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Abstract: A strong, shallow earthquake occurred near Heraklion (Crete, Greece) on 27 September
2021. The earthquake produced significant ground deformation in the vicinity of Arkalochori village
but without any evidence for surface ruptures of primary origin. We used geodetic (InSAR and GNSS)
data to map motions of the Earth’s surface that occurred during and shortly after the earthquake.
A 14 cm subsidence of the GNSS station ARKL and a maximum of 19 cm distance from the SAR
satellite were recorded. The measured surface displacements were used to constrain the rupture
geometry and slip distribution at depth. Our best-fitting inversion model suggests that the rupture
occurred on a 13 km-long planar normal fault striking N195◦ E dipping 55◦ to the northwest, with
major slip occurring to the east and updip of the hypocentre. The fault tip is located 1.2 km beneath
the surface. The maximum coseismic slip occurred in the uppermost crust, in the depth interval of
4–6 km. A decrease in the fault offsets toward the Earth’s surface is likely caused by an increased
frictional resistance of the shallow layers to rapid coseismic slip. Satellite observations made in
the first month after the earthquake detected no post-seismic deformation (i.e., below one fringe
or 2.8 cm). The seismic fault may be identified with the Avli (Lagouta) segment of the NNE-SSW
striking, west-dipping, 23 km-long neotectonic Kastelli Fault Zone (KFZ). Part of the rupture occurred
along the Kastelli segment, indicating a fault segment linkage and a history of overlapping ruptures
along KFZ. Based on geological data and footwall topography we estimate an average slip rate
between 0.17–0.26 mm/yr for the KFZ. The Arkalochori earthquake is a paradigm example for the
on-going extension of Heraklion basin (central Crete) in the WNW-ESE direction, which is almost
orthogonal to the E-W Messara graben and other active faults along the south coast of Crete.
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Geosciences 2022, 12, 220. https://doi.org/10.3390/geosciences12060220 https://www.mdpi.com/journal/geosciences

https://doi.org/10.3390/geosciences12060220
https://doi.org/10.3390/geosciences12060220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0002-1937-3283
https://orcid.org/0000-0001-6805-6295
https://orcid.org/0000-0003-0003-2902
https://orcid.org/0000-0001-9928-5074
https://orcid.org/0000-0002-3626-7300
https://orcid.org/0000-0002-5701-3262
https://orcid.org/0000-0002-8650-0895
https://orcid.org/0000-0002-1175-3628
https://doi.org/10.3390/geosciences12060220
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences12060220?type=check_update&version=4


Geosciences 2022, 12, 220 2 of 27

1. Introduction

A strong earthquake with magnitude ML(NOA) = 5.8 (MwNOA = 5.9; USGS Mw = 6.0)
occurred on 27 September 2021 06:17 UTC near the village of Arkalochori about 25 km SSE
of Heraklion, Crete, (Figure 1; [1–3]). The event was shallow (the slip centroid of the NOA
moment tensor solution was at 6.4 km; https://bbnet.gein.noa.gr/HL/seismicity/mts
Event ID: noa2021sybnk accessed on 10 March 2022) and generated large vertical ground
acceleration (0.8 g; [4]), that was recorded by a strong motion instrument in Arkalochori
(Figure 1). One person was killed and several were wounded. Information on the impact
of this event is available at https://en.wikipedia.org/wiki/2021_Arkalochori_earthquake
(accessed on 1 December 2021). The earthquake occurred in a location of central Crete
where information on previous seismicity is very limited [5]. Strong previous events within
a distance of 20–30 km from Arkalochori were reported by Papadopoulos [5,6] to have
occurred in 1508, 1779 and 1810.

The 27 September 2021 M5.9 event was preceded by a sequence of foreshocks that
started to gain attention on 4 June 2021, when an event of magnitude M = 4.6 occurred
(see Table S1; [1,2]). In fact, microseismic activity around Arkalochori had been recorded
about one year before the mainshock (this study; [1]). Thus, the Mw = 5.9 27 Septem-
ber 2021, Arkalochori event occurred as a culmination of the foreshock sequence. The
European Mediterranean Seismological Centre, EMSC, https://www.emsc-csem.org (ac-
cessed on 1 December 2021)) reported testimonies on intensities for several foreshocks (see
Figure S1 and Table S1). In Table S1 and Figure S1 we present the testimonies, their number
and location for the seven of them of magnitude larger than M = 4.0, the mainshock and
the main aftershock of ML(NOA) = 5.3 that occurred one day after the mainshock on 28
September 2021 at 04:48 UTC. The distribution of severe damage was around the village
of Arkalochori (Figures 1 and S2). Table 1 reports the various available moment tensor
solutions for the mainshock. The mainshock hypocentre depth range reported in Table 1
is between 6–16 km. This difference appears as depth can be estimated from moment
tensor inversions by fitting the spatial variation in surface or body waveform amplitudes.
Then, the moment tensor inversion is performed for a range of focal depths and the best
solution is assumed to be the one with the lowest misfit. However, as different institutes
use different stations and different seismic frequencies it is evident that the depths will
vary. We note that the NOA solution indicates a centroid depth of 6.4 km, which is close to
the depth range of the main slip patch as determined in [2].

Table 1. Moment tensor solutions calculated by various agencies. In the last line, the values of our
best fitting geodetic model (see Section 4).

Agency LAT LON Strike Dip Rake Strike Dip Rake Depth Mw Moment
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ km ×1018 Nm

GCMT 35.12 25.18 40 43 −85 214 47 −94 12 5.9 1.01
USGS 35.25 25.27 55 57 −79 215 35 −106 12 6.0 1.08
ERD 35.39 25.35 35 47 −97 225 44 −83 10 5.7 0.76
INGV 35.10 25.18 22 53 −108 230 41 −68 10 6.0 1.2
GFZ 35.18 25.25 30 32 −96 218 57 −85 16 6/0 1.1
CPPT 35.24 25.37 20 68 −107 239 28 −55 16 6.0 1.23
IPGP 35.25 25.26 24 38 −111 229 55 −75 6 6.0 1.16
KOERI 35.12 25.21 44 41 −76 207 50 −101 10 6.0 1.13
OCA 35.13 25.26 11 45 −35 245 60 −56 10 5.9
NOA 35.14 25.26 25 33 −81 195 57 −95 6.4 5.9 0.86
UOA 35.14 25.27 21 25 −75 185 66 −97 14 5.9 0.91
Median 25 43 −96 218 50 −85 10 1.09
Mean 30 44 −95 218 49 −83 11 1.04
r.m.s. scatter 12 14 13 13 12 16 3.7 0.18
Model (this study) 35.15 25.28 195 55 −90 5.1 5.96 1.1

The location and depth of the 27 September 2021 M5.9 earthquake onshore Crete
highlights the ongoing extensional deformation of the overriding Aegean Plate (e.g., [7–16])
in tandem with ongoing compression along the subduction front [17–22]. According to the
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latest GNSS results by Briole et al. ([23]; see their Figure 9) there is extension in the ~NW-SE
direction of the order of ~0.5–1 mm/yr near Heraklion. This process is also manifested in
the orientation of the local active faults and the topography of this region [9,13,16,24–26].

