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Abstract 26 

Predation risk, the probability that a prey animal will be killed by a predator, is fundamental to 27 

theoretical and applied ecology. Predation risk varies with animal behavior and environmental 28 

conditions, yet attempts to understand predation risk in natural systems often ignore important 29 

ecological and environmental complexities, relying instead on proxies for actual risk such as 30 

predator-prey spatial overlap. Here we detail the ecological and environmental complexities 31 

driving disconnects between three stages of the predation sequence that are often assumed to be 32 

tightly linked: spatial overlap, encounters, and prey capture. Our review highlights several major 33 

sources of variability in natural predator-prey systems that lead to the decoupling of spatial 34 

overlap estimates from actual encounter rates (e.g., temporal activity patterns, predator and prey 35 

movement capacity, resource limitations) and that affect the probability of prey capture given 36 

encounter (e.g., predator hunger levels, temporal, topographic, and other environmental 37 

influences on capture success). Emerging technologies and statistical methods are facilitating a 38 

transition to a more spatiotemporally detailed, mechanistic understanding of predator-prey 39 

interactions, allowing for the concurrent examination of multiple stages of the predation 40 

sequence in mobile, free-ranging animals. We describe crucial applications of this new 41 

understanding to fundamental and applied ecology, highlighting opportunities to better integrate 42 

ecological contingencies into dynamic predator-prey models and to harness a mechanistic 43 

understanding of predator-prey interactions to improve targeting and effectiveness of 44 

conservation interventions. 45 

 46 

Keywords: encounter rates; home range overlap; predation sequence; predator-prey interactions; 47 

predation risk effects; spatial ecology 48 
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 49 

Introduction 50 

Understanding predator-prey interactions is a cornerstone of ecology, with implications for 51 

individual fitness and population dynamics of both predators and prey, as well as community 52 

structure and ecosystem function (Sih et al. 1985, Krebs et al. 1995, Schmitz 2010). The risk of 53 

predation (i.e., the probability that a prey animal will be killed by a predator) is a major 54 

determinant of predator effects on prey and thus central to everything from classical predator-55 

prey theory to the applied management of animal populations (Berryman 1992, Vucetich et al. 56 

2011, Gaynor et al. 2020). The validity of theoretical predictions and the ability to anticipate the 57 

outcomes of management actions (e.g., predator removal, changes in hunting regulations) 58 

therefore rests on the accuracy of predation risk estimates. Decades of theoretical and 59 

experimental work show that predation risk varies dynamically with predator and prey behavior 60 

(Sih 1984, 2005, Krebs et al. 2001) and, for a given predator-prey pair, is likely to be context-61 

dependent, contingent on predator motivation (e.g., availability of alternative prey; Stephens and 62 

Krebs 1986), prey resource availability (e.g., spatial anchors; Smith et al. 2019a), and/or local 63 

environmental conditions (e.g., distribution of refuge habitat; Wirsing et al. 2010). Given these 64 

complexities, studies of predator-prey interactions have often used proxies for the risk of 65 

predation that can be readily measured in field situations with mobile or cryptic animals (Moll et 66 

al. 2017, Prugh et al. 2019). Spatial overlap between predators and prey has emerged as a 67 

common metric (Schmitz et al. 2017), being both a necessary prerequisite to any predation event 68 

and relatively easy to calculate from available data sources such as predator and prey surveys or 69 

GPS locations. However, the degree to which spatial overlap serves as a valid proxy for 70 
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predation risk rests on a series of assumptions that have often been overlooked and unvalidated 71 

in predator-prey research, particularly that involving medium- to large-bodied vertebrates. 72 

Predation itself is the culmination of a sequence of events (i.e., the predation sequence; 73 

Lima and Dill 1990, Endler 1991) that begins with spatial overlap between predators and prey 74 

and progresses through encounter, attack, and prey capture and consumption (Fig. 1). 75 

Importantly, spatial overlap does not imply encounter, which we define here as a situation in 76 

which predator and prey are within the detection range of one or both participants, and one or 77 

both individuals detect the other. The predation sequence can end at any of the above stages if 78 

predator and prey fail to encounter each other or if the predator forgos, abandons, or is 79 

unsuccessful in a predation attempt. Predation risk, then, is a function of the rate at which a prey 80 

animal encounters its predators and the probability of capture given an encounter (i.e., 81 

conditional capture probability, CCP) (Hebblewhite et al. 2005). We suggest that a detailed, 82 

mechanistic understanding of these two values - encounter probability and CCP - is key to 83 

accurately estimating predation risk.  84 

In the simplest scenario, predators are more likely to encounter prey when spatial overlap 85 

is high, leading to higher risk of predation if CCP is constant. In such cases, estimating overlap 86 

between predators and prey will indeed provide useful information on encounters and the 87 

likelihood of a predation event. However, even in this simple scenario, assumptions regarding 88 

the spatial scale and time period over which overlap is estimated, relative to the instantaneous 89 

conditions within which predator-prey encounters actually occur, can influence the correlation 90 

between overlap estimates and true predation risk (Hammond et al. 2012). Additionally, 91 

variation  in CCP may weaken the correlation between encounters and predation events (Fig. 1). 92 

The predation sequence can end post-encounter based on decisions made by either predator or 93 
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prey (Sheriff et al. 2020b, Wootton et al. 2021) and aspects of both species biology and the 94 

environment that affect energetic state, defense efficacy, and/or hunting performance (Guiden et 95 

al. 2019). Until recently, limitations in monitoring technologies have forced many of these 96 

complexities to be overlooked in free-ranging populations, despite an appreciation for the 97 

context-dependencies of interaction strength (Chamberlain et al. 2014) and the disconnect 98 

between overlap and predation mortality (e.g., Lichtenstein et al. 2019) in laboratory-based 99 

predator-prey experiments. 100 

The rapid development of new technologies for remotely monitoring wildlife behavior 101 

and space use (e.g., biologging and remote sensing; Allan et al. 2018, Williams et al. 2020), and 102 

advanced statistical approaches to handle complex data sets (e.g., hierarchical models and 103 

classification methods; Gurarie et al. 2016, Rota et al. 2016, Hooten et al. 2019), provide greater 104 

ability to disentangle important complexities in predator-prey interactions. However, scientific 105 

inertia has kept the focus within predator-prey research, particularly among medium- and large-106 

bodied vertebrates, on quantifying the probability of spatial overlap between predator and prey 107 

