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A NUMERICAL STUDY OF VORTEX NUCLEATION IN 2D ROTATING

BOSE–EINSTEIN CONDENSATES

GUILLAUME DUJARDIN, INGRID LACROIX-VIOLET, AND ANTHONY NAHAS

Abstract. This article implements a numerical method for the minimization under con-
straints of a discrete energy modeling multicomponents rotating Bose–Einstein condensates
in the regime of strong confinement and with rotation. Moreover, this method allows to
consider both segregation and coexistence regimes between the components. The method
includes a discretization of a continuous energy in space dimension 2 and a gradient algo-
rithm with adaptive time step and projection for the minimization. It is well known that,
depending on the regime, the minimizers may display different structures, sometimes with
vorticity (from singly quantized vortices, to vortex sheets and giant holes). The goal of this
paper is to study numerically the structures of the minimizers. In order to do so, we in-
troduce a numerical algorithm for the computation of the indices of the vortices, as well as
an algorithm for the computation of the indices of vortex sheets. Several computations are
carried out, to illustrate the efficiency of the method, to cover different physical cases, to
validate recent theoretical results as well as to support conjectures. Moreover, we compare
this method with an alternative method from the literature.

AMS Classification. 35Q40, 65N35, 65Z05.
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1. Introduction

Bose–Einstein condensation was predicted by Satyendra Nath Bose [17] and Albert Einstein
[22] in 1924 and 1925. It describes a state of matter in which separate atoms or subatomic
particles, cooled to near absolute zero (a few µK), coalesce into a single quantum mechanical
entity—that is, one that can be described by a single wave function—on a near-macroscopic
scale. Bose–Einstein condensates were first realized experimentally in 1995 [21, 4]. When
the so-called Bose–Einstein condensates (BEC) are set to rotation, topological defects often
manifest themselves as vortices that correspond to zeros of the wave function with phase
circulation. This phenomenon was first observed in two components BEC [31]. When a BEC
is set to a high rotation in a strong confinement regime, the vortices align and form unique
structures. In the case of a single component condensate, we observe singly quantized vortices,
forming triangular lattices once they are numerous [26, 30]. In the case of two components
condensate, depending on the interaction between the two components, many structures may
appear. For example, we can observe coreless vortices, which refer to having singly quantized
vortices in one component while having a corresponding peak in the second component [32],
or vortex sheets [30, 29].

Different models of BEC with one or several components have already been studied in the
mathematical literature. For example, the minimization of the Gross–Pitaevskii functional in
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R2 is studied theoretically in [27] (see also references therein). In [3, 1], the authors study dif-
ferent structures of a BEC in a strong confinement and coupling regime in a bounded domain
of R2. Several methods have been developed for the numerical computation of approximations
of minimizers of Gross–Pitaevskii energies. For example, in [15, 8, 13, 16, 12, 11, 9, 10, 6, 14],
the authors develop numerical methods in several physical contexts and with several space
discretizations, which require solving a linear system at each time-step. A theoretical analysis
of the convergence of some of these methods has been carried out in several simple contexts
(see for example [23] for the classical Gross–Pitaevskii energy in one space dimension, for
the one component case, without rotation nor confinement, in a neighborhood of the ground
state). Another option is to use Sobolev gradients, as opposed to L2 gradients, as developed
in [20].

In this article, we study numerically the behaviour of a rotating Bose–Einstein condensate
(BEC) in two dimensions in a strong confinement regime based on the numerical minimization
of the Gross–Pitaevskii (GP) energy (2.1). We consider the both cases of one component and
two components condensates. For two components condensates, we consider both segregation
and coexistence regimes between the two components. We introduce a new discretization for
the GP energy using the Fast Fourier transformation (FFT) scheme. We use an explicit L2

gradient method with adaptive step and projection for the minimization of our discrete energy
under constraints. We derive a stopping criterion based on the evaluation of the gradient of
the energy on the constrained manifold using the residue of the Euler-Lagrange equation
corresponding to the constraints, which we use at the discrete level. Moreover we provide a
post processing algorithm for computing the indices of the vortices and of the vortex sheets
of the minimizers. Finally, we compare the efficiency of our explicit gradient method with
projection, named EPG, to the method used in GPELab ([5, 7]). The numerical results of
the test cases in this paper will illustrate how an explicit projected gradient method together
with an energy discretization allowing for the use of FFT in the computation of its gradient
makes it possible to outperform (linearly) implicit methods such as that of GPELab.

The outline of this paper is as follows. We introduce the continuous model for rotat-
ing Bose–Einstein condensates with two components in Section 2 and we recall the different
regimes for one component and two components condensates. In order to numerically study
these regimes, we discretize in Section 3 the continuous Gross–Pitaevskii energy. Our dis-
cretization uses the discrete Plancherel formula and allows for using FFT in the computation
of the gradient. We implement in this section a gradient method for the minimization of the
energy with a projection step to take the constraints into account. One of the interests of
this method is that it allows for the derivation of a stopping criterion which we develop in the
same section. We develop in Section 4 two post processing algorithms for the computation
of indices. The first deals with vortices and the second deals with vortex sheets. We present
numerical results in Section 5 for the regimes described in Section 2. In particular, we val-
idate numerically recent theoretical results and we support some conjectures as for example
the existence of vortex sheets in a segregation regime. Section 6 is devoted to the comparison
of the efficiency of the EPG method with that of GPELab [5, 7].

2. The model and the regimes

2.1. The model. We consider the following model for the energy of a two components ro-
tating Bose–Einstein condensate in dimension 2 in the limit of strong confinement and strong
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rotation studied in [3]. This model reads

EΩ
ε,δpu1, u2q “

2
ÿ

ℓ“1

1

2

ż

D

›

›∇uℓ ´ iΩuℓx
K

›

›

2
dxdy `Wε,δpu1, u2q,

where D Ă R2 is the bounded physical domain of interest, Ω P R is the rotation speed, ε and
δ are positive constants, xK “ p´y, xq, u1, u2 P H1pD,Cq are the wave functions related to
each component of the condensate. Moreover, Wε,δ is the confining part of the energy defined
as

Wε,δpu1, u2q “
1

4ε2

ż

D
pρprq ´ |u1|2q2dxdy `

1

4ε2

ż

D
pρprq ´ |u2|2q2dxdy

`
δ

2ε2

ż

D
|u1|2|u2|2dxdy ´

1

4ε2

ż

D
ρ2prqdxdy,

where ρ is a function of r “
a

x2 ` y2 to be defined later, δ ą 0 measures the stength of the
interaction between the two components, 1{ε2 measures the strength of the internal interaction
in each component of the condensate. In this paper, we take D as the disk of radius R ą 0
centered at the origin of R2. Moreover, we consider ρ ” 1 in D, which corresponds to a flat
trap, as in [19, 18] (see also [3]).

Remark 1. A straightfoward computation yields for all ℓ P t1, 2u,

1

2

ż

D

›

›∇uℓ ´ iΩuℓx
K

›

›

2
dxdy

“
1

2

ż

D
}∇uℓ}2dxdy ´ Ω

ż

D
ℜ

`

iuℓx
K ¨ ∇uℓ

˘

dxdy `
Ω2

2

ż

D
r2|uℓ|

2dxdy.(1)

Following Remark 1 of [3] and the one component analysis carried out in [18], in the
regime |Ω| ăă 1{ε, the contribution of the third term in (1) plays no role in the asymptotics
ε Ñ 0. Therefore, from now on and unless stated otherwise, we shall consider in the regime
|Ω| ăă 1{ε the minimization of the energy

EΩ
ε,δpu1, u2q “

2
ÿ

ℓ“1

„

1

2

ż

D
}∇uℓ}2 dxdy ´ Ω

ż

D
ℜ

`

iuℓx
K ¨ ∇uℓ

˘

dxdy

ȷ

`Wε,δpu1, u2q(2)

“ EΩ
ε,δpu1, u2q ´

Ω2

2

ż

D
r2p|u1|2 ` |u2|2qdxdy.

Our aim is to compute, in the regime ε Ñ 0, minimizers of the energy EΩ
ε,δ defined in (2) (and

not directly EΩ
ε,δ) in H

1
0 pD,Cq with the constraints

(3)

ż

D
|u1|2dxdy “ MN1, and

ż

D
|u2|2dxdy “ MN2,

where M “
ş

D ρprqdxdy, and N1, N2 ě 0 with N1 ` N2 “ 1. Note that, in the sequel, δ ą 0
and Ω P R may or may not depend on ε when considering a sequence of minimizing problems
with smaller and smaller ε.

Note that one has also

(4) Wε,δpu1, u2q “
1

4ε2

ż

D
pρprq ´ |u1|2 ´ |u2|2q2dxdy `

δ ´ 1

2ε2

ż

D
|u1|2|u2|2dxdy.
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In view of this expression of Wε,δ, we refer to the case δ ą 1 as the segregation regime since
minimizing the energy tends to split the two components in this case, and to the case δ ă 1
as the coexistence regime since minimizing the energy tends to mix the two components of
the condensate in this other case.

2.2. The different regimes. We recall in this section the theoretical results obtained in
[18, 3, 24, 28, 30]. These results describe the asymptotics of the minimizers of (2) in different
regimes. These regimes depend on the behavior of the rotation speed Ω in the strong confine-
ment limit (ε Ñ 0) in one component condensates (see 2.2.1). They also depend on the value
of the segregation/coexistence parameter (δ ě 1 or δ ă 1) in two components condensates
(see 2.2.2 and 2.2.3).

2.2.1. One component condensates. According to [18], for one component condensates (N1 “

1, N2 “ 0), the behaviour of the structure of the vortices of the minimizers of (2) with
constraints (3) in the regime ε Ñ 0 changes with the dependency of the rotation speed Ω “ Ωε

with respect to ε. Namely, there exists three critical rotation speeds Ω1
ε ăă Ω2

ε ăă Ω3
ε such

that

‚ if Ωε ă Ωε,1, then minimizers uε1 have no vortices,
‚ if Ω1

ε ă Ωε ă Ω2
ε, then the vortices of minimizers uε1 appear on a hexagonal lattice

and are singly quantized,
‚ if Ω2

ε ă Ωε ă Ω3
ε, the centrifugal force comes into play: a hole appears in minimizers

uε1 and the condensate looks like an annulus, with vortices located on a lattice on the
annulus,

‚ if Ω3
ε ă Ωε, the centrifugal force is so important that the vortices retreat in the central

hole of the condensate, creating a central giant vortex with high index.