Figure 1. Shaded relief map of the 27 September 2021, Arkalochori Mw = 5.9 earthquake area in central
Crete (Greece). Solid yellow star indicates the relocated mainshock epicentre (this study). Shaded
rectangle indicates surface projection of the fault plane (this study). Blue triangles indicate GNSS
stations. Black squares indicate seismic stations. Thin black box shows extent of Figures 9 and 10.
Black dashed line indicates profile location shown in Figures 13 and 14. Red lines are active faults
from the NOAFAULTs database https://doi.org/10.5281/zenodo.6326260 (accessed on 1 December
2021) and [27] with modifications; ticks indicate downthrown side. Inset box at upper right shows
study area within Crete and focal mechanisms (1976–2021) from the GCMT database [28].

In this study, we present an analysis of seismological, geological, and geodetic data
that constrain the location and geometry of the activated fault that ruptured with the M5.9
earthquake of 27 September 2021. In Section 3.1 we describe the method of relocation of
hundreds of aftershocks. Due to the shallow depth of the earthquake rupture (hypocentre
depths range from 6 to 16 km; see Table 1) and the good phase coherence of the area, it

https://doi.org/10.5281/zenodo.6326260
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was possible to accurately map the surface deformation using InSAR (Section 3.3). The
interferograms showed one main lobe of subsidence, elongated with an NNE-SSW orien-
tation. The geodetic displacement data (InSAR & GNSS) were jointly inverted (Section 4)
to model the dislocation source, assuming a homogeneous elastic half space. Our field
survey showed that the earthquake generated secondary phenomena, with several areas
on alluvial deposits exhibiting opening cracks. No tectonic surface ruptures were found in
the field, in agreement with the modelled rupture. Our study highlights the WNW-ESE
orientation of the stress field in this key region of central Crete and the particular type of
strain release, which is by occurrence of earthquakes along normal faults that ruptured a
large patch (10+ km long segment) of a longer (20+ km) neotectonic structure.

2. Tectonic Setting

The Heraklion basin is located in the central part of the Hellenic Arc and is charac-
terised by extensional faulting, mainly along N-S and NW-SE directions [9,25,26]. Exten-
sional features (intrabasinal highs, axial drainage etc.) are also manifested near the active
faults [9,13,16,27,29] and the present-day topography of this region. The basin is found
to the north of the Messara Basin, between Mts Psiloritis and Dikti in the west and east,
respectively and Mt Asteroussia in the south (Figure 2). Both basins (Heraklion and Mes-
sara) are related to the back-arc extensional tectonic regime established in the Hellenic Arc
since the Lower Miocene. The sedimentary fill in these basins includes a thick succession
of 600–800 m of sediments which represent successive stages in their post-Lower Miocene
evolution. The older basin sediments suggest lacustrine conditions in the Middle Miocene
(Ano Viannos formation). Marine conditions were established in the Middle-Upper Miocene
(Profitis Ilias, Ambelouzos and Agia Varvara formations); this marine environment continued
in the Lower–Middle Pliocene (Foinikia fm). In the Pleistocene, the depositional environ-
ments are diversified, with marine bioclastic limestones and sandstones in the Heraklion
Basin (Iraklio fm.) and fluvial–fluviolacustrine sediments in the Messara Basin [9,10,24].
The evolution of the Heraklion and Messara basins is thus characterized by diverse de-
positional environments, ranging from marine to fluviolacustrine and fluvial, since the
Middle Miocene [30]. This alternation of depositional environments can be attributed
both to climate-driven (eustatic) and tectonic factors, the interplay of which has led to the
formation of numerous intra-basinal grabens and horsts.
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Figure 2. Neotectonic map of the broader Heraklion-Messara basins compiled after the IGME
geological map sheets [31–35] and geological mapping of [27,36]. KF: Kastelli Fault; ALF: Arkalochori
f.; RF: Roussochori f.; LF: Lagouta F.; GFZ Geraki Fauth Zone.

The structural fabric within the Heraklion and Messara basins follows a pattern that
reflects their evolution since their inception in the Lower-Middle Miocene; the former is
dominated by NNE-SSW and NE-SW normal or oblique-normal faults, which appear to
crosscut and overprint N-S and E-W faults that are believed to represent earlier deformation
phases [9], including the south-dipping Psiloritis detachment [37]. The structures that
control the geometry of the Messara basin, on the other hand, are mainly E-W and ENE-
WSW faults. However, there appears to be considerable interaction and structural overprint
between the two basins, at the eastern edge of the Messara basin (Kastelliana—Ano Viannos;
Figure 2). This complex deformation pattern was also manifested in the 2005 Asimi and
2013 Houdetsi earthquake sequences, respectively, which confirmed the occurrence of both
NE-SW normal and N-S strike-slip intra-basinal faulting, compatible with overall NW-SE
crustal extension [25].

The village of Arkalochori is built on a topographic intra-basinal high, which is the
result of both the occurrence of the erosion-resistant Agia Varvara bioclastic limestones and
the fact that it is part of the footwall block of the N-S, west-throwing Arkalochori fault (see
ALF in Figure 2), whose trace runs along the western edge of the hill. The cumulative throw
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of the Arkalochori fault is in the order of a few to several tens of meters, as is also the case
of another minor fault in the east (Roussohori; see RF in Figure 2; this is fault GR2485 in the
NOAFaults database http://doi.org/10.5281/zenodo.4304613 with a length of ~4 km). We
have not studied these faults in detail, but certainly the geological data imply that their
ages could be around 3–5 Ma, and assuming a preliminary throw of 100-m (implying a
dip-slip of 140 m) the average slip rate is about 0.02–0.04 mm/yr. This value is expected
for minor structures that do not accommodate most of the deformation. Both faults are
characteristic of the ~N-S structural grain in this part of the basin and run sub-parallel to
the marginal Kastelli normal fault (Figure 2).

