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Abstract
This paper introduces and analyzes a new global optimization algorithm that solves the threshold
estimation problem. In this active learning problem, underlying many empirical neuroscience and
psychophysics experiments, the objective is to estimate the input values that would produce the
desired output value from an unknown, noisy, non-decreasing response function. Our algorithm,
ZOOM (Zooming Optimistic Optimization Method), efficiently solves this task by taking inspiration
from X -armed bandits and Black-Box optimization. Compared to previous approaches, ZOOM
offers the best of both worlds: ZOOM is model-agnostic, benefits from stronger theoretical guar-
antees and faster convergence rate, but also quickly jumps between arms, offering less repetitive
sampling during experiments and strong performance even for small sampling budgets. We prove an
upper bound for the regret incurred by ZOOM, which both compares favorably to the state-of-the-art.
We also prove a lower bound for the regret of any algorithm solving the threshold optimization
problem, which matches the upper bound up to a logarithmic factor. Finally, we evaluate ZOOM
experimentally and show that it significantly outperforms previous methods from the state of the art
in a wide range of experiments.

1 Introduction

The Threshold Estimation Problem (TEP) is an active learning problem, where an agent is given an
interval of possible input values I, a desired output probability µ∗ ∈ [0, 1] , a sampling budget T, and
an unknown black-box non-decreasing response function ψ that can only be accessed through noisy
observations, where the noise can depend on the input value. The objective is to provide an estimator
ŝ of an input value that will produce a desired output value, i.e. ŝ ≈ s∗ ∈ ψ−1(µ∗).

This problem underlies many empirical studies in neuroscience and psychometric experiments.
For instance, Psychophysics is a research field that studies the relationship between physical stimuli
and the perceptions they produce. This topic has widespread applications, such as the design of
compression methods for which humans perceive very little loss of signal quality (see e.g. (Dreschler
and Verschuure, 1996; Zwicker, 2000; Yuan et al., 2019)), the study of attention (Scheuerman et al.,
2017), or the development of differential diagnosis tools for neurological diseases such as Parkinson’s
disease (Langheinrich et al., 2000). The Threshold Estimation Problem is central to Psychophysics
and in particular the evaluation of human perception, which is generally assessed by performing
psychometric experiments. During these, an experimenter (in our setting, the agent) presents to
an observer, a sequence of stimuli of varying intensities st, 1 ≤ t ≤ T (for instance, the contrast
of a visual stimulus, see e.g. (Audiffren et al., 2022)). After each stimulus, the observer signals
to the experimenter whether she was able to see the stimulus – which is modeled as a Bernoulli
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random variable whose mean (the probability of perception) is ψ(st), i.e. the output of a black-box
non-decreasing1 response function called the psychometric function. The objective of many such
experiments is to find the sensitivity threshold, where the stimulus is just noticeable (Kontsevich and
Tyler, 1999), which is often defined as µ∗ = 1

2 ,
2
3 or 3

4 , which correspond respectively to the 50 %,
66.6 % and 75 % detection threshold.

Recently, there has been an increased interest in developing new active algorithms (Watson, 2017;
Audiffren, 2021b; Gardner et al., 2015a) to address the Threshold Estimation Problem, as the use
of an efficient adaptive sampling strategy is pivotal to the quality of the final threshold estimation.
Among them, several Bayes-based optimization algorithms were proposed – see e.g. (Watson, 2017)
and references therein – where a parametric model of ψ is assumed to be known, e.g. a Gaussian
cumulative distribution function (c.d.f.). However, these methods suppose the prior knowledge of
this parametric model, which may not be available and is unrealistic in many settings. Therefore,
these methods have been shown to be often inconsistent with the observations, and to require many
small empirical corrections to fit the data with acceptable accuracy in many applications (Wichmann
and Hill, 2001b).

Arguably the most popular alternative to Bayesian methods is the Staircase (and its iterations)
(Cornsweet, 1962; Wichmann and Jäkel, 2018; Lengyel and Fiser, 2019). However, this method
can only be used for a very limited list of target values (such as µ∗ = 0.5) (Brown, 1996), and the
convergence of the estimator ŝ is only guaranteed for specific shapes of the psychometric function
(such as Gaussian c.d.f.) (Levitt, 1971). More recently, DOS, a new model-agnostic algorithm
derived from X -armed bandits, has been introduced (Audiffren, 2021a). The authors have shown
that their algorithm benefits from strong theoretical guarantees, and in particular, they proved an
upper bound on the error of the estimator ŝ produced by DOS, which ensures the converge speed
of the estimator under minimal assumptions. However, their upper bound is asymptotic, and as
the authors acknowledge themselves, DOS is very conservative in its estimates and suffers the
comparison with other methods when the sampling budget T is small and the response function is
strongly smooth (e.g. Gaussian c.d.f).

Contributions. In this paper, we introduce and analyze ZOOM (Zooming Optimistic Optimization
Method), a new algorithm that solves the threshold estimation problem. ZOOM builds on DOS,
by taking inspiration from hierarchical bandits, where the agent uses concentration inequalities to
explore a hierarchical partition of the arm space, and global optimization of noisy black-box functions
of smoothness (see e.g. (Grill et al., 2015; Shang et al., 2019b)). Compared to previous approaches,
ZOOM offers the best of both worlds. Similarly to previous black box optimization-inspired methods
such as DOS, ZOOM is model-agnostic, in the sense that it does not require a parametric model
of the response function. ZOOM only requires that ψ is strictly increasing2 in s∗, and that its
Dini derivatives are finite (a property that is true almost everywhere for an increasing function).
In addition, like heuristic-based methods such as Staircase, ZOOM quickly jumps between arms,
offering less repetitive sampling (an important advantage for experiments involving human subjects
such as Psychophysics) and strong performance even for small sampling budgets.

To achieve these results, ZOOM explores a partition tree made of grids of increasing resolution by
leveraging two competing decision rules: the first, derived from the Azuma-Hoeffding inequality (see

1. Psychometric functions are most frequently non-decreasing. For instance, in the aforementioned example, the higher
the contrast, the easiest it is for the observer to detect the stimulus.

2. In the sense that its Dini derivative are strictly positive.
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e.g. (Auer et al., 2007)), guarantees the exploration of the partition tree with high confidence, while
the second, derived from the MOSS inequality (Audibert et al., 2009), is sharper but produces more
errors, leading to a faster but more error-prone exploration. ZOOM balances these two approaches to
obtain optimal or close to optimal regret in all settings. Indeed, we provide an upper bound for the
regret incurred by ZOOM, that compares favorably to the state-of-the-art: we prove (see Theorem 4)
that its simple regretRT is upper bounded by:

E(RT ) ≤ O

(√
(log T )(log log T )

T

)
.

Moreover, we also provide a matching lower bound for the regret of any algorithm solving the
threshold optimization problem (see Theorem 5). This lower bound, which matches the upper bound
up to a logarithmic factor, states that any algorithm A solving the TEP must incur a regret of at least :

E(RT (A, µ∗)) ≥ O(1/
√
T )

Finally, we evaluate ZOOM in an extensive range of experiments. Our results show that it has
optimal or close to optimal performance in all tested settings, while all previous methods from the
state-of-the-art significantly underperformed in at least one of the experiments.