Moreover, one has

(5) Ω1
ε „ logp1{εq, Ω2

ε „
1

ε
, and Ω3

ε „
1

ε2 logp1{εq
.

Note that δ plays no role in this case since u2 ” 0 because N2 “ 0.
According to Remark 1, the regimes Ωε ă Ω2

ε are similar for minimizers of EΩε
ε,δ and EΩε

ε,δ .

In the regimes Ω2
ε ă Ωε, the annulus behaviour is due to the centrifugal force in EΩε

ε,δ .

One of the goals of this paper is to confirm numerically the four regimes above (described
in [18]). To do so, we introduce a numerical algorithm in Section 3 and we use it to provide
numerical simulations in Section 5.1.

2.2.2. Two components condensates in the segregation regime (δ ą 1). In the recent paper
[3], the authors consider two components condensates in the segregation case δ ą 1. For
N1 P p0, 1q (recall that N2 “ 1 ´N1), they introduce the minimizing perimeter

ℓN1 “ min
ωĂD

|ω|“N1

perpωq,

and they perform an analysis of the minimizers of EΩε
ε,δε

in the regime ε Ñ 0 depending on

whether Ωε “ 0 or not.
First, they address the minimization of (2) with constraints (3) when Ω “ 0. In this case,

the squared moduli of the minimizers uε1 and uε2 tend to 1 in two separate regions of D and
the authors of [3] prove that their sum v2ε “ |uε1|2 ` |uε2|2 and the normalized energy εE0

ε,δε
have the following behaviour
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‚ in the regime δεε
2 Ñ `8 (strong segregation regime [2]), then infD v

2
ε tends to 0 and

εE0
ε,δε

tends to some constant times ℓN1 ;

‚ in the regime ε Ñ 0 with δ ą 1 fixed, then infD v
2
ε tends to some number between 0

and 1 and εE0
ε,δε

tends to some constant (which depends on δ) times ℓN1 [25];

‚ in the regime δε Ñ 1 with ε̃ “ ε{
?
δε ´ 1 Ñ 0, the rescaled energy ε̃E0

ε,δε
tends to

ℓN1{2 and it is expected that infD v
ε tends to 1 [24].

Second, they address the minimization of (2) with constraints (3) when Ω “ Ωε Ñ `8 as
ε tends to 0. With ε̃ defined as above, they consider a regime where δ “ δε Ñ 1 and ε̃ Ñ 0
as ε tends to 0 and they prove that

‚ there exists two constants C1, C2 ą 0 such that, for all i, if Ωε ą Ci logp1{ε̃q, then the
infimum of the limiting density |uεi |2 vanishes as ε tends to 0;

‚ in the regime of moderate rotational speed logp1{ε̃q ăă Ωε ăă 1{ε̃, the limiting
density |uεi |2 is uniform in each region, and hence does not depend on the shape of
the region;

‚ for higher rotational speeds 1{pε̃ logp1{ε̃qq ăă Ωε ăă 1{ε̃2, the leading order in the
energy EΩε

ε,δε
is the vortex energy, and the authors of [3] conjecture the possibility of

observing vortex sheets.

2.2.3. Two components condensates in the coexistence regime (δ ă 1). In the regime δ ă 1,
the two components still have mass in the region where ρ ą 0, but the supports of the
two components tend to overlap (see [28, 30]). In this regime (δ ă 1), depending on the
rotational speed Ω, we should observe four different qualitative behaviours (see [28, 30]) for
the minimizers when ε tends to 0:

‚ The first behaviour (δ P r0, 1q), with a very low velocity Ω, is when the two components
coexist and there are no vortices: each component has mass in the disc where ρ ą 0
and the profile of the components depends on N1 and N2.

‚ The second behaviour, when δ “ 0 (which means there is no interactions between the
two components), we should observe, depending on the (high) rotation speed Ω, the
existence of a triangular vortex lattice.

‚ As δ P p0, 1q increases, the positions of vortex cores in one component gradually
shift from those of the other component and the triangular lattices are distorted.
Eventually, in this case, after a certain value of δ, the vortices in each component
form a square lattice.

‚ The last behaviour corresponds to δ Ñ 1 (when ε Ñ 0). In that case, we should
observe either stripe or double-core vortex lattices in the minimizers.

3. The discretisation of the problem and the minimization method

Minimizing the energy EΩ
ε,δ defined in (2) under the constraints (3) is a continuous min-

imization problem over an infinite dimensional manifold that we replace in this section by
a discrete minimization problem over a finite dimensional manifold. We consider a gradient
descent method with projection over the constrained manifold, which is a first-order iterative
optimization algorithm for finding a local minimum of a differentiable function. We name this
method EPG. By calculating the gradient of the energy EΩ

ε,δ, we are able to approach more
and more towards the solution of the discrete problem after each iteration of the method. In
Section 3.1, we describe the discretization of the energy EΩ

ε,δ defined in (2). Then, we compute
its gradient in Section 3.2. We establish a criterion for the minimization of the energy on the
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finite dimensional manifold in Section 3.3. We propose a full description of the minimization
method in Section 3.4 as a conclusion.

3.1. Discretization of the energy. For the discretization of the energy defined in (2), we
decide to include the disk D of radius R centered at the origin of R2 in a larger square of side
length 2L centered at the origin. In addition, we extend the function ρ used to define the
energy in (2) to the square in such a way that it takes (very) negative values outside D. By
imposing homogeneous Dirichlet conditions on the boundary of the square, such an extension
of ρ should, in the regime ε Ñ 0, lead to minimizers with very small squared modulus outside
the disk, the restriction to the disk of which can be considered as approximations to the
continuous minimizers of EΩ

ε,δ defined in (2). This is due in particular to the first term in the

definition of Wε,δ in (4).
Therefore, we choose L ą R so that the disc D of radius R centered at the origin of R2 is

included in the square r´L,Ls2. Then, we discretize r´L,Ls2 with N ` 2 equidistant points
with respect to the x-axis and N ` 2 equidistant points with respect to the y-axis for some
integer N . We do this by setting δx “ δy “ 2L

N`1 and

xn “ ´L` nδx, and yk “ ´L` kδy,

for n, k P t0, ..., N ` 1u.
We use the letter ψ to denote the discrete counterpart to the continuous wave functions

denoted by u in Section 2. As explained above, we think of ψℓ
n,k as an approximation of

uℓpxn, ykq for ℓ “ 1, 2. In matrix form, we use the notation:

ψℓ “

¨

˚

˚

˚

˝

ψℓ
0,0 ψℓ

0,1 ... ψℓ
0,N`1

ψℓ
1,0 ψℓ

1,1 ... ψℓ
1,N`1

...
...

...
...

ψℓ
N`1,0 ψℓ

N`1,1 ... ψℓ
N`1,N`1

˛

‹

‹

‹

‚

P CpN`2q2 ,

with the convention that ψℓ
n,k “ 0 if either n “ 0 or k “ 0 or n “ N`1 or k “ N`1. In order

to separate real and imaginary parts of the unknowns, we set ψℓ
n,k “ pℓn,k ` iqℓn,k for ℓ “ 1, 2,

and set accordingly ψℓ “ P ℓ ` iQℓ. This allows us to write functions of the complex-valued
variables ψℓ as functions of the real-valued variables P ℓ and Qℓ.

We decide to use the discrete Fourier transform and its inverse for the discretization of
the terms in the energy EΩ

ε,δ defined in (2) that involve gradients. This choice allows the
use of Fast Fourier Transform algorithms for the computation of the gradient of the discrete
energy (see section 3.2). To do so, we set the following definitions, which are related to that

of Python Numpy. For v P CpN`2q2 and for n, p, k, q P t0, . . . , N ` 1u, the discrete Fourier
transforms of v in the x- and y-direction and their inverses are given by:

‚
`

fftxpvq
˘

p,k
“

řN`1
m“0 vm,ke

iπme´2πi mp
N`1 ,

‚
`

ifftxpvq
˘

n,k
“ 1

N`1e
´iπn

řN`1
p“0 vp,ke

2πi np
N`1 ,

‚
`

fftypvq
˘

n,q
“

řN`1
l“0 vn,le

iπle´2πi lq
N`1 ,

‚
`

ifftypvq
˘

n,k
“ 1

N`1e
´iπk

řN`1
q“0 vn,qe

2πi kq
N`1 .

Remark 2. Note that, with the definitions above, the discrete Fourier transforms are not
inverses by pairs. Indeed, we have for all v, ifftxpfftxqpvq “ v ` Opδxq and ifftypfftyqpvq “

v ` Opδyq. We will not need any such inversion formula in this paper however.
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For the discretization of the rotational energy, we define X,Y,Ξ,Λ P RpN`2q2 for all n, k P

t0, . . . , N ` 1u by

Xn,k “ xn, Yn,k “ yk, Ξn,k “ ξn, and Λn,k “ λk,

with

ξk “ ´
πpN ` 1q

2L
` kδξ, and λn “ ´

πpN ` 1q

2L
` nδλ,

where δξ “ δλ “ π
L . Observe that all the columns of the matrix Ξ are equal to the vector

ξ “ pξkq0ďkďN`1 and all the rows of the matrix Λ are equal to the vector λ “ pλnq0ďnďN`1.
Moreover, we denote by ˚ the term by term multiplication operator between 2 matrices.

We define E∆
ε,δpψ1, ψ2q as a discrete counterpart of EΩ

ε,δpu1, u2q by setting for ψ1, ψ2 P

CpN`2q2

(6) E∆
ε,δpψ1, ψ2q “

ÿ

ℓ“1,2

´

pEcinq∆pψℓq ` pErotq
∆
ε pψℓq

¯

` pEW q∆ε,δpψ1, ψ2q,

where the superscript ∆ indicates that these energies depend on discrete variables. Let us
describe the discretized energy terms which appear above:

‚ pEcinq∆ corresponds to the kinetic energy and is defined by

pEcinq∆pψℓq “
δ2x
2

N`1
ÿ

n,k“0

ˆ

ˇ

ˇ

ˇ
ifftx

`

iΞ ˚ fftxpψℓq
˘

ˇ

ˇ

ˇ

2
`

ˇ

ˇ

ˇ
iffty

`

iΛ ˚ fftypψℓq
˘

ˇ

ˇ

ˇ

2
˙

n,k

,

‚ pErotq
∆
ε corresponds to the rotational energy and is defined by

pErotq
∆
ε pψℓq

“ ´Ωεδ
2
x

N`1
ÿ

n,k“0

ℜ
´

´iψℓ ˚

”

´ Y ˚ ifftx
`

iΞ ˚ fftxpψℓq
˘

`X ˚ iffty
`

iΛ ˚ fftypψℓq
˘

ı¯

n,k
,

‚ pEW q∆ε,δ corresponds to the confinement energy and is defined by

pEW q∆ε,δpψ1, ψ2q “
δ2x
4ε2

N`1
ÿ

n,k“0

ˆ

ρprn,kq ´ |ψ1
n,k|2 ´ |ψ2

n,k|2
˙2

`
δ2xpδ ´ 1q

2ε2

N`1
ÿ

n,k“0

|ψ1
n,k|2|ψ2

n,k|2,

where rn,k “

b

x2n ` y2k.