The meizoseismal area of the 27 September 2021, earthquake includes the villages
Arkalochori, Avli, Nipiditos and Kastelli (Figure 1) including the aforementioned intra-
basinal high, which corresponds to an eastward-tilted fault block, controlled by the intra-
basinal N-S Arkalochori fault. The latter is one of a series of N-S to NNE-SSW normal
faults that develop in the hanging wall of the major Kastelli Fault, which marks the eastern
boundary of the Heraklion basin (KF in Figure 2). The SSW-ward segment of the Kastelli
fault is the Lagouta Fault (LF in Figure 2), whose morphological expression is subdued,
compared to the Kastelli fault. According to Vassilakis [27], this is due to the nature of the
juxtaposed formations, as the Lagouta Fault juxtaposes the erodible footwall lacustrine
marls (Ano Viannos fm.) against the Miocene marine sediments (Ambelouzos fm.) in the
hanging wall. Nonetheless, this fault is characterized by a possible earlier strike–slip phase,
in the Late Miocene, while later it acts as a pure extensional fault, in accordance with the
suggested NW-SE extension in the broader area [25].

In terms of fault nomenclature, we note that in this paper, the neotectonic fault
zone bounding the Kastelli Neogene basin is named as the Kastelli Fault zone (KFZ;
following [9,26]) comprising two segments, the Kastelli Fault (KF in Figure 1) and the
Avli-Lagouta Fault (AF in Figure 1). The normal fault in the footwall of KFZ is named
the Geraki Fault Zone (GFZ in Figure 2). Two minor faults are also examined: the west-
dipping Arkalochori Fault (ALF in Figure 2) and the west-dipping Roussohoria Fault (RF
in Figure 2), respectively. In the literature, the above faults are named as follows: (1) in
the NOAFAULTs v4.0 database https://arcg.is/04Haer and in Ganas et al. [25], the two
segments of KFZ are named as Agnos (code GR2467), and Avli (GR2465), while the normal
faults in the footwall of KFZ as Kastelli (GR2468; west dipping) and Panagia (GR2464; south
dipping) (2) in Caputo et al. [13,29] the normal fault in the footwall of KFZ is identified as
Kastelli Fault (3) in Nicol et al. [16] the KFZ is reported as Kastelli Fault, the normal faults
in the footwall of KFZ as Geraki Fault, and Nipiditos Fault (4) in Vassilakis et al. [3] the two
segments of KFZ are reported as Kastelli Fault and Lagouta Fault, the NW-SE normal fault
at the footwall of KFZ as Nipiditos Fault and (5) in Triantafyllou et al. [2] the two segments
of KFZ as North Kastelli and South Kastelli Fault; the normal faults in the footwall of KFZ
as Geraki Fault zone (GFZ) and Nipiditos Fault.

3. Data & Methods
3.1. The 2021 Seismic Sequence of Arkalohori

In the present study, we have collected catalogue data (arrival times of events and seis-
mic phases) from the online database of Institute of Geodynamics (National Observatory of
Athens—NOA) for earthquakes that occurred in the study area during the period between
November 2020 and October 2021. The mainshocks and aftershocks of the sequence were
recorded by the broad-band and strong motion stations of the Hellenic Unified Seismo-
logical Network (HUSN; http://eida.gein.noa.gr/ (accessed on 1 December 2021); [38]);
moreover, four (4) stations, named as CRE1-4, were installed on 28 September 2021, in
the epicentral area by NOA (HL network). The available manually picked, P- and S-wave
arrival-time data form a dataset of 1062 events with magnitude ML between 0.5 and 5.8.
The local velocity model and the value 1.78 for the Vp/Vs ratio of Delibasis et al. [39] were
adopted. The initial location was performed using the HypoInverse algorithm [40]. The
applied distance weighting was set to nullify the influence of stations at epicentral distances
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further than ~100 km. The average absolute location errors reported by HypoInverse were:
mean RMS travel-time error 0.14 s, ERH = 0.74 km and ERZ = 0.98 km for horizontal and
vertical uncertainties, respectively.

Subsequently, to improve the initial events locations, the double-difference relocation
HYPODD [41] procedure was performed. HYPODD determines relative locations within
clusters, using a double difference algorithm, developed by [42]. It improves relative
location accuracy by strongly reducing the influence of the velocity structure on locations
and uncertainties caused by arrival-time reading errors. The algorithm minimizes the
double-difference between observed and calculated travel times through iterative weighted
least-squares using the conjugate gradients method. The relocation procedure takes into
account both waveform cross-correlation and catalogue differential travel-time data to
provide an enhanced picture of the seismic activity.

Multiplets were detected, for the closest stations, followed by the calculation of the
cross-correlation maximum and time-delay measurements for P-waves, which were used
as differential travel-time data input for the double-difference relocation algorithm, HY-
PODD [41]. Full waveforms were cropped in windows containing both P and S waves,
filtered between 0.5 and 6 Hz, and a threshold of 70% was set concerning the waveform
coherency. The process mainly implicated two groups and the results were then imported,
along with catalogue travel-time data, into the double-difference for the relocation process.
The relocation procedure is mainly divided in two stages, the first with stronger a priori
weights to the catalogue data and the latter with higher weight to the cross-correlation
data, as suggested by [41]. Distance thresholds were applied to ensure that no links were
formed between unrelated events within the bigger groups. The velocity model used in
the relocation was the same with the model used in the initial location process [39] and
19 stations within 100 km distance were used.

In total, 1056 events were relocated and clustered in two groups (Figure 3); the main
cluster (1), oriented NNE-SSW) with 951 events that occurred at the vicinity of the main-
shock and a smaller cluster (2), with 95 events, located towards the NE of the cluster (1).
The HYPODD final results include the 98% of the initial dataset (absolute cross-correlation
root-mean-square: 0.3860 s, absolute catalogue rms: 0.335 s). The relocated hypocentres
have an estimated mean rms residual of 4 milliseconds (ms) and the mean location formal
uncertainties x, y, z and t were 17.4 m, 19.3 m, 23.4 m and 5.6 ms, respectively. The cluster-
ing of the aftershocks is a robust feature of the aftershock sequence, activated in diverse
times [2,3].