(Say-Sallaz et al. 2019). Here, we make the argument that the disconnects between spatial 108 

overlap and predation risk are numerous and pervasive, precluding accurate estimation of the risk 109 

experienced by prey through the quantification of space use or habitat selection alone. 110 

Furthermore, we propose adoption of technological advances to examine predator-prey 111 

interactions across the predation sequence, rather than isolating individual stages as proxies for 112 

risk or interaction strength.  113 

In this paper, we focus on medium- and large-bodied vertebrates for the following 114 

reasons: 1) Recent reviews have suggested that the range of metrics of predation risk in free-115 

ranging large vertebrates vary in their strength of inference (Moll et al. 2017, Prugh et al. 2019). 116 
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2) Larger vertebrates can support many biologging technologies and long deployments, allowing 117 

for extensive observations across behavioral states during predator-prey interactions (Kays et al. 118 

2015, Wilmers et al. 2015). 3) Context-dependencies in these taxa are known to influence the 119 

strength and nature of the nonconsumptive effects of predation risk (Sheriff et al. 2020a, Wirsing 120 

et al. 2021), yet are also profoundly understudied (Say-Sallaz et al. 2019). Although we focus 121 

our attention on larger bodied vertebrates, we note that all elements of predator-prey theory 122 

discussed here are built upon and relevant to other taxa, which have served as the foundation for 123 

much of what is known about predator-prey ecology (e.g., Kotler 1984, Sih 1984, Hugie and Dill 124 

1994, Brown et al. 1999). Additionally, we focus primarily on the actual risk of predation, but 125 

note that many of the same ecological and environmental contingencies described below will 126 

also impact prey’s perception of predation risk (see section on evaluating nonconsumptive 127 

effects in free-ranging prey, below), which may in turn affect their behavior and contribute to the 128 

cumulative impact of predators (Gaynor et al. 2019, Allen et al. in press).  129 

Overall, our review contributes a comprehensive analysis of the key realities that lead to 130 

disconnects across the predation sequence, with insights on issues that can, if not considered 131 

carefully, result in inappropriate or inaccurate inferences when extrapolated across stages of the 132 

sequence.  We argue that considering these key realities is particularly critical in anticipating and 133 

managing for changes in species interactions under the rapid environmental changes 134 

characteristic of the Anthropocene (Sih et al. 2016, Guiden et al. 2019). We discuss how a 135 

mechanistic understanding of encounter rates and capture probability will contribute to species 136 

conservation in the face of widespread global change, including invasive species establishment, 137 

landscape modification, and pervasive anthropogenic stimuli. 138 

 139 

https://www.zotero.org/google-docs/?MKUSHT


7 

Linking overlap to predator-prey encounter rates 140 

For a predator to encounter and subsequently capture a prey animal, both players must co-occur 141 

in space (Lima and Dill 1990). Thus, spatial overlap has been a defining metric in the spatial 142 

games of predators and prey (Sih 1984). Predator locomotion and hunting modes (e.g, sit-wait 143 

versus active search) have significant effects on how predators and their prey are predicted to use 144 

space (Schmitz et al. 2017), but the general assumption has been that predators should try to 145 

increase their overlap with prey while prey should try to minimize overlap in what is often called 146 

the “predator-prey space race” (Sih 1984, Hugie and Dill 1994). The focus on spatial overlap as a 147 

proxy for predator-prey interactions, particularly in free-ranging animals, has been driven in 148 

large part by past practicalities (e.g., data availability and resolution, available statistical tools) 149 

and the difficulty of observing fine-scale movements and interactions directly. As such, predator-150 

prey overlap has been assessed using readily available telemetry and camera trap data by 151 

quantifying co-occurrence (Courbin et al. 2009, Muhly et al. 2011, Gagné et al. 2016), home 152 

range or utilization distribution overlap (Courbin et al. 2013), or similarity of habitat use or 153 

selection (Basille et al. 2013, Smith et al. 2019a). However, the utility of quantifying spatial 154 

overlap to characterize predator-prey interactions is diminished if overlap is not a strong 155 

predictor of encounter probability. Potential disconnects between overlap and encounters may 156 

stem from at least three primary factors: 1) the degree of not just spatial, but spatiotemporal 157 

overlap; 2) species- and population-level characteristics affecting realized encounter rates; and 3) 158 

scales and concentrations of overlap (Fig. 2).  159 

 160 

Spatiotemporal overlap 161 
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The space race between predators and prey has a temporal dimension, given that overlap must 162 

occur in both space and time in order for an encounter to occur (Fig. 2a; Azevedo et al. 2018, 163 

Kohl et al. 2018). Prey activity patterns can decrease encounters in areas of high spatial overlap 164 

if prey utilize “predator downtimes” to exploit areas of shared space use with predators (Kohl et 165 

al. 2018, Smith et al. 2019b). In this case, predators that are more constrained in their temporal 166 

hunting patterns (e.g., those that depend on a nocturnal hunting strategy to avoid being detected) 167 

may be hindered in their ability to maximize encounter rates by prey that have flexible activity 168 

patterns. Conversely, constraints on prey temporal activity can increase the correlation between 169 

overlap and encounters by allowing predators to more effectively track prey in time. Such 170 

constraints could include sensory limitations (e.g., visual foragers must be active during the day, 171 

thus increasing overlap with diurnal predators), other competitors or predators (e.g., avoiding a 172 

dangerous nocturnal predator may increase overlap with a diurnal predator), or thermal 173 

limitations (e.g., prey are constrained to be active during times of day or seasons that correspond 174 

with their preferred temperature range) (Monterroso et al. 2013, Bennie et al. 2014). Camera 175 

traps deployed throughout a study area can provide data amenable to recent advances in 176 

spatiotemporal modeling, including multi-species models, time-to-event models, and avoidance-177 

attraction ratios (Table 1) (Parsons et al. 2016, Karanth et al. 2017, Niedballa et al. 2019). Such 178 

methods allow researchers to quantify patterns of predator-prey co-occurrence in both space and 179 

time, though camera-based methods rarely capture encounter events directly. Biologgers (e.g., 180 

telemetry devices and other animal-borne sensors) can also be used to estimate temporal overlap 181 

in activity patterns from movement rates (Kohl et al. 2018, Smith et al. 2019b). 182 