3.2. Computation of the gradient of the discrete energy (6). Each energy term in
(6) is a function of the 4N2 real variables pP 1

n,kq1ďn,kďN , pP 2
n,kq1ďn,kďN , pQ1

n,kq1ďn,kďN and

pQ2
n,kq1ďn,kďN using the definitions from Section 3.1. Let us compute the gradient of each of

these energy terms (still using the convention pn,k “ qn,k “ 0 if n “ 0 or k “ 0 or n “ N ` 1

or k “ N ` 1) with respect to these variables for the usual scalar product on R4N2
. Let
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Vconf P RpN`2q2 be defined as:

Vconf “

¨

˚

˚

˚

˝

ρpr0,0q ρpr0,1q . . . ρpr0,N`1q

ρpr1,0q ρpr1,1q . . . ρpr1,N`1q
...

ρprN`1,0q ρprN`1,1q . . . ρprN`1,N`1q

˛

‹

‹

‹

‚

.

For ℓ P t1, 2u we have for the discrete kinetic energy:

BpEcinq∆

BP ℓ
pψℓq “ δ2xℜ

˜

”

ifftx
`

Ξ˚2 ˚ fftxpψℓq
˘

ı

n,k
`

”

iffty
`

Λ˚2 ˚ fftypψℓq
˘

ı

n,k

¸

1ďn,kďN

,

BpEcinq∆

BQℓ
pψℓq “ δ2xℜ

˜

”

ifftx
`

´ iΞ˚2 ˚ fftxpψℓq
˘

ı

n,k
`

”

iffty
`

´ iΛ˚2 ˚ fftypψℓq
˘

ı

n,k

¸

1ďn,kďN

.

For ℓ P t1, 2u we have for the discrete rotational energy:

BpErotq
∆
ε

BP ℓ
pψℓq “ ´2Ωεδ

2
xℜ

˜

”

X ˚ iffty
`

Λ ˚ fftypψℓq
˘

ı

n,k
´

”

Y ˚ ifftx
`

Ξ ˚ fftxpψℓq
˘

ı

n,k

¸

1ďn,kďN

,

BpErotq
∆
ε

BQℓ
pψℓq “ ´2Ωεδ

2
xℜ

˜

´ i
”

X ˚ iffty
`

Λ ˚ fftypψℓq
˘

ı

n,k
` i

”

Y ˚ ifftx
`

Ξ ˚ fftxpψℓq
˘

ı

n,k

¸

1ďn,kďN

.

For ℓ P t1, 2u we have for the discrete interaction energy:

BpEW q∆ε,δ

BP ℓ
pψ1, ψ2q “ ´

δ2x
ε2

ˆ

”

P ℓ ˚

´

Vconf ´
ˇ

ˇψ1
ˇ

ˇ

2
´

ˇ

ˇψ2
ˇ

ˇ

2
¯ı

n,k
` p1 ´ δq

”

P ℓ ˚ |ψ3´ℓ|2
ı

n,k

˙

1ďn,kďN

,

BpEW q∆ε,δ

BQℓ
pψ1, ψ2q “ ´

δ2x
ε2

ˆ

”

Qℓ ˚

´

Vconf ´
ˇ

ˇψ1
ˇ

ˇ

2
´

ˇ

ˇψ2
ˇ

ˇ

2
¯ı

n,k
` p1 ´ δq

”

Qℓ ˚ |ψ3´ℓ|2
ı

n,k

˙

1ďn,kďN

.

3.3. A criterion for the minimization of E∆
ε,δ under constraints. We identify C2N2

with the subspace of MN`2pCq2 consisting in pairs of matrices with zero first and last row

and column. Let us denote the usual scalar product on C2N2
by

xu, vy “ ℜ

¨

˝

N
ÿ

n,k“1

un,k Ěvn,k

˛

‚,

and we set }v}2∆ “ δ2xxv, vy. We replace the continuous constraints (3) with the discrete
analogues

(7) }ψℓ}2∆ “ δ2x

N`1
ÿ

k“0

N`1
ÿ

n“0

|ψℓ
k,n|2 “ MNℓ pℓ “ 1, 2q.

In order to derive a stopping criterion for the minimization of E∆
ε,δ defined in (6) under the

constraints (7), we prove the following proposition.
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Proposition 3. If pψ1˚, ψ2˚q P CpN`2q2 are minimizers of E∆
ε,δ under the constraints (7)

satisfying the homogeneous Dirichlet boundary conditions, then the four N ˆ N real-valued
matrices K∆

1,P ,K
∆
2,P ,K

∆
1,Q,K

∆
2,Q defined by1

K∆
ℓ,P “

BE∆
ε,δ

BP ℓ
pψ1˚, ψ2˚q´

δ2x
}ψℓ˚}2∆

N
ÿ

n,k“1

ˆ

BE∆
ε,δ

BP ℓ
pψ1˚, ψ2˚q˚P ℓ˚ `

BE∆
ε,δ

BQℓ
pψ1˚, ψ2˚q˚Qℓ˚

˙

n,k

P ℓ˚,

and

K∆
ℓ,Q “

BE∆
ε,δ

BQℓ
pψ1˚, ψ2˚q´

δ2x
}ψℓ˚}2∆

N
ÿ

n,k“1

ˆ

BE∆
ε,δ

BP ℓ
pψ1˚, ψ2˚q˚P ℓ˚ `

BE∆
ε,δ

BQℓ
pψ1˚, ψ2˚q˚Qℓ˚

˙

n,k

Qℓ˚,

for ℓ P t1, 2u, vanish.

Proof. Assume that pψ1˚, ψ2˚q P CpN`2q2 are minimizers of E∆
ε,δ under the constraints (7)

satisfying the homogeneous Dirichlet boundary conditions. For all ψ1, ψ2 P CpN`2q2 satisfying
the homogeneous Dirichlet boundary conditions too and for all t P R small enough, we define

(8) f∆ptq “ E∆
ε,δ

ˆ

ψ1˚ ` tψ1

}ψ1˚ ` tψ1}∆

a

N1M,
ψ2˚ ` tψ2

}ψ2˚ ` tψ2}∆

a

N2M

˙

.

The fact that pψ1˚, ψ2˚q are minimizers of E∆
ε,δ under the constraints (7) implies that

(9) pf∆q1p0q “ 0,

for all pψ1, ψ2q. In order to rewrite (9) as a criterion depending on pψ1˚, ψ2˚q, we set ψℓ˚ “

P ℓ˚ ` iQℓ˚ and ψℓ “ P ℓ ` iQℓ with ℓ “ 1, 2 using the definitions from Section 3.1. Let us
denote for all ℓ “ 1, 2 and small t P R:

g∆ℓ,P ptq “
P ℓ˚ ` tP ℓ

}ψℓ˚ ` tψℓ}∆

a

NℓM, and g∆ℓ,Qptq “
Qℓ˚ ` tQℓ

}ψℓ˚ ` tψℓ}∆

a

NℓM,

so that, using (7), we have
›

›g∆ℓ,P ptq ` ig∆ℓ,Qptq
›

›

2

∆
“ NℓM.

Introducing the notation,

aℓ “
δ2x

}ψℓ˚}2∆

¨

˝

N
ÿ

n,k“1

ppl˚n,kp
l
n,k ` ql˚n,kq

l
n,kq

˛

‚“
δ2x

}ψℓ˚}2∆
pxP ˚

ℓ , Pℓy ` xQ˚
ℓ , Qℓyq ,

we infer
pg∆ℓ,P q1p0q “ P ℓ ´ aℓP

ℓ˚, and pg∆ℓ,Qq1p0q “ Qℓ ´ aℓQ
ℓ˚.

Using the definition (8) of f∆ and the chain rule, we obtain

pf∆q1p0q

“

2
ÿ

ℓ“1

˜C

BE∆
ε,δ

BP ℓ
pψ1˚, ψ2˚q, pg∆ℓ,P q1p0q

G

`

C

BE∆
ε,δ

BQℓ
pψ1˚, ψ2˚q, pg∆ℓ,Qq1p0q

G¸

“

2
ÿ

ℓ“1

N
ÿ

n,k“1

ˆ

BE∆
ε,δ

BP ℓ
pψ1˚, ψ2˚q ˚

`

P ℓ ´ aℓP
ℓ˚

˘

`
BE∆

ε,δ

BQℓ
pψ1˚, ψ2˚q ˚

`

Qℓ ´ aℓQ
ℓ˚

˘

˙

n,k

,

1Recall that ˚ is the term-by-term product defined in Section 3.1.
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As expected, pf∆q1p0q is an R-linear form depending on pP 1, Q1, P 2, Q2q. The expression
above implies that

(10) pf∆q1p0q “

N
ÿ

n,k“1

`

K∆
1,P ˚ P 1 `K∆

1,Q ˚Q1 `K∆
2,P ˚ P 2 `K∆

2,Q ˚Q2
˘

n,k
,

with K∆
ℓ,P and K∆

ℓ,Q the matrices defined in the statement of Proposition 3. This concludes
the proof.

□

Therefore, in the method described in Section 3.4, we will use the fact that

(11) K∆ “

2
ÿ

ℓ“1

}K∆
ℓ,P }∆ `

2
ÿ

ℓ“1

}K∆
ℓ,Q}∆,

is below some threshold as a criterion for numerical convergence.

3.4. Gradient Method. In order to minimize the discretized energy defined in (6) under
the constraints (7), we propose the following gradient method with projection and adaptive
step.

‚ Initialization:
– Choose ψ1,1, ψ2,1 P CpN`2q2 , normalized as: }ψℓ,1}∆ “

?
NℓM, pℓ “ 1, 2q and

satisfying the homogeneous Dirichlet boundary conditions,
– choose a step h ą 0,
– choose two tolerance parameters h0,K0 ą 0 for the convergence test.