2 The Threshold Estimation Problem

In this section, we introduce the notation and give the formal definition of the threshold estimation
problem (TEP). Note that in the following we borrow the notation and vocabulary of the multi-armed
bandit version of the problem introduced by (Audiffren, 2021a).

Notation. Let T denote the time horizon (i.e. the sampling budget), I = [0, 1] the bounded,
closed input interval, ψ : I 7→ [0, 1] the continuous3, non-decreasing response function, µ∗ ∈ ψ(I)o
the target probability (i.e. µ∗ is in the interior of the image of ψ) and s∗

.
= ψ−1(µ∗) the desired

threshold4.
The objective of the TEP is to find an estimator ŝ of the sensitivity threshold s∗ with at most T
samples. I, T and µ∗ are known to the agent, but ψ is not. The process unfolds as follows. For each
round t ∈ [1, . . . , T ], the agent chooses an arm (i.e. chooses a value to sample) s ∈ I. Then the
environment draws an independent Bernoulli random variable with mean ψ(s), and communicates
the result to the agent. At time t = T, the agent returns the arm ŝ that is her best guess for the
threshold s∗. The performance of the agent is then evaluated using the simple regretR, defined as

R(ŝ) = |µ∗ − ψ(ŝ)|. (1)

2.1 Smoothness of the response function

Additional smoothness assumptions for ψ are required to provide theoretical guarantees for the
convergence of an estimator – this is to avoid the classical “needle in a haystack” problem of global
optimization of black box function (see e.g. (Valko et al., 2013)). As presented below, in this work we
assume that the Dini derivative of ψ on s∗ are finite and strictly positive, which is a mild assumption.

3. Note that to keep the notation simple, we assume here that ψ is continuous, but all of our results can easily be extended
to more general case where ψ is only measurable.

4. s∗ is unique and well defined when ψ satisfies Assumption 1.
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Dini Derivatives. The Dini derivatives are a generalization of the notion of derivative for real
valued functions. Let s ∈ I, the four different Dini derivatives of ψ on s are:

D−ψ(s) = inf
δ>0

sup
h∈[0,δ]

ψ(s− h)− ψ(s)
−h

D+ψ(s) = inf
δ>0

sup
h∈[0,δ]

ψ(s+ h)− ψ(s)
h

D−ψ(s) = sup
δ>0

inf
h∈[0,δ]

ψ(s− h)− ψ(s)
−h

D+ψ(s) = sup
δ>0

inf
h∈[0,δ]

ψ(s+ h)− ψ(s)
h

D−ψ(s), D+ψ(s), D
−ψ(s) and D+ψ(s) take value in [−∞,∞] and are always well defined for

any real valued function and any point of the function domain. Since in the TEP, ψ is assumed to be
increasing, we have

D−ψ(s) ≥ D−ψ(s) ≥ 0

D+ψ(s) ≥ D+ψ(s) ≥ 0.
(2)

A key result in the analysis of the Dini derivatives is the Denjoy–Young–Saks theorem (Saks, 1937),
which is recalled below:

Theorem 1 (Denjoy–Young–Saks) Let f be a finite real-valued function defined on an interval I.
Then at every point in I except on a set of Lebesgue measure zero, either:

1. f has a finite derivative,

2. D+f = D−f is finite, D−f = +∞, D+f = −∞,

3. D−f = D+f is finite, D+f = +∞, D−f = −∞,

4. D−f = D+f = +∞, D−f = D+f = −∞.

In particular, Theorem 1 applies to ψ, and using (2) we have the following corollary.

Corollary 2 (ψ has finite Dini derivatives a.e.) The Dini derivates of ψ are finite almost every-
where (a.e.).

In the rest of this paper, we will make the following assumption on the Dini derivatives of ψ on s∗:

Assumption 1 (ψ Dini Derivatives on s∗)

∞ > D−ψ(s∗) ≥ D−ψ(s∗) > 0

∞ > D+ψ(s∗) ≥ D+ψ(s∗) > 0.

Note that this Assumption is rather mild, as the Dini derivative of ψ are finite almost everywhere
(Corollary 2), and positive everywhere (2). The strict positivity requirement can be seen as a natural
requirement for the Dini derivatives of a function ψ that is strictly increasing on s∗. Finally, it is
important to remark that if ψ is differentiable on s∗ and ψ is strictly increasing on s∗, then ψ satisfies
Assumption 1, as in this case

D−ψ(s∗) = D+ψ(s∗) = D−ψ(s∗) = D+ψ(s∗) = ψ′(s∗) > 0.
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3 Related Works

Threshold Estimation in Psychophysics. Several adaptive algorithms have been proposed to solve
the threshold estimation problem (TEP), in particular in experimental psychophysics. The staircase
algorithm is arguably the most popular adaptive method and has been discussed and improved upon
significantly in recent years (Wichmann and Jäkel, 2018). However, this method can only be used for
a very limited list of possible target probability (such as µ∗ = 0.5) (Brown, 1996), and convergence is
only guaranteed for specific shapes of the psychometric function (Levitt, 1971). Multiple parametric
Bayesian adaptive algorithms, whose purpose is generally to estimate the entire function ψ, have
also been proposed (Kontsevich and Tyler, 1999; Shen and Richards, 2012; Watson, 2017). However,
these methods also require prior knowledge of the response function parametric model, which limits
their applications, and (Garcı́a-Pérez and Alcalá-Quintana, 2007; Hatzfeld et al., 2016) have pointed
out that they produce poor estimations and even diverge when their model is incorrect. More recently,
several works have proposed to use Gaussian Processes (GP) to approximate ψ (Gardner et al.,
2015a,b; Song et al., 2017). GP addresses some of the shortcomings of the Bayesian methods by
being more flexible, but these methods tend to be more costly and require significantly more samples
to approximate s∗.

Arguably the closest method to ours is DOS (Audiffren, 2021a). Similarly to our algorithm,
ZOOM, DOS only requires minimal assumptions on the response function, and the authors have
provided an upper bound for its simple regret. However, as the authors acknowledged themselves
and observed in their following works (Audiffren and Bresciani, 2022), DOS is very conservative in
its estimates, leading to subpar performance when the sampling budget T is small and the response
function is strongly smooth. This limits the usability of DOS in practical applications, in particular for
some experimental psychophysics experiments where T is very small (Averbeck et al., 2017). ZOOM
addresses this issue as, under the slightly stronger Assumption 1, ZOOM has a faster convergence
rate then DOS, and in our experiments, ZOOM has close to optimal performance even for small
sampling budgets. This difference is due to our use of two decision rules in an alternating way,
together with the grid approach, leading to better exploration for small values of T. Moreover we
provide in this work a lower bound on the regret incurred by any algorithm solving the TEP, that
matches ZOOM’s upper bound up to a logarithmic factor.

Global Optimization and X -armed bandits. Since the seminal paper of (Kleinberg et al., 2008),
X -armed bandits have been used in many applications, and in particular for the global optimization
of a black box function in presence of noise, under a local smoothness assumption (Munos, 2011).
In particular, recent works have focused on using hierarchical bandits to find the function extrema
without prior knowledge of its smoothness, see e.g. (Valko et al., 2013; Grill et al., 2015; Bartlett
et al., 2019; Shang et al., 2019a)). For instance, (Shang et al., 2019a) have shown that the regret
incurred by these methods is nearly optimal, while (Torossian et al., 2019) provides a more general
algorithm that adapts to a broader family regret functions.

