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Abstract. Digital data is produced in many data models, ranging from
highly structured (typically relational) to semi-structured models (XML,
JSON) to various graph formats (RDF, property graphs) or text. Most
real-world datasets contain a certain amount of null values, denoting
missing, unknown, or inapplicable information. While some data models
allow representing nulls by special tokens, so-called disguised missing
values (DMVs, in short) are also frequently encountered: these are values
that are not syntactically speaking nulls, but which do, nevertheless,
denote the absence, unavailability, or inapplicability of the information.
In this work, we tackle the detection of a particular kind of DMV: texts
freely entered by human users. This problem is not tackled by DMV
detection methods focused on numeric or categoric data; further, it also
escapes DMV detection methods based on value frequency, since such free
texts are often different from each other, thus most DMVs are unique. We
encountered this problem within the ConnectionLens [6,7,8,12] project
where heterogeneous data is integrated into large graphs. We present two
DMV detection methods for our specific problem: (i) leveraging Infor-
mation Extraction, already applied in ConnectionLens graphs; and (ii)
through text embeddings and classification. We detail their performance-
precision trade-offs on real-world datasets.

1 Introduction

Digital data is being produced and reused at unprecedented rates. Large datasets
are usually processed within data management systems, which model the data
according to a given data model, provide means to store it, and query it us-
ing a query language. The database industry has been pioneered by Relational
Database Management Systems (RDBMSs), whose foundations lay in first-order
logic, formalization by E. F. Codd [13], and subsequent work, e.g., [3].

Where there is data, there are null values Since the early database days,
nulls have been identified as a central concept denoting missing, unknown, or in-
applicable information. The semi-structured data model first embodied in OEM
(the Object Exchange Model), proposed to simply omit missing values from the
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data [17]. However, standard semi-structured models such as XML and JSON
re-introduced nulls, e.g., xsi:nil in tools supporting XML Schema or the special
null value in JSON. Such null tokens may have been needed in practice because
perfect, complete databases, regardless of their data model, are the exception
rather than the norm.

Disguised missing values In practice, relational databases often feature not
only null tokens but also non-null values playing the semantic role of nulls,
also called disguised missing values (DMVs, in short) [2]. For instance, 0 or −1
are often used to encode an unknown (but non-zero) number such as a price;
users may enter ”none, ”-”, ”unknown” or ”N/A” or any other similar phrase or
token, in entry forms requiring numbers, names or dates that they are unable or
unwilling to fill in. Further, when a value needs to be chosen from a predefined
set, such as a state of the U.S., users may forget to set it from the menu, leaving
the default value which just happens to be the first, e.g., ”Alabama” as a U.S.
state.

Data entry forms sometimes prevent DMVs by checking the entered value,
e.g., ”N/A” would not be accepted as a number. However, DMVs may still per-
sist: (i) users replace ”N/A” with 0 for an unknown, non-zero number; (ii) if the
expected input type is free text, e.g., ”List of industrial collaborations in con-
nection with this research”, no simple format-driven validation applies; (iii) in
cases such as ”Alabama” above, the value is in the correct domain.

Detecting DMVs Identifying DMVs requires dedicated methods, and several
have been proposed for relational databases [19,23,24,25], based on a statistical
analysis of the data. They can detect, for instance, when a value such as 0
is suspiciously frequent in a numeric attribute, or when a value of attribute
R.a is an outlier in the joint distribution of (R.a,R.b), where we expect the
distributions R.a, R.b to be independent. More approaches, in particular rule-
based, are discussed in [1]. Other works also propose corrections for erroneous or
missing values, e.g., [22]. Detecting and correcting DMVs is important for data
cleaning (users may want to replace them with explicit nulls), and for query
correctness: null values should not match any selection predicate, and there
should be no join on null values.

Problem statement and outline In this work, we consider the detection of
DMVs in textual, heterogeneous data. The motivation for our work came from
ConnectionLens [7,8,12], a system that integrates structured, semi-structured,
or unstructured data into graphs, enriched by adding all the entities (people,
organizations, places, URIs, dates, etc.) encountered in various text nodes.

