N
N

N

HAL

open science

A numerical study of vortex nucleation in 2D rotating
Bose-Einstein condensates

Guillaume Dujardin, Ingrid Lacroix-Violet, Anthony Nahas

» To cite this version:

Guillaume Dujardin, Ingrid Lacroix-Violet, Anthony Nahas. A numerical study of vortex nucleation
in 2D rotating Bose-Einstein condensates. 2024. hal-03818063v2

HAL Id: hal-03818063
https://hal.science/hal-03818063v2

Preprint submitted on 11 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03818063v2
https://hal.archives-ouvertes.fr

A NUMERICAL STUDY OF VORTEX NUCLEATION IN 2D ROTATING
BOSE-EINSTEIN CONDENSATES

GUILLAUME DUJARDIN, INGRID LACROIX-VIOLET, AND ANTHONY NAHAS

ABSTRACT. This article implements a numerical method for the minimization under con-
straints of a discrete energy modeling multicomponents rotating Bose-Einstein condensates
in the regime of strong confinement and with rotation. Moreover, this method allows to
consider both segregation and coexistence regimes between the components. The method
includes a discretization of a continuous energy in space dimension 2 and a gradient algo-
rithm with adaptive time step and projection for the minimization. It is well known that,
depending on the regime, the minimizers may display different structures, sometimes with
vorticity (from singly quantized vortices, to vortex sheets and giant holes). The goal of this
paper is to study numerically the structures of the minimizers. In order to do so, we in-
troduce a numerical algorithm for the computation of the indices of the vortices, as well as
an algorithm for the computation of the indices of vortex sheets. Several computations are
carried out, to illustrate the efficiency of the method, to cover different physical cases, to
validate recent theoretical results as well as to support conjectures. Moreover, we compare
this method with an alternative method from the literature.

AMS Classification. 35Q40, 65N35, 65Z05.

Keywords. Bose-Einstein condensation, Gross—Pitaevkii energy, segregation and coexis-
tence regimes, minimization under constraints, gradient algorithm, vortex detection, vortex
quantization, numerical experiments.

1. INTRODUCTION

Bose-Einstein condensation was predicted by Satyendra Nath Bose [I7] and Albert Einstein
[22] in 1924 and 1925. It describes a state of matter in which separate atoms or subatomic
particles, cooled to near absolute zero (a few pK), coalesce into a single quantum mechanical
entity—that is, one that can be described by a single wave function—on a near-macroscopic
scale. Bose—Einstein condensates were first realized experimentally in 1995 [21), [4]. When
the so-called Bose-Einstein condensates (BEC) are set to rotation, topological defects often
manifest themselves as vortices that correspond to zeros of the wave function with phase
circulation. This phenomenon was first observed in two components BEC [3I]. When a BEC
is set to a high rotation in a strong confinement regime, the vortices align and form unique
structures. In the case of a single component condensate, we observe singly quantized vortices,
forming triangular lattices once they are numerous [26], [30]. In the case of two components
condensate, depending on the interaction between the two components, many structures may
appear. For example, we can observe coreless vortices, which refer to having singly quantized
vortices in one component while having a corresponding peak in the second component [32],
or vortex sheets [30), 29].

Different models of BEC with one or several components have already been studied in the
mathematical literature. For example, the minimization of the Gross—Pitaevskii functional in
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R? is studied theoretically in [27] (see also references therein). In [3 1], the authors study dif-
ferent structures of a BEC in a strong confinement and coupling regime in a bounded domain
of R?. Several methods have been developed for the numerical computation of approximations
of minimizers of Gross—Pitaevskii energies. For example, in [15] 8, 13}, [16], 12} [1T], @} 10, ©), 14],
the authors develop numerical methods in several physical contexts and with several space
discretizations, which require solving a linear system at each time-step. A theoretical analysis
of the convergence of some of these methods has been carried out in several simple contexts
(see for example [23] for the classical Gross—Pitaevskii energy in one space dimension, for
the one component case, without rotation nor confinement, in a neighborhood of the ground
state). Another option is to use Sobolev gradients, as opposed to L? gradients, as developed
in [20].

In this article, we study numerically the behaviour of a rotating Bose—Einstein condensate
(BEC) in two dimensions in a strong confinement regime based on the numerical minimization
of the Gross—Pitaevskii (GP) energy . We consider the both cases of one component and
two components condensates. For two components condensates, we consider both segregation
and coexistence regimes between the two components. We introduce a new discretization for
the GP energy using the Fast Fourier transformation (FFT) scheme. We use an explicit L?
gradient method with adaptive step and projection for the minimization of our discrete energy
under constraints. We derive a stopping criterion based on the evaluation of the gradient of
the energy on the constrained manifold using the residue of the Euler-Lagrange equation
corresponding to the constraints, which we use at the discrete level. Moreover we provide a
post processing algorithm for computing the indices of the vortices and of the vortex sheets
of the minimizers. Finally, we compare the efficiency of our explicit gradient method with
projection, named EPG, to the method used in GPELab ([5, [7]). The numerical results of
the test cases in this paper will illustrate how an explicit projected gradient method together
with an energy discretization allowing for the use of FFT in the computation of its gradient
makes it possible to outperform (linearly) implicit methods such as that of GPELab.

The outline of this paper is as follows. We introduce the continuous model for rotat-
ing Bose—Finstein condensates with two components in Section [2| and we recall the different
regimes for one component and two components condensates. In order to numerically study
these regimes, we discretize in Section [3| the continuous Gross—Pitaevskii energy. Our dis-
cretization uses the discrete Plancherel formula and allows for using FFT in the computation
of the gradient. We implement in this section a gradient method for the minimization of the
energy with a projection step to take the constraints into account. One of the interests of
this method is that it allows for the derivation of a stopping criterion which we develop in the
same section. We develop in Section [4] two post processing algorithms for the computation
of indices. The first deals with vortices and the second deals with vortex sheets. We present
numerical results in Section [5] for the regimes described in Section 2| In particular, we val-
idate numerically recent theoretical results and we support some conjectures as for example
the existence of vortex sheets in a segregation regime. Section [6]is devoted to the comparison
of the efficiency of the EPG method with that of GPELab [5, [7].

2. THE MODEL AND THE REGIMES

2.1. The model. We consider the following model for the energy of a two components ro-
tating Bose—Einstein condensate in dimension 2 in the limit of strong confinement and strong
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rotation studied in [3]. This model reads
21 2
EXs(ur, uz) = Z 5 j Ve — iQuext||” dady + We 5 (ur, uz),
7 -2 Jp

where D — R? is the bounded physical domain of interest, 2 € R is the rotation speed, € and
§ are positive constants, x* = (—y, z), uj,us € H'(D,C) are the wave functions related to
each component of the condensate. Moreover, W s is the confining part of the energy defined

as
1
4e2

d 2 12 1 2
+2—€2 jD lug|“|ug|*dedy — 12 D,o (r)dady,

1
Wes(ur, ) | 001 = s Pasay + 5 [ ot = uaf? oty

where p is a function of 7 = 1/22 + 92 to be defined later, 6 > 0 measures the stength of the
interaction between the two components, 1/£? measures the strength of the internal interaction
in each component of the condensate. In this paper, we take D as the disk of radius R > 0
centered at the origin of R?. Moreover, we consider p = 1 in D, which corresponds to a flat
trap, as in [19, [I8] (see also [3]).

Remark 1. A straightfoward computation yields for all € € {1, 2},

% JD HVW — iQwXLH2 dady

1 . 02
(1) = 3 JD |V |2dedy — Q jD R (iwxL - V) dedy + - fD 72 |ug|*dzdy.

Following Remark 1 of [3] and the one component analysis carried out in [I8], in the
regime || << 1/e, the contribution of the third term in plays no role in the asymptotics
¢ — 0. Therefore, from now on and unless stated otherwise, we shall consider in the regime
|©2] << 1/e the minimization of the energy

2
1 . o
(2) E&5(ur,ug) = )] {2J | Vg | daedy — QJ R (iuex® - Vug) dxdy} + Wes(u1, u2)
=1 D D

QQ
= ggé(ul,m) Y f 7“2(|u1|2 + ]u2|2)dxdy.
D

Our aim is to compute, in the regime £ — 0, minimizers of the energy Egé defined in (and
not directly £5%) in H}(D,C) with the constraints

(3) j lu [2dzdy = M Ny, and J lug|2dzxdy = M N,
D D

where M = §, p(r)dzdy, and N1, N; > 0 with N; + Ny = 1. Note that, in the sequel, § > 0
and ) € R may or may not depend on £ when considering a sequence of minimizing problems
with smaller and smaller e.
Note that one has also
1

4e2

0—1
2e2

(4)  Wes(ur,us) = f@m—m#—mﬁhmw- \[MWW%My
D D
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In view of this expression of W, 5, we refer to the case § > 1 as the segregation regime since
minimizing the energy tends to split the two components in this case, and to the case § < 1
as the coexistence regime since minimizing the energy tends to mix the two components of
the condensate in this other case.