Similarly to these works, our approach uses a hierarchical bandits, and Assumption 1 can be
seen as a particular case of their local smoothness and near optimality dimension assumptions, see
Lemma 6 and 9 in appendix for an in depth comparison of these conditions. However, the TEP
significantly differs from the usual global optimization setting. Indeed, there is no equivalent to
the non-decreasing property of ψ in this setting. This property is key to ZOOM and its theoretical

guarantees, leading to a faster convergence rate – O(
√

log T log log T
T ) for ZOOM, see Theorem 4,
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compared to O(
√

(log T )2

T ), see e.g. (Torossian et al., 2019; Bartlett et al., 2019)). Moreover, ZOOM
does not require a partition tree suited to the smoothness of ψ, a key difference with e.g. (Grill et al.,
2015).

Other related works. The threshold estimation problem shares some similarities with the noisy
bisection problem (Chakraborty et al., 2011) and the learning the demand curve problem (Chhabra
and Das, 2011). However, they are multiple crucial differences between these topics. For instance, in
the latter, the objective can be reformulated as minimizing the cumulative regret, instead of the simple
regret (1) – leading to very different, non-equivalent solutions (Bubeck et al., 2011). Additionally,
in both cases strong assumptions are made on the properties of the noise (e.g. Gaussian, (Jedynak
et al., 2012)), the shape of the function or its smoothness (Chakraborty et al., 2011) – which is very
different from our model-free approach, and cannot be easily adapted.

4 Contributions

Here we introduce ZOOM and discuss the insights behind the algorithm (Section 4.1). Then we
prove an upper bound for its simple regret(Section 4.2), and a matching lower bound (Section 4.3).
We provide proof sketches for the different results, and refer the reader to the appendix for the
detailed proofs.

4.1 ZOOM

4.1.1 ZOOM STRATEGY.

Let K ∈ N+ be a positive integer. ZOOM relies on a partition tree which is made of uniform grids
Gd,n, d ≥ 1, 0 ≤ n < Kd−1. Each grid contains K + 1 elements, and is of resolution 1/Kd. More
precisely

Gd,n = {sd,n,0, sd,n,1, . . . , sd,n,K} where sd,n,k =
nK + k

Kd
(3)

When using ZOOM, the agent only samples arms that are part of a grid, that is to say the sd,n,K .
We denote by Nd,n,k(t) the the number of time the arm sd,n,k has been pulled at time t, and µ̂d,n,k(t)
the corresponding empirical average of its observations. Moreover we use µd,n,k = ψ(sd,n,k) and
∆d,n,k = |µd,n,k − µ∗|.

The general idea of ZOOM can be summarized as follows: the agent starts with the grid
G1,0 = {0, 1/K, . . . , 1} that covers the entire input interval I = [0, 1] with resolution 1/K. Then, at
each time t, the agent starts from first grid, i.e. d = 1; n = 0 and then :

1. Find the most promising interval k (see Section 4.1.3). If the agent is confident enough that
the desired input is in this interval, she “zooms” on the sub-grid which spawns this interval
(d← d+ 1, and n← nK + k) and repeat this step.

2. Once she has found a promising interval but is not confident enough to “zoom”, she samples
the extremities of the interval for which she has the least amount of information (see Section
4.1.4).

The process is repeated until t = T and the sampling budget is elapsed. Then, the arm that was pulled
the most in the deepest reached subgrid is returned (see Section 4.1.5). This process is summarized
in Algorithm 1.
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Algorithm 1 ZOOM
Input:µ∗ (objective), T (time horizon), K (Grid Coarseness)
Init: ∀d, n, k, Nd,n,k ← 0 (number of pulls of each arm), µ̂d,n,k ← 0 (empirical average)
for t = 1, . . . , T do

if t mod 2 = 1 then
C = Condition (5) // Careful Exploration

else
C = Condition (6) // Fast Exploration

end if
d, n, k←Find best interval(C) // Section 4.1.3
Choose Interval Extremity(d, n, k) // Section 4.1.4

end for
Return ŝ as in Section 4.1.5

Note that as long as the “zooms” are correct, i.e. that s∗ belongs to the interval of interest, this
strategy produces a sequence of sub-grids that concentrates exponentially fast around s∗, resulting in
turn in exponentially decreasing regrets due to Assumption 1 (see Corollary 15 in the appendix).

Choice of the parameter K. K directly quantify the coarseness of the grid, and the larger the K,
the closer s∗ will be to one of the grid point. As stated by Theorem 4 (Section 4.2), the following
value of K, which is adaptive in T, leads to a faster convergence rate of the estimator than other
methods such as DOS.

K =

⌊√
T

log T log log T

⌋
(4)

Importantly ZOOM is model-agnostic, in the sense that it does not use prior knowledge regarding
ψ, such as the values of the Dini derivatives of ψ. Moreover, the choice of K defined by (4) lead to
favorable regret guarantees for all ψ satisfying Assumption 1 – a phenomenon that was confirmed in
our experiments (see Section 5).

4.1.2 NOISY COMPARISONS

Let d ≥ 1 and n, k ≥ 0. Since ψ is assumed to be non-decreasing, we have

s∗ ∈ [sd,n,k, sd,n,k+1] i.f.f. ψ(sd,n,k) ≤ µ∗ ≤ ψ(sd,n,k+1).

However, in the threshold optimization problem, the agent has only access to noisy observations of
the response function ψ. Consequently, for any d, n, k, while the agent can observe if µ̂d,n,k ≤ µ∗,
she can never be sure if µd,n,k ≤ µ∗. To address this problem, our method relies on two different
strategies, that are used alternately by the algorithm.

The first strategy is a concentration inequality derived from the Azuma-Hoeffding inequality, and
is a confidence interval commonly used for the optimism against uncertainty principle, see e.g. (Auer
et al., 2007). In this case, the agent decides that that µd,n,k ≤ µ∗ if µ̂d,n,k ≤ µ∗ and

|µ∗ − µ̂i(t)| > BT (Ni(t))
.
=

√
3 log T

2Ni(t)
, (5)
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with by definition BT (0) = +∞. The following Lemma shows the property of this concentration
inequality yields with probability close to 1.

Lemma 3 Let s∗ ∈ [0, 1] , and d, n, k ≥ 0. Then

P
(
|µ̂d,n,k − µd,n,k| > BT (Nd,n,k(t))

)
<

2

T 3

Proof The Lemma results directly from the Azuma-Hoeffding inequality.

The second strategy works differently from the first. It is derived from the work of (Audibert
et al., 2009), which was further extended in (Garivier et al., 2022). In this case, the agent decide that
that µd,n,k ≤ µ∗ if µ̂d,n,k ≤ µ∗ and

kl(µ̂i(t), µ∗) > K(Ni(t))
.
= 2

log (T/Ni(t))

Ni(t)
. (6)

where kl denotes the Kullback-Leibler divergence. Contrarily to (5), this inequality is not related to a
concentration inequality that is true with a probability close to one. However, (Garivier et al., 2022)
have shown that by using this inequality, arms that are significantly worse than the optimal arm are
only pulled a small number of times, resulting in a lower cumulative regret than UCB (Auer, 2002).