We made four cross-sections, oriented NE-SW and NW-SE in order to examine the
geometry of the distribution of events. A NW-SE cross-section through the main cluster
shows that the distribution of the hypocentres indicates a NW-dipping structure (cross-
Section A1–A2, Figures 3 and 4; as also imaged by [3]). We can infer the position of the
fault plane dipping towards northwest between depths 5–15 km. The inferred dip direction
is similar to the dip direction of the northwest-dipping nodal plane of the moment tensor
solutions of NOA and GFZ (see Table 1; the median value of the northwest plane is 49◦).
The northern cluster (cross section C1-C2, Figures 3 and 4) was activated at shallower
depths (6–10 km) however, the distribution of the hypocentres is not conclusive on the dip
direction of the seismic fault.
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Figure 3. Shaded relief map showing the relocated seismicity, during the period 1 November 2020–6
October 2021, distributed in two main clusters. The events are coloured with respect to depth. The
beach balls represent the lower-hemisphere projections of moment tensor solutions of the events
with Mw >4.0 (source: NOA; see Table S2 for solutions). The focal mechanisms show normal-slip
kinematics.

Sparse events had already taken place at the same area since November 2020, while
the activity seems to become denser by the end of May 2021 and more intense by the end of
June 2021 (Figure 5); a majority of the foreshock events were restricted within the vicinity
of the mainshock (±2 km; Figure 5 middle panel). In particular, the May–July 2021 events
occurred immediately to the north (±30◦) of the mainshock within a distance of 4 km
(Figure 5). The foreshock activity was intense; two earthquakes of magnitude Mw >= 4.0
took place while the largest foreshock (Mw = 4.6) occurred on 24 July 2021. A noticeable
pause of seismicity appeared on September 26, 2021, followed by the mainshock during the
27th of September. The aftershock sequence was intense, while twelve of the aftershocks
were of magnitude Mw > 4.0; the strongest one (Mw(NOA) = 5.1; ML = 5.3) took place on
28 September 2021, in shallow depth, as well. Another characteristic of the aftershocks’
distribution was the bilateral occurrence of seismic events with respect to the mainshock
hypocentre, already during the 27th of September 2021, including a tight cluster 5–10 km
towards the NE of the mainshock (Figure 5). During the next few days, it was evident
(Figure 5) that the northern cluster remained an isolated feature of the aftershock sequence.
Its occurrence is due to either aftershocks occurring at the termination of the rupture or
off-fault aftershocks occurring on a neighbouring structure (or even structures), indicating
the strong interaction between the faults of the area close to Arkalochori.
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Figure 4. Relocated seismicity cross-sections. Beachballs show focal mechanisms (projected to the
plane of the cross-sections). See map in Figure 3 for locations.
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Figure 5. (top panel) Map showing the relocated seismicity record around Arkalochori, (middle
panel) events are projected on time vs distance section from 1 November 2020 to 6 October 2021,
(bottom panel) from 30 May to 6 October 2021. Colour of events corresponds to the Julian day of
occurrence.

3.2. GNSS Data Processing

Dual-frequency data from three (3) permanent (continuously recording) Global Nav-
igation Satellite System (GNSS) stations were processed. We used GNSS observations
covering several days before and after the earthquake (Figure 6) in order to obtain posi-
tion time series and their static offsets due to the earthquake. The sampling interval was
30 s, and the data comprise 24 hr daily files. All station records were complete (rejected
epochs 0.00%) and included in our processing, thus providing substantial observations for
mapping the co-seismic displacement field. The stations belong to the HxGN SmartNET
and Uranus private networks of Greece. The azimuthal distribution of the GNSS stations
is very good, extending uniformly around the epicentral area (Figure 1). However, most
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of the GNSS stations are located more than 20 km away from the epicentre and therefore
captured only small displacements of the order of a few mm.

Figure 6. Position time series showing co-seismic and early post-seismic displacements in the
north (A), east (B) and vertical (C) components of ARKL GNSS station. Panels (A–C) show the
results of early post-seismic deformation (hours) relative to MOI1 station using the TRACK module.
Panels (D–F) show early post-seismic deformation (days) using the daily solution time-series of
GAMIT/GLOBK moduli. Red line indicates the time of the earthquake and blue lines indicate our
best-fit model results.

The GNSS data of local continuous stations ARKL, HERA and MOI1 together with
the data of four regional continuous stations (BSHM, DYNG, IZMI, MERS) were processed
using the GAMIT/GLOBK/TRACK software version 10.71 [43]. The TRACK module is
used to process kinematic GPS data. Our TRACK processing uses 30s resolution data from
local ARKL, HERA and MOI1 stations. We obtained co-seismic and early post-seismic
deformation (hours) only in the nearby ARKL station (Figure 6). The displacements of
HERA and MOI1 stations (Figure 1) during the earthquakes were negligibly small. The
presented data in Figure 6A–C show ARKL displacements relative to MOI1 station using
the TRACK module. We also obtained a daily solution using the GAMIT/GLOBK moduli.
GAMIT uses a priori data of satellite and station locations and obtains daily position and
baseline solutions. GLOBK combines all data and creates a multi-day time-series solution
for the position of stations. Our processing procedure included runs of both GAMIT
and GLOBK. Then, outliers were detected and removed from the data. The final sets of
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locations are obtained with respect to the International Terrestrial Reference Frame 2014
(ITRF2014; [44]).

The only GNSS station located in the near field and showing large displacements is
the station ARKL located just above the fault plane (Figure 1). The antenna of this station is
located on top of an industrial building south of the village (Figure S3). Figure 6D–F shows
the relative displacements of ARKL station days after the earthquake. The offsets indicate
cm-size motion along the N, E and Up-down directions. Station ARKL (Figure 6) moved
7 cm to northward and 5 cm eastward. In terms of Up-Down (vertical) displacement, we ob-
tained clear trends of co-seismic motion with amplitude −14.3 cm. The vertical downwards
displacement at the GNSS station enhances the robustness of the west-dipping fault model
as they allow discrimination between the two conjugate focal planes (see also forward
model of Okada-type dislocations; [45]) in Figure S4. Regarding the large aftershock on 28
September. 2021, 04:48 UTC (Mw = 5.1; located 4 km to the W of Arkalochori, Figure 3),
we could not find any evidence of this aftershock in the GNSS time series. Furthermore,
the GNSS time series of the ARKL station show the existence of a small post-seismic mo-
tion (~2 cm of subsidence) following the mainshock with a relaxation period of 75 days
(Figure S5). The processing of high-rate 1 s data (Figure S7; Brendan Crowell personal
communication) show some motion preceding the co-seismic offset.