2.2. The different regimes. We recall in this section the theoretical results obtained in
[18, 3l 24], 28], 30]. These results describe the asymptotics of the minimizers of in different
regimes. These regimes depend on the behavior of the rotation speed €2 in the strong confine-
ment limit (¢ — 0) in one component condensates (see [2.2.1). They also depend on the value
of the segregation/coexistence parameter (§ > 1 or 6 < 1) in two components condensates

(see and [2.2.3).

2.2.1. One component condensates. According to [18], for one component condensates (N; =
1, Ny = 0), the behaviour of the structure of the vortices of the minimizers of with
constraints in the regime € — 0 changes with the dependency of the rotation speed 2 = €2,
with respect to e. Namely, there exists three critical rotation speeds Q! << 02 << Q2 such
that

o if Q. < Q. 1, then minimizers u] have no vortices,

o if Q! < O. < Q2 then the vortices of minimizers u§ appear on a hexagonal lattice
and are singly quantized,

o if 02 < Q. < O3, the centrifugal force comes into play: a hole appears in minimizers
uf and the condensate looks like an annulus, with vortices located on a lattice on the
annulus,

o if O3 < Q, the centrifugal force is so important that the vortices retreat in the central
hole of the condensate, creating a central giant vortex with high index.

Moreover, one has
1 1
5 QL ~ log(1/e), 02~ -, d P~
5) Eelog(1e), @2~ and 0~ g
Note that ¢ plays no role in this case since us = 0 because Ny = 0.
According to Remark 1} the regimes Q. < Q2 are similar for minimizers of 5693 and E?g.

In the regimes Q2 < €., the annulus behaviour is due to the centrifugal force in Egg.

One of the goals of this paper is to confirm numerically the four regimes above (described
in [I8]). To do so, we introduce a numerical algorithm in Section [3| and we use it to provide
numerical simulations in Section 5.1l

2.2.2. Two components condensates in the segregation regime (§ > 1). In the recent paper
[3], the authors consider two components condensates in the segregation case 6 > 1. For
Nj € (0,1) (recall that Ny = 1 — Ny), they introduce the minimizing perimeter
In, = mig per(w),
|wW|§N1
and they perform an analysis of the minimizers of Eggs in the regime ¢ — 0 depending on
whether €2, = 0 or not.

First, they address the minimization of with constraints when = 0. In this case,
the squared moduli of the minimizers uf and u5 tend to 1 in two separate regions of D and
the authors of [3] prove that their sum v2 = |uj|? + |u§|? and the normalized energy eEg 5
have the following behaviour
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e in the regime 0.6 — +o0 (strong segregation regime [2]), then infp v2 tends to 0 and
5E£7 5. tends to some constant times £y, ;

e in the regime ¢ — 0 with § > 1 fixed, then infp v? tends to some number between 0
and 1 and EES’ 5. tends to some constant (which depends on §) times £, [25];

e in the regime §. — 1 with & = ¢/4/6. —1 — 0, the rescaled energy £E; tends to
fn, /2 and it is expected that infp v® tends to 1 [24]. 7

Second, they address the minimization of with constraints when = Q2 — +0 as
¢ tends to 0. With £ defined as above, they consider a regime where § = — 1 and € — 0
as € tends to 0 and they prove that

e there exists two constants C1,C2 > 0 such that, for all 4, if Q° > C;log(1/¢€), then the

infimum of the limiting density |u] 2 vanishes as € tends to 0;

e in the regime of moderate rotational speed log(1/¢) << Q° << 1/¢, the limiting
density |uf 2 is uniform in each region, and hence does not depend on the shape of
the region;

o for higher rotational speeds 1/(log(1/8)) << QF << 1/£2, the leading order in the
energy Eg;g is the vortex energy, and the authors of [3] conjecture the possibility of

observing vortex sheets.

2.2.3. Two components condensates in the coexistence regime (6 < 1). In the regime 6 < 1,
the two components still have mass in the region where p > 0, but the supports of the
two components tend to overlap (see [28, 30]). In this regime (§ < 1), depending on the
rotational speed €2, we should observe four different qualitative behaviours (see [28| B30]) for
the minimizers when ¢ tends to 0:

e The first behaviour (d € [0, 1)), with a very low velocity €2, is when the two components
coexist and there are no vortices: each component has mass in the disc where p > 0
and the profile of the components depends on N; and No.

e The second behaviour, when § = 0 (which means there is no interactions between the
two components), we should observe, depending on the (high) rotation speed €, the
existence of a triangular vortex lattice.

e As 0 € (0,1) increases, the positions of vortex cores in one component gradually
shift from those of the other component and the triangular lattices are distorted.
Eventually, in this case, after a certain value of §, the vortices in each component
form a square lattice.

e The last behaviour corresponds to § — 1 (when € — 0). In that case, we should
observe either stripe or double-core vortex lattices in the minimizers.

3. THE DISCRETISATION OF THE PROBLEM AND THE MINIMIZATION METHOD

Minimizing the energy Egd defined in under the constraints is a continuous min-
imization problem over an infinite dimensional manifold that we replace in this section by
a discrete minimization problem over a finite dimensional manifold. We consider a gradient
descent method with projection over the constrained manifold, which is a first-order iterative
optimization algorithm for finding a local minimum of a differentiable function. We name this
method EPG. By calculating the gradient of the energy Egé, we are able to approach more
and more towards the solution of the discrete problem after each iteration of the method. In
Section we describe the discretization of the energy Eg s defined in . Then, we compute
its gradient in Section We establish a criterion for the minimization of the energy on the
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finite dimensional manifold in Section We propose a full description of the minimization
method in Section [3.4] as a conclusion.

3.1. Discretization of the energy. For the discretization of the energy defined in , we
decide to include the disk D of radius R centered at the origin of R? in a larger square of side
length 2L centered at the origin. In addition, we extend the function p used to define the
energy in to the square in such a way that it takes (very) negative values outside D. By
imposing homogeneous Dirichlet conditions on the boundary of the square, such an extension
of p should, in the regime € — 0, lead to minimizers with very small squared modulus outside
the disk, the restriction to the disk of which can be considered as approximations to the
continuous minimizers of Egé defined in . This is due in particular to the first term in the
definition of W, 5 in .

Therefore, we choose L > R so that the disc D of radius R centered at the origin of R? is
included in the square [—L, L]?. Then, we discretize [—L, L]?> with N + 2 equidistant points
with respect to the z-axis and N + 2 equidistant points with respect to the y-axis for some
integer N. We do this by setting 6, = d, = N+1 and

Ty = —L 4+ ndy, and yr = —L + kdy,

for n,k € {0,...., N + 1}.

We use the letter ¢ to denote the discrete counterpart to the continuous wave functions
denoted by wu in Section As explained above, we think of wfz,k as an approximation of
wg(Tp, yx) for £ =1,2. In matrix form, we use the notation:

¢ 1 ¢
1@0 th,l ¢%,N+1
Pio (! -
Y, , ) 1LN+1 N+2)2
Y= : : : : € C( = ’
0 ¢ 0
7/)N+1,0 ¢N+1,1 QJZ)N—&-LN-H

with the convention that Q,Z)E k=0 ifeithern =00ork=00rn=N+1or k= N+1. In order
to separate real and imaginary parts of the unknowns, we set ¢n k= pfl T iqe k for £ =1,2,

and set accordingly ¢ = P’ 4+ iQ’. This allows us to write functions of the complex-valued
variables ¥¢ as functions of the real-valued variables P¢ and Q.

We decide to use the discrete Fourier transform and its inverse for the discretization of
the terms in the energy Egé defined in that involve gradients. This choice allows the
use of Fast Fourier Transform algorithms for the computation of the gradient of the discrete
energy (see section . To do so, we set the following definitions, which are related to that
of Python Numpy. For v € CWN+2? and for n,p,k,q € {0,...,N + 1}, the discrete Fourier
transforms of v in the x- and y-direction and their inverses are given by:

¢ (0, T v

o (ifft,(v) ik NH@‘”" Zg%l Up k€ 2N
o (£,(1)),,, = S5 el TR,

. (1ffty(v))n7k Nil —ink ZNJBI Ung€”" TNt

Remark 2. Note that, with the definitions above, the discrete Fourier transforms are not
inverses by pairs. Indeed, we have for all v, ifft,(fft,)(v) = v+ O(0z) and ifft,(fft,)(v) =
v+ O(dy). We will not need any such inversion formula in this paper however.
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For the discretization of the rotational energy, we define X, Y, =, A € RN+2)? for all n, ke
{0,...,N + 1} by

Xnk =Tn, Yok =Yk, Znk=%E&, and A, =\,

with
. m(N+1) o m(N+1)
§1g = T + k‘é&, and )\n = oL

where d¢ = 0y = 7. Observe that all the columns of the matrix Z are equal to the vector
€ = (&k)o<k<n+1 and all the rows of the matrix A are equal to the vector A = (An)o<n<nN+1-
Moreover, we denote by = the term by term multiplication operator between 2 matrices.