Importantly, the two inequalities (5) and (6) play complementary roles in ZOOM. While (6)
can lead to faster decision regarding arms that are “distant” from the target s∗, it is also prone to
errors. However, since half of the sampling budget is used with (5), whose probability of error is
tightly controlled, these errors will be fixed over time – leading to the regret upper bound proven in
Theorem 4. Indeed, at each time t, the agent reassesses its decisions from the root of the partition tree
(see Algorithm 1). Therefore, over time, the decision made using (6) may change due to additional
sampling performed by (5), the slower but more accurate concentration inequality. Overall, the
number of errors due to (6) is small, and in expectation, it contributes positively to the regret as
illustrated by our experiments (Section 5).

4.1.3 FINDING THE MOST PROMISING INTERVAL

Let C be the condition used by ZOOM to reach a decision when comparing arms to the target
threshold s∗ (alternately (5) and (6)). To simplify the notation, in the following we use:

sd,n,k ≪ s∗ if µ̂d,n,k < µ∗ and C is satisfied,

sd,n,k ≫ s∗ if µ̂d,n,k > µ∗ and C is satisfied.

By construction, sd,n,0 ≪ s∗ ≪ sd,n,K . Indeed, the agent zooms on an interval only if she has
deduced that s∗ is in the interior of the interval. For other values of 0 < k < K, if the arm has never
been pulled, i.e. Nd,n,k = 0, then C is not satisfied and none of the above notations apply.

At each time t, the agent starts from the arm in the middle of the first grid of the partition tree,
i.e. s1,0,K/2. Then it searches the most promising interval of the grid (see below) and decides if she
is confident enough to zoom on the sub-grid defined by this interval. If yes, the process is repeated
on the sub-grid, until the agent reaches a promising interval on which she does not decide to zoom.
Then one extremity of this interval is sampled, see Section 4.1.4.

8



Formally, let d ≥ 1, n ≥ 0. To find the most promising interval of Gd,n, the agent starts with its
middle element sd,n,K/2. If Nd,n,k = 0, then this interval is chosen. Otherwise, if µ̂d,n,k ≥ µ∗, then
the agent chooses the interval d, n, k′ such that

k′ = max {ℓ ≥ 0, s.t. Nd,n,ℓ = 0 or µ̂d,n,ℓ < µ∗} .

In the other case where µ̂d,n,k < µ∗, the agent chooses the interval d, n, k′ where

k′ = min {ℓ ≥ 0, s.t. Nd,n,ℓ = 0 or µ̂d,n,ℓ > µ∗} .

k′ is well defined in both cases as ℓ = 0 (resp. ℓ = K) always satisfies the aforementioned condition.

Zooming. After the interval d, n, k′ is chosen, the agent decides to zoom on the interval, if and
only if

sd,n,k ≪ s∗ ≪ sd,n,k+1,

in which case the agent repeats the process using d ← d + 1, n ← nK + k and k = ⌊K/2⌋.
Otherwise the agent moves to the next step of the algorithm.

4.1.4 CHOOSING THE INTERVAL EXTREMITY

After the interval of interest d, n, k has been selected, the agent decides which endpoint – either
sd,n,k or sd,n,k+1 – to explore as follows. First, if sd,n,k ≪ s∗ (resp. s∗ ≪ sd,n,k+1), then the other
endpoint sd,n,k+1 (resp. sd,n,k) is sampled. This represents the case where the agent has already
enough information regarding one endpoint of the interval. Else, if Nd,n,k = 0 (resp. Nd,n,k+1 = 0),
then this endpoint sd,n,k (resp. sd,n,k+1) is sampled, as there is no information regarding this arm.
Finally, if none of the conditions above apply, the endpoint to sample is selected uniformly at random.

4.1.5 ZOOM OUTPUT ESTIMATOR

When the time horizon is reached (t = T ), then ZOOM outputs ŝ = sd∗,n∗,k∗ as its estimator, where

d∗ = max{d ≥ 0,∃n, k s.t. Nd,n,k > 0},
n∗, k∗ = argmax

n,k
{Nd∗,n,k} ,

with in case of equality, the agent chooses at random. In other words, the agent returns the arm that
was sampled the most among the deepest subgrid that can be reached using (5). Note that since the
maximum distance between an arm sd,n,k and s∗ decreases exponentially with d, the quality of the
estimator tends to increase with d.

4.2 Regret Upper Bound

We prove the following upper bound on the regret incurred by ZOOM.

Theorem 4 (Regret Upper Bound) Let T > 0, and ψ a response function that satisfies Assumption
1.Then, if ZOOM is run with parameter K as in (4), there exists a constant Cψ > 0, that only depends
on ψ, such that its regretRT is upper bounded with probability at least 1− 2/T by

RT ≤ Cψ

√
log T log log T

T
(7)
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Proof [Proof Sketch.] (7) can be proved as follows.

Step 1. Let A be the event where the Azuma-Hoeffding inequality is always satisfied, i.e.

A .
= {∀t ≤ T, ∀d, n, k ≥ 0, |µd,n,k − µ̂d,n,k(t)| ≤ BT (Nd,n,k)} .

By using the union bound, we show that P
(
AC
)
< 2

T . Note that as the probability of AC is small
enough andRT ≤ 1 a.s., upper bounding the regret of ZOOM onA induces a bound on the expected
regret.

Step 2. Conditionally to A, it can be shown that all the sub-grids reached during careful exploration
contain s∗. Thus if ZOOM zooms at least once, we can deduce that the final estimator ŝ will be at
depth at least one, and

|ψ(ŝ)− µ∗| ≤
γ1
K
≤ γ1

√
(log T )(log log T )

T
,

where γ1 is a constant that only depends on ψ.

Step 3. Finally we consider the case where ZOOM has not zoomed, i.e. d = 0. In this case we show
that the arms surrounding s∗ will be sampled the most, provided that T ≥ γ2, where γ2 is a constant
that only depends on ψ. The conclusion then results from the fact that the two arms closest to s∗
statisfy |s− s∗| ≤ 1/K.

The complete proof can be found in the Appendix (Section B).

Comparison with DOS. The algorithm closest to ZOOM, DOS has an upper regret bounded by

RT ≤ (3 + ν)

√
(log T )2 log log T

T
(8)

where ν is a constant that only depends on ψ (Audiffren, 2021a, Theorem 1). First, it is important to
note that DOS relies on weaker assumptions than ZOOM, namely that ψ is locally Hölder around
s∗ (see Appendix Section A for a comparison of the different assumptions). However ZOOM’s
assumption, i.e. Assumption 1, is very mild, as any strictly increasing functions that is differentiable
on s∗ satisfies it, and all the commonly studied response function in practical applications are at
least in C1(I).5 Second, ZOOM is able to leverage Assumption 1 to obtain a strictly better order of
convergence, as indeed (7) is

√
log T faster than (8). Finally, our experiments show that ZOOM

exhibit significantly stronger performance than DOS for a wide range of experiment, particularly for
small values of T (Section 5).

4.3 Regret Lower Bound

Theorem 5 (Simple regret lower bound) LetA be an adaptive method for estimating the threshold.
Then, for any 0 < µ∗ < 1, there exists a response function ψ such that :

• ψ is continuous,

5. that is to say ψ is continuous, and differentiable on I, and its differentiate is also continuous.
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• ψ is differentiable on s∗, with ψ′(s∗) = 1,

• for T large enough, E(RT (A, µ∗)) ≥ O(1/
√
T ).