3.3. Geodetic Data from Sentinel-1 SAR Interferometry

Synthetic Aperture Radar (SAR) data from different directions are used to explore
surface displacements due to the 27 September 2021 central Crete earthquake. SAR data that
tightly bracket the earthquake dates were acquired using the Sentinel-1A and 1B satellites
(see Table 2) from the European Space Agency (ESA). Sentinel-1A/B satellites operate using
C-band (radar wavelength of 56 mm) in the Terrain Observation by Progressive Scan (TOPS)
mode, which allows for wide swaths and short repeat intervals. Each TOPS image consists
of three sub-swaths, with a total swath width of ∼250 km, providing a complete coverage
of the earthquake-struck region from two opposite directions. Image pairs that span the
earthquake dates are available from both the ascending and descending satellite orbits.
The Sentinel-1 radar remote sensing data was downloaded from the Copernicus Open
Access Hub (https://scihub.copernicus.eu/ (accessed on 1 December 2021)) and processed
using the Generic Mapping Tools Synthetic Aperture Radar (GMTSAR) package [46]. The
topography contribution to the radar phase was calculated and removed using digital
elevation data from the Shuttle Radar Topography Mission (SRTM) with 30 m resolution
https://www2.jpl.nasa.gov/srtm (accessed on 1 December 2021). Accurate orbital data of
the satellites are available via https://qc.sentinel1.eo.esa.int/aux_poeorb/ (accessed on 1
December 2021).

Table 2. Characteristics of the interferometric pairs of Sentinel-1 data that were used in this study.

Interferometric
Pairs (yyyy/mm/dd) Satellites

Relative Incidence Mid
Angle Comments

Orbit Number

Ascending 2021/09/17–
2021/09/29 Sentinel-1A 102 44 Co-seismic

(Figure 7)

Descending 2021/09/18–
2021/09/30 Sentinel-1A 109 33.93 Co-seismic

(Figure 7)

Descending 2021/10/01–
2021/10/13 Sentinel-1B 36 43.87 Post-seismic

(Figure S6)

https://scihub.copernicus.eu/
https://www2.jpl.nasa.gov/srtm
https://qc.sentinel1.eo.esa.int/aux_poeorb/


Geosciences 2022, 12, 220 13 of 27

Figure 7. InSAR unwrapped data (A), model (B) and residual (Data-Model; C) for ascending and
descending (D–F) orbits. GPS solution (green arrows) and model (blue arrows) for ARKL station
are also presented. Panel B shows the horizontal displacement and panel E shows the amount of
subsidence of ARKL GNSS station. Thin dotted lines are active faults [47]. Thick blue line indicates
the intersection of the seismic fault with the Earth’s surface.

The differential interferograms (unwrapped) are shown in Figure 7A–D, which indicate
clear coseismic displacements in line of sight (LOS) caused by the 2021 Arkalochori event.
The negative LOS displacement indicates the ground motion away from the satellite.
The main deformation zone depicts an elliptical shape with a size of 10 km × 7 km
along the NNE-SSW direction (Figure 7A,D). The interferograms indicate a similar main
feature of surface subsidence, although their maximum values are different because of their
opposing satellite views. The fact that in both LOS imaging geometries the negative vertical
component displacement is dominant, this implies a normal-slip event. The rupture may
be related to the west-dipping normal fault on the eastern side of the Kastelli graben (see
blue line in Figure 7).

4. Inversion for Coseismic Slip Model

The observed geodetic deformation can be modelled by slip along a rectangular dislo-
cation plane in a homogeneous elastic half-space [45]. To assess the fault slip distribution
during the earthquake we performed an integrated inversion model for the coseismic
ascending and descending interferograms (Table 2) and displacements of the ARKL GNSS
station (Figure 6). The inversions of near-field InSAR data from more than one direction are
capable of better resolving shallow slip distribution. The applied inversion scheme [48–50]
is based on a least-squares minimization of the displacement misfit with iterations for the
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fault geometry. The initial geometry trace is chosen using the linear phase discontinuities in
the wrapped InSAR data. We refined the fault plane geometry by allowing changes in the
fault dip, strike and location in order to minimize the data misfit in a least-squares inversion.
To account for spatial variations in the slip distribution, the fault plane was subdivided
into 1.5 × 1.5 km, constant-slip patches, allowing only normal slip mode throughout the
inversion. The slip model was smoothed in order to minimize the slip gradients produced
by fault. Finally, we choose the slip model that was the smoothest and with the lowest RMS
value.

Our best-fit inversion model (Figure 8) accounts for 97% of the observed deformation
from both InSAR interferograms and GNSS data with an RMS value of 1.3 cm (Figure 7).
The model indicates coseismic dip-slip displacements during the 27 September 2021, an
earthquake on a 13 km length of a fault plane that dips 55◦ to the west and strike of N195◦ E.
The geometrical characteristics of the modelled fault plane (strike, dip-angle, dip-direction)
better fit the moment tensor solutions of NOA/UOA/KOERI (see Table 1, ranging N185◦ E
to N207◦ E) than those of global networks (GFZ, UGSG etc.). We attribute this difference to
the use of regional network data (distances up to 500 km; periods less than 125 s) from the
local networks than the use of teleseismic data used by global networks. The strike of the
modelled fault N195◦ E differs by about 20◦ from the modelled fault of Triantafyllou et al.
(2022; N216◦ E); the reason probably found in the method of geodetic inversion used.

Figure 8. Best-fit inverted fault slip model for both ascending and descending interferograms and
displacements of the ARKL GNSS station. Colour scale indicates normal-slip displacements in cm.
Distance is in km from the origin point (25◦ E, 35◦ N).

The modelled fault parameters are presented in Table 3. The fault tip is located
1.2 km beneath the surface. Most of the slip is distributed between 1.2 and 10 km depth,
with maximum slip of about 1.2 m at 4.9–6.2 km depth. The geodetic inversion results are
compatible to the hypocentre of the relocated mainshock (5 km; Figure 4) and the aftershock
distribution which is also concentrated in depth up to 10 km (Figure 4). The major slip
at a depth of ~5–6 km coincides with a less dense concentration of aftershocks (Figure 4),
implying a higher energy release by the mainshock at this depth. We note that the top
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edge of the modelled fault plane (line AB in Figure 8) aligns with the eastern margin of the
Kastelli basin, which is fault-controlled [9,16] (Figure 9). Therefore, our inversion modelling
suggests the activation of one normal fault, which may be identified as the west-dipping
Avli (or Lagouta) normal fault (fault GR2465 in the NOAFAULTS v4.0 database; [47]; AF in
Figure 1; LF in Figure 2), to the south of the Kastelli Fault (KF in Figure 1).

Table 3. Parameters of the modelled fault based on the combined inversion of both InSAR and GNSS
data.