We define Eﬁé(wl,z/ﬁ) as a discrete counterpart of ESg(Ul,UQ) by setting for !, ¢? e

C(V+2)?
(6) EA50N0%) = 3 ((Ban) (@) + (Brot)2(09) + (Bw) 256", 02),

=12

+n5>\,

where the superscript A indicates that these energies depend on discrete variables. Let us
describe the discretized energy terms which appear above:

e (Eqpn)™ corresponds to the kinetic energy and is defined by
52 N+1

> > (‘iﬁ‘tx(ia*fftz(zp‘))\2+‘iffty(i/\*ffty(qpf))f) ,

n,k=0 n,k

(Eein)> (1) =

. (Emg)sA corresponds to the rotational energy and is defined by

( rot) (1/)8)
N+1

= -0 ) R <_¢W * [ — Y ifft, (i2 « ey (7)) + X = ifft, (iA » ffty(z/zf))D .
nk—=0 "

o (EW)Q(; corresponds to the confinement energy and is defined by

A1 2 o2 & 2 2 12 2
(Ew)es(, %) = 12 p(rni) = tn kl? = 107 4]
n,k=0
N+1
Z [P0 kI,
n,k=0

_ 2
where 7, 1 = /22 + y3.

3.2. Computation of the gradient of the discrete energy @ Each energy term in
(6) is a function of the 4N? real variables ( nk)1<n k<N (P57k)1<n,k<N7 (Q}L,k)lén,kng and
(Qn7k)1<n7k< ~ using the definitions from Section Let us compute the gradient of each of
these energy terms (still using the convention p, = g¢or =0if n=00ork=0o0orn =N +1
or k = N 4 1) with respect to these variables for the usual scalar product on R*Y . Let
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Veonf € RWV+2)? be defined as:

p(r0,0) p(rox) - p(ron+1)
p(r1,0) p(ri1) - p(rine1)
chonf = .
p(rvsto) plrvsrr) - p(rNs1,N+1)

For ¢ € {1,2} we have for the discrete kinetic energy:

0 Ecz'n A . — . ®
(apz)(@z/) - 533%( [iffe, (372 o Mt (0) |+ [iffey (A7 £, ()| ) .

a(E‘cm)

e + [iffty( —iA*2 ﬁ'ty(z//))]

R —52§R<[11’ft (—iZ* « fit (zpf))]

n,k> '
1<n,k<N

)

n,k
For ¢ € {1,2} we have for the discrete rotational energy:

a(Erot)

—apl = [+ ifft (2 5 e, (1))

)
n,

(wf) = 2@55@]%( [X s ifft, (A * fftyw%)]

n,k >
1<n,k<N

i |V it (2 £, (1)) ) .
mk 1<n,k<N

)

a(E/‘rot)
S0l

)

(W) = 29553%9%( — [X s iffFt, (A * ffty(w))]n

For ¢ € {1,2} we have for the discrete interaction energy:

POt ) = =5 ([P (Vg = W - )]+ - [P e] )
a(gQZ”(w ) = - <[Q‘ (Veons = ' [* = [0?)]  + 1 =0) [Q‘*|w3—‘|2]n7k>l@ﬁw-

3.3. A criterion for the minimization of F2 s under constraints. We identify 2N
with the subspace of My 2(C)? consisting in pairs of matrices with zero first and last row
and column. Let us denote the usual scalar product on C*V ’ by

N
vy =R | D Un ki |,

n,k=1

and we set |v|&X = 62(v,v). We replace the continuous constraints with the discrete
analogues

N+1N+1

(7) A =62 )] erknﬁ MN,  (¢=1,2).

k=0 n=

In order to derive a stopping criterion for the minimization of EEA(; defined in @ under the
constraints , we prove the following proposition.
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Proposition 3. If (¢* %*) e CN+2? gre minimizers of B 6 under the constraints
satisfying the homogeneous Dzmchlet boundary conditions, then the four N x N real- valued
matrices Kl P KZAP, KIAQ, deﬁned bqﬂ

0E (52 N 5EA OF
KZAJ—_, = (q/Jl* wQ*) x Z < (wl* ¢2*>*P€* (1/}1* ¢2*) Q£*> Pé*,

oP! [0 2, \ Pt Q -
and
KEA _ @ (wl* wQ*) 6320 i <a (wl* w?*) PZ* (wl* wQ*) Q£*> Qﬂ*
Q@ 5@4 ng*”i 4 apé an - )

for £ e {1,2}, vanish.

Proof. Assume that (i'* %*) € CN+2* are minimizers of Eﬁd under the constraints

satisfying the homogeneous Dirichlet boundary conditions. For all ¢!, 4?2 e CV +2)? satisfying
the homogeneous Dirichlet boundary conditions too and for all ¢ € R small enough, we define

(8) A () = B ( Loy v LN M)_

[p1* + A B 7 TN
The fact that (¢1*1%*) are minimizers of E2 s under the constraints (7)) implies that
(9) (£2)(0) =

for all (!,4?). In order to rewrite @D as a criterion depending on (P1*,4?*), we set Pt =
P +iQ" and ¢ = P! + iQ" with ¢ = 1,2 using the definitions from Section Let us
denote for all £ = 1,2 and small ¢t € R:

P 4¢Pt Q™ +tQ°
A A
t)= ————F—/ N/ M, and t)= ————F—/N/M,
90 = T Y I T
so that, using , we have
A A 2

l9zp () +igin )]y = NeM.

Introducing the notation,

52 ol
ag = = | D) WP p + didhg) | = Tt (P P +4QF, Qo)
[ 1a \ %2y W H

we infer
(gfp)'(O) = P! — q,P%, and (gKA,Q)’(O) = Q' — a,Q™.
Using the definition of f2 and the chain rule, we obtain

(f2)( )

Z (< 6Pg wl* wQ* > < an 17/}1* wQ*) ( )/(0)>)

2 EA OE
= Z 2 <5P£ ¢1* wQ*) ( agPK*) an (wl* wQ*) (QK—CMQE*)> ,

n,k

IRecall that * is the term-by-term product defined in Section
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As expected, (f2)'(0) is an R-linear form depending on (P',Q', P?,Q?). The expression
above implies that

(10) (f2)(0) =

n

with K KAP and K eAQ the matrices defined in the statement of Proposition [3| This concludes
the proof.

(K{p » Pt + K » Q' + Ko'p » P* + K§y * Q2)n7k,
1

=M=

O
Therefore, in the method described in Section we will use the fact that

2 2
A A A
(11) K2 = Y K pla+ ), 1K g,
=1 =1

is below some threshold as a criterion for numerical convergence.

3.4. Gradient Method. In order to minimize the discretized energy defined in @ under
the constraints (7)), we propose the following gradient method with projection and adaptive
step.
e Initialization:
— Choose bt >t e C(N+2)2, normalized as: | a = v/NeM, (£ = 1,2) and
satisfying the homogeneous Dirichlet boundary conditions,
— choose a step h > 0,
— choose two tolerance parameters hg, Ky > 0 for the convergence test.

e Iteration:
(1) Compute the gradient: VEEA’(S (wl’m,¢2’m).

71,m 1,m
(2) Compute the auxiliary step <:§2m> = <;//j2m> — hVE$6(¢1,m,¢2,m)’ and set

the homogeneous Dirichlet boundary conditions on ¢>™ and ™.
(3) Normalize the auxiliary step to obtain an attempt for the next step:

Tlm
ptmet — Y N r=1.9.
[ N

(4) 1f E’?’(S(@ZJLWH,@Z)QMH) > EE%(?j)l’m,wlm), then we replace h by h/2 (provided
h/2 = hy, otherwise we stop without convergence) and we compute a new aux-
iliary step (1;1””, 1/;2’”) for the same m by going back to step [2l Otherwise, we
compute K2 at point (1™F1 h2m+1) using (11)). 1t K2 > K, then we replace
m by m + 1 and we restart at step [I] Otherwise, we take (2™ *1 2™+1) as an

approximate minimizer and we stop with convergence.

4. POST-PROCESSING ALGORITHMS

4.1. Indices of the Vortices. In this section, we introduce an algorithm that we developed
for the computation of the indices of the vortices in the minimizers of the discrete energy
functional defined in @ under the constraints , obtained using the minimization method
described in Section [3] This algorithm is used in Section

The algorithm relies on 4 numerical parameters tol; > 0, toly > 0, Ny € N* and Ny €
N* with Npin < Npae- It follows the 4 steps below. The three first steps identify the
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vortices’ centers and the last step computes the vortices’ indices. In this section, 1 denotes
the square complex matrix with N? entries for either of the two components of the Bose—
Einstein condensate.

Step 1: We determine the potential centers of the vortices and establish a list of candidates
as the set of (n, k) € {1,..., N}? such that |1, x|? < tol;.