 183 

Species- and population-level characteristics 184 
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Regardless of the degree of spatiotemporal overlap, higher predator or prey densities tend to 185 

increase individual encounter rates (Fig. 2b; Travis and Palmer 2005, Martin et al. 2018). Thus, 186 

encounter rates should typically be lower in low-density, unproductive systems than in high-187 

density, productive systems (Sih 2005, Sims et al. 2006). Simple random encounter models 188 

(Gerritsen and Strickler 2011) add the basic insight that encounter rates should be higher when 189 

prey or predators exhibit higher movement speeds, and/or have larger encounter radii (including 190 

detection and recognition). In addition, mobility and detectability can interact in important ways. 191 

If highly mobile predators or prey are also highly conspicuous (i.e., have large encounter radii), 192 

then the combination can further enhance encounter rates. Insights from random encounter 193 

models, however, may be reversed when prey and/or predators respond to each other. For 194 

example, when prey actively avoid predators, high prey mobility and movement rates should 195 

reduce encounter rates (Sih 1984). Conversely, if predators are mobile and attracted to prey, and 196 

if prey are conspicuous and easily detected, this can lead to high encounter rates (Sih 1982). 197 

Thus for any given level of overlap, understanding the many organismal (e.g., locomotor 198 

capacity, motivations, sensory abilities) and environmental (e.g., landscape features, habitat 199 

modification) factors that affect movement distances, speeds, and encounter radii can be crucial 200 

for explaining variation in encounter rates within an area of shared space use (Nathan et al. 2008, 201 

Hertel et al. 2020, Doherty et al. 2021). Advances in biologging data provide some of the most 202 

promising avenues for quantifying the effects of such organismal or environmental factors on 203 

encounter rates. Improvements in tracking technology (e.g., via GPS tags) now allow the 204 

reconstruction of predator and prey movement paths with high spatiotemporal resolution (Rafiq 205 

et al. 2020), and continuous-time movement models (Michelot and Blackwell 2019), validated 206 

with such high-resolution data, can provide a relatively complete picture of encounter rates (e.g., 207 
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number of times movement paths were within the predator or prey detection range), at least for 208 

the subset of animals that are tagged. Additional biologging devices deployed on predators or 209 

prey, including acoustic or heart rate monitors, can be used to assess encounter radii through 210 

changes in animal behavior indicative of predator or prey detection (Lynch et al. 2015, Williams 211 

et al. 2017).   212 

 213 

Scales and concentrations of overlap 214 

High spatiotemporal overlap at a large scale (e.g., overlapping predator and prey home ranges 215 

and matching seasonal activity patterns) can still yield low encounter rates if at finer scales 216 

predators and prey have concentrations of space use or temporal activity that do not heavily 217 

overlap. This scenario may occur if predator and prey have narrow and opposing habitat domains 218 

(i.e. feeding ranges) within large areas of shared space use (Schmitz et al. 2017). Analyses can 219 

account for issues of scale by calculating overlap not for the overall home range, but for home 220 

range centers (e.g., 50% KUDs) or full utilization distributions (e.g., (Fieberg and Kochanny 221 

2005)). Prey use of refuges from predators within their home ranges (i.e., safe habitat where the 222 

likelihood of encountering a predator is relatively low) can lead to variation in encounter rates at 223 

even finer scales (Fig. 2c). Similar issues of scale are relevant for temporal overlap. Even if 224 

predators and prey are active in the same seasons (large temporal scale), encounter rates may 225 

nonetheless be moderate to low if predator and prey partition space within the diel cycle (small 226 

temporal scale) (Courbin et al. 2019). Importantly, fine scale avoidance by prey of risky times or 227 

places (Creel et al. 2008) may result in nonconsumptive effects of predation risk on prey. 228 

Improvements in the reliability and resolution of GPS location data (Bastille-Rousseau et al. 229 

2016, Smith et al. 2020a), along with methods for quantifying diel activity patterns of predators 230 
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and prey (Ridout and Linkie 2009), will help to resolve these fine-scale patterns of 231 

spatiotemporal overlap.    232 

An alternative outcome involves concentrated bursts of overlap within small areas of 233 

shared space use that can result in high encounter rates, which may in turn lead to high predation 234 

risk (Fig. 2d). For example, if prey have ‘spatial anchors’ (Sih 2005, Smith et al. 2019a) such as 235 

watering holes, lekking grounds, or a limited number of patches with high resource availability, 236 

the spatial (and temporal) predictability of prey presence may allow predators to anticipate their 237 

occurrence at specific times and places, giving predators ready access to prey despite overall low 238 

spatiotemporal overlap. Notably, in these predictable situations, even if overall encounter rates 239 

are not high, predation can be high if the encounters occur in situations with high predation 240 

success (i.e., high CCP). Greater understanding of environmental characteristics that act as 241 

spatial anchors (e.g., resource concentrations) and/or affect predator hunting success (e.g., 242 

vegetation cover) is increasingly available from high-resolution remote sensing data on habitat 243 

structure (Suraci et al. 2020) and fine-scale 3D reconstructions of the environments in which 244 

predator-prey interactions take place (Olsoy et al. 2015). 245 

The aforementioned considerations are vital for assessing the link between predator-prey 246 

overlap and encounter probability. In addition to these considerations, a complete enumeration of 247 

overlap and encounters requires having simultaneous data on all individuals in a population or 248 

sub-population, a major challenge due to the difficulty of continuous observation throughout diel 249 

and annual cycles, and because financial, operational, and animal welfare logistics usually 250 

preclude placing monitoring devices on entire populations or certain species (e.g. critically 251 

endangered species). However, emerging technologies that facilitate tag miniaturization 252 