Centre of the Top-Fault Size of The Fault Fault Orientation Fault Slip

Long. Lat. Top Length Width Azimuth Dip Rake Max.Slip
◦ ◦ km km km ◦ ◦ ◦ m

25.309 35.138 1.2 13.4 10.5 195 55 −90 1.2

Figure 9. Relief map showing aftershock distribution and the surface projection of the modelled
fault plane (coloured rectangle). Note that the aftershocks are distributed around the main asperity
(coloured squares; see Figure 8 for fault model). Also note that the aftershock depth increases toward
the west, in the vicinity of the epicentre (up to 4 km in map view). The dashed blue line indicates the
projected intersection of the modelled fault plane with the Earth’s surface.

Moreover, the modelled slip above 1.2 km (Figure 8; patches from AC to BD) is
negligibly small which indicates that the rupture did not reach the ground surface. The
total calculated geodetic moment release is Mo = 1.1 × 1018 N·m (corresponding to a
magnitude Mw = 5.96), which is comparable to the reported seismic moment release of
Mw = 5.9 or 6.0 (see Table 1). With the uniform slip model, the fitting model displacement
for both orbits and residuals are shown in Figure 7B,C,E,F, respectively). It shows that the
model obtained by the inversion fits well with the InSAR data sets, and the residuals are
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also relatively small. A postseismic interferogram of the image pair 1–13 October 2021
(descending orbit; 3–16 days after the earthquake; Figure S6) shows no detectable signal for
surface deformation, thus we conclude that the postseismic surface deformation during the
1–13 October interval is small (less than one fringe) compared to the coseismic signal. This
result was confirmed by the small postseismic motion detected in the GNSS time series of
station ARKL (see Figure S5).

5. Discussion
5.1. The Arkalochori Rupture Characteristics

The obtained slip distribution of the mainshock from the inversion of the geodetic data
can be visualised in relation to the distribution of relocated aftershocks and the location of
the hypocentre of the mainshock (Figure 9). The aftershock data are plotted in the perimeter
of the mainshock slip patches carrying the largest amount of slip, at depths larger than
4–5 km (the NE cluster is deeper than 6 km, see cross-section C1-C2 in Figure 4). Thus, the
aftershock pattern is arranged around the main rupture area (see red and brown patches in
Figure 9) while most aftershocks occurred mostly down-dip of the slip patches (at depths
larger than 8 km). In particular, we observe that at depths of 3–6 km there is a seismicity
gap that extends about 5 km in the N-S direction, i.e., along strike (Figure 9). This gap may
be due to the complete rupture of the main asperity along the fault plane and subsequent
aftershock activity triggering around the co-seismic slip patches (e.g., [51–55]). In addition,
a small post-seismic deformation (~2 cm on the vertical component) was detected on the
GNSS data (Figure S5) but not on InSAR images (Figure S6). The small post-seismic signal
may be due to afterslip along the fault plane and not to a gravitational instability of the
ground hosting the GNSS antenna. Unfortunately, we do not have additional GNSS data to
model the post-seismic deformation and related afterslip.

Given the shallow depth of the hypocentre (~5 km; Figure 4) in relation to (a) the
earthquake magnitude (M5.9) (b) the high dip-angle of the fault, well-constraint by geodetic
data (55◦; 53◦ obtained by [2]) and (c) the shallow depth of the main slip patch (~5 km;
Figure 8) it was reasonable to expect that surface ruptures could be found in the area
towards the east of Arkalochori, near the villages Avli and Nipiditos (Figures 9 and 10;
allowing for small uncertainties in the intersection of the seismic fault with the Earth’s
surface). However, our field surveys around Arkalochori Kastelli, and Nipiditos (Figure 10)
did not show any evidence of tectonic ruptures, i.e., formation of fresh scarps with normal
step in colluvium along the mountain front or reactivation of limestone scarps such as
those found in several shallow events in Greece, e.g., in Thessaloniki 1978 [56], Pissia—
Kaparelli in 1981 [57], in Kalamata (1986; [58]), in Atalanti (1894; [59]) etc. Instead, we
found a lot of secondary cracks (both on natural and artificial surfaces, i.e., tarmac roads)
and rock-falls due to the strong ground motion. This lack of shallow coseismic slip on
the fault plane (uppermost 1–2 km) may be due to velocity-strengthening fault frictional
characteristics [60,61] of the fault plane as it emerges towards the Earth’s surface. A decrease
in the fault offsets toward the Earth’s surface is likely caused by an increased frictional
resistance of the shallow layers to rapid coseismic slip that allows it to arrest the rupture.
This is not always the case, off course, as there are numerous examples of tectonic surface
breaks along normal faults [56–59,62–64] which indicates the influence of other factors,
among them most important the size (magnitude) of the event related to the amount of
elastic strain accumulation over the geological time.
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Figure 10. Relief map showing earthquake effects mapped by field surveys during the period
September–November 2021 (by CF, AG, SV, IK) and satellite imagery (InSAR wrapped interferogram
disruptions and features on Sentinel-2 optical imagery). Yellow star is relocated epicentre of the
mainshock. Blue rectangle is the surface projection of the modelled fault. Dashed blue line indicates
the intersection of the seismic fault with the Earth’s surface. KF is Kastelli Fault, AF is Avli-Lagouta
Fault. Orange line is the Heraklion-Arkalochori motorway.

In relation to previous studies on this event we note that [2] used geodetic data
inversion (only InSAR) and catalogue events for their analysis as opposed to our data
(InSAR, GNSS and relocated events). As a conclusion, they obtained a double-fault structure
with listric geometry (their Figure 12) which is not supported by our findings (one planar
fault; Figure 9). The study by [3] used geological data and seismicity relocation to model
the seismic fault. They processed InSAR data, but they did not invert the geodetic data set.
In this way, they obtained a NW-dipping fault plane imaged at depths of 5–12 km (their
Figure 10), i.e., deeper than our geodetic inversion fault model (1–7 km).

