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ZOOM: using Optimistic Optimization to solve the Threshold Estimation Problem

This paper introduces and analyzes a new global optimization algorithm that solves the threshold estimation problem. In this active learning problem, underlying many empirical neuroscience and psychophysics experiments, the objective is to estimate the input values that would produce the desired output value from an unknown, noisy, non-decreasing response function. Our algorithm, ZOOM (Zooming Optimistic Optimization Method), efficiently solves this task by taking inspiration from X -armed bandits and Black-Box optimization. Compared to previous approaches, ZOOM offers the best of both worlds: ZOOM is model-agnostic, benefits from stronger theoretical guarantees and faster convergence rate, but also quickly jumps between arms, offering less repetitive sampling during experiments and strong performance even for small sampling budgets. We prove an upper bound for the regret incurred by ZOOM, which both compares favorably to the state-of-the-art. We also prove a lower bound for the regret of any algorithm solving the threshold optimization problem, which matches the upper bound up to a logarithmic factor. Finally, we evaluate ZOOM experimentally and show that it significantly outperforms previous methods from the state of the art in a wide range of experiments.

, which is often defined as µ * = 1 2 , 2 3 or 3 4 , which correspond respectively to the 50 %, 66.6 % and 75 % detection threshold.

.

. More recently, DOS, a new model-agnostic algorithm derived from X -armed bandits, has been introduced (Audiffren, 2021a). The authors have shown that their algorithm benefits from strong theoretical guarantees, and in particular, they proved an upper bound on the error of the estimator ŝ produced by DOS, which ensures the converge speed of the estimator under minimal assumptions. However, their upper bound is asymptotic, and as the authors acknowledge themselves, DOS is very conservative in its estimates and suffers the comparison with other methods when the sampling budget T is small and the response function is strongly smooth (e.g. Gaussian c.d.f).

1. Psychometric functions are most frequently non-decreasing. For instance, in the aforementioned example, the higher the contrast, the easiest it is for the observer to detect the stimulus. 2. In the sense that its Dini derivative are strictly positive.

Introduction

The Threshold Estimation Problem (TEP) is an active learning problem, where an agent is given an interval of possible input values I, a desired output probability µ * ∈ [0, 1] , a sampling budget T, and an unknown black-box non-decreasing response function ψ that can only be accessed through noisy observations, where the noise can depend on the input value. The objective is to provide an estimator ŝ of an input value that will produce a desired output value, i.e. ŝ ≈ s * ∈ ψ -1 (µ * ). This problem underlies many empirical studies in neuroscience and psychometric experiments. For instance, Psychophysics is a research field that studies the relationship between physical stimuli and the perceptions they produce. This topic has widespread applications, such as the design of compression methods for which humans perceive very little loss of signal quality (see e.g. [START_REF] Wouter A Dreschler | Psychophysical evaluation of fast compression systems[END_REF][START_REF] Zwicker | Psychoacoustics as the basis for modern audio signal data compression[END_REF][START_REF] Yuan | Visual jnd: a perceptual measurement in video coding[END_REF]), the study of attention [START_REF] Scheuerman | Modeling spatial auditory attention: Handling equiprobable attended locations[END_REF], or the development of differential diagnosis tools for neurological diseases such as Parkinson's disease [START_REF] Langheinrich | Visual contrast response functions in parkinson's disease: evidence from electroretinograms, visually evoked potentials and psychophysics[END_REF]. The Threshold Estimation Problem is central to Psychophysics and in particular the evaluation of human perception, which is generally assessed by performing psychometric experiments. During these, an experimenter (in our setting, the agent) presents to an observer, a sequence of stimuli of varying intensities s t , 1 ≤ t ≤ T (for instance, the contrast of a visual stimulus, see e.g. (Audiffren et al., 2022)). After each stimulus, the observer signals to the experimenter whether she was able to see the stimulus -which is modeled as a Bernoulli Contributions. In this paper, we introduce and analyze ZOOM (Zooming Optimistic Optimization Method), a new algorithm that solves the threshold estimation problem. ZOOM builds on DOS, by taking inspiration from hierarchical bandits, where the agent uses concentration inequalities to explore a hierarchical partition of the arm space, and global optimization of noisy black-box functions of smoothness (see e.g. [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF][START_REF] Shang | General parallel optimization a without metric[END_REF]). Compared to previous approaches, ZOOM offers the best of both worlds. Similarly to previous black box optimization-inspired methods such as DOS, ZOOM is model-agnostic, in the sense that it does not require a parametric model of the response function. ZOOM only requires that ψ is strictly increasing 2 in s * , and that its Dini derivatives are finite (a property that is true almost everywhere for an increasing function). In addition, like heuristic-based methods such as Staircase, ZOOM quickly jumps between arms, offering less repetitive sampling (an important advantage for experiments involving human subjects such as Psychophysics) and strong performance even for small sampling budgets.

To achieve these results, ZOOM explores a partition tree made of grids of increasing resolution by leveraging two competing decision rules: the first, derived from the Azuma-Hoeffding inequality (see e.g. [START_REF] Auer | Improved Rates for the Stochastic Continuum-Armed Bandit Problem[END_REF]), guarantees the exploration of the partition tree with high confidence, while the second, derived from the MOSS inequality [START_REF] Audibert | Minimax policies for adversarial and stochastic bandits[END_REF], is sharper but produces more errors, leading to a faster but more error-prone exploration. ZOOM balances these two approaches to obtain optimal or close to optimal regret in all settings. Indeed, we provide an upper bound for the regret incurred by ZOOM, that compares favorably to the state-of-the-art: we prove (see Theorem 4) that its simple regret R T is upper bounded by:

E(R T ) ≤ O (log T )(log log T )
T .

Moreover, we also provide a matching lower bound for the regret of any algorithm solving the threshold optimization problem (see Theorem 5). This lower bound, which matches the upper bound up to a logarithmic factor, states that any algorithm A solving the TEP must incur a regret of at least :

E(R T (A, µ * )) ≥ O(1/ √ T )
Finally, we evaluate ZOOM in an extensive range of experiments. Our results show that it has optimal or close to optimal performance in all tested settings, while all previous methods from the state-of-the-art significantly underperformed in at least one of the experiments.

The Threshold Estimation Problem

In this section, we introduce the notation and give the formal definition of the threshold estimation problem (TEP). Note that in the following we borrow the notation and vocabulary of the multi-armed bandit version of the problem introduced by (Audiffren, 2021a).