(Ripperger et al. 2020), and low-cost global tracking networks (Curry 2018), are poised to 253 
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substantially increase our capacity to simultaneously monitor large numbers of predator and prey 254 

individuals, providing further insights into the nuances of predator-prey overlap and encounter. 255 

  256 

Linking encounter rates to conditional capture probability  257 

Measuring encounter rates, as discussed in the previous section, is most valuable to 258 

understanding predator-prey dynamics if variation in encounters provides strong insights into the 259 

probability of prey being killed by the predator. However, predation risk depends on both 260 

encounter probability and the probability of capture given an encounter (i.e. conditional capture 261 

probability, CCP) (Hebblewhite et al. 2005). Like the relationship between overlap and 262 

encounter rates detailed above, the relationship between encounter and capture probabilities 263 

(and, as such, the variability in CCP) depends on features of both the environment and the 264 

predators and prey (Fig. 3). Even where encounter rates are high, CCP and thus overall predation 265 

risk can be low if 1) predators are not actively hunting; 2) predators are actively hunting but 266 

choose not to attack prey, even when they are likely to be successful; or 3) predator success in 267 

capturing prey is low because of environmental circumstances or prey traits. These conditions 268 

determine whether a predator-prey encounter poses direct lethal risk to the prey, i.e. a risky 269 

encounter. 270 

 271 

Predator hunting state 272 

Perhaps the simplest reason for low CCP is that predators are often not actively hunting because 273 

they have recently fed and are satiated (Fig. 3). If predators are often satiated, high encounter 274 

rates should not translate into high risk to prey (i.e., many encounters are not risky), and it has 275 

been shown that prey respond differently to hungry or not hungry predators (Berger-Tal and 276 
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Kotler 2010). We predict that this scenario (low risk despite high encounter rates) is more 277 

common for predators that: 1) feed on prey that are large relative to the predator body size; 2) 278 

have low metabolic needs (e.g., many ectotherms in cool temperatures); or, 3) enjoy high 279 

resource availability and prey choice (e.g., many avian predators have a plethora of small 280 

vertebrate species within their home range). Predators may also not actively hunt when they have 281 

competing demands (e.g., when mesopredators are vigilant to reduce risk from larger predators, 282 

or when predators are engaged in mating, communication, or territorial behaviors). To quantify if 283 

predators are in an active hunting behavioral state and incorporate this information into analyses 284 

of predator-prey interactions, advances in biologging technology (e.g. accelerometers, 285 

magnetometers, gyroscopes, animal-borne cameras; Table 1) can be used to identify when 286 

predators are hunting rather than engaged in other activities (Wilson et al. 2013, Viviant et al. 287 

2014, Williams et al. 2014, Wang et al. 2015). Furthermore, integrating data from multiple 288 

biologging devices could be used to combine estimates of feeding behavior (Suraci et al. 2019a) 289 

and energetic demands (Nickel et al. 2021), allowing for predictions of when a predator should 290 

engage in hunting behavior following a kill event.  291 

 292 

Predator dietary preference 293 

Even when predators are actively hunting, they might not choose to attack a specific prey animal 294 

if searching for more profitable prey. Secondary (i.e. less preferred) prey may thus be less likely 295 

to respond to encounters than primary prey. However, understanding whether a species is a 296 

primary or a secondary prey relies on quantification of numerous factors; presence in diet will 297 

likely reflect predator intrinsic preferences and experience, prey relative availability, and prey 298 

ability to escape encounters and attacks (Sih and Christensen 2001). Many established 299 
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technological approaches are available to estimate the two latter factors (e.g., camera trap or 300 

community science data for prey availability, biologging for prey response (Xiao et al. 2018, 301 

Kafley et al. 2019)). To investigate predator preferences, diets can be quantified using novel 302 

methods that can increase resolution and confirm individual identity, including stable isotope 303 

(Robillard et al. 2017, Larson et al. 2020) and DNA metabarcoding diet analyses (Shehzad et al. 304 

2012, Smith et al. 2018, Ando et al. 2020). Assessments of predator diet and prey selection can 305 

also be facilitated by predator head-mounted accelerometers or video cameras (Watanabe and 306 

Takahashi 2013, Watanabe et al. 2019), though low encounter rates and logistical issues with 307 

battery life and data storage and processing continue to present challenges. Combining 308 

information on prey density and antipredator behavior with diet data (e.g., from kill site field 309 

investigations, biologging devices, stable isotope analyses, or DNA metabarcoding) should allow 310 

a clearer understanding of predator dietary preferences and their effects on CCP.  311 

 312 

Predator hunting constraints and prey traits 313 

Finally, CCP can be low if predators have low lethality given the environmental conditions; 314 

efficacy of prey escape, hiding, and physical defenses; or an interaction between the two (Fig. 3). 315 

Many encounters are not risky because they occur during times or in places in which predators 316 

have low probability of capture given an attack. Particularly for predators that rely on stealth, 317 

such as ambush or stalking predators, CCP can be lower in times and places of high visibility, 318 

such as during the day (Smith et al. 2020a) or in open habitats (Davidson et al. 2012). These 319 

patterns may be strongest for prey that rely on vigilance as their primary antipredator strategy. 320 