Step 2: We build a second list P based on the first list above using the following rule. For

each potential center (n, k) in the list established in Step 1, we consider the values of ||* on
the squares

Sa(n, k) = {(niA,k—kj) ‘je{—A,...,A}}U{(n—Fj,kiA) ]je{—/\,...,)\}},

of length 2A\d,, for A € {Npin, ..., Nmaz}. If for one of these A = \(n, k), the values of |¢|?
at all points of the square Sy(n, k) are such that [t|> — |1, |> > tol2, then we add the center
(n, k) to the second list P, and we set A\(n, k) as the caracteristic length of the potential vortex.
In other words, we have determined a list P of couple of points (n, k) satisfying the following
conditions:

o |nkl* < toly,

o [Yij]* > |t kl|? + tola, for all the couples (i, ) in Sy, 4 (n, k).

Step 3: We consider each center (n, k) from the list P and we identify if another center is

inside the square UlgAgA(n,k) Sx(n, k). If this is the case, we eliminate the center with the

biggest ||? at the center from the list. We repeat this step until we are left with isolated
centers. Let us denote by T the list of all the couples (n, k) corresponding to isolated centers.
Step 4: We compute the indices using the following rules. For each (n, k) € T, we start off
with any couple (4, j) in Sy, x)(n, k). Then we compute their associated angle 6y = arg(¢); ;).
Note that there are 8A(n, k) couples in Sy, 1) (n, k) (see Figure . After computing the first
angle 6y, we proceed to compute the other angles 01,02, , 0g\(n x) in the following way:

e After computing the angle 6,,, the next angle 6,,,,1 is computed as an argument of the
next value of 1) on the square Sy, 1)(n, k) with anticlockwise orientation (see figure

1).
o We set 011 := Oppy1 + 2km with k = argmingey |0 +1 — O, + 27].
Eventually, index of the vortex (n, k) is equal to (Ogxm k) — 00)/27.

(n-A,k+A) (n,k+A) (n+A,k+A)

63?\ 0 A e)\

(n-A,k) .(n,k) (n+A,k)

94A eO:OSA (mod 2m)
Ogr1

(n-A,k-A) (n,k-A) (n+A,k-A)

2] <]

5 962 7A

FIGURE 1. Sy(n, k) with angles 6y to 6g).
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4.2. Indices of the vortex sheets. In this section, we introduce an algorithm that we
developed for the computation of the index along a vortex sheet of a minimizer of the discrete
energy functional defined in @ under the constraints using the minimization method
described in Section [3] Let us note that this algorithm requires some input from a human
being at some point. This algorithm is used in Section [5}

The algorithm relies on 5 main steps. It uses 3 numerical values: m < M (close to 1/2)
and a small tols > 0. The first step consists in identifying the contours of the vortex sheets.
The second step splits these contours into discrete connex curves. The third step requires
a human being to decide whether each contour should be discarded or merged with another
one. The fourth step sorts the optimized contours, and provides them with an orientation.
The fifth and last step computes each vortex sheet’s index alongside its contour.

(A) An example of the contours detected after (B) An example of the connez curves obtained
the first part of the first step of the contour at the end of the first step of the contour de-
detection algorithm. tection algorithm.

FIGURE 2. An example of the contours detected after the first step of the
contour detection algorithm (m = 0.4, M = 0.6, and tols = 0.3). We display
just a part of the minimizer obtained in Fig

Step 1: The contour of a vortex sheet in either of the components of the condensate consists
in a region where the squared modulus of the minimizer moves fast from 0 to 1 = max p (or the
other way around). The first step consists in finding regions on the discrete square [—L, L]?
where this occurs. We identify, for each component ¢, the coordinates on the grid for the
values [1*|? between m and M. Next, we add the grid coordinates close to the circle 0D,
of which we retain only the coordinates where [¢)/|? < tol3. These grid points constitute the
union of potential contours of vortex sheets (see Figure for an example). Let us sort these
points, to ease the search for connex components in contours in the next step. Let us note K
the set of coordinates we have found so far. We are looking for a union of conner curves that
describe the borders of each vortex sheet. Each curve can be determined with as many points
as we want, but we want to avoid taking too many points per curve. Therefore, we limit the
number of neighbours to any point on the curve to 3. For each grid point of coordinates (i, j),
we denote by S;(i, ) the set of its neighbours. For all grid point (i, j) € K, we act as follows:

(1) If (4,7) has no neighbours, we just remove it from the set K.
(2) If (i,7) has 1 neighbour, we add to the set K a couple (7', ') ¢ K verifying

(', 5') = argming, pyes, i) |[Ci)* = [nnl]-
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(3) If (4,7) has 2 or 3 neighbours, we do nothing.
(4) If (i,7) has at least 4 neighbours, we remove the couple (7', ;') from K verifying:

(i',5") = argmax, yyes, (i.j) k| [Vigl* — [Unkl?

)

and we repeat this step until we are left with only 3 neighbours.

At this point, we have detected a union of different curves defining the borders of the vortex
sheets. An example if displayed in Fig[2B] Our next step is to separate the connex components
in K, to categorize the different sheets (since each minimizer can have more than one vortex
sheet).

-2
X

(A) After Step 3: We can use a different (B) After Step 4: We can use color shading
colour of each contour (the colour changes to show the anticlockwise orientation of each
with p). contour.

F1GURE 3. An example of the contours detected and orientated by the contour
detection algorithm after the third and fourth steps.

Step 2: We partition K into the union of a finite number of contours K, corresponding to

conner curves. We start with p = 1. At the p'" vortex sheet, we create dynamically a new
list K, = ¢J. We start by adding to K, a grid point at random from the list K and we remove
it from K. Then, we add all of its neighbours one by one to K, and we remove them from K.
We repeat this until we are left with no neighbours in K to all the grid points in K. Then,
as long as there are points in K, we increase p to p + 1 and restart this step again until K is
empty.

Step 3: After dividing the contours of the vortex sheets into discrete connex curves K, we
allow for human intervention. First, a human being decides if each K, should be considered
or ignored. Second, a human being decides whether couples of two discrete connex curves K,
and K,, should be merged or not. To merge two discrete connex curves K, and K/, we follow
these steps. First, we search for the closest two couples (n, k) and (n/, k") from K, and K
(using the usual distance in R?) and we compute their middle (¢/,j") = (|%52 |, [E£E|). If this
middle has neighbours in both categories, we merge them into a new set K, u Ky u (7, 5/).
Otherwise, we repeat once the same process between K, u {(¢/, j')} and Ky U {(7/,j')}. In the
end, we are left with different categories for different vortex sheet’s contours. An example of
what we obtain after Step 3 is displayed in Fig

Step 4: We build, from each set K, a list of grid points corresponding to an anticlockwise

path along the countour of the p** vortex sheet. We proceed in the following way:
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(1) For each list K,, we compute it’s barycenter. We choose our starting couple from K,
as one with a close z-axis coordinate to that of the barycenter and with the biggest
y-axis coordinate. We add this to our new list Kf,ort.

(2) While the last point and the first point of KZ"” are not neighbours:

(a) Out of all the neighbours in K, to the last grid point we added to K]S;’rt, we choose
one and prioritize the anticlockwise direction. Then, we remove this grid point
from K.

(b) If we don’t find any neighbour to the last grid point we added do Kzort, we delete
this grid point from Kzort and from K,. Next, we return to the last grid point
we added to K, before that and we repeat the previous step.

(3) If the length of K5 is less than 70% of the original size of K,, then we delete the
last grid point added from Kf,‘m and from K,. Next, we return to the (new) last grid
point we added to K;’,‘)rt before that and we repeat the second point from Step 4. If

the length of Kzort exceeds 70% of the original size of K,,, then we stop the algorithm.
An example of what we obtain after Step 4 is displayed in Fig [3B]

Remark 4. In the third point of step 4, we choose as criterion 70% arbitrarily. Other choices
can be made as long as it is strictly bigger than 50%. If we choose a too high value, then the
algorithm could be so constrained that it might not give a proper result.

Step 5: We compute the indices of each vortex sheet contour detected Kls,ort. The algorithm
is similar to the last step in Section with the list Kf,ort instead of Sy, 1) (n, k).

Remark 5 (Computation of the index of a giant hole). For an estimation of the index of a
giant hole, we first estimate its radius numerically. The algorithm goes as follows. We are
giwen integers lo = 1 and mg >> 1 and a tolerance parameter toly > 0. We choose toly = 0.1

in all the numerical experiments. For | € {0,--- ,lo}, we choose 1 > 0 a possible radius for
the giant hole in such a way that [ — r; is increasing, ro is too small a radius and ry, is too
big a radius. For m € {0,--- ,mo}, we set 6, = 27’:1—? Let 1 be a minimizer with a giant hole.

Starting from 1 = 0 and as long as | < lp, we compute successively

mo—1
B = U << argmin |z, — 7y cos(@m)\> X < argmin |y, — 7y cos(ﬁm)\>> .

m=0 n€{1,~~-,N} ke{lva}
If(niz)ixﬁ |Yn.k|? > toly, then we stop the algorithm and we will use v, and B for the computa-
n,k)eP]
tion of the index. Otherwise we repeat this step with | =1+ 1. Finally, to compute the index
of the giant hole, we use the last step of Section with B instead of Sy k) (n, k).

