If fireCooperativeAction is not empty, then the agent is in cooperative situation */

if (A(c’, a’) € fireCooperativeAction / (c’, a’) < (c,a)) then return a

endif
endfor
else /* Non cooperative situations are detected */
/* If fire = @ and fireCooperativeAction = @, then the agent cannot use its percepts it
is a non cooperative */
/* If fire <> @ and fireCooperativeAction = @, then the agent cannot do 'a' because it
beliefs 'a' non cooperative for other agents */
fireNCs := {(c,a) / (c,a) € NCSR and pe c}

/* By consequence, the agent must fire a behavior belonging to NCSR in order to suppress

if (A(c’, a’) € fireNCS / (c’, a’) < (c,a)) then return a

Figure 2. The algorithm formalizing the cooperative behaviour of an agent.



intelligence, amorphous computing This set of
neocomputation problems have in common the inability to
define the global function to achieve, and by consequence
to specify at the design phase, a derived evaluation
function for the learning process. Nevertheless, in the case
of classical computation, Amas theory is irrelevant
because the goal assigned to a system can control
efficiently the behavior of the system in a centralized way.

5. Conclusion and Perspectives

In the widely unexplored field of the manipulation of
organization, we chose the path of emergence. Therefore,
in this paper, we presented, on the theoretical level, the
concept of emergence and the AMAS theory referring to
it. We also presented the cooperative algorithm which
describes the typical behaviour of a cooperative agent
built in accordance with the AMAS theory. Throughout
the paper, we explained why we think that this original
approach for the manipulation of dynamic multi-agent
organisations is especially relevant for many applications.

The AMAS theory allows to build systems in which the
global function is really emergent considering the agents
activity which realize very simple treatments, and
considering their self-organization process conducted by
adjustment rules (uselessness, conflict, concurrency)
which do not depend of the expected global function. The
AMAS theory is part of the field of the artificial emergent
systems study which is one of the main challenges for the
next years (cf. part 1.2).

If we had to describe in short the AMAS theory, we
would say that it concerns itself with making the system
build itself and not with building the system ourselves. We
know the desired global behaviour and since we gave the
system the ability to adapt, it will find a solution.

It is a non-linear problem because of the current
behaviour of an agent depending of the previous
behaviours of its neighbours, which depend themselves of
the previous activity of the first agent, and so on...

Keith Sawyer says [9]: “In many computational models
of emergence, the end state of the system is of primary
interest. In collaborative emergence, the most interesting
aspects of the simulation will be the incremental processes
of emergence and downward causation”. The AMAS
theory compliant systems are example of collaborative
emergence, in which the goal is not to obtain a given end
state but a never ending adaptation process because the
systems are plunged in a dynamic environment. We think
that it is an important class of MAS simulating hard
problems and having specific characteristics (dynamic
environment, non-termination, huge space search).

In order to test a theory (by falsification or validation)
a great amount of experiments must be done in various
fields. For this reason, we have implemented the AMAS

theory on many applications like ants foraging, e-
commerce, flood forecast, equation solving or traffic
routing in telephonic network. In these cases, AMAS
technology gives at least similar performances than other
methods when they exist (www.irit.fr/SMAC). Among
others, this approach allows us to make abstraction of
constraints like theoretical models, complex protocols,
planning tools, and nevertheless be appropriate for the
design of open and heterogeneous systems, needing
complex interactions, coordination and learning.

Our goal in the near future is to spread this way of
designing MAS. For this, we are actually working on a
design methodology called ADELFE (laboratory for the
design of emergent functionality software) for the
engineering of open and evolutionary systems [2].
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