Notation. Let T denote the time horizon (i.e. the sampling budget), I = [0, 1] the bounded, closed input interval, ψ : I → [0, 1] the continuous3 , non-decreasing response function, µ * ∈ ψ(I) o the target probability (i.e. µ * is in the interior of the image of ψ) and s * . = ψ -1 (µ * ) the desired threshold4 . The objective of the TEP is to find an estimator ŝ of the sensitivity threshold s * with at most T samples. I, T and µ * are known to the agent, but ψ is not. The process unfolds as follows. For each round t ∈ [1, . . . , T ], the agent chooses an arm (i.e. chooses a value to sample) s ∈ I. Then the environment draws an independent Bernoulli random variable with mean ψ(s), and communicates the result to the agent. At time t = T, the agent returns the arm ŝ that is her best guess for the threshold s * . The performance of the agent is then evaluated using the simple regret R, defined as

R(ŝ) = |µ * -ψ(ŝ)|.
(1)

Smoothness of the response function

Additional smoothness assumptions for ψ are required to provide theoretical guarantees for the convergence of an estimator -this is to avoid the classical "needle in a haystack" problem of global optimization of black box function (see e.g. [START_REF] Valko | Stochastic Simultaneous Optimistic Optimization[END_REF]). As presented below, in this work we assume that the Dini derivative of ψ on s * are finite and strictly positive, which is a mild assumption.

Dini Derivatives. The Dini derivatives are a generalization of the notion of derivative for real valued functions. Let s ∈ I, the four different Dini derivatives of ψ on s are:

D -ψ(s) = inf δ>0 sup h∈[0,δ] ψ(s -h) -ψ(s) -h D + ψ(s) = inf δ>0 sup h∈[0,δ] ψ(s + h) -ψ(s) h D -ψ(s) = sup δ>0 inf h∈[0,δ] ψ(s -h) -ψ(s) -h D + ψ(s) = sup δ>0 inf h∈[0,δ] ψ(s + h) -ψ(s) h D -ψ(s), D + ψ(s), D -ψ(s) and D + ψ(s) take value in [-∞, ∞]
and are always well defined for any real valued function and any point of the function domain. Since in the TEP, ψ is assumed to be increasing, we have

D -ψ(s) ≥ D -ψ(s) ≥ 0 D + ψ(s) ≥ D + ψ(s) ≥ 0. (2) 
A key result in the analysis of the Dini derivatives is the Denjoy-Young-Saks theorem [START_REF] Saks | Theory of the integral[END_REF], which is recalled below:

Theorem 1 (Denjoy-Young-Saks) Let f be a finite real-valued function defined on an interval I.

Then at every point in I except on a set of Lebesgue measure zero, either:

1. f has a finite derivative,

2. D + f = D -f is finite, D -f = +∞, D + f = -∞, 3. D -f = D + f is finite, D + f = +∞, D -f = -∞, 4. D -f = D + f = +∞, D -f = D + f = -∞.
In particular, Theorem 1 applies to ψ, and using (2) we have the following corollary.

Corollary 2 (ψ has finite Dini derivatives a.e.) The Dini derivates of ψ are finite almost everywhere (a.e.).

In the rest of this paper, we will make the following assumption on the Dini derivatives of ψ on s * :

Assumption 1 (ψ Dini Derivatives on s * ) ∞ > D -ψ(s * ) ≥ D -ψ(s * ) > 0 ∞ > D + ψ(s * ) ≥ D + ψ(s * ) > 0.
Note that this Assumption is rather mild, as the Dini derivative of ψ are finite almost everywhere (Corollary 2), and positive everywhere (2). The strict positivity requirement can be seen as a natural requirement for the Dini derivatives of a function ψ that is strictly increasing on s * . Finally, it is important to remark that if ψ is differentiable on s * and ψ is strictly increasing on s * , then ψ satisfies Assumption 1, as in this case

D -ψ(s * ) = D + ψ(s * ) = D -ψ(s * ) = D + ψ(s * ) = ψ ′ (s * ) > 0.
3 Related Works Threshold Estimation in Psychophysics. Several adaptive algorithms have been proposed to solve the threshold estimation problem (TEP), in particular in experimental psychophysics. The staircase algorithm is arguably the most popular adaptive method and has been discussed and improved upon significantly in recent years [START_REF] Felix | Methods in psychophysics[END_REF]. However, this method can only be used for a very limited list of possible target probability (such as µ * = 0.5) [START_REF] Lawrence G Brown | Additional rules for the transformed up-down method in psychophysics[END_REF], and convergence is only guaranteed for specific shapes of the psychometric function [START_REF] Levitt | Transformed Up-Down Methods in Psychoacoustics[END_REF]. Multiple parametric Bayesian adaptive algorithms, whose purpose is generally to estimate the entire function ψ, have also been proposed [START_REF] Kontsevich | Bayesian adaptive estimation of psychometric slope and threshold[END_REF][START_REF] Shen | A maximum-likelihood procedure for estimating psychometric functions: Thresholds, slopes, and lapses of attention[END_REF][START_REF] Andrew B Watson | Quest+: A general multidimensional bayesian adaptive psychometric method[END_REF]. However, these methods also require prior knowledge of the response function parametric model, which limits their applications, and (García-Pérez and [START_REF] Miguel | Bayesian adaptive estimation of arbitrary points on a psychometric function[END_REF][START_REF] Hatzfeld | It's All About the Subject -Options to Improve Psychometric Procedure Performance[END_REF] have pointed out that they produce poor estimations and even diverge when their model is incorrect. More recently, several works have proposed to use Gaussian Processes (GP) to approximate ψ (Gardner et al., 2015a,b;[START_REF] Xinyu | Psychometric function estimation by probabilistic classification[END_REF]. GP addresses some of the shortcomings of the Bayesian methods by being more flexible, but these methods tend to be more costly and require significantly more samples to approximate s * .

Arguably the closest method to ours is DOS (Audiffren, 2021a). Similarly to our algorithm, ZOOM, DOS only requires minimal assumptions on the response function, and the authors have provided an upper bound for its simple regret. However, as the authors acknowledged themselves and observed in their following works (Audiffren and Bresciani, 2022), DOS is very conservative in its estimates, leading to subpar performance when the sampling budget T is small and the response function is strongly smooth. This limits the usability of DOS in practical applications, in particular for some experimental psychophysics experiments where T is very small [START_REF] Averbeck | Sex differences in thermal detection and thermal pain threshold and the thermal grill illusion: a psychophysical study in young volunteers[END_REF]. ZOOM addresses this issue as, under the slightly stronger Assumption 1, ZOOM has a faster convergence rate then DOS, and in our experiments, ZOOM has close to optimal performance even for small sampling budgets. This difference is due to our use of two decision rules in an alternating way, together with the grid approach, leading to better exploration for small values of T. Moreover we provide in this work a lower bound on the regret incurred by any algorithm solving the TEP, that matches ZOOM's upper bound up to a logarithmic factor.