Ground and road cracks/fractures were observed in the field in two clusters mainly:
one located near Nipiditos village (Figure 10) and one along the highway south of Arkalo-
chori. Note that the Nipiditos cluster is found close to the projected intersection of the
seismic fault with the ground surface (see blue line in Figure 10). At one locality we ob-
served an open fracture, oriented N-S with a length of 27 m, but no shear displacement
along it (Figure 11a). It is likely that it is related to strong ground motion that caused
“spreading” of the uppermost soil layers. This is also observed in the descending co-seismic
interferogram (Figure S7a) where it is shown to occur also in the footwall of the Avli-
Lagouta Fault. The second cluster (near Kalo Chorio in Figures 10 and 11c) is probably
related to triggered secondary slip [65] along a series of small faults occurring on the
hanging wall of the seismic fault (Figure 11d), clearly observable on both interferograms
(Figure S7b). Triggered shallow slip (TSS) traces (black dashed lines in Figure S7a are
visible as discontinuities in both descending and ascending track phase interferograms
(Figure S7a–c). Moreover, landslide locations were mapped in the field (west of Arkalo-
chori) and by comparing pre- and post-event Sentinel-2 optical imagery (image dates 19
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September 2021 and 29 September 2021), by tracing the changes in land cover between
the two dates. Moreover, at both co-seismic interferograms (ascending & descending), we
mapped several distinct surficial deformation areas (see red polygons in Figure 10) with
small or incoherent displacement signals. These areas are interpreted as minor surficial
displacement of triggered pre-existing large landslides, and in some locations may be
linked to deep-seated gravitational displacements (DSGD) [53,66].

Figure 11. Field photographs (a,c) showing earthquake effects mapped by field surveys during the
period September–November 2021 (by CF, AG, SV, IK) and panoramic views of the Kastelli Fault
footwall (b,e) and hanging wall, respectively (d). The Nipiditos village is visible in (e). Elevation
range 300–600 m.

5.2. Normal Fault Segmentation and the 27 September 2021 Rupture

We identified the seismic fault as mostly rupturing the southern segment of the Kastelli
Fault Zone (KFZ; Figures 9 and 10), so it is of interest to look at the geometric relation
of the earthquake rupture to the long-term (neotectonic) geological structures. To map
relief due to cumulative offsets along the Kastelli Fault Zone, we used the Copernicus
GLO-30 Digital Elevation Model (DEM) with 30 m resolution https://spacedata.copernicus.
eu/web/cscda/dataset-details?articleId=394198 (accessed on 1 December 2021). Footwall
topography can be used as a proxy for fault throw distribution [67–69] and the distribution
of the fault throw along the strike may be indicative of the maturity of a fault [59,69]. The

https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198
https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198
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Kastelli (“Agnos-Avli”) fault Zone shows geomorphic evidence for recent activity, such as
prominent range-front escarpments, V-shaped valleys, triangular facets, and axial drainage
(Figures 10 and 11e). In terms of footwall topography shape, which is commonly used as a
criterion for fault segmentation [59,67,69], the KFZ comprises two segments, the northern
(Kastelli) segment and the southern Avli-Lagouta segment (Figure 10). The Kastelli (also
known as Agnos) Fault is an 11 km-long normal fault, west-dipping, with most relief
(~200 m) developed towards its terminations (Figures 11b,e and 12). The hanging wall
topography increases systematically from North to South. The northern termination of
Agnos F. may be associated with an NNS-SSW cluster of microseismicity recorded by
a local network in Delibasis et al. ([39]; south of Gouves, see Figure 1). The southern
Avli (Lagouta) segment is also of similar length (~12 km), but with less relief (~150 m;
Figure 12). Both footwall and hanging wall topography diminish toward its southern
termination. The structural boundary between the two segments is marked by the change
in the direction of axial drainage on either side of the village of Agia Paraskevi (Figure 10).
Given that the depth to bedrock exceeds 350 m in the Kastelli basin (I. Bouloukakis, pers.
commun.) we could assume a throw of ~500 ± 100 m for the main part of the Kastelli
Fault zone (Figure 12) accumulated over Late Pliocene—Quaternary times (~3 Ma). These
displacement data (assuming a 50-degree dip angle of the fault plane) yield an average
slip rate between 0.17–0.26 mm/yr for the Kasteli fault, thus similar to the active faults of
central Greece ([59,70,71]). The estimated slip rate is close to the post-glacial rate estimated
by Nicol et al. ([16]; 0.21 mm/yr) for KFZ which implies that slip rates did not change
much over the Quaternary. Incidentally, this result matches the observation by Robertson
et al. [15] that uplift rates in couth-central Crete were constant throughout Quaternary.
Furthermore, the KFZ 0.17–0.26 mm/yr rate is in the same order with the slip rate estimate
by Caputo et al. [13,29] (0.5 mm/yr) of the normal fault in the footwall of the KFZ (Geraki
fault; see GFZ in Figure 2). It is reasonable to suggest that KFZ is the main NNE-SSW
structure now in central Crete and accommodates most of the accumulated elastic strain. It
seems that the Geraki Fault zone becomes progressively inactive with late Quaternary slip
rates less than KFZ; GFZ is now located on the footwall of KFZ (Figures 1 and 2) without
almost any syn-rift deposits occurring along its trace [9].
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Figure 12. Along-strike DEM swaths and extraction of topographic profiles. The resultant relief is
assumed to represent long-term fault-throw distribution. Upper-panel: Agnos–Kastelli fault segment,
South-panel: Avli fault segment. Swath is 500 m wide.

The 27 September. 2021 rupture extent (Figure 9) indicates that the structural boundary
along KFZ (hanging wall high; Figure 12) was breached. The co-seismic slip attained its
highest value west of Nipiditos where both the footwall and hanging wall have their highest
elevations. It follows that the KFZ and the NW-SE-striking Nipiditos fault (Figures 2 and 9)
do not intersect as suggested by [2]. The coseismic slip continued to the north of the village
of Agia Paraskevi (Figures 9 and 10), where long-term geomorphology shows drainage
towards the north and west. The rupture caused permanent offsets of the NOA campaign
GNSS point AS15 (Figure S8; see Figure 1 for location) that is located near the projected
intersection of the modelled rupture with the free surface. Therefore, we suggest that the 23
km-long KFZ comprises a single fault segment that hosts overlapping ruptures. To find a
pattern in the seismic behaviour of KFZ, we need more data (trenching or 36CL cosmogenic
dating of fault scarps, e.g., [64,72,73]). The size of the 2021 rupture indicates the existence
of a locked 10 km patch of the KFZ, towards the north (Agnos; Figure 1) which was loaded
with tectonic stress following the Arkalochori event. It is well known that earthquakes
with a strong or moderate moment magnitude size (Mw > 5.8) transfer static stresses upon
other fault segments which are located near the main shock [52,53,74,75] thus changing
recurrence intervals by modifying times to failure (advancing or delaying).