‚ Iteration:
(1) Compute the gradient: ∇E∆

ε,δ

`

ψ1,m, ψ2,m
˘

.

(2) Compute the auxiliary step

ˆ

ψ̃1,m

ψ̃2,m

˙

“

ˆ

ψ1,m

ψ2,m

˙

´ h∇E∆
ε,δpψ1,m, ψ2,mq, and set

the homogeneous Dirichlet boundary conditions on ψ̃1,m and ψ̃2,m.
(3) Normalize the auxiliary step to obtain an attempt for the next step:

ψℓ,m`1 “
ψ̃ℓ,m

}ψ̃ℓ,m}∆

a

NℓM, ℓ “ 1, 2.

(4) If E∆
ε,δpψ1,m`1, ψ2,m`1q ą E∆

ε,δpψ1,m, ψ2,mq, then we replace h by h{2 (provided

h{2 ě h0, otherwise we stop without convergence) and we compute a new aux-

iliary step pψ̃1,m, ψ̃2,mq for the same m by going back to step 2. Otherwise, we
compute K∆ at point pψ1,m`1, ψ2,m`1q using (11). If K∆ ě K0, then we replace
m by m` 1 and we restart at step 1. Otherwise, we take pψ1,m`1, ψ2,m`1q as an
approximate minimizer and we stop with convergence.

4. Post-processing algorithms

4.1. Indices of the Vortices. In this section, we introduce an algorithm that we developed
for the computation of the indices of the vortices in the minimizers of the discrete energy
functional defined in (6) under the constraints (7), obtained using the minimization method
described in Section 3. This algorithm is used in Section 5.

The algorithm relies on 4 numerical parameters tol1 ą 0, tol2 ą 0, Nmin P N˚ and Nmax P

N˚ with Nmin ď Nmax. It follows the 4 steps below. The three first steps identify the
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vortices’ centers and the last step computes the vortices’ indices. In this section, ψ denotes
the square complex matrix with N2 entries for either of the two components of the Bose–
Einstein condensate.

Step 1: We determine the potential centers of the vortices and establish a list of candidates

as the set of pn, kq P t1, . . . , Nu2 such that |ψn,k|2 ă tol1.
Step 2: We build a second list P based on the first list above using the following rule. For

each potential center pn, kq in the list established in Step 1, we consider the values of |ψ|2 on
the squares

Sλpn, kq “

"

pn˘ λ, k ` jq
ˇ

ˇ j P t´λ, . . . , λu

*

ď

"

pn` j, k ˘ λq
ˇ

ˇ j P t´λ, . . . , λu

*

,

of length 2λδx, for λ P tNmin, . . . , Nmaxu. If for one of these λ “ λpn, kq, the values of |ψ|2

at all points of the square Sλpn, kq are such that |ψ|2 ´ |ψn,k|2 ą tol2, then we add the center
pn, kq to the second list P, and we set λpn, kq as the caracteristic length of the potential vortex.
In other words, we have determined a list P of couple of points pn, kq satisfying the following
conditions:

‚ |ψn,k|2 ă tol1,
‚ |ψi,j |

2 ą |ψn,k|2 ` tol2, for all the couples pi, jq in Sλpn,kqpn, kq.

Step 3: We consider each center pn, kq from the list P and we identify if another center is
inside the square

Ť

1ďλďλpn,kq Sλpn, kq. If this is the case, we eliminate the center with the

biggest |ψ|2 at the center from the list. We repeat this step until we are left with isolated
centers. Let us denote by T the list of all the couples pn, kq corresponding to isolated centers.

Step 4: We compute the indices using the following rules. For each pn, kq P T, we start off
with any couple pi, jq in Sλpn,kqpn, kq. Then we compute their associated angle θ0 “ argpψi,jq.
Note that there are 8λpn, kq couples in Sλpn,kqpn, kq (see Figure 1). After computing the first
angle θ0, we proceed to compute the other angles θ1, θ2, ¨ ¨ ¨ , θ8λpn,kq in the following way:

‚ After computing the angle θm, the next angle θ̃m`1 is computed as an argument of the
next value of ψ on the square Sλpn,kqpn, kq with anticlockwise orientation (see figure
1).

‚ We set θm`1 :“ θ̃m`1 ` 2kπ with k “ argminlPZ|θ̃m`1 ´ θm ` 2πl|.

Eventually, index of the vortex pn, kq is equal to pθ8λpn,kq ´ θ0q{2π.

Figure 1. Sλpn, kq with angles θ0 to θ8λ.
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4.2. Indices of the vortex sheets. In this section, we introduce an algorithm that we
developed for the computation of the index along a vortex sheet of a minimizer of the discrete
energy functional defined in (6) under the constraints (7) using the minimization method
described in Section 3. Let us note that this algorithm requires some input from a human
being at some point. This algorithm is used in Section 5.

The algorithm relies on 5 main steps. It uses 3 numerical values: m ď M (close to 1{2)
and a small tol3 ą 0. The first step consists in identifying the contours of the vortex sheets.
The second step splits these contours into discrete connex curves. The third step requires
a human being to decide whether each contour should be discarded or merged with another
one. The fourth step sorts the optimized contours, and provides them with an orientation.
The fifth and last step computes each vortex sheet’s index alongside its contour.

(A) An example of the contours detected after
the first part of the first step of the contour
detection algorithm.

(B) An example of the connex curves obtained
at the end of the first step of the contour de-
tection algorithm.

Figure 2. An example of the contours detected after the first step of the
contour detection algorithm (m “ 0.4, M “ 0.6, and tol3 “ 0.3). We display
just a part of the minimizer obtained in Fig 18A.

Step 1: The contour of a vortex sheet in either of the components of the condensate consists
in a region where the squared modulus of the minimizer moves fast from 0 to 1 “ max ρ (or the
other way around). The first step consists in finding regions on the discrete square r´L,Ls2

where this occurs. We identify, for each component ψℓ, the coordinates on the grid for the
values |ψℓ|2 between m and M . Next, we add the grid coordinates close to the circle BD,
of which we retain only the coordinates where |ψℓ|2 ď tol3. These grid points constitute the
union of potential contours of vortex sheets (see Figure 2A for an example). Let us sort these
points, to ease the search for connex components in contours in the next step. Let us note K
the set of coordinates we have found so far. We are looking for a union of connex curves that
describe the borders of each vortex sheet. Each curve can be determined with as many points
as we want, but we want to avoid taking too many points per curve. Therefore, we limit the
number of neighbours to any point on the curve to 3. For each grid point of coordinates pi, jq,
we denote by S1pi, jq the set of its neighbours. For all grid point pi, jq P K, we act as follows:

(1) If pi, jq has no neighbours, we just remove it from the set K.
(2) If pi, jq has 1 neighbour, we add to the set K a couple pi1, j1q R K verifying

pi1, j1q “ argminpn,kqPS1pi,jq

ˇ

ˇ|ψi,j |
2 ´ |ψn,k|2

ˇ

ˇ.
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(3) If pi, jq has 2 or 3 neighbours, we do nothing.
(4) If pi, jq has at least 4 neighbours, we remove the couple pi1, j1q from K verifying:

pi1, j1q “ argmaxpn,kqPS1pi,jqXK
ˇ

ˇ|ψi,j |
2 ´ |ψn,k|2

ˇ

ˇ,

and we repeat this step until we are left with only 3 neighbours.

At this point, we have detected a union of different curves defining the borders of the vortex
sheets. An example if displayed in Fig 2B. Our next step is to separate the connex components
in K, to categorize the different sheets (since each minimizer can have more than one vortex
sheet).

(A) After Step 3: We can use a different
colour of each contour (the colour changes
with p).

(B) After Step 4: We can use color shading
to show the anticlockwise orientation of each
contour.

Figure 3. An example of the contours detected and orientated by the contour
detection algorithm after the third and fourth steps.

Step 2: We partition K into the union of a finite number of contours Kp corresponding to

connex curves. We start with p “ 1. At the pth vortex sheet, we create dynamically a new
list Kp “ H. We start by adding to Kp a grid point at random from the list K and we remove
it from K. Then, we add all of its neighbours one by one to Kp and we remove them from K.
We repeat this until we are left with no neighbours in K to all the grid points in Kp. Then,
as long as there are points in K, we increase p to p` 1 and restart this step again until K is
empty.

Step 3: After dividing the contours of the vortex sheets into discrete connex curves Kp, we
allow for human intervention. First, a human being decides if each Kp should be considered
or ignored. Second, a human being decides whether couples of two discrete connex curves Kp

and Kp1 should be merged or not. To merge two discrete connex curves Kp and Kp1 , we follow
these steps. First, we search for the closest two couples pn, kq and pn1, k1q from Kq and Kq1

(using the usual distance in R2) and we compute their middle pi1, j1q “ ptn`n1

2 u, tk`k1

2 uq. If this
middle has neighbours in both categories, we merge them into a new set Kq Y Kq1 Y pi1, j1q.
Otherwise, we repeat once the same process between Kq Y tpi1, j1qu and Kq1 Y tpi1, j1qu. In the
end, we are left with different categories for different vortex sheet’s contours. An example of
what we obtain after Step 3 is displayed in Fig 3A.

Step 4: We build, from each set Kp a list of grid points corresponding to an anticlockwise

path along the countour of the pth vortex sheet. We proceed in the following way:
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(1) For each list Kp, we compute it’s barycenter. We choose our starting couple from Kp

as one with a close x-axis coordinate to that of the barycenter and with the biggest
y-axis coordinate. We add this to our new list Ksort

p .

(2) While the last point and the first point of Ksort
p are not neighbours:

(a) Out of all the neighbours in Kp to the last grid point we added to Ksort
p , we choose

one and prioritize the anticlockwise direction. Then, we remove this grid point
from Kp.

(b) If we don’t find any neighbour to the last grid point we added do Ksort
p , we delete

this grid point from Ksort
p and from Kp. Next, we return to the last grid point

we added to Kp before that and we repeat the previous step.
(3) If the length of Ksort

p is less than 70% of the original size of Kp, then we delete the

last grid point added from Ksort
p and from Kp. Next, we return to the (new) last grid

point we added to Ksort
p before that and we repeat the second point from Step 4. If

the length of Ksort
p exceeds 70% of the original size of Kp, then we stop the algorithm.

An example of what we obtain after Step 4 is displayed in Fig 3B.