Global Optimization and X -armed bandits. Since the seminal paper of [START_REF] Kleinberg | Multi-armed bandits in metric spaces[END_REF], X -armed bandits have been used in many applications, and in particular for the global optimization of a black box function in presence of noise, under a local smoothness assumption [START_REF] Munos | Optimistic optimization of a deterministic function without the knowledge of its smoothness[END_REF]. In particular, recent works have focused on using hierarchical bandits to find the function extrema without prior knowledge of its smoothness, see e.g. [START_REF] Valko | Stochastic Simultaneous Optimistic Optimization[END_REF][START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF][START_REF] Peter L Bartlett | A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption[END_REF]Shang et al., 2019a)). For instance, (Shang et al., 2019a) have shown that the regret incurred by these methods is nearly optimal, while (Torossian et al., 2019) provides a more general algorithm that adapts to a broader family regret functions.

Similarly to these works, our approach uses a hierarchical bandits, and Assumption 1 can be seen as a particular case of their local smoothness and near optimality dimension assumptions, see Lemma 6 and 9 in appendix for an in depth comparison of these conditions. However, the TEP significantly differs from the usual global optimization setting. Indeed, there is no equivalent to the non-decreasing property of ψ in this setting. This property is key to ZOOM and its theoretical guarantees, leading to a faster convergence rate -O( log T log log T T ) for ZOOM, see Theorem 4, compared to O( (log T ) 2 T ), see e.g. (Torossian et al., 2019;[START_REF] Peter L Bartlett | A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption[END_REF]). Moreover, ZOOM does not require a partition tree suited to the smoothness of ψ, a key difference with e.g. [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF].

Other related works. The threshold estimation problem shares some similarities with the noisy bisection problem [START_REF] Chakraborty | Near-optimal target learning with stochastic binary signals[END_REF] and the learning the demand curve problem [START_REF] Chhabra | Learning the demand curve in posted-price digital goods auctions[END_REF]. However, they are multiple crucial differences between these topics. For instance, in the latter, the objective can be reformulated as minimizing the cumulative regret, instead of the simple regret (1) -leading to very different, non-equivalent solutions [START_REF] Bubeck | Pure exploration in finitely-armed and continuous-armed bandits[END_REF]. Additionally, in both cases strong assumptions are made on the properties of the noise (e.g. Gaussian, [START_REF] Jedynak | Twenty questions with noise: Bayes optimal policies for entropy loss[END_REF]), the shape of the function or its smoothness [START_REF] Chakraborty | Near-optimal target learning with stochastic binary signals[END_REF] -which is very different from our model-free approach, and cannot be easily adapted.

Contributions

Here we introduce ZOOM and discuss the insights behind the algorithm (Section 4.1). Then we prove an upper bound for its simple regret(Section 4.2), and a matching lower bound (Section 4.3). We provide proof sketches for the different results, and refer the reader to the appendix for the detailed proofs.

ZOOM

ZOOM STRATEGY.

Let K ∈ N + be a positive integer. ZOOM relies on a partition tree which is made of uniform grids G d,n , d ≥ 1, 0 ≤ n < K d-1 . Each grid contains K + 1 elements, and is of resolution 1/K d . More precisely

G d,n = {s d,n,0 , s d,n,1 , . . . , s d,n,K } where s d,n,k = nK + k K d (3)
When using ZOOM, the agent only samples arms that are part of a grid, that is to say the s d,n,K . We denote by N d,n,k (t) the the number of time the arm s d,n,k has been pulled at time t, and μd,n,k (t) the corresponding empirical average of its observations. Moreover we use µ

d,n,k = ψ(s d,n,k ) and ∆ d,n,k = |µ d,n,k -µ * |.
The general idea of ZOOM can be summarized as follows: the agent starts with the grid G 1,0 = {0, 1/K, . . . , 1} that covers the entire input interval I = [0, 1] with resolution 1/K. Then, at each time t, the agent starts from first grid, i.e. d = 1; n = 0 and then :

1. Find the most promising interval k (see Section 4.1.3). If the agent is confident enough that the desired input is in this interval, she "zooms" on the sub-grid which spawns this interval (d ← d + 1, and n ← nK + k) and repeat this step.

2. Once she has found a promising interval but is not confident enough to "zoom", she samples the extremities of the interval for which she has the least amount of information (see Section 4.1.4).

The process is repeated until t = T and the sampling budget is elapsed. Then, the arm that was pulled the most in the deepest reached subgrid is returned (see Section 4.1.5). This process is summarized in Algorithm 1.

Algorithm 1 ZOOM Input:µ * (objective), T (time horizon), K (Grid Coarseness) Init: ∀d, n, k, N d,n,k ← 0 (number of pulls of each arm), μd,n,k ← 0 (empirical average) for t = 1, . . . , T do if t mod 2 = 1 then C = Condition (5) // Careful Exploration else C = Condition (6) // Fast Exploration end if d, n, k ← Find best interval(C) // Section 4.1.3 Choose Interval Extremity(d, n, k)
// Section 4.1.4 end for Return ŝ as in Section 4.1.5

Note that as long as the "zooms" are correct, i.e. that s * belongs to the interval of interest, this strategy produces a sequence of sub-grids that concentrates exponentially fast around s * , resulting in turn in exponentially decreasing regrets due to Assumption 1 (see Corollary 15 in the appendix).

Choice of the parameter K. K directly quantify the coarseness of the grid, and the larger the K, the closer s * will be to one of the grid point. As stated by Theorem 4 (Section 4.2), the following value of K, which is adaptive in T, leads to a faster convergence rate of the estimator than other methods such as DOS.

K = T log T log log T (4)
Importantly ZOOM is model-agnostic, in the sense that it does not use prior knowledge regarding ψ, such as the values of the Dini derivatives of ψ. Moreover, the choice of K defined by (4) lead to favorable regret guarantees for all ψ satisfying Assumption 1 -a phenomenon that was confirmed in our experiments (see Section 5).

NOISY COMPARISONS

Let d ≥ 1 and n, k ≥ 0. Since ψ is assumed to be non-decreasing, we have

s * ∈ [s d,n,k , s d,n,k+1 ] i.f.f. ψ(s d,n,k ) ≤ µ * ≤ ψ(s d,n,k+1 ).
However, in the threshold optimization problem, the agent has only access to noisy observations of the response function ψ. Consequently, for any d, n, k, while the agent can observe if μd,n,k ≤ µ * , she can never be sure if µ d,n,k ≤ µ * . To address this problem, our method relies on two different strategies, that are used alternately by the algorithm.

The first strategy is a concentration inequality derived from the Azuma-Hoeffding inequality, and is a confidence interval commonly used for the optimism against uncertainty principle, see e.g. [START_REF] Auer | Improved Rates for the Stochastic Continuum-Armed Bandit Problem[END_REF]. In this case, the agent decides that that

µ d,n,k ≤ µ * if μd,n,k ≤ µ * and |µ * -μi (t)| > B T (N i (t)) . = 3 log T 2N i (t) , (5) 
with by definition B T (0) = +∞. The following Lemma shows the property of this concentration inequality yields with probability close to 1.