5. NUMERICAL RESULTS

This section is devoted to the numerical experiments carried out using the EPG minimiza-
tion method introduced in Section [3]and the post-processing algorithms described in Section [4]
for the detection of structures and the computation of the indices. In Section 5.1} we consider
a one component Bose-Einstein condensate in strong confinement and rotation, in connection
with the theoretical results of Section In Section [5.2] we consider a two components
Bose—-Einstein condensate in a strong confinement regime in the segregation case, without ro-
tation. This allows to connect with the theoretical results of Section In Section we
consider a two components Bose—Einstein condensate with strong confinement and rotation
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in the segregation case. This allows to connect with the theoretical results of Section [2.2.2
Last, in Section [5.4] we consider a two components Bose-Einstein condensate with strong
confinement and rotation in the coexistence case. This allows for connection with theoretical
conjectures of Section [2.2.3]

5.1. One component condensate with rotation. The goal of this section is to illustrate
numerically the theoretical results described in Section [2.2.1] These results identify four
different regimes for the behavior of the one component Bose—Einstein condensate depending
on how big €. is as € tends to zero. These four regimes are separated by three characteristic
rotational speeds Qi, i=1,2,3 (see ) We introduce below the parameters we use for all
the one component simulations. Then, we explain how we identify the four different regimes
numerically. We conclude with numerical simulations for small € in each of the four regimes.

5.1.1. Parameters used for the one component simulations. For all the one component simu-
lations, we consider the following parameters. The confinement is defined by the function

(12) p(z,y) = min[1, 10(R* — 2% — y?)].

For the initial datum we choose, ¥°(z, y) = exp(—1022 — 10%2)/5. The square of computation
is of length 2L = 14 and the radius of the disc D is R = 4. We initialize the step size to
h = 0.1 and we set hg = 107'2. For example, for N = 256, we have M = | /p=0]4 ~ 50.084.

5.1.2. Identification of the four regimes. In order to identify the four regimes, we proceed
as follows. First, we take ¢ = 107! and we use the EPG algorithm described in Section
to compute minimizers of EEAJ for several rotational speeds. Then, we do the same for

e = 5 x 1072. Based on these many simulations, and the expressions , we estimate the
three critical values for the rotation speed which are shown in Figure[d This provides us with
an estimation of the three critical values of the rotational speed when ¢ = 1072, Choosing
rotation speed between these 3 estimated critical values for € = 1072, we manage to observe
the four different regimes, as detailed below.

Q as a function of € and the associated zones.

EEm Zone 1: No vortices

Bmm Zone 2: Hexagonal Lattice of Vortices
“ Zone 3: Annulus with Vortices

EEE Zone 4: Central Giant Vortex

FIGURE 4. ) as a function of € and the associated zones.
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5.1.3. Convergence test without rotation (. = 0). For N = 128 points, we perform a con-
vergence analysis. For several values of € between 1072 and 10°, we perform the gradient
algorithm described in Section starting from 10 = V/p>0. We compute the residual
I[xp2 ™2 — p=o|a for the first index m > 1 for which K is beyond 10709 1070° 10=19
107%%,10720, 10725, 10739, Numerical results are displayed in Figure

sk
* * o
4 1 e) o
= *
Py o o &%
= & ©
| * 9 &
3
5 0 £ &
= *
= *
=) + * K2 =10 OK2=10"°%
'ED 1 g OKA =107 10+ KA = 10715
AKA — 1072,0 KA — 1072.5
@ KA — 10730
I I I I I
-2 —1.5 -1 —0.5 0
logy(e)

FiGure 5. Convergence test for the gradient method with N = 128 for one
component without rotation.

In this simple case (one component without rotation), where the limit as € tends to zero
of the minimizer is known, we observe numerically that K® = 1072 seems to be a good
criterion to stop the gradient algorithm when ¢ is between 1072 and 10~!. Indeed, choosing
K2 =102% or K2 = 10 does not improve the convergence dramatically when compared
with choosing K2 = 1072 on this numerical experiment when ¢ is in the range of interest.

Therefore, in the numerical experiments below, even with several components or with
moderate rotation (Q = O(1/e)), we adopt K2 = 1072 as a criterion to stop the algorithm.

5.1.4. Small rotational speed (Q. < QL). We consider the case of no rotation (2 = 0) and
strong confinement (¢ = 1072). We set the number of points in the z-axis and y-axis to
N = 512. The gradient descent algorithm converged due to the stopping criterion K% (see
(1)) which has a value of 1072. The results are shown in Figure @ As we can see, there are
no vortices in the numerical minimizer. This is in accordance with the theory presented in
section (first case Q < Q). Moreover the squared modulus of a minimizer converges to
the non-negative part of the function p when e tends to 0, as illustrated in Figure [7]

Figure [7| numerically illustrates the convergence of the squared modulus of a minimizer for
the energy E2 to the non-negative part or p when ¢ tends to 0 at fixed rotation speed = 0.

5.1.5. Moderate rotational speed (QF < Q. < Q2). We consider the case of a moderate rotation
speed (2 = 20) and strong confinement (¢ = 1072), according to Figure First, we compute
a minimizer with N = 512. Then, we interpolate its real and imaginary parts and compute
another minimizer with N = 1024. The EPG method converged due to the stopping criterion
K? which has a value of 5 x 1072, We compute numerically the indices of the vortices using
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(A) The graph of the non-negative part of p. (B) The squared modulus of a minimizer.

FIGURE 6. Comparison between the non-negative part of p (figure (A)) and
the squared modulus of a minimizer for the energy E2 (figure (B)) with no
rotation (€2 = 0) and strong confinement (¢ = 10~2) computed with N = 512
and K& =102
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x  squared modulus of a minimizer for e=0.1
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X

FiGUurE 7. Comparison of p and the squared modulus of a minimizer when
€ = 0.1 and € = 0.01 along the y-axis.

the algorithm described in Section [4.1] The results are shown in Figure As we can see,
there are several vortices in the numerical minimizer and there is no sign of a giant hole
in the center. The numerical index of most of the numerical vortices is equal to one. This
validates numerically that most zeros of the wave function have a phase circulation. This is
in accordance with the second case of the theory presented in Section [2.2.1

In another simulation, we consider the case of a moderate yet higher rotation speed (€ = 30)
and strong confinement (¢ = 1072). Once again, we use an interpolation from N = 512 to
N = 1024. In this simulation, the EPG algorithm converged due to the stopping criterion
K? which has a value of 5 x 1072. We also compute the indices of the vortices numerically
using the algorithm described in Section The results are shown in Figure [J} As we can
see, there are vortices in the numerical minimizer and there is a dark disk in the center (not
present in Figure [§) which indicates that we are close to the limit between zone 2 and zone
3 as predicted in Figure [dl The numerical index of most of the numerical vortices is equal to
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FIGURE 8. The squared modulus of a minimizer for Q = 20, ¢ = 1072. In the

right panel, the numerical computation of the indices of the vortices is carried
out with Npin = 1, Npaz = 3, toly = 0.1 and toly = 0.05.

one. This validates numerically that most zeros of the wave function have a phase circulation.
This is in accordance with the theory presented in Section [2.2.1

FIGURE 9. The squared modulus of a minimizer for Q = 30, ¢ = 1072, In the

right panel, the numerical computation of the indices of the vortices is carried
out with Npin = 1, Npaz = 3, toly = 0.05 and toly = 0.02.

5.1.6. Big rotational speed (22 < Q. < Q2). We consider the case of a fairly high rotation
speed (€2 = 40) and strong confinement (¢ = 1072) in accordance with the regimes obtained
in Figure [d] This simulation is carried out with N = 1024. The EPG algorithm converged
due to the stopping criterion K2 < 5x 1072, The results are shown in Figure As we can
see, there is a giant hole in the center, surrounded by vortices on an annulus in the numerical
minimizer. This is due to the centrifugal force coming into play with the fairly high rotation
speed and is in accordance with the theory presented in section [2.2.1

In Figures and we compute the indices of the vortices of the numerical minimizer
displayed in Figure First, in Figure we compute the indices of the vortices in the
annulus using the algorithm described in Section 4.1} Then, in Figure we compute
the index of the giant hole (see Remark [5). The numerical parameters are indicated in the
captions. As we can see, all the indices of the numerical vortices in Figure around the
giant hole are equal to one which validates numerically that almost all the zeros of the wave
function have a phase circulation. In Figure the index of the giant hole is equal to 100.
This is in accordance with the theory presented in section [2.2.1
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(A) The squared modulus of a (B) The vortices’ indices of a (C) The index of the giant
minimizer. minimizer. hole of a minimizer.

FIGURE 10. The squared modulus (A) of a minimizer of the energy for = 40
and ¢ = 1072, The vortices’ indices of a minimizer (B) detected with Ny, = 1,
Niaz = 3, toly = 0.05 and tols = 0.02. The giant hole’s index (C) with
r = 1.523 (see remark .