Proof [Proof Sketch] The proof of this theorem is inspired by the technique used by (Locatelli

and Carpentier, 2018). Let ∆ =
√

1
8T , and s0 = 0.5−∆, s1 = 0.5 + ∆. We start by defining the

“challenging” functions ψ0 and ψ1 as follows:

ψk(s) =


µ∗ −∆ if s < sk −∆

µ∗ +∆ if s > sk +∆

µ∗ + (s− sk) otherwise

It is easy to see that ψk is piece-wise linear, and ψ′(s∗) = 1. Note that ψ−1
k (µ∗) = sk. Then,

using Pinsker’s reverse inequality, (Locatelli and Carpentier, 2018, Lemma 1) and (Tsybakov, 2009,
Chapter 2, Theorem 2.2, Conclusion (iii)), we show that the probability for any method to confuse
ψ0 and ψ1, and thus their solution s0 and s1, is at least 2

min(µ∗,1−µ∗) , resulting in a regret of

E(RT (A, µ∗)) ≥
1

4
exp(− 2

min(µ∗, 1− µ∗)
)∆ = O( 1√

T
).

The complete proof can be found in the Appendix (Section C).

5 Experiments

In this section we perform an empirical evaluation of ZOOM. First, we conduct an ablation analysis
by studying the influence of the parameterK on ZOOM’s performance, and compare it to the optimal
value of K defined in (4). Then, we evaluate the importance of the second decision rule (6). Finally,
we compare ZOOM to the state of art of methods commonly used in the threshold estimation problem
and black box optimization.

Baselines. We compare ZOOM to Staircase (Wichmann and Jäkel, 2018), QuestPlus (Watson,
2017), GP (Gardner et al., 2015a), DOS (Audiffren, 2021a), and POO (Grill et al., 2015). For
Staircase and QuestPlus, we used the implementation provided by (Peirce et al., 2019), and the
parameters recommended by their respective papers. We used the dichotomous partition of [0, 1]
for DOS, and used GP with the kernel and hyperparameters recommended by (Song et al., 2017).
We used the implementation of POO as provided by the authors (Grill et al., 2015), by tranforming6

the TEP into a black box optimization problem with f(s) = |µ∗ − ψ(s)|. All experiments were
performed with a custom script using Python 3.8, unless mentioned otherwise. The code for ZOOM
can be found in the supplementary materials.

Time Horizon T For each experiment, we use four different time horizons T (i.e. stimulus budgets).
The first two, T = 100 and 300, aim at reproducing the constraints of real psychometric experiments,
where only a few hundred stimuli at most can be presented to the observer before the fatigue and

6. This transformation is impossible outside of simulations as ψ is unknown. See (Audiffren, 2021a) for a discussion on
using block box optimization for the TEP.
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learning effects significantly interfere with the experiment (Wichmann and Hill, 2001a). The last two
time horizon, T = 1000 and 3000, aims at illustrating the more asymptotic behavior of the different
methods.

ψ and target µ∗ To assess the different methods in multiple settings, we use a range of target
values µ∗, thresholds s∗ and response functions ψ. While µ∗ = 0.5 is the most popular setting, we
also tested µ∗ = 2/3 and µ∗ = 3/4, which are important values for k-AFC experiments (see e.g.
(Wichmann and Hill, 2001a)). Furthermore,we used the following three family of response functions
ψ0, ψ1 and ψ2 (by decreasing order of smoothness):

ψ0,i(s) = µi − 0.5 +
1

2πσ2i

∫ t=s

t=−∞
exp

(
−(t− s∗)2

2σ2i

)
dt, (9)

ψ1,i(s) =

µi −
σi
2
(s∗ − s) if s < s∗,

µi + 2σi(s∗ − s) if s ≥ s∗,
(10)

ψ2,i(s) =

{
µi − |s∗ − s|σi if s < s∗,

µi + |s− s∗|2σi if s ≥ s∗.
(11)

Each function has two parameters, σi > 0 – which quantifies the steepness of the function around s∗
– and µi ∈ I – the probability target. Note that each function is strictly increasing, and ψ(s∗) = µi.
ψ0 is the cumulative distribution function of a Gaussian random variable of standard deviation σ,
and is therefore infinitely differentiable (ψ0 ∈ C∞). ψ0 was tested with the parameters σ0 = 0.25,
σ1 = 1 and σ2 = 4. ψ1 is piecewise-linear, with slopes σ/2 and 2σ. ψ1 is not differentiable in s∗ but
satisfies Assumption 1. ψ1 was tested with the parameters σ0 = 0.1, σ1 = 1 and σ2 = 10. Finally,
ψ2 is σ−locally Hölder around s∗, but does not satisfies Assumption 1 (if σ < 1.) ψ2 was tested
with the parameters σ0 = 0.5, σ1 = 1 and σ2 = 2.

For all functions we used µ0 = 0.5, µ1 = 0.25 and µ2 = 0.33, to test a range of proba-
bility targets. Each combination of ψj,i and T was repeated 20 times for each value of s∗ in
[0.15, 0.26, 0.37, 0.48, 0.59, 0.70, 0.81], and the average and standard deviation of the regret were
collected.

Choice of K. For the ablation analysis of ZOOM, we used K = 4,16,20 and 64, as well as K as
in (4). For all other experiments, we set K as in (4).

Results

Ablation Analysis: Choice of K. Figure 1 shows the result of the analysis of the influence of K
over the performance of ZOOM. First it should be noted that ZOOM produce good estimators for
all the tested valued of K. Overall the optimal value of K depends on the function ψ, and ZOOM
appears to perform the best (or close to the best) in all settings for a value of K that is adaptive to T ,
i.e. as in (4), as hinted by Theorem 4.

Ablation Analysis: Optimistic Exploration. The result of the analysis of the influence of the second
concentration inequality, (6) over the performance of ZOOM are reported in Figure 2. Interestingly
the version of ZOOM that uses only the Azuma- Hoeffding concentration inequality, denoted ZOM,
performed substantially worse than its counterpart for most time horizons and response functions,
and is at best close to ZOOM performance. Overall this improvement, which tends to be larger for
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Figure 1: Average and standard deviation of the regret incurred by ZOOM with different values
for K for multiple time horizons (T = 100, 300, 1000 and 3000) and response functions(
ψi,j
)
1≤i,j≤3

. When not specified, K is set as in (4).

smaller time horizons, highlights the added benefits of using decision rule (6) for small sampling
budgets.

Comparison with the state-of-the-art. Figure 3 displays the average and standard deviation of
the regret of each method for all response functions and time horizons. First, note that Staircase
performed poorly for mu∗ ̸= 0.5 ( ψi,j with j > 0). It is a known limitation for the method, as
its performance tend to worsen in this case (Wichmann and Hill, 2001b). Moreover, Staircase had
poor results for the non-differentiable response function, even when µ∗ = 0.5 (ψ2,0). Questplus,
a Bayesian method, converged significantly slower than non-bayesian methods such as DOS or
ZOOM, as it estimates the entire response function. Moreover, its performance was significantly
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Figure 2: Average and standard deviation of the regret incurred by ZOOM (with the two concentra-
tion inequality) and ZOM (using just (5)) for multiple time horizons (T = 100, 300, 1000
and 3000) and response functions

(
ψi,j
)
1≤i,j≤3

.

decreased when used on some response functions. This is because Questplus is unable to estimate
the response function, as it significantly differs from its parametric model. Conversely, GP and POO
were able to estimate all the tested response functions, but still suffers from sub-optimal performance
for small T – highlighting the slow rate of convergence of its more general model. Finally, DOS,
while competitive for large values of T (≥ 1000), tends to underperform for T ≤ 300. Overall this
experiment highlights the advantage of ZOOM, which has the best – or close to the best – regret in all
settings for all considered time budgets. Interestingly, ZOOM also exhibits very good performance
on all the (ψ2,k)1≤k≤3 , despite the fact that they do not satisfies Assumption 1. It is probable that
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Figure 3: Average and standard deviation of the regret incurred by ZOOM compared to state-of-the-
art methods (DOS, Staircase, POO, QuestPlus, GP) for multiple time horizons (T = 100,
300, 1000 and 3000) and response functions

(
ψi,j
)
1≤i,j≤3

.

the limitation induced by the property of the neighborhood of s∗ require very large values of T to
have an impact on ZOOM performance.