Lemma 3 Let s * ∈ [0, 1] , and d, n, k ≥ 0. Then P |μ d,n,k -µ d,n,k | > B T (N d,n,k (t)) < 2 T 3
Proof The Lemma results directly from the Azuma-Hoeffding inequality.

The second strategy works differently from the first. It is derived from the work of [START_REF] Audibert | Minimax policies for adversarial and stochastic bandits[END_REF], which was further extended in [START_REF] Garivier | Kl-ucb-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints[END_REF]. In this case, the agent decide that that

µ d,n,k ≤ µ * if μd,n,k ≤ µ * and kl(μ i (t), µ * ) > K(N i (t)) . = 2 log (T /N i (t)) N i (t) . ( 6 
)
where kl denotes the Kullback-Leibler divergence. Contrarily to (5), this inequality is not related to a concentration inequality that is true with a probability close to one. However, [START_REF] Garivier | Kl-ucb-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints[END_REF] have shown that by using this inequality, arms that are significantly worse than the optimal arm are only pulled a small number of times, resulting in a lower cumulative regret than UCB [START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF]. Importantly, the two inequalities ( 5) and ( 6) play complementary roles in ZOOM. While (6) can lead to faster decision regarding arms that are "distant" from the target s * , it is also prone to errors. However, since half of the sampling budget is used with (5), whose probability of error is tightly controlled, these errors will be fixed over time -leading to the regret upper bound proven in Theorem 4. Indeed, at each time t, the agent reassesses its decisions from the root of the partition tree (see Algorithm 1). Therefore, over time, the decision made using (6) may change due to additional sampling performed by (5), the slower but more accurate concentration inequality. Overall, the number of errors due to (6) is small, and in expectation, it contributes positively to the regret as illustrated by our experiments (Section 5).

FINDING THE MOST PROMISING INTERVAL

Let C be the condition used by ZOOM to reach a decision when comparing arms to the target threshold s * (alternately ( 5) and ( 6)). To simplify the notation, in the following we use:

s d,n,k ≪ s * if μd,n,k < µ * and C is satisfied, s d,n,k ≫ s * if μd,n,k > µ * and C is satisfied. By construction, s d,n,0 ≪ s * ≪ s d,n,K .
Indeed, the agent zooms on an interval only if she has deduced that s * is in the interior of the interval. For other values of 0 < k < K, if the arm has never been pulled, i.e. N d,n,k = 0, then C is not satisfied and none of the above notations apply.

At each time t, the agent starts from the arm in the middle of the first grid of the partition tree, i.e. s 1,0,K/2 . Then it searches the most promising interval of the grid (see below) and decides if she is confident enough to zoom on the sub-grid defined by this interval. If yes, the process is repeated on the sub-grid, until the agent reaches a promising interval on which she does not decide to zoom. Then one extremity of this interval is sampled, see Section 4.1.4. Formally, let d ≥ 1, n ≥ 0. To find the most promising interval of G d,n , the agent starts with its middle element s d,n,K/2 . If N d,n,k = 0, then this interval is chosen. Otherwise, if μd,n,k ≥ µ * , then the agent chooses the interval d, n, k ′ such that

k ′ = max {ℓ ≥ 0, s.t. N d,n,ℓ = 0 or μd,n,ℓ < µ * } .
In the other case where μd,n,k < µ * , the agent chooses the interval d, n, k ′ where

k ′ = min {ℓ ≥ 0, s.t. N d,n,ℓ = 0 or μd,n,ℓ > µ * } .
k ′ is well defined in both cases as ℓ = 0 (resp. ℓ = K) always satisfies the aforementioned condition.

Zooming. After the interval d, n, k ′ is chosen, the agent decides to zoom on the interval, if and only if ) is sampled, as there is no information regarding this arm. Finally, if none of the conditions above apply, the endpoint to sample is selected uniformly at random.

s d,n,k ≪ s * ≪ s d,n,

ZOOM OUTPUT ESTIMATOR

When the time horizon is reached (t = T ), then ZOOM outputs ŝ = s d * ,n * ,k * as its estimator, where

d * = max{d ≥ 0, ∃n, k s.t. N d,n,k > 0}, n * , k * = arg max n,k {N d * ,n,k } ,
with in case of equality, the agent chooses at random. In other words, the agent returns the arm that was sampled the most among the deepest subgrid that can be reached using (5). Note that since the maximum distance between an arm s d,n,k and s * decreases exponentially with d, the quality of the estimator tends to increase with d.

Regret Upper Bound

We prove the following upper bound on the regret incurred by ZOOM.

Theorem 4 (Regret Upper Bound) Let T > 0, and ψ a response function that satisfies Assumption 1.Then, if ZOOM is run with parameter K as in (4), there exists a constant C ψ > 0, that only depends on ψ, such that its regret R T is upper bounded with probability at least 1 -2/T by

R T ≤ C ψ log T log log T T (7)
Proof [Proof Sketch.] (7) can be proved as follows.

Step 1. Let A be the event where the Azuma-Hoeffding inequality is always satisfied, i.e.

A . = {∀t ≤ T, ∀d, n, k ≥ 0, |µ d,n,k -μd,n,k (t)| ≤ B T (N d,n,k )} .
By using the union bound, we show that P A C < 2 T . Note that as the probability of A C is small enough and R T ≤ 1 a.s., upper bounding the regret of ZOOM on A induces a bound on the expected regret.

Step 2. Conditionally to A, it can be shown that all the sub-grids reached during careful exploration contain s * . Thus if ZOOM zooms at least once, we can deduce that the final estimator ŝ will be at depth at least one, and

|ψ(ŝ) -µ * | ≤ γ 1 K ≤ γ 1 (log T )(log log T ) T ,
where γ 1 is a constant that only depends on ψ.

Step 3. Finally we consider the case where ZOOM has not zoomed, i.e. d = 0. In this case we show that the arms surrounding s * will be sampled the most, provided that T ≥ γ 2 , where γ 2 is a constant that only depends on ψ. The conclusion then results from the fact that the two arms closest to s * statisfy |s -s * | ≤ 1/K. The complete proof can be found in the Appendix (Section B).

Comparison with DOS. The algorithm closest to ZOOM, DOS has an upper regret bounded by

R T ≤ (3 + ν) (log T ) 2 log log T T (8)
where ν is a constant that only depends on ψ (Audiffren, 2021a, Theorem 1). First, it is important to note that DOS relies on weaker assumptions than ZOOM, namely that ψ is locally Hölder around s * (see Appendix Section A for a comparison of the different assumptions). However ZOOM's assumption, i.e. Assumption 1, is very mild, as any strictly increasing functions that is differentiable on s * satisfies it, and all the commonly studied response function in practical applications are at least in C 1 (I). 5 Second, ZOOM is able to leverage Assumption 1 to obtain a strictly better order of convergence, as indeed ( 7) is √ log T faster than (8). Finally, our experiments show that ZOOM exhibit significantly stronger performance than DOS for a wide range of experiment, particularly for small values of T (Section 5).