Remark 4. In the third point of step 4, we choose as criterion 70% arbitrarily. Other choices
can be made as long as it is strictly bigger than 50%. If we choose a too high value, then the
algorithm could be so constrained that it might not give a proper result.

Step 5: We compute the indices of each vortex sheet contour detected Ksort
p . The algorithm

is similar to the last step in Section 4.1 with the list Ksort
p instead of Sλpn,kqpn, kq.

Remark 5 (Computation of the index of a giant hole). For an estimation of the index of a
giant hole, we first estimate its radius numerically. The algorithm goes as follows. We are
given integers l0 ě 1 and m0 ąą 1 and a tolerance parameter tol4 ą 0. We choose tol4 “ 0.1
in all the numerical experiments. For l P t0, ¨ ¨ ¨ , l0u, we choose rl ą 0 a possible radius for
the giant hole in such a way that l ÞÑ rl is increasing, r0 is too small a radius and rl0 is too
big a radius. For m P t0, ¨ ¨ ¨ ,m0u, we set θm “ 2πm

m0
. Let ψ be a minimizer with a giant hole.

Starting from l “ 0 and as long as l ď l0, we compute successively

βl “

m0´1
ď

m“0

˜˜

argmin
nPt1,¨¨¨ ,Nu

|xn ´ rl cospθmq|

¸

ˆ

˜

argmin
kPt1,¨¨¨ ,Nu

|yk ´ rl cospθmq|

¸¸

.

If max
pn,kqPβl

|ψn,k|2 ą tol4, then we stop the algorithm and we will use rl and βl for the computa-

tion of the index. Otherwise we repeat this step with l “ l ` 1. Finally, to compute the index
of the giant hole, we use the last step of Section 4.1 with βl instead of Sλpn,kqpn, kq.

5. Numerical results

This section is devoted to the numerical experiments carried out using the EPG minimiza-
tion method introduced in Section 3 and the post-processing algorithms described in Section 4
for the detection of structures and the computation of the indices. In Section 5.1, we consider
a one component Bose–Einstein condensate in strong confinement and rotation, in connection
with the theoretical results of Section 2.2.1. In Section 5.2, we consider a two components
Bose–Einstein condensate in a strong confinement regime in the segregation case, without ro-
tation. This allows to connect with the theoretical results of Section 2.2.2. In Section 5.3, we
consider a two components Bose–Einstein condensate with strong confinement and rotation
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in the segregation case. This allows to connect with the theoretical results of Section 2.2.2.
Last, in Section 5.4, we consider a two components Bose–Einstein condensate with strong
confinement and rotation in the coexistence case. This allows for connection with theoretical
conjectures of Section 2.2.3.

5.1. One component condensate with rotation. The goal of this section is to illustrate
numerically the theoretical results described in Section 2.2.1. These results identify four
different regimes for the behavior of the one component Bose–Einstein condensate depending
on how big Ωε is as ε tends to zero. These four regimes are separated by three characteristic
rotational speeds Ωi

ε, i “ 1, 2, 3 (see (5)). We introduce below the parameters we use for all
the one component simulations. Then, we explain how we identify the four different regimes
numerically. We conclude with numerical simulations for small ε in each of the four regimes.

5.1.1. Parameters used for the one component simulations. For all the one component simu-
lations, we consider the following parameters. The confinement is defined by the function

(12) ρpx, yq “ minr1, 10pR2 ´ x2 ´ y2qs.

For the initial datum we choose, ψ0px, yq “ expp´10x2 ´ 10y2q{5. The square of computation
is of length 2L “ 14 and the radius of the disc D is R “ 4. We initialize the step size to
h “ 0.1 and we set h0 “ 10´12. For example, for N “ 256, we have M “ }

?
ρą0}2∆ „ 50.084.

5.1.2. Identification of the four regimes. In order to identify the four regimes, we proceed
as follows. First, we take ε “ 10´1 and we use the EPG algorithm described in Section
3.4 to compute minimizers of E∆

ε,δ for several rotational speeds. Then, we do the same for

ε “ 5 ˆ 10´2. Based on these many simulations, and the expressions (5), we estimate the
three critical values for the rotation speed which are shown in Figure 4. This provides us with
an estimation of the three critical values of the rotational speed when ε “ 10´2. Choosing
rotation speed between these 3 estimated critical values for ε “ 10´2, we manage to observe
the four different regimes, as detailed below.

Figure 4. Ω as a function of ε and the associated zones.
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5.1.3. Convergence test without rotation (Ωε “ 0). For N “ 128 points, we perform a con-
vergence analysis. For several values of ε between 10´2 and 100, we perform the gradient
algorithm described in Section 3.4 starting from ψ1,0 “

?
ρą0. We compute the residual

}|ψ1,m|2 ´ ρą0}∆ for the first index m ě 1 for which K∆ is beyond 10´0.0, 10´0.5, 10´1.0,
10´1.5, 10´2.0, 10´2.5, 10´3.0. Numerical results are displayed in Figure 5.

´2 ´1.5 ´1 ´0.5 0

´1

0

1

log10pεq

lo
g
1
0

`

}
|ψ

˚ ε
|2

´
pρ

q `
}
∆

˘

K∆
“ 100 K∆

“ 10´0.5

K∆
“ 10´1.0 K∆

“ 10´1.5

K∆
“ 10´2.0 K∆

“ 10´2.5

K∆
“ 10´3.0

Figure 5. Convergence test for the gradient method with N “ 128 for one
component without rotation.

In this simple case (one component without rotation), where the limit as ε tends to zero
of the minimizer is known, we observe numerically that K∆ “ 10´2 seems to be a good
criterion to stop the gradient algorithm when ε is between 10´2 and 10´1. Indeed, choosing
K∆ “ 10´2.5 or K∆ “ 10´3 does not improve the convergence dramatically when compared
with choosing K∆ “ 10´2 on this numerical experiment when ε is in the range of interest.

Therefore, in the numerical experiments below, even with several components or with
moderate rotation (Ω “ Op1{εq), we adopt K∆ “ 10´2 as a criterion to stop the algorithm.

5.1.4. Small rotational speed (Ωε ă Ω1
ε). We consider the case of no rotation (Ω “ 0) and

strong confinement (ε “ 10´2). We set the number of points in the x-axis and y-axis to
N “ 512. The gradient descent algorithm converged due to the stopping criterion K∆ (see
(11)) which has a value of 10´2. The results are shown in Figure 6. As we can see, there are
no vortices in the numerical minimizer. This is in accordance with the theory presented in
section 2.2.1 (first case Ω ă Ω1

ε). Moreover the squared modulus of a minimizer converges to
the non-negative part of the function ρ when ε tends to 0, as illustrated in Figure 7.

Figure 7 numerically illustrates the convergence of the squared modulus of a minimizer for
the energy E∆

ε to the non-negative part or ρ when ε tends to 0 at fixed rotation speed Ω “ 0.

5.1.5. Moderate rotational speed (Ω1
ε ă Ωε ă Ω2

ε). We consider the case of a moderate rotation
speed (Ω “ 20) and strong confinement (ε “ 10´2), according to Figure 4. First, we compute
a minimizer with N “ 512. Then, we interpolate its real and imaginary parts and compute
another minimizer with N “ 1024. The EPG method converged due to the stopping criterion
K∆ which has a value of 5 ˆ 10´2. We compute numerically the indices of the vortices using
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(A) The graph of the non-negative part of ρ. (B) The squared modulus of a minimizer.

Figure 6. Comparison between the non-negative part of ρ (figure (A)) and
the squared modulus of a minimizer for the energy E∆

ε (figure (B)) with no
rotation (Ω “ 0) and strong confinement (ε “ 10´2) computed with N “ 512
and K∆ “ 10´2.

Figure 7. Comparison of ρ and the squared modulus of a minimizer when
ε “ 0.1 and ε “ 0.01 along the y-axis.

the algorithm described in Section 4.1. The results are shown in Figure 8. As we can see,
there are several vortices in the numerical minimizer and there is no sign of a giant hole
in the center. The numerical index of most of the numerical vortices is equal to one. This
validates numerically that most zeros of the wave function have a phase circulation. This is
in accordance with the second case of the theory presented in Section 2.2.1.

In another simulation, we consider the case of a moderate yet higher rotation speed (Ω “ 30)
and strong confinement (ε “ 10´2). Once again, we use an interpolation from N “ 512 to
N “ 1024. In this simulation, the EPG algorithm converged due to the stopping criterion
K∆ which has a value of 5 ˆ 10´2. We also compute the indices of the vortices numerically
using the algorithm described in Section 4.1. The results are shown in Figure 9. As we can
see, there are vortices in the numerical minimizer and there is a dark disk in the center (not
present in Figure 8) which indicates that we are close to the limit between zone 2 and zone
3 as predicted in Figure 4. The numerical index of most of the numerical vortices is equal to
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Figure 8. The squared modulus of a minimizer for Ω “ 20, ε “ 10´2. In the
right panel, the numerical computation of the indices of the vortices is carried
out with Nmin “ 1, Nmax “ 3, tol1 “ 0.1 and tol2 “ 0.05.

one. This validates numerically that most zeros of the wave function have a phase circulation.
This is in accordance with the theory presented in Section 2.2.1.

Figure 9. The squared modulus of a minimizer for Ω “ 30, ε “ 10´2. In the
right panel, the numerical computation of the indices of the vortices is carried
out with Nmin “ 1, Nmax “ 3, tol1 “ 0.05 and tol2 “ 0.02.

5.1.6. Big rotational speed (Ω2
ε ă Ωε ă Ω3

ε). We consider the case of a fairly high rotation
speed (Ω “ 40) and strong confinement (ε “ 10´2) in accordance with the regimes obtained
in Figure 4. This simulation is carried out with N “ 1024. The EPG algorithm converged
due to the stopping criterion K∆ ď 5ˆ10´2. The results are shown in Figure 10A. As we can
see, there is a giant hole in the center, surrounded by vortices on an annulus in the numerical
minimizer. This is due to the centrifugal force coming into play with the fairly high rotation
speed and is in accordance with the theory presented in section 2.2.1.

In Figures 10B and 10C, we compute the indices of the vortices of the numerical minimizer
displayed in Figure 10A. First, in Figure 10B, we compute the indices of the vortices in the
annulus using the algorithm described in Section 4.1. Then, in Figure 10C, we compute
the index of the giant hole (see Remark 5). The numerical parameters are indicated in the
captions. As we can see, all the indices of the numerical vortices in Figure 10B around the
giant hole are equal to one which validates numerically that almost all the zeros of the wave
function have a phase circulation. In Figure 10C, the index of the giant hole is equal to 100.
This is in accordance with the theory presented in section 2.2.1.
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(A) The squared modulus of a
minimizer.