5.1.7. Huge rotational speed (2 < Q.). We consider the case of a huge rotation speed (£ =
70) and strong confinement (¢ = 1072). Once again, we use an interpolation from N = 512
to N = 1024. The EPG algorithm converged due to the stopping criterion K2 < 5 x 1072,
The results are shown in Figure As we can see, the giant hole in the center is now
bigger, surrounded by less vortices on the annulus of the numerical minimizer than before.
This is due to the centrifugal force coming into play with a very high rotation speed and is
in accordance with the theory presented in section (fourth case Q3 < Q).

In Figures and we compute the indices of the vortices of the numerical minimizer
displayed in Figure First, in Figure we compute the indices of the vortices in the
annulus using the algorithm of Section Then, in Figure we compute the index of
the giant hole (see Remark [5). As we can see, most of the indices of the numerical vortices
in Figure around the giant hole are equal to one, which validates numerically that most
of the zeros of the function have a phase circulation. The index of the giant hole is equal to
522 (see Figure . This is in accordance with the theory presented in section m

3.6
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2.4
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1.6
!1.2
0.8
0.4
0.0

(A) The squared modulus of a (B) The vortices’ indices of a (C) The index of the giant
minimizer. minimizer. hole.

FIGURE 11. The squared modulus (A) of a minimizer of the energy for Q = 70,
e = 1072. The vortices’ indices of a minimizer of the energy (B) detected with
Npin = 1, Npae = 3, toly = 0.05 and tols = 0.02. The index of the giant hole
(C) detected with r = 2.85 (see Remark .
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5.2. Two components condensate without rotation (2 = 0). In this section, we move
on the theoretical results described in the first part of Section [2.2.2] that deal with two
components Bose—Einstein condensates, without rotation, in different (strong, moderate and
weak) segregation (§ > 1) regimes.

5.2.1. Common numerical parameters. In this section, we use the following parameters. The
function p is the same as in . The physical parameters are e = 5 x 1072, Ny = 0.55 and
No = 0.45. The initial data are given by ! = 1) = exp(—102? — 10y?)/5. The discretization
parameters are L = 7, R =4, N = 256, h = 0.1 and hy = 1072, The stopping criterion value
for K2 is set to 1072.

Note that for the simulations of Figures and, we started with the minimizers obtained
in Figure [13] as initial data.

5.2.2. The strong segregation regime: . x €2 — +00. We consider the case of strong segrega-
tion regime (6. = 4000) and strong confinement so that J. x €2 = 10. The results are shown
in Figure As we can see in Figure and the numerical support of the two compo-
nents tend to not overlap, thereby confirming that we are in the segregation regime. In Figure
we can see that the sum of the squared modulus of the two components has a minimum
inside the disc (away from the boundary of the disc), with min, ep [¢™** + [¢2*]* ~ 0.14.
This is in accordance with the theory presented in section
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(A) The squared modulus of (B) The squared modulus of (C) The sum of the squared
the first component. the second component. moduli of both components.
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FIGURE 12. The squared modulus of the first component (A) and the second
component (B) for a minimizer in the case of two components condensate with
no rotation and 0. = 4000. Fig (C) displays their sum.

5.2.3. The moderate segregation regime: § > 1 fired and small €. We consider the case of
moderate segregation regime (6 = 1.5) and strong confinement, still without rotation (£2 = 0).
The results are shown in Figure [[3] The results displayed in Figures and confirm
that we are in the segregation regime (6 > 1). Figure presents the sum of the two squared
moduli of the two components of the minimizer. We can see a white curve corresponding to
the separation between the two components with min(, ,)ep |12 + |?*|? ~ 0.78. This is in
accordance with the theory presented in section m (second case with no rotation and fixed
0 >1).
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FIGURE 13. The squared modulus of the first component (A) and of the second
component (B) for a minimizer in the case of two components condensate with
no rotation and § = 1.5. Their sum is displayed in Fig. (C).

5.2.4. The weak segregation regime: 6. — 1 with £/4/6: —1 — 0. We consider the case of
segregation regime (0. = 1.02) and strong confinement, still without rotation (€2 = 0). The
results are shown in Figure[I4] Figures[I4A]and[14B|confirm that we are still in the segregation
regime. In contrast to the two previous cases, we can see in figure [[4C|that the sum of the two
squared moduli does not present a seperation area between the components. Indeed, apart
from close to the boundary of the disc, the sum of the squared moduli is almost constant,
with an approximate value of 0.976. With the notations of Section we have € = 0.35
in this third simulation. The results are in accordance with the theory (third case with no

rotation, d. close to 1 and £ close to 0 in Section 2 2.2).
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FIGURE 14. The squared modulus of the first component (A) and the second
component (B) for a minimizer in the case of two components condensate with
no rotation and 6, = 1.02. Their sum is displayed in (C).

5.3. Two components condensate with rotation (2 # 0) in the segregation regime.
In this section, we consider physical parameters related to the theoretical results described in
the second part of Section that deal with two components Bose—Einstein condensates,
in the segregation regime (6 > 1), with rotation.

5.3.1. Common parameters. In this section, we use the following parameters. The function
p is the same as in . The physical parameters are ¢ = 1072, §. = 1 4+ = 1.01 (so
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that £ = /¢ = 0.1), Ny = 0.55 and Ny = 0.45. The initial data are given by ¢! = ¢? =
exp(—10x? — 10y?)/5. The discretization parameters are L = 7, R = 4, h = 0.1 and hy =
10~'2. All the numerical results in this Sectionare obtained by first minimizing the discrete
energy with N = 256, then interpolating the real and imaginary parts of each component to a
grid of N = 512 points in each direction, then minimizing the corresponding discrete energy.
For all the experiments in this section, the EPG algorithm of Section [3.2] converged because
of the stopping criterion on K2, with a value less or equal to 2.0 x 10~2.

These parameters correspond to the segregation regime (4 greater yet close to 1) and
£ << £. We consider the cases Q € {1, 3,6, 15}.

5.3.2. Low rotation case: €2 = 1. We first consider the case of low rotation and strong con-
finement. The results are shown in Figure [I[5] The numerical experiment confirms that we
are in a segregation regime (since 6 > 1) and the two components of the minimizer tend to
not overlap. Moreover, the small rotation speed (€2 = 1) is not big enough to produce vortices
in the minimizer. This is in accordance with the theory presented in section (first bullet
point in the rotational case).

0.96 0.96

0.84 0.84
0.72 0.72
0.60 0.60
0.48 0.48
0.36 0.36
0.24 0.24
0.12 0.12

0.00 0.00

(A) The squared modulus of the first com- (B) The squared modulus of the second
ponent. component.

FIGURE 15. The squared modulus of the first component (A) and the second
component (B) for a minimizer in the case of two components condensate with
low rotation 2 = 1 in the segregation regime.

5.3.3. Moderate rotation case: €2 = 3. We consider the case of moderate rotation speed and
strong confinement. The results are shown in Figure The numerical experiment shows
that segregation holds, and the moderate rotation speed is big enough to produce singly
quantized vortices in one of the components of the numerical minimizer (see Fig. [L6C]).
This is in accordance with the theory presented in section m (second bullet point of the
rotational case).

5.3.4. Awverage rotation case: ) = 6. We consider the case of average rotation speed and
strong confinement. The results are shown in Figures Numerically, the experiment yields
vortices in both components of the numerical minimizer, since the rotation is more important
than in the two previous experiments. Moreover, the computation of the indices of the vortices
in both components of the minimizer, using the algorithm described in Section [4.1] shows that
the vortices are singly quantized (Fig. and . This is in accordance with the theory
presented in section m (second bullet point of the rotational case).
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FIGURE 16. The squared modulus of the first component (A) and the second
component (B) of a minimizer in the case of two components condensate with
moderate rotation 2 = 3. The vortices’ indices of the second component are
presented in Fig. (C).

5.3.5. High rotation case: ) = 15. We consider the case of high rotation velocity and strong
confinement. The results are shown in Figures The numerical experiment shows that we
still are in a segregation regime, since the supports of the minimizers tend to not overlap.
Moreover, the rotation speed is sufficiently big to observe numerically the formation of vortex
sheets in each component of the minimizer. This is in accordance with the theory presented
in section (last bullet point of the rotational case). The computation of the indices of
the vortex sheets is carried out using the algorithm described in Section [£.2] with m = 0.4,
M = 0.6 and tol3 = 0.3 in each component of the numerical minimizer. The computed indices
of the vortex sheets are positive, which validates numerically the existence of vortex sheets
with a phase circulation when 6. — 1 and € — 0, which was conjectured in [3] (see also

Section [2.2.2)).

5.4. Two components condensate in the coexistence regime § < 1. In this section,
we consider the numerical behavior of two components Bose—Einstein condensates in the
coexistence regime (0 < 1) as € — 0. As mentioned in depending on the value of § and
Q, we expect four different qualitative behaviours for the minimizers.