Regret Lower Bound

Theorem 5 (Simple regret lower bound) Let A be an adaptive method for estimating the threshold. Then, for any 0 < µ * < 1, there exists a response function ψ such that :

• ψ is continuous, 5. that is to say ψ is continuous, and differentiable on I, and its differentiate is also continuous.

• ψ is differentiable on s * , with ψ ′ (s * ) = 1,

• for T large enough, E(R T (A, µ * )) ≥ O(1/ √ T ).
Proof [Proof Sketch] The proof of this theorem is inspired by the technique used by [START_REF] Locatelli | Adaptivity to smoothness in x-armed bandits[END_REF]. Let ∆ = 1 8T , and s 0 = 0.5 -∆, s 1 = 0.5 + ∆. We start by defining the "challenging" functions ψ 0 and ψ 1 as follows:

ψ k (s) =      µ * -∆ if s < s k -∆ µ * + ∆ if s > s k + ∆ µ * + (s -s k ) otherwise
It is easy to see that ψ k is piece-wise linear, and ψ ′ (s * ) = 1. Note that ψ -1 k (µ * ) = s k . Then, using Pinsker's reverse inequality, [START_REF] Locatelli | Adaptivity to smoothness in x-armed bandits[END_REF], Lemma 1) and (Tsybakov, 2009, Chapter 2, Theorem 2.2, Conclusion (iii)), we show that the probability for any method to confuse ψ 0 and ψ 1 , and thus their solution s 0 and s 1 , is at least 2 min(µ * ,1-µ * ) , resulting in a regret of

E(R T (A, µ * )) ≥ 1 4 exp(- 2 min(µ * , 1 -µ * ) )∆ = O( 1 √ T ).
The complete proof can be found in the Appendix (Section C).

Experiments

In this section we perform an empirical evaluation of ZOOM. First, we conduct an ablation analysis by studying the influence of the parameter K on ZOOM's performance, and compare it to the optimal value of K defined in (4). Then, we evaluate the importance of the second decision rule (6). Finally, we compare ZOOM to the state of art of methods commonly used in the threshold estimation problem and black box optimization.

Baselines. We compare ZOOM to Staircase (Wichmann andJäkel, 2018), QuestPlus (Watson, 2017), GP (Gardner et al., 2015a), DOS (Audiffren, 2021a), and POO [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF]. For Staircase and QuestPlus, we used the implementation provided by [START_REF] Peirce | PsychoPy2: Experiments in behavior made easy[END_REF], and the parameters recommended by their respective papers. We used the dichotomous partition of [0, 1] for DOS, and used GP with the kernel and hyperparameters recommended by [START_REF] Xinyu | Psychometric function estimation by probabilistic classification[END_REF]. We used the implementation of POO as provided by the authors [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF], by tranforming6 the TEP into a black box optimization problem with f (s) = |µ * -ψ(s)|. All experiments were performed with a custom script using Python 3.8, unless mentioned otherwise. The code for ZOOM can be found in the supplementary materials.

Time Horizon T For each experiment, we use four different time horizons T (i.e. stimulus budgets).

The first two, T = 100 and 300, aim at reproducing the constraints of real psychometric experiments, where only a few hundred stimuli at most can be presented to the observer before the fatigue and learning effects significantly interfere with the experiment (Wichmann and Hill, 2001a). The last two time horizon, T = 1000 and 3000, aims at illustrating the more asymptotic behavior of the different methods.

ψ and target µ * To assess the different methods in multiple settings, we use a range of target values µ * , thresholds s * and response functions ψ. While µ * = 0.5 is the most popular setting, we also tested µ * = 2/3 and µ * = 3/4, which are important values for k-AFC experiments (see e.g. (Wichmann and Hill, 2001a)). Furthermore,we used the following three family of response functions ψ 0 , ψ 1 and ψ 2 (by decreasing order of smoothness):

ψ 0,i (s) = µ i -0.5 + 1 2πσ 2 i t=s t=-∞ exp - (t -s * ) 2 2σ 2 i dt, (9) 
ψ 1,i (s) =    µ i - σ i 2 (s * -s) if s < s * , µ i + 2σ i (s * -s) if s ≥ s * , (10) 
ψ 2,i (s) = µ i -|s * -s| σ i if s < s * , µ i + |s -s * | 2σ i if s ≥ s * . ( 11 
)
Each function has two parameters, σ i > 0 -which quantifies the steepness of the function around s * -and µ i ∈ I -the probability target. Note that each function is strictly increasing, and ψ(s * ) = µ i . ψ 0 is the cumulative distribution function of a Gaussian random variable of standard deviation σ, and is therefore infinitely differentiable (ψ 0 ∈ C ∞ ). ψ 0 was tested with the parameters σ 0 = 0.25, σ 1 = 1 and σ 2 = 4. ψ 1 is piecewise-linear, with slopes σ/2 and 2σ. ψ 1 is not differentiable in s * but satisfies Assumption 1. ψ 1 was tested with the parameters σ 0 = 0.1, σ 1 = 1 and σ 2 = 10. Finally, ψ 2 is σ-locally Hölder around s * , but does not satisfies Assumption 1 (if σ < 1.) ψ 2 was tested with the parameters σ 0 = 0.5, σ 1 = 1 and σ 2 = 2. For all functions we used µ 0 = 0.5, µ 1 = 0.25 and µ 2 = 0.33, to test a range of probability targets. Each combination of ψ j,i and T was repeated 20 times for each value of s * in [0.15, 0.26, 0.37, 0.48, 0.59, 0.70, 0.81], and the average and standard deviation of the regret were collected.

Choice of K. For the ablation analysis of ZOOM, we used K = 4,16,20 and 64, as well as K as in (4). For all other experiments, we set K as in (4).

Results

Ablation Analysis: Choice of K. Figure 1 shows the result of the analysis of the influence of K over the performance of ZOOM. First it should be noted that ZOOM produce good estimators for all the tested valued of K. Overall the optimal value of K depends on the function ψ, and ZOOM appears to perform the best (or close to the best) in all settings for a value of K that is adaptive to T , i.e. as in (4), as hinted by Theorem 4. Ablation Analysis: Optimistic Exploration. The result of the analysis of the influence of the second concentration inequality, (6) over the performance of ZOOM are reported in Figure 2. Interestingly the version of ZOOM that uses only the Azuma-Hoeffding concentration inequality, denoted ZOM, performed substantially worse than its counterpart for most time horizons and response functions, and is at best close to ZOOM performance. Overall this improvement, which tends to be larger for for K for multiple time horizons (T = 100, 300, 1000 and 3000) and response functions ψ i,j 1≤i,j≤3 . When not specified, K is set as in (4).

smaller time horizons, highlights the added benefits of using decision rule (6) for small sampling budgets.