While behavioral ecologists have long sought to quantify antipredator behavior (e.g., vigilance, 321 

small-scale refuge use) via direct behavioral observations, this can be difficult to do 322 
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continuously, particularly with secretive, mobile prey (although camera traps can be used to 323 

examine prey behavior (Smith et al. 2020b)). Technological and statistical advances, such as 324 

using head-mounted accelerometers to determine behaviors from an “orientation sphere” (Wilson 325 

et al. 2020) or auditory biologgers that can delineate prey behaviors (Lynch et al. 2015, Studd et 326 

al. 2019), allow for continuous information on relevant prey behaviors such as vigilance and 327 

feeding rates. In addition to vigilance, prey may use camouflage, small scale refuge use, and 328 

locomotive escape tactics (Wilson et al. 2018) to reduce CCP. To better quantify factors that 329 

influence prey escape success, recent studies have used video (including drones with video 330 

cameras), accelerometers on predators and prey, or satellite imagery (to map sightlines or escape 331 

lines) (Olsoy et al. 2015, Davies et al. 2016).  332 

 333 

The above examples reflect how high encounter rates may be decoupled from overall predation 334 

risk due to low CCP. However, there may also be circumstances where overall risk is elevated in 335 

low-encounter times or places due to high CCP. Variation and distribution of CCP may be most 336 

important for ambush predators or for cursorial predators in conditions that limit escape. These 337 

conditions may arise from disturbance events (e.g. fire) or anthropogenic impacts (e.g land-338 

clearing or urbanization) that modify habitats in such a way as to facilitate the easier capture of 339 

prey by predators (Fleming and Bateman 2018, Nimmo et al. 2019, Fležar et al. 2019). Such 340 

changes have important conservation and management implications, as discussed below. For 341 

predator-prey systems in which CCP drives patterns of habitat use and activity, ecologists should 342 

limit inferences made from spatial overlap alone and instead focus on identifying factors that 343 

affect the frequency of particularly high-risk situations. 344 

 345 
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Broader implications of complexity in predator-prey interactions  346 

Reducing our reliance on proxies for predation risk, like simple metrics of spatial overlap, and 347 

better integrating the ecological and environmental complexities described above into predator-348 

prey interactions studies will have multiple benefits for both fundamental and applied aspects of 349 

predator-prey ecology. A better understanding of the complexity of predation risk will help to 350 

resolve questions regarding the strength of nonconsumptive effects of predators on prey and 351 

inform conservation and management strategies. The emergence of new empirical findings on 352 

the nuances of predator-prey interactions among free-ranging animals, made possible by 353 

technological advances, can improve quantitative predictions about dynamic predator-prey 354 

systems and generate new avenues for empirical research. 355 

 356 

Evaluating nonconsumptive effects in free-ranging prey 357 

Antipredator behaviors and other responses (e.g., morphological changes) that are employed by 358 

prey animals to reduce predation risk (either by reducing predator encounter or conditional 359 

capture probabilities) often have physiological costs (e.g., energetic costs of escape, increased 360 

stress) and opportunity costs (e.g., reduced feeding rates, lost mating opportunities) (Sheriff et al. 361 

2020a, Wirsing et al. 2021). Nonconsumptive effects (NCE) of predation risk occur when these 362 

costs negatively impact prey abundance or fitness (Peacor et al. 2020). Hundreds of studies have 363 

documented NCEs in laboratory settings (Preisser et al. 2005) or experimentally in the field 364 

(Zanette et al. 2011, Allen et al. in press). These studies have suggested numerous hypotheses on 365 

how prey, predator, and environmental characteristics might influence the strength of NCEs in 366 

nature (Sheriff et al., 2020; Wirsing et al. 2021). However, few studies have rigorously 367 

quantified the connection between antipredator behaviors and NCEs in free-ranging, highly 368 
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mobile animals (Say-Sallaz et al. 2019). New methods that are improving our understanding of 369 

antipredator responses and predation risk can also enhance our understanding of NCEs in nature 370 

and thus help us to refine and test hypotheses on factors influencing variation in NCEs. 371 

A general assumption has been that stronger antipredator behaviors produce stronger 372 

NCEs. Mis-assessments of NCEs can occur, however, if antipredator behaviors are measured at 373 

too coarse a scale. For example, even if prey generally avoid predators in both space and time, 374 

NCEs can be low if prey have windows of safety during which they can exhibit concentrated, 375 

compensatory feeding that reduces NCEs (Sheriff et al. 2020a). Furthermore, the magnitude of 376 

the trait response to perceived predation risk should be a function of the frequency of exposure to 377 

risk cues, as predicted by the Risk Allocation Hypothesis (RAH; Lima and Bednekoff 1999). The 378 

RAH predicts that prey will exhibit the strongest responses (e.g., greatest increase in vigilance at 379 

the expense of foraging) during brief periods of perceived risk in an otherwise relatively safe 380 

environment and that, because of the need to meet energetic demands through foraging, 381 

responses to immediate risk will be lower in environments with more frequent risk (Lima and 382 

Bednekoff 1999, Creel et al. 2008). Thus, assessing perceived risk from observed antipredator 383 

behaviors alone may provide an inaccurate depiction of risk perception and any NCEs resulting 384 

from reduced foraging or changes in habitat use. Continuous monitoring of encounter rates and 385 

CCP may be necessary to accurately discern levels of risk perception and to contextualize NCEs 386 

against the background level of risk across stages of the predation sequence. 387 

Conversely, even if prey do not appear to avoid predators at a large scale (i.e., predators 388 

and prey exhibit high spatiotemporal overlap), a large NCE may emerge if, at a smaller scale, 389 

prey: 1) are restricted to foraging near refuges, 2) forage inefficiently when vigilant, or 3) 390 

experience physiological impacts (e.g., from stress). Notably, if prey have poor information 391 
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about predator location or behavior, the cost of under-responding can cause prey to over-avoid 392 

predators at both small and large scales and thus suffer strong NCEs (Luttbeg and Trussell 2013). 393 

Emerging technologies allow researchers to better study these possibilities in nature by 394 

evaluating prey and predator behaviors continuously at fine scales in space and time (e.g. with 395 

GPS, accelerometers or magnetometers (Wilson et al. 2018, 2020)) throughout the predation 396 

sequence. Taking full advantage of technological advances to examine NCE strength will require 397 

investigation of the relationship between the full suite of employed antipredator behaviors (e.g., 398 

vigilance, movement behavior, feeding rates, and habitat selection) and potential associated 399 

fitness measures (e.g. pregnancy rate, birth rate, recruitment, age-specific survival, and 400 

population growth rate). 401 

 402 

Conservation and management implications of predator-prey interactions 403 

The rapid environmental change and novel ecological conditions characteristic of the 404 