(B) The vortices’ indices of a
minimizer.

(C) The index of the giant
hole of a minimizer.

Figure 10. The squared modulus (A) of a minimizer of the energy for Ω “ 40
and ε “ 10´2. The vortices’ indices of a minimizer (B) detected withNmin “ 1,
Nmax “ 3, tol1 “ 0.05 and tol2 “ 0.02. The giant hole’s index (C) with
r “ 1.523 (see remark 5).

5.1.7. Huge rotational speed (Ω3
ε ă Ωε). We consider the case of a huge rotation speed (Ω “

70) and strong confinement (ε “ 10´2). Once again, we use an interpolation from N “ 512
to N “ 1024. The EPG algorithm converged due to the stopping criterion K∆ ď 5 ˆ 10´2.
The results are shown in Figure 11A. As we can see, the giant hole in the center is now
bigger, surrounded by less vortices on the annulus of the numerical minimizer than before.
This is due to the centrifugal force coming into play with a very high rotation speed and is
in accordance with the theory presented in section 2.2.1 (fourth case Ω3

ε ă Ω).
In Figures 11B and 11C, we compute the indices of the vortices of the numerical minimizer

displayed in Figure 11A. First, in Figure 11B, we compute the indices of the vortices in the
annulus using the algorithm of Section 4.1. Then, in Figure 11C, we compute the index of
the giant hole (see Remark 5). As we can see, most of the indices of the numerical vortices
in Figure 11B around the giant hole are equal to one, which validates numerically that most
of the zeros of the function have a phase circulation. The index of the giant hole is equal to
522 (see Figure 11C). This is in accordance with the theory presented in section 2.2.1.

(A) The squared modulus of a
minimizer.

(B) The vortices’ indices of a
minimizer.

(C) The index of the giant
hole.

Figure 11. The squared modulus (A) of a minimizer of the energy for Ω “ 70,
ε “ 10´2. The vortices’ indices of a minimizer of the energy (B) detected with
Nmin “ 1, Nmax “ 3, tol1 “ 0.05 and tol2 “ 0.02. The index of the giant hole
(C) detected with r “ 2.85 (see Remark 5).
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5.2. Two components condensate without rotation (Ω “ 0). In this section, we move
on the theoretical results described in the first part of Section 2.2.2 that deal with two
components Bose–Einstein condensates, without rotation, in different (strong, moderate and
weak) segregation (δ ą 1) regimes.

5.2.1. Common numerical parameters. In this section, we use the following parameters. The
function ρ is the same as in (12). The physical parameters are ε “ 5 ˆ 10´2, N1 “ 0.55 and
N2 “ 0.45. The initial data are given by ψ1 “ ψ2 “ expp´10x2 ´ 10y2q{5. The discretization
parameters are L “ 7, R “ 4, N “ 256, h “ 0.1 and h0 “ 10´12. The stopping criterion value
for K∆ is set to 10´2.

Note that for the simulations of Figures 12 and 14), we started with the minimizers obtained
in Figure 13 as initial data.

5.2.2. The strong segregation regime: δε ˆ ε2 Ñ `8. We consider the case of strong segrega-
tion regime (δε “ 4000) and strong confinement so that δε ˆ ε2 “ 10. The results are shown
in Figure 12. As we can see in Figure 12A and 12B, the numerical support of the two compo-
nents tend to not overlap, thereby confirming that we are in the segregation regime. In Figure
12C, we can see that the sum of the squared modulus of the two components has a minimum
inside the disc (away from the boundary of the disc), with minpx,yqPD |ψ1˚|2 ` |ψ2˚|2 « 0.14.
This is in accordance with the theory presented in section 2.2.2.

(A) The squared modulus of
the first component.

(B) The squared modulus of
the second component.

(C) The sum of the squared
moduli of both components.

Figure 12. The squared modulus of the first component (A) and the second
component (B) for a minimizer in the case of two components condensate with
no rotation and δε “ 4000. Fig (C) displays their sum.

5.2.3. The moderate segregation regime: δ ą 1 fixed and small ε. We consider the case of
moderate segregation regime (δ “ 1.5) and strong confinement, still without rotation (Ω “ 0).
The results are shown in Figure 13. The results displayed in Figures 13A and 13B confirm
that we are in the segregation regime (δ ą 1). Figure 13C presents the sum of the two squared
moduli of the two components of the minimizer. We can see a white curve corresponding to
the separation between the two components with minpx,yqPD |ψ1˚|2 ` |ψ2˚|2 « 0.78. This is in
accordance with the theory presented in section 2.2.2 (second case with no rotation and fixed
δ ą 1).
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(A) The squared modulus of
the first component.

(B) The squared modulus of
the second component.

(C) The sum of the squared
moduli of both components.

Figure 13. The squared modulus of the first component (A) and of the second
component (B) for a minimizer in the case of two components condensate with
no rotation and δ “ 1.5. Their sum is displayed in Fig. (C).

5.2.4. The weak segregation regime: δε Ñ 1 with ε{
?
δε ´ 1 Ñ 0. We consider the case of

segregation regime (δε “ 1.02) and strong confinement, still without rotation (Ω “ 0). The
results are shown in Figure 14. Figures 14A and 14B confirm that we are still in the segregation
regime. In contrast to the two previous cases, we can see in figure 14C that the sum of the two
squared moduli does not present a seperation area between the components. Indeed, apart
from close to the boundary of the disc, the sum of the squared moduli is almost constant,
with an approximate value of 0.976. With the notations of Section 2.2.2, we have ε̃ “ 0.35
in this third simulation. The results are in accordance with the theory (third case with no
rotation, δε close to 1 and ε̃ close to 0 in Section 2.2.2).

(A) The squared modulus of
the first component.

(B) The squared modulus of
the second component.

(C) The sum of the squared
moduli of both components.

Figure 14. The squared modulus of the first component (A) and the second
component (B) for a minimizer in the case of two components condensate with
no rotation and δε “ 1.02. Their sum is displayed in (C).

5.3. Two components condensate with rotation (Ω ‰ 0) in the segregation regime.
In this section, we consider physical parameters related to the theoretical results described in
the second part of Section 2.2.2, that deal with two components Bose–Einstein condensates,
in the segregation regime (δ ą 1), with rotation.

5.3.1. Common parameters. In this section, we use the following parameters. The function
ρ is the same as in (12). The physical parameters are ε “ 10´2, δε “ 1 ` ε “ 1.01 (so
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that ε̃ “
?
ε “ 0.1), N1 “ 0.55 and N2 “ 0.45. The initial data are given by ψ1 “ ψ2 “

expp´10x2 ´ 10y2q{5. The discretization parameters are L “ 7, R “ 4, h “ 0.1 and h0 “

10´12. All the numerical results in this Section 5.3 are obtained by first minimizing the discrete
energy with N “ 256, then interpolating the real and imaginary parts of each component to a
grid of N “ 512 points in each direction, then minimizing the corresponding discrete energy.
For all the experiments in this section, the EPG algorithm of Section 3.2 converged because
of the stopping criterion on K∆, with a value less or equal to 2.0 ˆ 10´2.

These parameters correspond to the segregation regime (δ greater yet close to 1) and
ε ăă ε̃. We consider the cases Ω P t1, 3, 6, 15u.

5.3.2. Low rotation case: Ω “ 1. We first consider the case of low rotation and strong con-
finement. The results are shown in Figure 15. The numerical experiment confirms that we
are in a segregation regime (since δ ą 1) and the two components of the minimizer tend to
not overlap. Moreover, the small rotation speed (Ω “ 1) is not big enough to produce vortices
in the minimizer. This is in accordance with the theory presented in section 2.2.2 (first bullet
point in the rotational case).

(A) The squared modulus of the first com-
ponent.

(B) The squared modulus of the second
component.

Figure 15. The squared modulus of the first component (A) and the second
component (B) for a minimizer in the case of two components condensate with
low rotation Ω “ 1 in the segregation regime.

5.3.3. Moderate rotation case: Ω “ 3. We consider the case of moderate rotation speed and
strong confinement. The results are shown in Figure 16. The numerical experiment shows
that segregation holds, and the moderate rotation speed is big enough to produce singly
quantized vortices in one of the components of the numerical minimizer (see Fig. 16C).
This is in accordance with the theory presented in section 2.2.2 (second bullet point of the
rotational case).

5.3.4. Average rotation case: Ω “ 6. We consider the case of average rotation speed and
strong confinement. The results are shown in Figures 17. Numerically, the experiment yields
vortices in both components of the numerical minimizer, since the rotation is more important
than in the two previous experiments. Moreover, the computation of the indices of the vortices
in both components of the minimizer, using the algorithm described in Section 4.1, shows that
the vortices are singly quantized (Fig. 17C and 17D). This is in accordance with the theory
presented in section 2.2.2 (second bullet point of the rotational case).
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(A) The squared modulus of
the first component.

(B) The squared modulus of
the second component.

(C) The vortices’ indices of
the second component of a
minimizer for the energy de-
tected withNmin “ 1, Nmax “

5, tol1 “ 0.05 and tol2 “ 0.02.

Figure 16. The squared modulus of the first component (A) and the second
component (B) of a minimizer in the case of two components condensate with
moderate rotation Ω “ 3. The vortices’ indices of the second component are
presented in Fig. (C).

5.3.5. High rotation case: Ω “ 15. We consider the case of high rotation velocity and strong
confinement. The results are shown in Figures 18. The numerical experiment shows that we
still are in a segregation regime, since the supports of the minimizers tend to not overlap.
Moreover, the rotation speed is sufficiently big to observe numerically the formation of vortex
sheets in each component of the minimizer. This is in accordance with the theory presented
in section 2.2.2 (last bullet point of the rotational case). The computation of the indices of
the vortex sheets is carried out using the algorithm described in Section 4.2, with m “ 0.4,
M “ 0.6 and tol3 “ 0.3 in each component of the numerical minimizer. The computed indices
of the vortex sheets are positive, which validates numerically the existence of vortex sheets
with a phase circulation when δε Ñ 1 and ε̃ Ñ 0, which was conjectured in [3] (see also
Section 2.2.2).

5.4. Two components condensate in the coexistence regime δ ă 1. In this section,
we consider the numerical behavior of two components Bose–Einstein condensates in the
coexistence regime (δ ă 1) as ε Ñ 0. As mentioned in 2.2.2, depending on the value of δ and
Ω, we expect four different qualitative behaviours for the minimizers.