Comparison with the state-of-the-art. Figure 3 displays the average and standard deviation of the regret of each method for all response functions and time horizons. First, note that Staircase performed poorly for mu * ̸ = 0.5 ( ψ i,j with j > 0). It is a known limitation for the method, as its performance tend to worsen in this case [START_REF] Wichmann | The psychometric function: II. Bootstrap-based confidence intervals and sampling[END_REF]. Moreover, Staircase had poor results for the non-differentiable response function, even when µ * = 0.5 (ψ 2,0 ). Questplus, a Bayesian method, converged significantly slower than non-bayesian methods such as DOS or ZOOM, as it estimates the entire response function. Moreover, its performance was significantly Figure 2: Average and standard deviation of the regret incurred by ZOOM (with the two concentration inequality) and ZOM (using just ( 5)) for multiple time horizons (T = 100, 300, 1000 and 3000) and response functions ψ i,j 1≤i,j≤3 .

decreased when used on some response functions. This is because Questplus is unable to estimate the response function, as it significantly differs from its parametric model. Conversely, GP and POO were able to estimate all the tested response functions, but still suffers from sub-optimal performance for small T -highlighting the slow rate of convergence of its more general model. Finally, DOS, while competitive for large values of T (≥ 1000), tends to underperform for T ≤ 300. Overall this experiment highlights the advantage of ZOOM, which has the best -or close to the best -regret in all settings for all considered time budgets. Interestingly, ZOOM also exhibits very good performance on all the (ψ 2,k ) 1≤k≤3 , despite the fact that they do not satisfies Assumption 1. It is probable that the limitation induced by the property of the neighborhood of s * require very large values of T to have an impact on ZOOM performance.

Conclusion

In this work, we introduced a new method for solving the threshold estimation problem, ZOOM.

Compared to previous methods, we showed that ZOOM has the best of both worlds: it has a strong regret upper bounds, is model-agnostic and performed the best or close to the best in all our experiments, even for small sampling budget. We also proved a lower bound for the regret of the threshold estimation problem, which matches ZOOM's upper bound up to a logarithmic factor.

As a result, ZOOM has the advantages of other approaches such as DOS without their drawbacks. Consequently, we argue that it is currently the best off-the-shelf method to solve the threshold estimation problem. We believe that ZOOM can have a significant impact in other research fields that have to address the threshold estimation problem in their experiments, such as Psychophysics. Indeed, in psychometric experiments, good performance for a low sampling budget is important as the experimenter has seldom the opportunity to present thousands of stimuli to an observer, due to material constraints as well as the fatigue and learning effects (Wichmann and Hill, 2001a). Moreover, the response function is often unknown and the parametric models of the psychometric functions can be incorrect, leading to misleading results [START_REF] Hatzfeld | It's All About the Subject -Options to Improve Psychometric Procedure Performance[END_REF], and it is generally impossible to repeat the experiment to test different models, highlighting the importance of the model-agnostic approach. Furthermore, ZOOM is robust to effects that change the response function, such as guesses and lapses, which may strongly impact model-based methods if not accounted for (Wichmann and Hill, 2001a). However, ZOOM is not a replacement for Bayesian psychometric methods, such as GP or QuestPlus, as they can estimate the entire ψ function -whereas the TEP only aims at estimating s * ≈ ψ -1 (µ * ).

Possible directions to improve ZOOM include a more efficient way to combine the decision rules, such as a switch mechanism [START_REF] Garivier | Kl-ucb-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints[END_REF], or a strategy to automatically adapt the size of the grid to the observations. 1. ψ satisfies Assumption 2 with (ν, ρ),

2. d(ν, ρ) = d ψ , 3. (2ρ d ψ ) > 1.
The last point is key, otherwise the inequality is trivial. Intuitively, if ψ has a NOD of d ψ then d ψ represents a measure of the evolution of the size of the near optimal set; the smaller d ψ , the faster this near optimal set decreases. Most theoretical guarantees of previous algorithms depend on the near optimality dimension [START_REF] Shang | General parallel optimization a without metric[END_REF]. We start by proving that the NOD condition is equivalent to the well known Tsybakov Noise Condition (TNC) [START_REF] Alexander | Optimal aggregation of classifiers in statistical learning[END_REF][START_REF] Rui | Upper and lower error bounds for active learning[END_REF][START_REF] Locatelli | Adaptivity to smoothness in x-armed bandits[END_REF]. The following definition presents a formulation of the TNC for the threshold estimation problem.

Definition 8 [Tsybakov noise condition (TNC) ] Let C B > 0 and β > 0. ψ is said to satisfy the TNC with parameters (C B , β) if ∀∆ > 0, ∀s ∈ I,

|ψ(s) -ψ(s * )| ≤ ∆ =⇒ |s -s * | ≤ C B ∆ β (13) 
In Definition 8, β represents a measure of the evolution of the size of the near-optimal set; the bigger β, the faster this near-optimal set decreases. Note that contrarily to (12) the TNC does not require the smoothness of the function. As aforementioned, the NOD and the TNC are equivalent conditions in the TEP.

Lemma 9 (Equivalence NOD TNC) Let ν > 0 and 0 < ρ < 1. Let ψ be a function satisfying Assumption 2 for (ν, ρ). Then using the following relations :

         ∆ = 2νρ h β = - log(2) + d ψ log(ρ) log ρ C B = C(2ν) β
we have:

ψ has a NOD of d ψ ⇐⇒ ψ satisfies the TNC with (C B , β)

Proof First note that:

(12) ⇐⇒ ∀h > 0, Λ s ∈ I, s.t. |ψ(s) -µ * | ≤ 2νρ h ≤ C(2ρ d ′ ) -h (13) ⇐⇒ ∀∆ > 0, Λ s ∈ I, s.t. |ψ(s) -µ * | ≤ ∆ ≤ C B ∆ β
where Λ denotes the Lebesgue measure on R. Moreover, using the values in Lemma 9

C(2ρ d ′ ) -h = C exp log(2ρ d ′ ) log ∆/2ν log ρ = C exp log ∆ log(2ρ d ′ ) log ρ -log 2ν log(2ρ d ′ ) log ρ = C(2ν) - log(2ρ d ′ ) log ρ ∆ - log(2ρ d ′ ) log ρ = C(2ν) β ∆ β = C B ∆ β Now assume that ψ has a NOD of d ψ . Since β = -log(2ρ d ′ )
log ρ , it only remains to show that β > 0. Since ρ < 1, log ρ < 0, and by definition of NOD, 2ρ d ′ > 1. Hence β > 0, and ψ satisfies TNC.