5.4.1. Common parameters. In this section, we use the following parameters. The function p
is the same as in . The physical parameters are ¢ = 5 x 1072, Ny = 0.55 and Ny = 0.45.
The discretization parameters are L = 7, R = 4, h = 0.1 and hg = 10~'2. All the numerical
results in this Section [5.3| are obtained by first minimizing the discrete energy with N = 128,
then interpolating the real and imaginary parts of each component to a grid of N = 256 points
in each direction, then minimizing the corresponding discrete energy. For all the experiments
in this section, the EPG algorithm of Section converged because of the stopping criterion
on K2, with a value less or equal to 10~2. These parameters correspond to the coexistence
regime (§ < 1).

Remark 6. When minimizing EEA’J with high rotation speed €, giant holes are created in
some of the next simulations. To circumvent this, from now on, we will refer to a discrete
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FIGURE 17. The squared modulus of the first component (A) and the sec-
ond component (B) of a minimizer in the case of two components condensate
with moderate rotation 2 = 6. The vortices’ indices of the first and second
component are presented in Fig. (C) and (D) (respectively) with Ny, = 1,
Niaz = 9, toly = 0.05 and toly = 0.02.

analogue of Sgé (the energy with the centrifugal force) as 5?,5- Of course, Eé(; still denotes
the discrete energy without the centrifugal force. See Remark[]]

5.4.2. No vortices. We first consider the case of no rotation (2 = 0), strong confinement and
weak interaction strength § = 0.9 (i.e. 1 —0 = 0.1).

We start with a symmetric numerical initial datum corresponding to that of Section [5.2.1
The results are shown in Figure The numerical experiment confirms that we are in a
coexistence regime since the two components of the minimizer are disk-shaped, with almost
constant moduli away from the boundary, with similar (hence overlapping) supports. Of
course, the values of the constant moduli for ¢; and 9 depend on the values of N; and N».
This is in accordance with the theory presented in Section [2.2.3

5.4.3. Triangular vortex lattices. In this section, we consider the case of strong interaction
strength (6 = 0.2, i.e. 1 —0 = 0.8) and high rotation (2 = 7). In order to break off the



NUMERICAL STUDY 25

1.125
1.000
0.875
0.750
0.625
0.500
0.375
0.250
0.125
0.000

1.125
1.000
0.875
0.750
0.625
0.500
0.375
0.250
0.125
0.000

(A) The squared modulus of the first compo- (B) The squared modulus of the second com-
nent. ponent.

1125
1.000
0.875

-0.750
0.625

-0.500
0375
0.250
0.125
0.000

1.125
1.000
0.875
0.750
0.625
0.500
0.375
0.250
0.125
0.000

(C) The vortex sheet’s indices of the first com- (D) The vortex sheets’ indices of the second
ponent. component.

FIGURE 18. The squared modulus of the first component (A) and the second
component (B) of a minimizer in the case of two components condensate with
high rotation €2 = 15. The vortex sheets’ indices of the first and second
component are presented in Fig. (C) and (D) (respectively) with m = 0.4,
M = 0.6 and tols = 0.3.

symmetry, we choose a decentered initial datum, given by

Doy = %exp(—10($ —0.5)2 — 10(y + 0.3)2),
(13) iz, y) = %exp(—lo(x +0.7)% —10(y — 0.1)%).

The results are shown in Figure The numerical minimizer is consistent with the coex-
istence regime, and the high rotation is big enough to produce singly quantized vortices in
both components forming a triangular vortex lattice. This is in accordance with the second
behaviour in the theory presented in Section

5.4.4. Square vortex lattices. In this section, we consider the case of weak interaction strength
(0 =0.8, i.e. 1 —0 =0.2) and high rotation (2 = 8). We use the same non-symmetric initial
data as before (see Equation . The results are shown in Figure Numerically, the
minimizer confirms that we are in a coexistence regime, and the weak interaction strength
with the high rotation produce a square vortex lattice with singly quantized vortices in both
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FIGURE 19. The squared modulus of the first component (A) and of the second
component (B) of a minimizer of the energy EEA(;, in the case of no rotation
(€ = 0) and weak interaction strength (6 = 0.9).
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FIGURE 20. The vortices’ indices of the first component (A) and second com-
ponent (B) in the case of a two components condensate with high rotation
(2 = 7) and strong interaction strength (6 = 0.2) for the energy 5?75 followed
by red lines highlighting the triangular lattices.

components of the minimizer. This is in accordance with the third behavior in the theory
presented in Section [2.2.3

5.4.5. Double core and Stripe vortex lattice. In this last section, we fix § close to 1, and we
hope to observe either stripe vortex lattices or double core vortex lattices in the minimizers,
depending on the rotational speed 2.

In a first simulation, we use as an initial datum as before. We consider the case of
fairly high rotation speed (2 = 4) and weak interaction strength (6 = 0.998). The numerical
results obtained are displayed in Figure They confirm that we are in a coexistence regime
where each component is disk-shaped. Indeed, in both components, the points inside the disk
of radius R where the modulus of the minimizer is very small are isolated, and there is at
least a bit of mass in each component in all the rest of the disk. This contrasts for example
with all the numerical experiments carried out in the segregation regime (see Section .
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FIGURE 21. The vortices’ indices of the first component (A) and second com-
ponent (B) in the case of a two components condensate with high rotation
(Q = 8) and weak interaction strength (6 = 0.8) for the energy £25 followed
by red lines highlighting the square lattice. 7

We compute the index of the detected vortices, and we display the results in Figure 22| as
well. As expected, almost all the vortices are paired up 2 by 2, forming double-core vortices.
Moreover, almost all the indices of the numerical vortices are equal to one, which validates
numerically that the zeros of the function have a non-trivial and singly quantized phase
circulation. The only exception is one vortex in the first component (see Figure which
has an index of 2. An explanation for this is that it consists in two vortices that are too close
to each other, and hence cannot be detected as two different vortices by our vortex detection
algorithm (see Section [4.1)). This is in accordance with the last behaviour predicted by the
theory presented in Section
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(A) The squared modulus and the vortices’ (B) The squared modulus and the vortices’
indices of the first component for Ny, = 3, indices of the second component for Ny,;, = 1,
Ninaz = 4. Niaz = 4.

FIGURE 22. The squared modulus of the first component (A) and the second
component (B) of a minimizer (in the case of double-core pattern) for the
energy Sﬁ’(s with Q =4 and § = 0.995. The vortices’ indices of each component
are also presented in (A) and (B) (respectively) for tol; = 0.05 and toly = 0.01.



28 G. DUJARDIN, I. LACROIX-VIOLET, AND A. NAHAS

In a second simulation, we use the following initial datum 1/17117 = i e = SIN(Zp g+ Yn k), still
with the convention that 1! and 1?2 satisfy the Dirichlet boundary conditions. We consider
the case of fairly high rotation speed (2 = 5) and weak interaction strength (6 = 0.98). The
results are shown in Figure
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0.625
0.500
0.375
0.250
0.125

0.000

(A) The squared modulus and the vortices’ (B) The squared modulus and the vortices’
indices of the first component for N, = 1, indices of the second component for Ny,;, = 1,
Nmaa: =3. Nmaz =4.

FIGURE 23. The squared modulus of the first component (A) and the second
component (B) of a minimizer (in the case of stripe pattern) for the energy
8?76 with Q = 5 and 6 = 0.98. The vortices’ indices of each component are
also presented in (A) and (B) (respectively) for tol; = 0.05 and toly = 0.01.

The numerical results confirm that we are in the coexistence regime, where each component
is disk-shaped. In Figure we also compute and display the index of the vortices detected.
As expected, almost all the indices of the numerical vortices are equal to 1, which validates
numerically that the zeros of the function have a non-trivial and singly-quantized phase
circulation. An explanation for the two exceptions (doubly-quantized vortices in the second
component displayed in Figure is once again that our algorithm simply fails to detect
two separate vortices. Moreover, we can see a stripe pattern in both components (Figures
and . This is in accordance with the last behaviour in the theory presented in

6. COMPARISON WITH GPELAB

In this section, we study the efficiency of the EPG method introduced in Section 3| compared
to that of GPELab’s method (see [5l [7]) for minimizing the energy EEA,(;. At first sight, the
EPG method is explicit whereas GPELab’s method solves a linear system at each time step.
The time step is denoted by A; in GPELab, while we denote it by A in this paper. We
display for each comparison test three convergence criteria (see below) as well as the number
of iterations, the energy and the execution time. Let 1, denote the n'™® iteration using either
EPG or GPELab’s algorithm. We consider and compute the following three convergence
criteria:

(1) The difference between two successive iterations |1, — ¥n_1]%,

(2) The criterion K that we developed (see Section ,

(3) The energy evolution |E£5(¢n) - E§5(¢n_1)|.
Even though we compute all these quantities in all the numerical experiments in this Section,
we use as a stopping criterion the first criterion above (which is native in the code) for
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GPELab’s method, and the first two criteria for the EPG method (in contrast to the previous
numerical simulations of Section [5| where only the criterion on K is used). For each test
case, we compute the final value of the three criteria and we compare them.