6 Conclusion
In this work, we introduced a new method for solving the threshold estimation problem, ZOOM.
Compared to previous methods, we showed that ZOOM has the best of both worlds: it has a
strong regret upper bounds, is model-agnostic and performed the best or close to the best in all
our experiments, even for small sampling budget. We also proved a lower bound for the regret of
the threshold estimation problem, which matches ZOOM’s upper bound up to a logarithmic factor.
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As a result, ZOOM has the advantages of other approaches such as DOS without their drawbacks.
Consequently, we argue that it is currently the best off-the-shelf method to solve the threshold
estimation problem.

We believe that ZOOM can have a significant impact in other research fields that have to
address the threshold estimation problem in their experiments, such as Psychophysics. Indeed,
in psychometric experiments, good performance for a low sampling budget is important as the
experimenter has seldom the opportunity to present thousands of stimuli to an observer, due to
material constraints as well as the fatigue and learning effects (Wichmann and Hill, 2001a). Moreover,
the response function is often unknown and the parametric models of the psychometric functions can
be incorrect, leading to misleading results (Hatzfeld et al., 2016), and it is generally impossible to
repeat the experiment to test different models, highlighting the importance of the model-agnostic
approach. Furthermore, ZOOM is robust to effects that change the response function, such as guesses
and lapses, which may strongly impact model-based methods if not accounted for (Wichmann and
Hill, 2001a). However, ZOOM is not a replacement for Bayesian psychometric methods, such as GP
or QuestPlus, as they can estimate the entire ψ function – whereas the TEP only aims at estimating
s∗ ≈ ψ−1(µ∗).

Possible directions to improve ZOOM include a more efficient way to combine the decision rules,
such as a switch mechanism (Garivier et al., 2022), or a strategy to automatically adapt the size of
the grid to the observations.
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Appendix A. Comparison Between Assumptions

Recall that the main assumption of ZOOM is :

Assumption 1 (ZOOM Assumption)

∞ > D−ψ(s∗) ≥ D−ψ(s∗) > 0

∞ > D+ψ(s∗) ≥ D+ψ(s∗) > 0.

We start by comparing Assumption 1 to the following hypothesis, which is the most commonly
used smoothness assumption in X -armed bandits for black box optimization problem (Valko et al.,
2013; Grill et al., 2015).

Assumption 2 (ψ is smooth around s∗) There exists ν > 0, and 0 < ρ < 1 such that ∀h > 0,
∀s ∈ I,

|s− s∗| ≤ 2−h =⇒ |ψ(s)− ψ(s∗)| ≤ νρh

As stated by the following Lemma, this assumption is equivalent to being locally Hölder around s∗
in the TEP setting.

Lemma 6 (Equivalence between assumptions.) Let ψ : I 7→ [0, 1] be a response function. Then
ψ satisfying Assumption 2 with ν > 0, 1 > ρ > 0 if and only if ψ is α locally Hölder on s∗, with

α = − log ρ

log 2
.

Proof Assume that ψ satisfies Assumption 2. Let α = − log ρ
log 2 . Then, note that ∀s ∈ I, |s− s∗| =

2
log(|s−s∗|)

log(2) . By applying Assumption 2 we have

|ψ(s)− ψ(s∗)| ≤ νρ−
log(|s−s∗|)

log(2) = ν|s− s∗|−
log(ρ)
log(2) .

Hence ψ is α = − log ρ

log 2
locally Hölder on s∗. The other implication is proved similarly.

Near optimality dimension. Another quantity of interest to used to quantify the difficulty of
the optimization problem is the near optimality dimension (NOD) Grill et al. (2015); Shang et al.
(2019b).

Definition 7 (Near optimality dimension) Let ν > 0 and 0 < ρ < 1. Let ψ be a function satisfying
Assumption 2 for (ν, ρ). Then the NOD of ψ, noted d(ν, ρ), is defined as

d(ν,ρ)
.
= inf

{
d′ ∈ R+ : ∃C, h > 0,

ψ−1(µ∗ + 2νρh)− ψ−1(µ∗ − 2νρh) ≤ C(2ρd′)−h
} (12)

Note that for d′ large enough, (2ρd
′)) < 1 and thus the inequality becomes trivial. Thus the infimum

in (12) is always well-defined and finite. In the following, we say that ψ has a NOD of dψ ≥ 0 if
∃ν > 0, 0 < ρ < 1, such that
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1. ψ satisfies Assumption 2 with (ν, ρ),

2. d(ν, ρ) = dψ,

3. (2ρdψ) > 1.

The last point is key, otherwise the inequality is trivial. Intuitively, if ψ has a NOD of dψ then dψ
represents a measure of the evolution of the size of the near optimal set; the smaller dψ, the faster
this near optimal set decreases. Most theoretical guarantees of previous algorithms depend on the
near optimality dimension (Shang et al., 2019b). We start by proving that the NOD condition is
equivalent to the well known Tsybakov Noise Condition (TNC) (Tsybakov, 2004; Castro and Nowak,
2006; Locatelli and Carpentier, 2018). The following definition presents a formulation of the TNC
for the threshold estimation problem.

Definition 8 [Tsybakov noise condition (TNC) ] Let CB > 0 and β > 0. ψ is said to satisfy the
TNC with parameters (CB, β) if ∀∆ > 0, ∀s ∈ I,

|ψ(s)− ψ(s∗)| ≤ ∆ =⇒ |s− s∗| ≤ CB∆β (13)

In Definition 8, β represents a measure of the evolution of the size of the near-optimal set; the bigger
β, the faster this near-optimal set decreases. Note that contrarily to (12) the TNC does not require
the smoothness of the function. As aforementioned, the NOD and the TNC are equivalent conditions
in the TEP.

Lemma 9 (Equivalence NOD TNC) Let ν > 0 and 0 < ρ < 1. Let ψ be a function satisfying
Assumption 2 for (ν, ρ). Then using the following relations :

∆ = 2νρh

β = −
log(2) + dψ log(ρ)

log ρ

CB = C(2ν)β

we have:
ψ has a NOD of dψ ⇐⇒ ψ satisfies the TNC with (CB, β)

Proof First note that:

(12)⇐⇒ ∀h > 0, Λ
(
s ∈ I, s.t. |ψ(s)− µ∗| ≤ 2νρh

)
≤ C(2ρd′)−h

(13)⇐⇒ ∀∆ > 0, Λ
(
s ∈ I, s.t. |ψ(s)− µ∗| ≤ ∆

)
≤ CB∆β

where Λ denotes the Lebesgue measure on R. Moreover, using the values in Lemma 9

C(2ρd
′
)−h = C exp

(
log(2ρd

′
)
log∆/2ν

log ρ

)
= C exp

(
log∆

log(2ρd
′
)

log ρ
− log 2ν

log(2ρd
′
)

log ρ

)

= C(2ν)
− log(2ρd

′
)

log ρ ∆
− log(2ρd

′
)

log ρ

= C(2ν)β∆β = CB∆
β
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Now assume that ψ has a NOD of dψ. Since β = − log(2ρd
′
)

log ρ , it only remains to show that β > 0.
Since ρ < 1, log ρ < 0, and by definition of NOD, 2ρd

′
> 1. Hence β > 0, and ψ satisfies TNC.