Conversely, assume that ψ satisfies TNC. We need to show that 2ρ d ′ > 1,

2ρ d ′ > 1 ⇐⇒ - β log(ρ) + log(2) log ρ × log(ρ) + log(2) > 0 ⇐⇒ -β log(ρ) > 0 ⇐⇒ ρ -β > 1 ⇐⇒ β > 0
Link between α and β Lemma 10 shows that if ψ is locally α Hölder and satisfies the TNC, then the values of α and β are linked, as described by the following Lemma. The proof of Lemma 10 is inspired by the similar result from [START_REF] Locatelli | Adaptivity to smoothness in x-armed bandits[END_REF] in a different setting. This corollary is an immediate consequence of Lemma 14, which is proven in the next section of the appendix. This equivalence of assumption is key for the comparison of the methods and results between our method, ZOOM, and the state-of-the-art of the threshold estimation problem (See section 4). Importantly, the mildly stronger assumption used in our analysis of ZOOM leads to significantly better regret bound, see Appendix B.

Appendix B. Regret Upper Bound: Proof of Theorem 4

We begin by proving some useful Lemmas.

Lemma 12 Let d, n, k ≥ 0. Then if µ d,n,k ≤ µ * , P μd,n,k ≥ µ * + B T (N d,n,k (t)) < 2 T 3 Proof Note that {μ d,n,k (T ) > µ * + B T (N d,n,k (t))} ⊂ {μ d,n,k (T ) > µ d,n,k + B T (N d,n,k (t))}
Hence the resulting using the Chernoff Hoeffding concentration inequality and Lemma 3.

In other words, Lemma 12 states that the probability of ZOOM to reach the wrong decision about an arm is controlled. In the following, we examine the behavior of ZOOM on A * , where by definition ZOOM never reaches the wrong conclusion regarding arms comparisons when using (5). Formally, let

A * . = {∀t ≤ T, ∀i ≤ κ, |µ d,n,k -μd,n,k (t)| ≤ B T (N d,n,k (t))} , Let P A * (•) . = P (•|A * ).
We say that an event E is A * almost sure (A * a.s.) if P A * (E) = 1. Under A * , ZOOM never reach a wrong subgrid when using (5). Therefore ZOOM only explores one subgrid per depth, and we can prove that the event A * has high probability.

Lemma 13 P (A * ) ≥ 1 -2
T . Proof This directly results from Lemma 12 by taking the union bound.

In the following, we only refer to subgrids that are reached using (5), and we call d * the deepest grid reached. As a consequence of the previous lemma, ZOOM only reaches one subgrid per level, and it is the one that contains s * . Since only one grid per level is reached, in the following the drop the n from the notation to ease the reading : w denote by G d , the subgrid of depth d reached, and s d,k its arms. (??) implies that the sequence of activated arms s d,k converges exponentially fast toward the threshold s * as a function of the depth reached d. The convergence speed depends on the smoothness of ψ. The following Lemma details the smoothness property of ψ.

Lemma 14 Let ψ be a response function that satisfies Assumption 1. Then ∃C 1 > 0, such that:

∀s ∈ I, |ψ(s * ) -ψ(s)| ≤ C 1 |s * -s| (14) 
Moreover ∃C 2 > 0, such that:

∀s ∈ I, |ψ(s * ) -ψ(s)| ≥ C 2 |s * -s| (15) 
Proof We start by proving (14). By definition of the Dini derivatives, we have : Hence (15) with C 2 = min(D/2, δD/2).

lim s→s * ψ(s) -ψ(s * ) s -s * ≤ max D -ψ(s * ), D + ψ(s * ) D lim s→s * ψ(s) -ψ(s * ) s -s * ≥ min (D -ψ(s * ), D + ψ(s * ))
Corollary 15 If Assumption 1 is true, then ∀d ≤ d * ,

P A * ∆ d,k ≤ C 1 K -d+1 = 1 (16)
Proof This corollary is an immediate consequence of Lemma 14, and (??).

Finally, the following lemma provides bounds to the number of times that an arm will be pulled under A * Lemma 16 ∀d, k ≥ 0, A * almost surely,

N d,k ≤ 3 log T 2∆ 2 d,k
.

Proof This directly result from the inequality (5) and the definition of B T .

PROOF OF THEOREM 4

We are now ready to prove the regret upper bounds of Theorem 4. Note that since the regret is always upper bounded by 1, Lemma 13 implies that it is only necessary to prove the upper bounds on A * . 

K = C 1 T log T log log T -1 . ( 17 
)
Now if d * = 1, the algorithm has never zoomed, and we will show that the arm that was pulled the most (which is the arm returned by the algorithm when the time budget elapsed) is a good estimator of s * . To ease the notation, in the rest of the proof we will drop the d index (since d = 1). For any 0 ≤ i ≤ K, let

K i = 0 ≤ k ≤ K, s.t. i K ≤ |s k -s * | < i + 1 K
Since the s k are an uniform grid over I of step 1/K, we have

∀0 ≤ i ≤ K, |K i | ≤ 2 (18) |K 0 | ≥ 1 (19)
Note that any arms in K 0 satisfy (17) and there is at least one arm of K 0 . Now let K ≥ i > 0, and k ∈ K i . By definition of K i , we have 0 < i K ≤ |s k -s * |, and thus using (15),

∆ k ≥ C 2 i K
Now, by definition of A * , B T (N d,k -1) > ∆ k (otherwise ZOOM would have stopped to sample s d,k before) and thus

N k ≤ 3 log T 2i 2 C -2 2 K 2 . =n i .
So the total number of pulls that ZOOM uses on the K i , i > 1 is upper bounded by

K i=1 k∈K i N k ≤ K i=1 k∈K i n i ≤ 2 K i=1 n i ≤ 2 K i=1 3 log T 2C 2 2 i 2 K 2 ≤ π 2 log T 2C 2 2 K 2 ≤ π 2 T 2C 2 2 log log T = o(T )
First remark that by definition,

L T = T t=1 Y t log ψ 0 (X t ) ψ 1 (X t )
+ (1 -Y t ) log 1 -ψ 0 (X t ) 1 -ψ 1 (X t ) .

Hence,

E 0 (L T ) = T t=1 E 0 (Y t ) log ψ 0 (X t ) ψ 1 (X t ) + E 0 (1 -Y t ) log 1 -ψ 0 (X t ) 1 -ψ 1 (X t ) = T t=1 ψ 0 (X t ) log ψ 0 (X t ) ψ 1 (X t ) + (1 -ψ 0 (X t )) log 1 -ψ 0 (X t ) 1 -ψ 1 (X t ) = T t=1 kl (ψ 0 (X t ), ψ 1 (X t )) ≤ 8 min(µ * -∆, 1 -µ * -∆) ∆ 2 T ≤ 1 min(µ * -∆, 1 -µ * -∆) ≤ 2 min(µ * , 1 -µ * ) (23)
where kl denotes the Kullback-Leibler (KL) divergence between two Bernoulli random variable, and we used Pinsker's reverse inequality in the antepenultimate line, and (20),(21) in the two last lines.