The strike-orthogonal distribution of the 2021 co-seismic displacement as seen in the
cross-section (Figure 13) does not indicate a relation with long-term topography, as well.
This happened because all coseismic deformation occurred on the hanging wall of Avli-
Lagouta Fault (Figure 14). The displacement profile is skewed towards east, as expected
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since the fault dip-direction is towards the west. The surface projection of the modelled
fault fits well with the Avli fault segment of the Kastelli Fault Zone, outcropping west of
the village of Nipiditos (Figure 11e). The modelled ground deformation also fits well with
the Plio-Pleistocene basin located east of Arkalochori (Figure 2). To match the top of the
modelled fault (1.2 km beneath the surface) with the scarp of the Avli fault, in the vicinity of
the village of Nipiditos, requires a dip angle of ~55◦ throughout the upper crust of central
Crete, in agreement with the modelled fault plane (Figures 8 and 9) and cancelling the need
for listric geometries updip the hypocentre as implied by [2,3]. It also requires a small (~1
km) shift in location of the relocated mainshock towards east, which is an offset feature
that we have seen in several earthquake sequences in Greece (e.g., [53,76]) likely caused by
heterogeneities in the crustal structure not captured by the 1-D velocity model.

Figure 13. Cross-section (heading N110◦ E) showing ground deformation from LOS unwrapped
data of the Arkalochori earthquake of 27 September 2021. Topography is shown with grey line. See
Figure 1 for profile location.
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Figure 14. Cross-section (heading N110◦ E) showing the projected seismic fault of the Arkalochori
earthquake of 27 September 2021. The surface projection of the fault plane meets the trace of
the neotectonic Avli Fault. Topography is shown with grey line and red arrow indicates sense of
displacement, respectively. Other minor normal faults (ALF, RF) are also shown. See Figure 1 for
profile location.

The Arkalochori earthquake along the Kastelli Fault Zone highlights the nearly arc-
parallel (E-W to WNW-ESE) extension of the Heraklion basin in central Crete as opposed to
the neighbouring E-W Messara basin, to the south (Figure 2). The Messara basin was formed
due to N-S extension [10] which is active today further east [15,16,18]. However, the exten-
sion direction also switches NW-SE eastwards, on-shore Crete [3,7–9,13,14,16,24,26,27,29,58,64]
highly oblique to the subduction direction (N5◦ W; [77,78]). Therefore, despite its proximity
to the subduction front, Crete is deforming by extension along shallow normal faults of
almost orthogonal orientations (N195◦ E in Arkalochori; East-west in Messara and along
the south coast; [9,15,64,78]). The cause of the block-like onshore extension of Crete is the
mechanical response of the brittle Aegean crust, which is quickly overriding a nearly stalled
Nubian (African) subducting plate with a funnel shape [77].

5.3. The Relative Value of InSAR vs. GNSS Observations

Nowadays, InSAR technology is mature and provides reliable, spatially dense informa-
tion on coseismic & postseismic displacements after shallow earthquakes [49,50,53,55,79–88].
What is evident with InSAR, when the quality is very high, as is the case over Arkalochori,
is that the InSAR-based displacement of proximal campaign GPS stations (such as AS15;
Figure 1) is nearly as accurate as GNSS measurements in the field. The added value of
campaign GPS after events is almost zero when high-quality interferograms exists (which
is not always the case, especially when the events are offshore such as the 2017 Kos earth-
quake; [52]). Moreover, fieldwork costs time and money. So, why do we need to make
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campaign GPS observations there while InSAR allows us to map ground displacements
with an accuracy comparable to what we can achieve with GPS in the field?

If we want to make new contributions on earthquake rupture mechanics, what is
important is to deploy GPS stations quickly after earthquakes (within the first few hours) in
the near field of the epicentre area, and when possible, place instruments even in advance
of peculiar seismic crises starting, as it was the case around Arkalochori since June 2021
and even earlier ([1–3]; see earthquake time-series in Figure 5). This will allow us to
monitor the dynamics of the ground deformation immediately after earthquakes (and
sometimes before), capture the postseismic deformation earlier and better understand how
the stress/strain migrates during aftershocks sequences, especially when large aftershocks
occur in the days/weeks following the first main shock.

Certainly, GPS observations are useful or needed before and after earthquakes in the
near field of earthquakes, for example to assess the secular deformations (see [23,52,76,79])
but when they are outperformed by InSAR for the assessment of the co-seismic displace-
ment, the motivation for performing those measurements must be established. We believe
there is a real value in the assessment of the secular deformations; therefore, the selection of
the GPS points, their direct connection to the bedrock, their long-term stability and preser-
vation over decades, if not centuries, should be central in the design of the benchmarks and
their maintenance. This need makes it necessary to apply very strict rules for the design,
observation and maintenance of geodetic networks tailored for the long and very long term.
This approach could be central to the way of thinking inside Geophysical Observatories in
particular because both short-term and long-term observation is their mission.

6. Conclusions

1. The 27 September 2021 M5.9 earthquake produced significant ground deformation in
the vicinity of the village of Arkalochori, but no surface ruptures of primary (tectonic)
origin.

2. The distribution of the relocated aftershocks revealed a west-dipping fault with
activity limited to depth up to 12 km. The clustering of aftershocks indicates that
another shallow structure or a neighbouring segment of the same fault zone was
activated right after the occurrence of the mainshock, to the NE of the rupture.

3. We used geodetic data (InSAR & GNSS) to derive a finite fault model. The along-
strike averaged coseismic slip has a maximum at depth of 4–6 km, with a maximum
amplitude of 1.2 m.

4. The geodetic moment of this earthquake was found in the order of 1.1 × 1018 N·m,
which corresponds to an earthquake moment magnitude Mw = 5.96.

5. Our data (seismological and geodetic) support the activation of a 13 km-long planar
fault striking N195◦ E and dipping 55◦ towards WNW which intersects the free surface
along the mountain front of the Kastelli basin.

6. The seismic fault may be identified with the neotectonic Avli Fault segment (AF) of
the NNE-SSW striking, west-dipping, 23 km-long Kastelli Fault zone (KFZ). Part of
the rupture propagated along the Kastelli Fault segment (KF) indicating a possible
fault segment linkage and, therefore, a history of overlapping ruptures along the KFZ.

7. Based on geological data and footwall topography, we estimate an average Quaternary
slip rate between 0.17–0.26 mm/yr for the KFZ.

8. We found no tectonic surface breaks. The decrease in the fault offsets toward the
Earth’s surface is likely caused by an increased frictional resistance of the shallow
layer to rapid coseismic slip.

9. Satellite observations made in the first month after the earthquake detected no post-
seismic deformation (i.e., below one fringe or 2.8 cm) but the GNSS station ARKL
recorded a 2 cm postseismic motion with a relaxation period of 75 days.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/geosciences12060220/s1, Figures S1–S8 Arkalochori Supplementary
Data. Tables S1 and S2 Arkalochori Supplementary Data.
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