Anthropocene (Sih et al. 2016, Guiden et al. 2019) are altering species interactions by reshuffling 405 

predator-prey communities and reshaping the landscapes on which interactions occur.  A better 406 

understanding of the factors influencing the predation sequence and its ecological outcomes may 407 

help decision-makers prioritize what conservation interventions are most needed, where they 408 

should be located, and assess their likely efficacy. Pressing conservation issues that require a 409 

more mechanistic understanding of predator-prey interactions include invasive species control; 410 

habitat management, restoration and augmentation; and mitigating the impacts of anthropogenic 411 

disturbance, including noise and light pollution. 412 

Invasive species. - The degree to which invasive predators impact local wildlife 413 

populations is affected by their ability to both encounter and successfully capture native prey 414 
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(Moseby et al. 2015, Carthey and Blumstein 2018). Understanding at which stage of the 415 

predation sequence prey are most vulnerable to invasive predators can inform how to prioritize 416 

costly and intensive conservation action. For example, if prey risk high encounter rates with 417 

predators, managing habitat structure (e.g., openness related to fire and/or grazing regimes) may 418 

reduce overall predation risk (Doherty et al. 2015, Geary et al. 2020). Conversely, if high CCP is 419 

a greater risk to prey due to predator naivety, managers can train prey to better identify 420 

dangerous invasive predators (Blumstein et al. 2019). 421 

  Habitat modification. - Habitat structure and distribution affect interactions across the 422 

predation sequence including detection distances, refuge availability, and escape terrain, which 423 

interact with the sensory and performance capabilities of predators and prey (Wheatley et al. 424 

2020). Ongoing changes in land cover through habitat fragmentation and the spread of invasive 425 

plants will affect both encounter rates and capture probability by reshaping the playing field on 426 

which predator-prey interactions occur (Mattos and Orrock 2010, Penn et al. 2017). 427 

Environmental policy and land management practices (e.g. sustainable grazing, appropriate fire 428 

regimes) that prioritize the preservation or restoration of habitat attributes, such as structurally 429 

complex vegetation cover, may promote coexistence of predators and prey (McHugh et al. 2019, 430 

Stobo‐ Wilson et al. 2020, Miritis et al. 2020). Direct habitat manipulation, such as by providing 431 

artificial shelters for prey to seek cover from predators (Bleicher and Dickman 2020), can be 432 

used as an interim measure as habitats recover post-disturbance (e.g. fire). 433 

Anthropogenic stimuli. - Anthropogenic development, including housing, resource 434 

extraction, and roads, introduces noise and light pollution that can affect species interactions 435 

(Fleming and Bateman 2018). Light pollution can increase detection by predators or prey, 436 

increasing encounters and either increasing or decreasing CCP (Ditmer et al. 2021). In contrast, 437 
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noise pollution masks auditory cues and can therefore decrease detection by predators or prey, 438 

decreasing encounters or increasing CCP (Francis and Barber 2013). To reduce the impacts of 439 

noise or light pollution on encounter and predation between native predators and prey, managers 440 

can mandate reduced noise or light in target areas or times of day during which native species are 441 

particularly sensitive to predation risk (Dominoni et al. 2020). Conversely, managers may 442 

suggest manipulating noise or light disturbance to give a native species an advantage over its 443 

invasive or overabundant predator or prey.  444 

Perceived risk from humans themselves may also influence multiple stages of the 445 

predation sequence by altering predator and prey behavior and space use (Kuijper et al. 2016, 446 

Suraci et al. 2019b). Where prey are more tolerant of people than are predators (e.g., because 447 

predators are at greater risk of mortality from humans), anthropogenic activity may lead to 448 

reduced spatial overlap and/or encounter rates if prey preferentially use areas of high human 449 

presence (Muhly et al. 2011). Alternatively, human activity may benefit predators in situations in 450 

which chronic exposure to human cues (e.g., through high levels of ecotourism) leads to 451 

generalized habituation in prey, thus increasing CCP by reducing prey responsiveness to the cues 452 

of actual predators (Geffroy et al. 2015). Managing the intensity of human activity (e.g., by 453 

restricting recreational activity at certain times or places) may therefore be necessary to promote 454 

natural levels of predation and/or reduce the impacts of invasive predators on prey.   455 

 456 

Integrating mechanistic understanding into predator-prey theory 457 

Ideally, empirical work should suggest key aspects of reality to add to theory, and the augmented 458 

theory should then generate predictions for empiricists to test. Thus, the data from new 459 

technologies and statistical methods should facilitate a powerful new theory-empirical loop.  460 
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Game-theoretic models, in which predators and prey respond adaptively to each other, have 461 

noted the likely importance of constraints (e.g., on relative mobility or information) or ‘anchors’ 462 

(e.g., the need for prey to forage on their own resources) on the space use of predators and prey 463 

(Patin et al. 2020), but wildlife studies have generally not modeled these issues explicitly. Future 464 

models should add the key contingencies highlighted throughout this review, draw on new field 465 

data to estimate model parameters, and produce predictions that are now more testable given the 466 

advances in data collection approaches. A better understanding of factors underlying encounter 467 

rates and conditional capture probabilities in nature should guide models to include these 468 

dynamic realities that predict predation rates, predation risk effects, and the resulting trophic 469 

dynamics. The time is ripe for new data and theory to reshape how predator-prey interactions are 470 

conceptualized, modeled, studied, and quantified in natural landscapes. 471 

 472 

Conclusions and future directions  473 

We suggest that emerging technologies and statistical methods are facilitating a transition to a 474 

more spatiotemporally detailed, mechanistic understanding of predator-prey interactions in 475 

nature, allowing for the concurrent examination of multiple stages of predator-prey interactions 476 

in highly mobile, free-ranging animals. Nonetheless, many studies on mobile animals continue to 477 

rely on an earlier framework focused on the predator-prey space race under the assumption that 478 

the degree of spatial overlap should be informative about the overall predator-prey interaction. 479 