Moreover, using the tower-rule :

E 0 (L n ) = E 0 (L n |χ T = s 0 )P 0 (χ T = s 0 ) + E 0 (L n |χ T = s 1 )P 0 (χ T = s 1 ) ≥ P 0 (χ T = s 0 ) log P 0 (χ T = s 0 ) P 1 (χ T = s 0 ) + P 0 (χ T = s 1 ) log P 0 (χ T = s 1 ) P 1 (χ T = s 1 ) = KL(ρ 0 , ρ 1 )

(24)
where KL denotes the general KL divergence between two distributions,and we used [START_REF] Locatelli | Adaptivity to smoothness in x-armed bandits[END_REF], Lemma 1) in the second line.
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 1 Figure 1: Average and standard deviation of the regret incurred by ZOOM with different valuesfor K for multiple time horizons (T = 100, 300, 1000 and 3000) and response functions ψ i,j 1≤i,j≤3 . When not specified, K is set as in (4).
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 3 Figure 3: Average and standard deviation of the regret incurred by ZOOM compared to state-of-theart methods (DOS, Staircase, POO, QuestPlus, GP) for multiple time horizons (T = 100, 300, 1000 and 3000) and response functions ψ i,j 1≤i,j≤3 .

Lemma 10

 10 Let ψ be a response function that is locally α-Hölder on s * and satisfies the TNC withβ > 0. Then αβ ≤ 1 Proof ∀s ∈ I, |ψ(s) -ψ(s * )| ≤ C H |s -s * | αusing the Hölder property=⇒ ∀s ∈ I, |s -s * | ≤ C B C β H |s -s * | αβ using (13) =⇒ ∀s ∈ I, |s -s * | 1-αβ ≤ C B C β H ,i.e. the left term of the equation must be bounded for all values of s. When taking s -→ s * , this implies that 1 -αβ ≥ 0 Link between α, β, and Assumption 1 Corollary 11 Let ψ be a response function that satisfies Assumption 1. Then ψ is locally α Hölder on s * and satisfies the TNC with α = β = 1. The contraposition is also true.

  

  By definition of D, there exists δ > 0, s.t. ∀s ∈ [s

	Moreover, ∀s ̸ ∈ [s * -δ, s * + δ], we trivially have			
	ψ(s) -ψ(s * ) s -s *	≤	1 δ	.
	Hence (14) with C 1 = max(2D, 1/δ). We now prove (15). By Assumption 1 and (2), we have
	D, D > 0. Thus there exists δ > 0, s.t. ∀s ∈ [s * -δ, s * + δ]
	ψ(s) -ψ(s * ) s -s *	≥	1 2	D.
	Moreover, ∀s ̸ ∈ [s			

D

Now by assumption

D, D < ∞. * -δ, s * + δ] ψ(s) -ψ(s * ) s -s * ≤ 2D. * -δ, s * + δ],

we trivially have

ψ(s) -ψ(s * ) s -s * ≥ δD 2 .

  Proposition 17 Assume that ψ satisfies Assumption 1. Let C 1 , C 2 as in Lemma 14. Let K = ⌊ T (log T )(log log T ) ⌋. Then, there exists a constant C ψ > 0, that only depends on ψ, such that A * -almost surely,R T ≤ C ψ log T log log T T Proof Under A * ,only valid grids are reached, and thus ZOOM only explore one grid per depth. For any d ≥ 1, let G d be the valid subgrid of depth d, and s d,0 , . . . , s d,K its arms. let d * be the largest depth reached by ZOOM. First, if d * > 1, i.e. if the algorithm has zoomed, then all arms on the deepest layers satisfy |s d * ,k -s * | ≤ 1 K , and thus Corollary 15 implies that ∆ d * ,k = |ψ(s d * ,k ) -ψ(s * )| ≤ C 1 |s d * ,k -s * | ≤ C 1

Note that to keep the notation simple, we assume here that ψ is continuous, but all of our results can easily be extended to more general case where ψ is only measurable.

s * is unique and well defined when ψ satisfies Assumption 1.

This transformation is impossible outside of simulations as ψ is unknown. See(Audiffren, 2021a) for a discussion on using block box optimization for the TEP.

Appendix A. Comparison Between Assumptions

Recall that the main assumption of ZOOM is :

We start by comparing Assumption 1 to the following hypothesis, which is the most commonly used smoothness assumption in X -armed bandits for black box optimization problem [START_REF] Valko | Stochastic Simultaneous Optimistic Optimization[END_REF][START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF].

Assumption 2 (ψ is smooth around s * ) There exists ν > 0, and

As stated by the following Lemma, this assumption is equivalent to being locally Hölder around s * in the TEP setting. . By applying Assumption 2 we have

Hence ψ is α = -log ρ log 2 locally Hölder on s * . The other implication is proved similarly.

Near optimality dimension. Another quantity of interest to used to quantify the difficulty of the optimization problem is the near optimality dimension (NOD) [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF]; [START_REF] Shang | General parallel optimization a without metric[END_REF].

Definition 7 (Near optimality dimension) Let ν > 0 and 0 < ρ < 1. Let ψ be a function satisfying Assumption 2 for (ν, ρ). Then the NOD of ψ, noted d(ν, ρ), is defined as

Note that for d ′ large enough, (2ρ d ′ ) ) < 1 and thus the inequality becomes trivial. Thus the infimum in ( 12) is always well-defined and finite. In the following, we say that ψ has a NOD of

Now since the algorithm has not zoomed, we have

and thus for T large enough,

and thus the conclusion using ( 18) and ( 17).

Appendix C. Regret Lower bound : Proof of Theorem 5

Proof [Proof of Theorem 5]

Step 1. Define the 'Hard' problem.

Assume that T satisfies

and let

and finally let s 0 = 0.5 -∆, s 1 = 0.5 + ∆, and for k = 0, 1,

It is easy to see that ψ k is piecewise linear, and is differentiable on s * with

Step 2. Lower bound the probability of mistake Let (X i , Y i )

T i=1 be the sequence of sampled valued (X t ) and observations (Y t ) produced by A throughout its time budget. We denote by P 0 , E 0 the associated probability and expectation of this sequence (resp P 1 , E 1 ) under the function ψ 0 (resp. ψ 1 ). Let x T be the final guess of A, and

i.e. the closest of the two possible solutions. Note that by definition, χ T always produce a regret lower than x T , for both ψ 0 and ψ 1 . We denote by ρ 0 (resp. ρ 1 ) the distribution of χ T under the function ψ 0 (resp. ψ 1 ). Define

. Now, using (Tsybakov, 2009, Chapter 2, Theorem 2.2, Conclusion (iii)), we have

) using ( 23).

Step 3. Lower bound the regret Now, if P 0 (χ T = s 1 ) > 1 4 exp(-2 min(µ * ,1-µ * ) ), then on ψ 0 A incurs a regret lower bounded by

hence the lower bound in this case. Otherwise, P 0 (χ T = s 1 ) < 1 4 exp(- Hence by the same argument the regret incurred by A on ψ 1 is at least O(1/ √ n).