Remark 7. The energy computed by GPELab’s method is different from the one given in
(2). The continuous GPELab’s energy reads as follows (see [Bl 7] for more details):

*éFu

2
1
Eapp(ut,ug) = f Z [Q\Vw\z + Vg\udz — Qu}‘sz] —I—J U 5
Dy D

where Vy = —ﬁ is the confinement function associated to component number £, 5 = % 18
the intra-component interaction, u* is defined as (u1,uz), the matriz F is given by
Fo Bralurl* + Bualuzl® 0
0 Bolu|* + Baalus|?

where (gl’l gl’2> = <(15 (15), and the rotation operator is defined by L, = —i(:c&C — y(?a;).
2,1 P22

The relation between the discrete analogue to Egpr and E 5 (see @) 1s the following:

N

A
gGPE

45

Observe that the difference between the two energies does not depend on u = (uj,us).
In the case of one component condensate (by taking ug = 0), we take 11 =1 and P12 =

Bo,1 = P22 =0, so that the last term of Egpr reads SD u*gFu = SD §|u1|4.

6.1. One component comparison. In this Section, we consider a one component Bose—
Einstein condensate. We compare both algorithms (GPELab’s method and EPG) on the
same computer. Each test is done separately.

6.1.1. Parameters for the EPG method. We take the following parameters for all the tests.
The function p is the same as before (see (12)). We take ¢ = 5 x 1072. For the initial datum,
we choose ¢! = %exp(—l():zt2 — 10y?). For the discretization parameters, we take the initial
step h = 0.256, the tolerance hg = 1072, the length of the box 2L = 14, the radius of the disk
R = 4, the species ratios N; = 1 and N2 = 0, the number of points per direction N = 256
and the convergence tolerance Ky = 1072

6.1.2. Parameters for GPELab’s method. The equivalent of these parameters in GPELab
(with the notations of [5, [7]) are

Ncomponents= 1,

Type="BESP’ (for Backward Euler pseudoSPectral scheme),

Delta= 0.5 (the coefficient in front of the kinetic energy),

Beta= 200, which corresponds to % for e = 0.05,

Vx,y) = 212 min[l 10(R? — 22 — »?)] (we had to add our own function),
Initial datum: ' = % exp(—102? — 10y?) (we had to add it too),

® Tiin = Ymin = —71 and Tinaz = Ymaz = 7

We had to modify the normalization step after each time step Ag.
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6.1.3. Numerical results. The GPELab algorithm converges whenever the infinity norm of the
difference between two successive iterations is less than a certain value Gy = A; x Stop_crit.
It stops without convergence if the number of iterations done exceeds 10°. In this Section,
the EPG method converges if either one of the following statements is true: at an iteration
step n, [t — L |l < Go or K2 < K.

For a first comparison, we set the rotation speed to Q@ = 1. We also set A; = 2 x 1073
and Stop_crit= 1072 so that Gp = 2 x 107°. We display the results in Figure For a
second comparison, we set the rotation speed to = 3. We also set A, = 2 x 1073 and
Stop_crit= 1072 so that Go = 2 x 107°. We display the results in Figure For a third
and final comparison, we set the rotation speed to @ = 6. We also set A, = 1073 and
Stop_crit= 1072 so that Gy = 107°. The results are displayed in Figure
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(A) A minimizer of the energy E2 using the (B) A minimizer of the energy Eqpp using the
EPG method. GPELab method.

EZ Go K® | # of iterations | E25(u,) — EZ5(u,—1) | Time (s)
GPELab || 38 [2x107° | 0.579 129569 —1.4x107° 95189
EPG 83 [2x107°[0.011 271041 —4.5 x 107 24688

F1GUurE 24. Comparison between GPELab and EPG results for 2 = 1.

The numerical results displayed in Figures and [26] show that the methods may
converge to different minimizers, with different energies (see Figure , as well as they may
converge to similar minimizers with similar energies (see Figure , taking into account
suitable rescaling of the discrete energies (as indicated in Remark. Moreover, the qualitative
behaviour of both methods is correct in the sense that higher rotations end up in creating
more vortices, and the beginning of a central hole when Q = 6 (see Figure . Note that the
EPG method uses more interations in all cases. However, since the EPG method is explicit
and the GPELab method is linearly implicit, the EPG method is faster in all cases. The
order of magnitude of the speed up is 3. Finally, the stopping criterion K is much smaller
in minimizers obtained by EPG than in that computed using GPELab.

6.2. Two components comparison. In this section, we consider two components Bose—
Einstein condensates. We also compare both algorithms on the same computer. Each test is
done separately.

6.2.1. Parameters for the EPG method. We take the following parameters for all the tests.
We take ¢ = 5 x 1072, For the initial datum, we choose ! = ¢? = %exp(—10x2 —1032).
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(A) A minimizer of the energy E2 using the (B) A minimizer of the energy Eqpg using the
EPG method. GPELab method.
EEA’(; Go K2 | # of iterations | EZ5(upn) — E25(up—1) | Time(s)
GPELab || —1419 | 2 x 10=° |0.05 56507 —1.3x107° 60 209
EPG —1428 | 2.4 x 107 [ 0.01 182346 —3.5x107° 16 609

FiGURE 25. Comparison between GPELab and EPG results for 2 = 3.

(A) A minimizer of the energy E2 using the (B) A minimizer of the energy E2 using the
EPG method. GPELab method.
EX; Go K2 | # of iterations Eﬁ;(un) - Eﬁ;(un,l) Time(s)
GPELab || —7334 10—° 0.0699 224473 —4.3x107% 199 321
EPG [ —7338 5 x 107° | 0.00578 707141 —1.1x107° 64 942

FIGURE 26. Comparison between GPELab and EPG results for 2 = 6.

For the discretization parameters we take the values N7 = 0.55 and No = 0.45, N = 256 and
Ko = 1072. For the rest of the parameters, we refer to

6.2.2. Parameters for GPELab’s method. The equivalent of these parameters in GPELab are
Ncomponents= 2,

Type="BESP’,

Delta= 0.5 (the coefficient in front of the kinetic energy),

Beta= 200,
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Beta_coupled= <1 5) ,

o 1
Vz,y) = —2%2 min[1, 10(R? — 2% — y?)] (the same function created before),
Initial datum: 1! = ¢? = L exp(—10z* — 10y?),
A; =5 x 107* and Stop_crit= 2 x 1072 (Go = 1079),
® Timin = Ymin = —1 and Timaz = Ymaz = 7-

We also had to modify the normalization step after each time step A;.

6.2.3. Numerical results. For a first comparison, we set the rotation speed to 2 = 3 and
the interaction strength to 6 = 0.7 (coexistence). We display the results in Figure For a
second comparison, we set the rotation speed to 2 = 3 and the interaction strength to § = 1.5
(segregation). For the EPG method, to break off the symmetry, we chose the following initial
datum

Pl = %exp(—lO(w —0.5)2 -10(y +0.2)%),  ? = %exp(—lO(m +0.5)* = 10(y — 0.3)%).

We display the results in Figure

The results displayed in Figures [27] and [28] both indicate that the methods may converge
to different minimizers, even if their energies are similar (see Remark [7| for details on the
rescaling). The qualitative behaviour of both methods is correct in the sense that they
provide coexisting minimizers when 6 = 0.7 and segregated minimizers when § = 1.5. The
number of iterations in both methods has the same order of magnitude (the maximal ratio
is of order 2), in contrast to the one component simulations carried out in Section The
EPG method is much faster in both cases: The order of magnitude of the speed up is 3 when
0 = 0.7 and 25 when § = 1.5. Finally, the stopping criterion K is much smaller in minimizers
obtained by EPG than in that computed using GPELab.

7. CONCLUSION

In this paper, we considered a Gross—Pitaevskii energy as a model for rotating one compo-
nent and two components Bose—Einstein condensates in two dimensions in a strong confine-
ment and strong rotation regime. First, we have introduced a discretization of this energy,
using the FFT scheme and Plancherel’s equality, which allowed a reasonable computation
of the energy gradients. Second, in contrast to the literature, we proposed a minimization
method for this discrete energy using an explicit L? gradient method with projection (EPG).
This method allowed for the derivation of a stopping criterion. Third, we introduced two
post processing algorithms for the numerical minimizers. One is aimed for the single vortices
and the other for vortex sheets. Both allow to detect these structures and compute their
indices. Fourth, we have ran our methods and algorithms for different physical regimes from
one component condensates with high rotation to two components condensates in coexistence
and segregation regimes. This validates recent theoretical results as well as it supports con-
jectures (as for example the existence of vortex sheets in the segregation regime). Last, we
have compared the efficiency of the EPG method to that of the GPELab method [7]. On all
the numerical tests presented, EPG appears to be, roughly speaking, at least 3 times faster
than GPELab.
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(1]

E% | Go | K& | # of iterations | EZ5(uy) — ES5(up—1) | Time(s)

)

GPELab || —2234 [ 107° | 0.07 206833 —2.3x107° 163690
EGP —2227 [ 107° | 0.01 259383 —2x107° 50527

FiGURE 27. Comparison between GPELab and EPG results for Q = 3 and
5 =0.7.
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