Conversely, assume that ψ satisfies TNC. We need to show that 2ρd
′
> 1,

2ρd
′
> 1⇐⇒ −β log(ρ) + log(2)

log ρ
× log(ρ) + log(2) > 0

⇐⇒ −β log(ρ) > 0⇐⇒ ρ−β > 1

⇐⇒ β > 0

Link between α and β Lemma 10 shows that if ψ is locally α Hölder and satisfies the TNC, then
the values of α and β are linked, as described by the following Lemma. The proof of Lemma 10 is
inspired by the similar result from (Locatelli and Carpentier, 2018) in a different setting.

Lemma 10 Let ψ be a response function that is locally α-Hölder on s∗ and satisfies the TNC with
β > 0. Then αβ ≤ 1

Proof

∀s ∈ I, |ψ(s)− ψ(s∗)| ≤ CH |s− s∗|α using the Hölder property

=⇒ ∀s ∈ I, |s− s∗| ≤ CBCβH |s− s∗|
αβ using (13)

=⇒ ∀s ∈ I, |s− s∗|1−αβ ≤ CBCβH ,

i.e. the left term of the equation must be bounded for all values of s. When taking s −→ s∗, this
implies that 1− αβ ≥ 0

Link between α, β, and Assumption 1

Corollary 11 Let ψ be a response function that satisfies Assumption 1. Then ψ is locally α Hölder
on s∗ and satisfies the TNC with α = β = 1. The contraposition is also true.

This corollary is an immediate consequence of Lemma 14, which is proven in the next section of
the appendix. This equivalence of assumption is key for the comparison of the methods and results
between our method, ZOOM, and the state-of-the-art of the threshold estimation problem (See
section 4). Importantly, the mildly stronger assumption used in our analysis of ZOOM leads to
significantly better regret bound, see Appendix B.

Appendix B. Regret Upper Bound: Proof of Theorem 4

We begin by proving some useful Lemmas.
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Lemma 12 Let d, n, k ≥ 0. Then if µd,n,k ≤ µ∗,

P
(
µ̂d,n,k ≥ µ∗ + BT (Nd,n,k(t))

)
<

2

T 3

Proof
Note that

{µ̂d,n,k(T ) > µ∗ + BT (Nd,n,k(t))} ⊂ {µ̂d,n,k(T ) > µd,n,k + BT (Nd,n,k(t))}

Hence the resulting using the Chernoff Hoeffding concentration inequality and Lemma 3.

In other words, Lemma 12 states that the probability of ZOOM to reach the wrong decision about an
arm is controlled. In the following, we examine the behavior of ZOOM on A∗, where by definition
ZOOM never reaches the wrong conclusion regarding arms comparisons when using (5). Formally,
let

A∗ .
= {∀t ≤ T, ∀i ≤ κ, |µd,n,k − µ̂d,n,k(t)| ≤ BT (Nd,n,k(t))} ,

Let PA∗ (·) .= P (·|A∗). We say that an event E isA∗ almost sure (A∗ a.s.) if PA∗(E) = 1. UnderA∗,
ZOOM never reach a wrong subgrid when using (5). Therefore ZOOM only explores one subgrid
per depth, and we can prove that the event A∗ has high probability.

Lemma 13 P (A∗) ≥ 1− 2
T .

Proof This directly results from Lemma 12 by taking the union bound.

In the following, we only refer to subgrids that are reached using (5), and we call d∗ the deepest grid
reached. As a consequence of the previous lemma, ZOOM only reaches one subgrid per level, and it
is the one that contains s∗. Since only one grid per level is reached, in the following the drop the n
from the notation to ease the reading : w denote by Gd, the subgrid of depth d reached, and sd,k its
arms. (??) implies that the sequence of activated arms sd,k converges exponentially fast toward the
threshold s∗ as a function of the depth reached d. The convergence speed depends on the smoothness
of ψ. The following Lemma details the smoothness property of ψ.

Lemma 14 Let ψ be a response function that satisfies Assumption 1. Then ∃C1 > 0, such that:

∀s ∈ I, |ψ(s∗)− ψ(s)| ≤ C1|s∗ − s| (14)

Moreover ∃C2 > 0, such that:

∀s ∈ I, |ψ(s∗)− ψ(s)| ≥ C2|s∗ − s| (15)

Proof We start by proving (14). By definition of the Dini derivatives, we have :

lim
s→s∗

ψ(s)− ψ(s∗)
s− s∗

≤ max
(
D−ψ(s∗), D

+ψ(s∗)
)︸ ︷︷ ︸

D

lim
s→s∗

ψ(s)− ψ(s∗)
s− s∗

≥ min (D−ψ(s∗), D+ψ(s∗))︸ ︷︷ ︸
D
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Now by assumption D,D <∞. By definition of D, there exists δ > 0, s.t. ∀s ∈ [s∗ − δ, s∗ + δ]∣∣∣∣ψ(s)− ψ(s∗)s− s∗

∣∣∣∣ ≤ 2D.

Moreover, ∀s ̸∈ [s∗ − δ, s∗ + δ], we trivially have∣∣∣∣ψ(s)− ψ(s∗)s− s∗

∣∣∣∣ ≤ 1

δ
.

Hence (14) with C1 = max(2D, 1/δ). We now prove (15). By Assumption 1 and (2), we have
D,D > 0. Thus there exists δ > 0, s.t. ∀s ∈ [s∗ − δ, s∗ + δ]∣∣∣∣ψ(s)− ψ(s∗)s− s∗

∣∣∣∣ ≥ 1

2
D.

Moreover, ∀s ̸∈ [s∗ − δ, s∗ + δ], we trivially have∣∣∣∣ψ(s)− ψ(s∗)s− s∗

∣∣∣∣ ≥ δD

2
.

Hence (15) with C2 = min(D/2, δD/2).

Corollary 15 If Assumption 1 is true, then ∀d ≤ d∗,

PA∗

(
∆d,k ≤ C1K

−d+1
)
= 1 (16)

Proof This corollary is an immediate consequence of Lemma 14, and (??).

Finally, the following lemma provides bounds to the number of times that an arm will be pulled
under A∗

Lemma 16 ∀d, k ≥ 0, A∗ almost surely,

Nd,k ≤
3 log T

2∆2
d,k

.

Proof This directly result from the inequality (5) and the definition of BT .

PROOF OF THEOREM 4

We are now ready to prove the regret upper bounds of Theorem 4. Note that since the regret is always
upper bounded by 1, Lemma 13 implies that it is only necessary to prove the upper bounds on A∗.