However, both theory and recent empirical work suggest that this simplification does not always 480 

hold. Here, we emphasize that the link between spatial overlap and predation risk depends on 481 

both: 1) whether spatial overlap predicts encounter rates, and 2) whether encounter rates then 482 

predict prey capture. To predict encounter rates, a scale-dependent understanding of 483 
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spatiotemporal overlap and more detailed movement patterns (including the predictability of 484 

those movements) in space and time are essential. Variation in predation risk also depends on 485 

CCP, which can distinguish benign encounters from risky ones. By employing the 486 

methodological advances described in this review and summarized in Table 1, ecologists can 487 

compile data across species and ecological contexts to identify which stage(s) in the predation 488 

sequence and which ecological contingencies are most critical in determining the outcome of 489 

predator-prey interactions, with benefits for both ecological theory and ecosystem conservation.  490 

The next challenge is to develop a more complete conceptual framework for 491 

understanding factors that explain variation in overlap, encounter rates, and CCP. The 492 

characteristics of predators and prey themselves are likely to be major sources of variation. For 493 

instance, animal energy stores, hunger levels, and reproductive state are known to be key drivers 494 

of behavior and space use (e.g., Hooten et al. 2019), including risk-taking behavior in prey. How 495 

state-dependent decision making by predators and prey affects encounter rates and conditional 496 

capture probability remains an important unanswered question. Prey personalities may also affect 497 

the relative importance of avoiding encounters vs. avoiding capture if, for instance, bolder 498 

individuals, whose behavior may lead to higher encounter probability with predators, specialize 499 

in detecting or escaping predators while shyer individuals rely more on crypsis and avoiding 500 

encounters in the first place. In addition to individual-level variation, the environmental context, 501 

including both biotic (e.g., community composition) and abiotic factors (e.g., landscape features 502 

that affect detection or capture success) will likely affect the links between overlap, encounter, 503 

and capture success. A key question is to what extent insights regarding encounter rates and CCP 504 

from single predator-prey pairs apply to multi-predator, multi-prey systems. More generally, how 505 

does the community context (e.g., presence of multiple predators and competitors) alter 506 
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predictions regarding overlap, encounter, and capture success? Each of these questions 507 

represents an important avenue for future research and application. The research methodologies 508 

are now available to facilitate these important new directions in predator-prey ecology. We urge 509 

our field to build upon the founding framework of the space race and predator-prey overlap to 510 

examine predictors of the full predation sequence and their impact on predator-prey interactions. 511 
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Table 1. Technological and statistical approaches to resolve the complexities of predator-prey interactions.  

Research 

objective 
Data source Response variable Statistical approach Assumptions & limitations Empirical examples 

OVERLAP      

Spatial 

Repeated surveys 

(camera trap, 

point count, etc.) 

Co-occurrence of 

predator and prey at 

the same survey 

location 

Co-occurrence occupancy 

models with dominant-

subordinate species pairs 

(Waddle et al. 2010) or 

multispecies interactions (Rota 

et al. 2016); 

Joint species distribution 

models (Tobler et al. 2019)  

Spatial overlap only; 

Some methods require a priori 

assumption about which species 

drives overlap 

Multispecies occupancy models reveal 

that invasive grey squirrels (Sciuris 

carolinensis) avoid pine martens (Martes 

martes) more strongly than do native red 

squirrels (Sciuris vulgaris) (Twining et al. 

2021) 

 

Animal location 

data (e.g., VHF, 

GPS) 

Percent overlap 

between predator 

and prey home 

ranges;  

Shared resource 

selection 

 

Statistical estimate of home 

range (HR) overlap (Winner et 

al. 2018); 

Resource selection functions 

(Courbin et al. 2013) 

Calculating error around HR 

overlap estimate is non-trivial; 

May be unclear over what time 

span to calculate HR and overlap; 

Shared resource selection is a 

course estimate of overlap 

Co-occurrence between wolves (Canis 

lupus) and their ungulate prey assessed 

based on shared resource/habitat selection 

(Courbin et al. 2009) 

Temporal Camera trap data 

Correspondence 

between timing of 

predator and prey 

detections 

Kernel density overlap 

coefficient (Ridout and Linkie 

2009)  

Sites are typically pooled, so 

spatial overlap is not incorporated 

Sumatran tiger (Panthera tigris sumatrae) 

prey preference estimated based on 

temporal overlap with multiple prey 

species (Allen et al. 2020) 

 
Animal location 

data (e.g., GPS) 

Correlation of 

movement rates 

Generalized additive 

models (GAM) with cyclic 

regression spline (Kohl et al. 

2018) 

Movement rates are reflective of 

likelihood of encounter or 

predation risk 

Correlation of cougar (Puma concolor) 

and vicuña (Vicugna vicugna) movement 

rates across the diel cycle (Smith et al. 

2019b)  

Spatiotemporal Camera trap data 

Time interval 

between predator 

and prey detections 

at the same camera 

site 

Time-to-encounter models 

(Niedballa et al. 2019); 

Avoidance-attraction ratios 

(Parsons et al. 2016) 

Camera-based methods rarely 

capture actual encounters 

White tailed deer (Odocoileus 

virginianus) spatiotemporal avoidance of 

coyotes (Canis latrans) and humans 

(Parsons et al. 2016)  

ENCOUNTER      
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Proximity-based 

encounters 

Animal location 

data;  

Proximity 

sensors 

Predator-prey 

encounter events 

Proximity thresholds; 

Multiple modeling approaches 

to detect intersections between 

movement paths (e.g., 

brownian motion/mass action 

(Martinez-Garcia et al. 2020), 

agent-based models (Baggio et 

al. 2011)) 

Sensitive to number of animals 

collared and the interval between 

relocations; 

Require assumptions about how 

close paths must come to qualify 

as encounter (crossing? within 

species perceptual range?) 