5.4.1. Common parameters. In this section, we use the following parameters. The function ρ
is the same as in (12). The physical parameters are ε “ 5 ˆ 10´2, N1 “ 0.55 and N2 “ 0.45.
The discretization parameters are L “ 7, R “ 4, h “ 0.1 and h0 “ 10´12. All the numerical
results in this Section 5.3 are obtained by first minimizing the discrete energy with N “ 128,
then interpolating the real and imaginary parts of each component to a grid of N “ 256 points
in each direction, then minimizing the corresponding discrete energy. For all the experiments
in this section, the EPG algorithm of Section 3.2 converged because of the stopping criterion
on K∆, with a value less or equal to 10´2. These parameters correspond to the coexistence
regime (δ ă 1).

Remark 6. When minimizing E∆
ε,δ with high rotation speed Ω, giant holes are created in

some of the next simulations. To circumvent this, from now on, we will refer to a discrete



24 G. DUJARDIN, I. LACROIX-VIOLET, AND A. NAHAS

(A) The squared modulus of the first compo-
nent.

(B) The squared modulus of the second com-
ponent.

(C) The vortices’ indices of the first compo-
nent.

(D) The vortices’ indices of the second com-
ponent.

Figure 17. The squared modulus of the first component (A) and the sec-
ond component (B) of a minimizer in the case of two components condensate
with moderate rotation Ω “ 6. The vortices’ indices of the first and second
component are presented in Fig. (C) and (D) (respectively) with Nmin “ 1,
Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.02.

analogue of EΩ
ε,δ (the energy with the centrifugal force) as E∆

ε,δ. Of course, E∆
ε,δ still denotes

the discrete energy without the centrifugal force. See Remark 1.

5.4.2. No vortices. We first consider the case of no rotation (Ω “ 0), strong confinement and
weak interaction strength δ “ 0.9 (i.e. 1 ´ δ “ 0.1).

We start with a symmetric numerical initial datum corresponding to that of Section 5.2.1.
The results are shown in Figure 19. The numerical experiment confirms that we are in a
coexistence regime since the two components of the minimizer are disk-shaped, with almost
constant moduli away from the boundary, with similar (hence overlapping) supports. Of
course, the values of the constant moduli for ψ1 and ψ2 depend on the values of N1 and N2.
This is in accordance with the theory presented in Section 2.2.3.

5.4.3. Triangular vortex lattices. In this section, we consider the case of strong interaction
strength (δ “ 0.2, i.e. 1 ´ δ “ 0.8) and high rotation pΩ “ 7q. In order to break off the
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(A) The squared modulus of the first compo-
nent.

(B) The squared modulus of the second com-
ponent.

(C) The vortex sheet’s indices of the first com-
ponent.

(D) The vortex sheets’ indices of the second
component.

Figure 18. The squared modulus of the first component (A) and the second
component (B) of a minimizer in the case of two components condensate with
high rotation Ω “ 15. The vortex sheets’ indices of the first and second
component are presented in Fig. (C) and (D) (respectively) with m “ 0.4,
M “ 0.6 and tol3 “ 0.3.

symmetry, we choose a decentered initial datum, given by

ψ1px, yq “
1

5
expp´10px´ 0.5q2 ´ 10py ` 0.3q2q,

ψ2px, yq “
1

5
expp´10px` 0.7q2 ´ 10py ´ 0.1q2q.(13)

The results are shown in Figure 20. The numerical minimizer is consistent with the coex-
istence regime, and the high rotation is big enough to produce singly quantized vortices in
both components forming a triangular vortex lattice. This is in accordance with the second
behaviour in the theory presented in Section 2.2.3.

5.4.4. Square vortex lattices. In this section, we consider the case of weak interaction strength
(δ “ 0.8, i.e. 1 ´ δ “ 0.2) and high rotation (Ω “ 8). We use the same non-symmetric initial
data as before (see Equation 13). The results are shown in Figure 21. Numerically, the
minimizer confirms that we are in a coexistence regime, and the weak interaction strength
with the high rotation produce a square vortex lattice with singly quantized vortices in both
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(A) The squared modulus of the first compo-
nent.

(B) The squared modulus of the second com-
ponent.

Figure 19. The squared modulus of the first component (A) and of the second
component (B) of a minimizer of the energy E∆

ε,δ, in the case of no rotation

(Ω “ 0) and weak interaction strength (δ “ 0.9).

(A) The vortices indexes of the first compo-
nent.

(B) The vortices indexes of the second com-
ponent.

Figure 20. The vortices’ indices of the first component (A) and second com-
ponent (B) in the case of a two components condensate with high rotation
(Ω “ 7) and strong interaction strength (δ “ 0.2) for the energy E∆

ε,δ followed
by red lines highlighting the triangular lattices.

components of the minimizer. This is in accordance with the third behavior in the theory
presented in Section 2.2.3.

5.4.5. Double core and Stripe vortex lattice. In this last section, we fix δ close to 1, and we
hope to observe either stripe vortex lattices or double core vortex lattices in the minimizers,
depending on the rotational speed Ω.

In a first simulation, we use (13) as an initial datum as before. We consider the case of
fairly high rotation speed (Ω “ 4) and weak interaction strength (δ “ 0.998). The numerical
results obtained are displayed in Figure 22. They confirm that we are in a coexistence regime
where each component is disk-shaped. Indeed, in both components, the points inside the disk
of radius R where the modulus of the minimizer is very small are isolated, and there is at
least a bit of mass in each component in all the rest of the disk. This contrasts for example
with all the numerical experiments carried out in the segregation regime (see Section 5.3).
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(A) The vortices’ indices of the first compo-
nent.

(B) The vortices’ indices of the second com-
ponent.

Figure 21. The vortices’ indices of the first component (A) and second com-
ponent (B) in the case of a two components condensate with high rotation
(Ω “ 8) and weak interaction strength (δ “ 0.8) for the energy E∆

ε,δ followed
by red lines highlighting the square lattice.

We compute the index of the detected vortices, and we display the results in Figure 22 as
well. As expected, almost all the vortices are paired up 2 by 2, forming double-core vortices.
Moreover, almost all the indices of the numerical vortices are equal to one, which validates
numerically that the zeros of the function have a non-trivial and singly quantized phase
circulation. The only exception is one vortex in the first component (see Figure 22A) which
has an index of 2. An explanation for this is that it consists in two vortices that are too close
to each other, and hence cannot be detected as two different vortices by our vortex detection
algorithm (see Section 4.1). This is in accordance with the last behaviour predicted by the
theory presented in Section 5.4.

(A) The squared modulus and the vortices’
indices of the first component for Nmin “ 3,
Nmax “ 4.

(B) The squared modulus and the vortices’
indices of the second component for Nmin “ 1,
Nmax “ 4.

Figure 22. The squared modulus of the first component (A) and the second
component (B) of a minimizer (in the case of double-core pattern) for the
energy E∆

ε,δ with Ω “ 4 and δ “ 0.995. The vortices’ indices of each component

are also presented in (A) and (B) (respectively) for tol1 “ 0.05 and tol2 “ 0.01.
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In a second simulation, we use the following initial datum ψ1
n,k “ ψ2

n,k “ sinpxn,k`yn,kq, still

with the convention that ψ1 and ψ2 satisfy the Dirichlet boundary conditions. We consider
the case of fairly high rotation speed (Ω “ 5) and weak interaction strength (δ “ 0.98). The
results are shown in Figure 23.

(A) The squared modulus and the vortices’
indices of the first component for Nmin “ 1,
Nmax “ 3.

(B) The squared modulus and the vortices’
indices of the second component for Nmin “ 1,
Nmax “ 4.

Figure 23. The squared modulus of the first component (A) and the second
component (B) of a minimizer (in the case of stripe pattern) for the energy
E∆
ε,δ with Ω “ 5 and δ “ 0.98. The vortices’ indices of each component are

also presented in (A) and (B) (respectively) for tol1 “ 0.05 and tol2 “ 0.01.

The numerical results confirm that we are in the coexistence regime, where each component
is disk-shaped. In Figure 23, we also compute and display the index of the vortices detected.
As expected, almost all the indices of the numerical vortices are equal to 1, which validates
numerically that the zeros of the function have a non-trivial and singly-quantized phase
circulation. An explanation for the two exceptions (doubly-quantized vortices in the second
component displayed in Figure 23B) is once again that our algorithm simply fails to detect
two separate vortices. Moreover, we can see a stripe pattern in both components (Figures
23A and 23B). This is in accordance with the last behaviour in the theory presented in 5.4.

6. Comparison with GPELab

In this section, we study the efficiency of the EPG method introduced in Section 3 compared
to that of GPELab’s method (see [5, 7]) for minimizing the energy E∆

ε,δ. At first sight, the
EPG method is explicit whereas GPELab’s method solves a linear system at each time step.
The time step is denoted by ∆t in GPELab, while we denote it by h in this paper. We
display for each comparison test three convergence criteria (see below) as well as the number
of iterations, the energy and the execution time. Let ψn denote the nth iteration using either
EPG or GPELab’s algorithm. We consider and compute the following three convergence
criteria:

(1) The difference between two successive iterations }ψn ´ ψn´1}28,
(2) The criterion K∆ that we developed (see Section 3.3),
(3) The energy evolution |E∆

ε,δpψnq ´ E∆
ε,δpψn´1q|.

Even though we compute all these quantities in all the numerical experiments in this Section,
we use as a stopping criterion the first criterion above (which is native in the code) for
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GPELab’s method, and the first two criteria for the EPG method (in contrast to the previous
numerical simulations of Section 5 where only the criterion on K∆ is used). For each test
case, we compute the final value of the three criteria and we compare them.

Remark 7. The energy computed by GPELab’s method is different from the one given in
(2). The continuous GPELab’s energy reads as follows (see [5, 7] for more details):

EGPEpu1, u2q “

ż

D

2
ÿ

ℓ“1

„

1

2
|∇uℓ|2 ` Vℓ|uℓ|

2 ´ Ωu˚
ℓLzuℓ

ȷ

`

ż

D
u˚β

2
Fu,

where Vℓ “ ´
ρ
2ε2

is the confinement function associated to component number ℓ, β “ 1
2ε2

is
the intra-component interaction, u˚ is defined as pĎu1,Ďu2q, the matrix F is given by

F “

ˆ

β1,1|u1|2 ` β1,2|u2|2 0
0 β2,1|u1|2 ` β2,2|u2|2

˙

,

where

ˆ

β1,1 β1,2
β2,1 β2,2

˙

“

ˆ

1 δ
δ 1

˙

, and the rotation operator is defined by Lz “ ´i
`

xBx ´ yBx
˘

.