25



Proposition 17 Assume that ψ satisfies Assumption 1. Let C1, C2 as in Lemma 14. Let K =

⌊
√

T
(log T )(log log T )⌋. Then, there exists a constant Cψ > 0, that only depends on ψ, such that

A∗-almost surely,

RT ≤ Cψ

√
log T log log T

T

Proof Under A∗, only valid grids are reached, and thus ZOOM only explore one grid per depth. For
any d ≥ 1, let Gd be the valid subgrid of depth d, and sd,0, . . . , sd,K its arms. let d∗ be the largest
depth reached by ZOOM. First, if d∗ > 1, i.e. if the algorithm has zoomed, then all arms on the
deepest layers satisfy

|sd∗,k − s∗| ≤
1

K
,

and thus Corollary 15 implies that

∆d∗,k = |ψ(sd∗,k)− ψ(s∗)| ≤ C1|sd∗,k − s∗| ≤
C1

K
= C1

⌊√
T

log T log log T

⌋−1

. (17)

Now if d∗ = 1, the algorithm has never zoomed, and we will show that the arm that was pulled
the most (which is the arm returned by the algorithm when the time budget elapsed) is a good
estimator of s∗. To ease the notation, in the rest of the proof we will drop the d index (since d = 1).
For any 0 ≤ i ≤ K, let

Ki =
{
0 ≤ k ≤ K, s.t.

i

K
≤ |sk − s∗| <

i+ 1

K

}
Since the sk are an uniform grid over I of step 1/K, we have

∀0 ≤ i ≤ K, |Ki| ≤ 2 (18)

|K0| ≥ 1 (19)

Note that any arms in K0 satisfy (17) and there is at least one arm of K0. Now let K ≥ i > 0, and
k ∈ Ki. By definition of Ki, we have 0 < i

K ≤ |sk − s∗|, and thus using (15),

∆k ≥ C2
i

K

Now, by definition of A∗, BT (Nd,k − 1) > ∆k (otherwise ZOOM would have stopped to sample
sd,k before) and thus

Nk ≤
3 log T

2i2
(
C−2
2 K2

)
︸ ︷︷ ︸

.
=ni

.

So the total number of pulls that ZOOM uses on the Ki, i > 1 is upper bounded by

K∑
i=1

∑
k∈Ki

Nk ≤
K∑
i=1

∑
k∈Ki

ni ≤ 2

K∑
i=1

ni

≤ 2
K∑
i=1

3 log T

2C2
2 i

2
K2 ≤ π2 log T

2C2
2

K2 ≤ π2T

2C2
2 log log T

= o(T )
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Now since the algorithm has not zoomed, we have

T =
K∑
i=0

∑
k∈Ki

Nk ≤
∑
k∈K0

Nk +
π2 log T

2C2
2

K2︸ ︷︷ ︸
=o(T )

and thus for T large enough, ∑
k∈K0

Nk ≥ 2/3

and thus the conclusion using (18) and (17).

Appendix C. Regret Lower bound : Proof of Theorem 5

Proof [Proof of Theorem 5]
Step 1. Define the ’Hard’ problem.

Assume that T satisfies

T ≥ max

(
1

16µ2∗
,

1

16(1− µ∗)2

)
(20)

and let

∆ =

√
1

8T
. (21)

and finally let s0 = 0.5−∆, s1 = 0.5 + ∆, and for k = 0, 1,

ψk =


µ∗ −∆ if x < sk −∆

µ∗ +∆ if x > sk +∆

µ∗ + (x− sk) otherwise

(22)

It is easy to see that ψk is piecewise linear, and is differentiable on s∗ with

ψ′
k(s∗) = D−ψk(s∗) = D+ψk(s∗) = D−ψk(s∗) = D+ψk(s∗) = 1.

Step 2. Lower bound the probability of mistake
Let
(
(Xi, Yi)

)T
i=1

be the sequence of sampled valued (Xt) and observations (Yt) produced by A
throughout its time budget. We denote by P0, E0 the associated probability and expectation of this
sequence (resp P1,E1) under the function ψ0 (resp. ψ1). Let xT be the final guess of A, and

χT =

{
s0 if xT < 0.5

s1 if xT ≥ 0.5

i.e. the closest of the two possible solutions. Note that by definition, χT always produce a regret
lower than xT , for both ψ0 and ψ1. We denote by ρ0 (resp. ρ1) the distribution of χT under the
function ψ0 (resp. ψ1).

Define

LT =

T∑
t=1

log

(
P0(Yt|Xt)

P1(Yt|Xt)

)
.
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First remark that by definition,

LT =

T∑
t=1

Yt log

(
ψ0(Xt)

ψ1(Xt)

)
+ (1− Yt) log

(
1− ψ0(Xt)

1− ψ1(Xt)

)
.

Hence,

E0(LT ) =

T∑
t=1

E0(Yt) log

(
ψ0(Xt)

ψ1(Xt)

)
+ E0(1− Yt) log

(
1− ψ0(Xt)

1− ψ1(Xt)

)
=

T∑
t=1

ψ0(Xt) log

(
ψ0(Xt)

ψ1(Xt)

)
+ (1− ψ0(Xt)) log

(
1− ψ0(Xt)

1− ψ1(Xt)

)
=

T∑
t=1

kl (ψ0(Xt), ψ1(Xt))

≤ 8

min(µ∗ −∆, 1− µ∗ −∆)
∆2T

≤ 1

min(µ∗ −∆, 1− µ∗ −∆)

≤ 2

min(µ∗, 1− µ∗)

(23)

where kl denotes the Kullback–Leibler (KL) divergence between two Bernoulli random variable, and
we used Pinsker’s reverse inequality in the antepenultimate line, and (20),(21) in the two last lines.

Moreover, using the tower-rule :

E0(Ln) = E0(Ln|χT = s0)P0(χT = s0)

+ E0(Ln|χT = s1)P0(χT = s1)

≥ P0(χT = s0) log
P0(χT = s0)

P1(χT = s0)

+ P0(χT = s1) log
P0(χT = s1)

P1(χT = s1)

= KL(ρ0, ρ1)

(24)

where KL denotes the general KL divergence between two distributions,and we used (Locatelli and
Carpentier, 2018, Lemma 1) in the second line.
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Now, using (Tsybakov, 2009, Chapter 2, Theorem 2.2, Conclusion (iii)), we have

P0(χT = s1) + P1(χT = s0)

≥ 1

2
exp(−KL(ρ0, ρ1))

≥ 1

2
exp(−E0(Ln)) using (24)

≥ 1

2
exp(− 2

min(µ∗, 1− µ∗)
) using (23).

Step 3. Lower bound the regret
Now, if P0(χT = s1) >

1
4 exp(−

2
min(µ∗,1−µ∗)), then on ψ0 A incurs a regret lower bounded by

E0(RT (A, µ∗)) ≥ P0(χT = s1)∆

≥ 1

4
exp(− 2

min(µ∗, 1− µ∗)
)∆ = O( 1√

T
)

hence the lower bound in this case.
Otherwise, P0(χT = s1) <

1
4 exp(−

2
min(µ∗,1−µ∗)) and

P1(χT = s0) ≥
1

2
exp(− 2

min(µ∗, 1− µ∗)
)− P0(χT = s1)

≥ 1

4
exp(− 2

min(µ∗, 1− µ∗)
)

Hence by the same argument the regret incurred by A on ψ1 is at least O(1/
√
n).
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