Wolf (Canis lupus) and elk (Cervus 

elaphus) encounters estimated as <1-km 

distance between GPS locations 

(Middleton et al. 2013)  

Classifying 

predator 

hunting/foraging to 

quantify risky 

encounters 

Location data, 

accelerometers, 

magnetometers, 

depth sensors 

Number of predator 

locations or 

proportion of 

movement path 

classified as 

hunting or foraging 

Multiple modeling approaches 

to identify behavioral states 

from location data (e.g., k-

means clustering (Van Moorter 

et al. 2010), BCPA (Gurarie et 

al. 2009), hidden Markov 

models (Adam et al. 2019)) 

and/or other biologging data 

(e.g., recharge dynamics 

(Hooten et al. 2019), machine 

learning algorithms (Nathan et 

al. 2012)) 

Substantial data requirements to 

accurately identify behavioral 

states 

Flight/dive patterns used to detect 

hunting/foraging behavior in Cory's 

shearwaters (Calonectris borealis) (Paiva 

et al. 2010) and imperial cormorants 

(Phalacrocorax atriceps) (Gómez Laich 

et al. 2012); 

 

"Recharge dynamics" model used to 

determine hungry vs. satiated states in 

cougars (Puma concolor) (Hooten et al. 

2019) 

DETECTION      

Predator detection 

events by prey 

Heart rate 

monitors, 

Acoustic 

monitors 

Changes in prey 

behavior/physiolog

y indicative of a 

predator detection; 

Time allocation to 

vigilance behavior 

Regression models to assess 

ecological covariates associated 

with changes in 

behavior/increased vigilance 

(Lynch et al. 2015) 

May require additional data inputs 

(e.g., predator location data) to 

determine whether 

physiological/behavioral changes 

are driven by predator detection or 

other changes in perceived risk 

(e.g., moving from refuge to open 

habitat) 

Narwhal (Monodon monoceros) detection 

of seismic blasts (which induce 

antipredator behavior) detectable from 

changes in heart rate (Williams et al. 

2017) 

 

"Acoustic vigilance" (i.e., pauses in cud 

chewing) by mule deer (Odocoileus 

hemionus) when predators present (Lynch 

et al. 2015)  

ATTACK, 

CAPTURE, & 

KILL 
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Predator attack 

rates on prey 

Location data, 

accelerometers, 

magnetometers, 

gyroscope 

Occurrence/frequen

cy of attack events 

Activity profiles (Williams et 

al. 2014) used to identify 

events of exceptionally fast 

movement/high 

acceleration/sharp turning 

angles associated with predator 

chases/attacks 

Substantial data requirements to 

accurately identify attack events 

White shark (Carcharodon carcharias) 

predation attempts detected from lateral 

speed, tail beat frequency, and pitch angle 

(Watanabe et al. 2019); 

 

Distinct biologging signatures for stalk, 

chase, and pounce in cougars (Williams et 

al. 2014) and cheetahs (Acinonyx jubatus) 

(Wilson et al. 2013) 

Capture success 

(Paired) 

accelerometers, 

Hall sensors, 

Location data, 

acoustic monitors 

Occurrence/frequen

cy of capture or 

feeding events 

(indicative of 

successful hunt) 

Feeding behavior (indicating 

capture success) identified from 

multiple data sources using, 

e.g., Gaussian mixture models 

(Wilmers et al. 2017), random 

forest models (Pagano et al. 

2017) 

Substantial data requirements to 

accurately identify capture or 

feeding events; 

May be difficult to discern feeding 

following successful hunt from 

scavenging (applies to GPS data, 

less to accelerometry or audio 

data) 

Hall sensors detect mouth opening (prey 

capture) events by diving fur seals 

(Arctocephalus gazella) (Viviant et al. 

2014); 

 

Acceleration differences between head- 

and back-mounted accelerometers detect 

prey capture events by Adélie penguins 

(Pygoscelis adeliae)(Watanabe and 

Takahashi 2013); 

 

Location and duration of African lions 

(Panthera leo) feeding events determined 

based on GPS and accelerometry data 

(Suraci et al. 2019a) or acoustic 

monitoring (Wijers et al. 2018) 
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Figure 1. Factors that influence the relationship between stages of the predation sequence. The 

predation sequence is hierarchical, whereby events at later stages are rarer and dependent on 

previous stages. Conditions associated with predator and prey identity, predator and prey state, 

and environmental variation each influence the likelihood that one stage will progress to a 

subsequent stage.  
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Figure 2. Contexts that contribute to disconnect between predator-prey spatial overlap and 

encounter probability. (a) Temporal overlap can increase or diminish encounter probability in 

areas of high predator-prey overlap; here, a prey animal primarily uses the overlap area during 

the day, while a predator uses the overlap area at night. (b) Prey density can have a positive 

relationship with encounter rates, particularly if predators overlap with multiple prey individuals 

that move independently. (c) Encounter probability varies across scales of overlap; within an 

area of shared space use, prey may be able to avoid encounters with predators through use of 

refuges (i.e., safe habitat). (d) The concentration of overlap has implications for encounter rates, 

whereby predator and prey utilization distributions may be highly overlapping due to a joint 

spatial anchor (e.g., a spatially limited resource such as a watering hole used by both predator 

and prey), even with limited spatial overlap.  
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Figure 3. Predator-prey encounters are not always risky for prey animals if the conditional 

capture probability (CCP) of the predator is low due to intrinsic or extrinsic conditions. Context-

dependency in a well-studied ungulate, the elk (Cervus canadensis), has been demonstrated to 

affect the riskiness of encounters with predators, particularly in relation to environmental 

features (e.g. topography, time of day; Kohl et al. 2019), prey state (e.g. group size; Hebblewhite 

and Pletscher 2002), migration state (Hebblewhite and Merrill 2007, Robinson and Merrill 

2013), body condition (Winnie and Creel 2007, Creel et al. 2007), predator state (e.g. satiation; 

Liley and Creel 2008), predator identity (e.g. species, hunting mode; Kohl et al. 2019), and the 

interactions between these conditions. In elk, for example, an encounter with a wolf (Canis 

lupus) in rugged terrain would be relatively less risky, whereas an encounter with a cougar 

(Puma concolor) in rugged terrain would be relatively riskier. All examples shown here have 

been documented in the literature on wolf-elk and cougar-elk interactions. 