The relation between the discrete analogue to EGPE and E∆
ε,δ (see (6)) is the following:

E∆
GPE “ E∆

ε,δ ´
δxδy
4ε2

N
ÿ

n“0

K
ÿ

k“0

`

ρ2n,k
˘

ρą0
.

Observe that the difference between the two energies does not depend on u “ pu1, u2q.
In the case of one component condensate (by taking u2 ” 0), we take β1,1 “ 1 and β1,2 “

β2,1 “ β2,2 “ 0, so that the last term of EGPE reads
ş

D u
˚ β
2Fu “

ş

D
β
2 |u1|4.

6.1. One component comparison. In this Section, we consider a one component Bose–
Einstein condensate. We compare both algorithms (GPELab’s method and EPG) on the
same computer. Each test is done separately.

6.1.1. Parameters for the EPG method. We take the following parameters for all the tests.
The function ρ is the same as before (see (12)). We take ε “ 5ˆ 10´2. For the initial datum,
we choose ψ1 “ 1

5 expp´10x2 ´ 10y2q. For the discretization parameters, we take the initial

step h “ 0.256, the tolerance h0 “ 10´12, the length of the box 2L “ 14, the radius of the disk
R “ 4, the species ratios N1 “ 1 and N2 “ 0, the number of points per direction N “ 256
and the convergence tolerance K0 “ 10´2.

6.1.2. Parameters for GPELab’s method. The equivalent of these parameters in GPELab
(with the notations of [5, 7]) are

‚ Ncomponents“ 1,
‚ Type=’BESP’ (for Backward Euler pseudoSPectral scheme),
‚ Delta“ 0.5 (the coefficient in front of the kinetic energy),
‚ Beta“ 200, which corresponds to 1

2ε2
for ε “ 0.05,

‚ V px, yq “ ´ 1
2ε2

minr1, 10pR2 ´ x2 ´ y2qs (we had to add our own function),

‚ Initial datum: ψ1 “ 1
5 expp´10x2 ´ 10y2q (we had to add it too),

‚ xmin “ ymin “ ´7 and xmax “ ymax “ 7.

We had to modify the normalization step after each time step ∆t.
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6.1.3. Numerical results. The GPELab algorithm converges whenever the infinity norm of the
difference between two successive iterations is less than a certain value G0 “ ∆t ˆ Stop crit.
It stops without convergence if the number of iterations done exceeds 106. In this Section,
the EPG method converges if either one of the following statements is true: at an iteration
step n, }ψ1

n ´ ψ1
n´1}8 ă G0 or K∆ ă K0.

For a first comparison, we set the rotation speed to Ω “ 1. We also set ∆t “ 2 ˆ 10´3

and Stop crit“ 10´2 so that G0 “ 2 ˆ 10´5. We display the results in Figure 24. For a
second comparison, we set the rotation speed to Ω “ 3. We also set ∆t “ 2 ˆ 10´3 and
Stop crit“ 10´2 so that G0 “ 2 ˆ 10´5. We display the results in Figure 25. For a third
and final comparison, we set the rotation speed to Ω “ 6. We also set ∆t “ 10´3 and
Stop crit“ 10´2 so that G0 “ 10´5. The results are displayed in Figure 26.

(A) A minimizer of the energy E∆
ε using the

EPG method.
(B) A minimizer of the energy EGPE using the
GPELab method.

E∆
ε,δ G0 K∆ # of iterations E∆

ε,δpunq ´ E∆
ε,δpun´1q Time (s)

GPELab 38 2 ˆ 10´5 0.579 129569 ´1.4 ˆ 10´5 95 189
EPG 83 2 ˆ 10´5 0.011 271041 ´4.5 ˆ 10´5 24 688

Figure 24. Comparison between GPELab and EPG results for Ω “ 1.

The numerical results displayed in Figures 24, 25 and 26 show that the methods may
converge to different minimizers, with different energies (see Figure 24), as well as they may
converge to similar minimizers with similar energies (see Figure 26), taking into account
suitable rescaling of the discrete energies (as indicated in Remark 7). Moreover, the qualitative
behaviour of both methods is correct in the sense that higher rotations end up in creating
more vortices, and the beginning of a central hole when Ω “ 6 (see Figure 26). Note that the
EPG method uses more interations in all cases. However, since the EPG method is explicit
and the GPELab method is linearly implicit, the EPG method is faster in all cases. The
order of magnitude of the speed up is 3. Finally, the stopping criterion K∆ is much smaller
in minimizers obtained by EPG than in that computed using GPELab.

6.2. Two components comparison. In this section, we consider two components Bose–
Einstein condensates. We also compare both algorithms on the same computer. Each test is
done separately.

6.2.1. Parameters for the EPG method. We take the following parameters for all the tests.
We take ε “ 5 ˆ 10´2. For the initial datum, we choose ψ1 “ ψ2 “ 1

5 expp´10x2 ´ 10y2q.
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(A) A minimizer of the energy E∆
ε using the

EPG method.
(B) A minimizer of the energy EGPE using the
GPELab method.

E∆
ε,δ G0 K∆ # of iterations E∆

ε,δpunq ´ E∆
ε,δpun´1q Time(s)

GPELab ´1419 2 ˆ 10´5 0.05 56507 ´1.3 ˆ 10´5 60 209
EPG ´1428 2.4 ˆ 10´5 0.01 182346 ´3.5 ˆ 10´5 16 609

Figure 25. Comparison between GPELab and EPG results for Ω “ 3.

(A) A minimizer of the energy E∆
ε using the

EPG method.
(B) A minimizer of the energy E∆

ε using the
GPELab method.

E∆
ε,δ G0 K∆ # of iterations E∆

ε,δpunq ´ E∆
ε,δpun´1q Time(s)

GPELab ´7334 10´5 0.0699 224473 ´4.3 ˆ 10´4 199 321
EPG ´7338 5 ˆ 10´6 0.00578 707141 ´1.1 ˆ 10´5 64 942

Figure 26. Comparison between GPELab and EPG results for Ω “ 6.

For the discretization parameters we take the values N1 “ 0.55 and N2 “ 0.45, N “ 256 and
K0 “ 10´2. For the rest of the parameters, we refer to 6.1.1.

6.2.2. Parameters for GPELab’s method. The equivalent of these parameters in GPELab are

‚ Ncomponents“ 2,
‚ Type=’BESP’,
‚ Delta“ 0.5 (the coefficient in front of the kinetic energy),
‚ Beta“ 200,
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‚ Beta coupled“

ˆ

1 δ
δ 1

˙

,

‚ V px, yq “ ´ 1
2ε2

minr1, 10pR2 ´ x2 ´ y2qs (the same function created before),

‚ Initial datum: ψ1 “ ψ2 “ 1
5 expp´10x2 ´ 10y2q,

‚ ∆t “ 5 ˆ 10´4 and Stop crit“ 2 ˆ 10´2 (G0 “ 10´5),
‚ xmin “ ymin “ ´7 and xmax “ ymax “ 7.

We also had to modify the normalization step after each time step ∆t.

6.2.3. Numerical results. For a first comparison, we set the rotation speed to Ω “ 3 and
the interaction strength to δ “ 0.7 (coexistence). We display the results in Figure 27. For a
second comparison, we set the rotation speed to Ω “ 3 and the interaction strength to δ “ 1.5
(segregation). For the EPG method, to break off the symmetry, we chose the following initial
datum

ψ1 “
1

5
expp´10px´ 0.5q2 ´ 10py ` 0.2q2q, ψ2 “

1

5
expp´10px` 0.5q2 ´ 10py ´ 0.3q2q.

We display the results in Figure 28.
The results displayed in Figures 27 and 28 both indicate that the methods may converge

to different minimizers, even if their energies are similar (see Remark 7 for details on the
rescaling). The qualitative behaviour of both methods is correct in the sense that they
provide coexisting minimizers when δ “ 0.7 and segregated minimizers when δ “ 1.5. The
number of iterations in both methods has the same order of magnitude (the maximal ratio
is of order 2), in contrast to the one component simulations carried out in Section 6.1. The
EPG method is much faster in both cases: The order of magnitude of the speed up is 3 when
δ “ 0.7 and 25 when δ “ 1.5. Finally, the stopping criterion K∆ is much smaller in minimizers
obtained by EPG than in that computed using GPELab.

7. Conclusion

In this paper, we considered a Gross–Pitaevskii energy as a model for rotating one compo-
nent and two components Bose–Einstein condensates in two dimensions in a strong confine-
ment and strong rotation regime. First, we have introduced a discretization of this energy,
using the FFT scheme and Plancherel’s equality, which allowed a reasonable computation
of the energy gradients. Second, in contrast to the literature, we proposed a minimization
method for this discrete energy using an explicit L2 gradient method with projection (EPG).
This method allowed for the derivation of a stopping criterion. Third, we introduced two
post processing algorithms for the numerical minimizers. One is aimed for the single vortices
and the other for vortex sheets. Both allow to detect these structures and compute their
indices. Fourth, we have ran our methods and algorithms for different physical regimes from
one component condensates with high rotation to two components condensates in coexistence
and segregation regimes. This validates recent theoretical results as well as it supports con-
jectures (as for example the existence of vortex sheets in the segregation regime). Last, we
have compared the efficiency of the EPG method to that of the GPELab method [7]. On all
the numerical tests presented, EPG appears to be, roughly speaking, at least 3 times faster
than GPELab.
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(A) First component of a minimizer of the
energy E∆

ε using the EPG method.
(B) Second component of a minimizer of the
energy E∆

ε using the EPG method.

(C) First component of a minimizer of the
energy E∆

ε using the GPELab method.
(D) Second component of a minimizer of the
energy E∆

ε using the GPELab method.

E∆
ε,δ G0 K∆ # of iterations E∆

ε,δpunq ´ E∆
ε,δpun´1q Time(s)

GPELab ´2234 10´5 0.07 206833 ´2.3 ˆ 10´6 163 690
EGP ´2227 10´5 0.01 259383 ´2 ˆ 10´5 50 527

Figure 27. Comparison between GPELab and EPG results for Ω “ 3 and
δ “ 0.7.
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(B) Second component of a minimizer of the
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