We have developed ConnectionLens inspired by fact-checking and data jour-
nalism applications [6,9]. In such applications, we encountered many datasets
where some fields are free-form text entered by users. For instance, in the French
Transparency dataset HATVP4, elected officials need to state ”their direct finan-

4 https://hatvp.fr
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cial participation in company capitals”; in the PubMed bibliographic database5,
free-form texts include the article titles, abstracts, funding statements, and pos-
sible acknowledgments. Detecting DMVs in ConnectionLens graphs is interesting
from the following perspective: if we know that a string is a DMV, we can avoid
extracting entities from it, thus reducing the time needed to construct Connec-
tionLens graphs [6,7].

DMVs encountered in free-form text fields can be classified into two broad
classes:

1. Short, simple strings such as ”N/A” or ”-”, which tend to be frequent, and
thus can be detected using previously proposed methods, such as [25,23];

2. Complex phrases such as ”Liz Smith has not received any funding related
to this work”, ”No conflicts of interest, financial, or otherwise are declared
by the authors”, or ”There is no conflict of interest relating to Authors. The
manuscript was prepared according to scientific and ethical rules”.

To detect DMVs of the second form above, our work is organized as follows:

1. We recall the closest existing DMV detection techniques (Section 2), then
we introduce a motivating example to support our discussion (Section 3).

2. We show that ConnectionLens Named Entity Recognition can be leveraged
to (manually) establish an entity profile for each set of text attributes in
which we want to detect DMVs and consider any value deviating from this
profile a DMV. For instance, the entity profile of financial participation de-
scriptions could be Organization+ to state that it should contain at least
one organization. Profiles allow defining, in semistructured and heteroge-
neous graphs, groups of values on which we can reason about DMVs. This
method is quite accurate, however, it incurs a high computational cost, since
entity extraction is a complex operation (Section 4).

3. To address this shortcoming, we devised a novel method, which relies on text
embeddings and classification, while also leveraging entity extraction on a
much smaller portion of the dataset. This method is much more efficient than
the one based on entity profiles, while also being very accurate (Section 5).

4. We show how we integrated this novel method within the architecture of Con-
nectionLens (Section 6) to speed up graph construction.

5. In our experimental evaluation (Section 7): (i) We perform a set of exper-
iments on state of the art methods, and show that they do not perform
well on the DMVs we target in this work. (ii) We study the efficiency and
precision of our method based on embeddings and classification. (iii) We ex-
perimentally validate the interest of including it within the ConnectionLens
system, demonstrating that it reduces the graph construction time.

This work is an invited extension of a short, informally presented paper [10]. A
core contribution of this paper with respect to that prior work is the integration
of our DMV detection method within ConnectionLens (Section 6), together with

5 https://pubmed.ncbi.nlm.nih.gov/
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the associated experiments (Section 7.7) validating the practical interest of this
method. Other novel extensions, beyond improving and clarifying the writing,
include comparisons with a method based on sentence-Bert [27] (Section 7.5),
and a validation of the quality and performance of our methods on a manually
labeled dataset (Section 7.6).

2 Related Work

In this section, we recall the main DMV detection methods, as well as some
closely related efforts.

Foundational work in this area was made in [24], which introduced and for-
malized the problem of Disguised Missing Values (DMV), and measured its in-
fluence on different data science models. A set of statistical models (mutually
disjoint hypothesis) were introduced in [21] to model nulls as well as disguised
missing values:

– The MCAR (Missing Completely At Random) model posits that the prob-
ability of a value to be missing is the same for any value of an attribute, and
does not depend on the values of any other attribute. For instance, assum-
ing an attribute is the result of a physical measure made with a device that
breaks down, the resulting missing values are not correlated to any other
aspect of the data or of the values.

– The MAR (Missing At Random) model considers that the probability for
a value being missing depends on values encountered in other attributes of
the same table (these notions have been defined for tables). For example,
in a political poll, assume young voters are more likely not to declare their
political preference. Then, the political preference value is MAR.

– MNAR (Missing Not At Random) applies when neither MAR nor MCAR
holds, and when the probability for a value to be missing does depend on
the actual value that is missing, but not on the values of any other attribute.
For instance, assuming supporters of a certain political party generally avoid
stating their preference and instead let that information go missing, such
values are MNAR.

Building upon these models, [19] has proposed a heuristic method for identi-
fying DMVs in relational databases. Under the MAR and MCAR assumptions,
the authors assume that a value v in attribute Ai in a table T is a DMV if
σAi=v(T ) contains a subset T ∗

Ai=v that represents a good sampling of T . Such
a subset is an Embedded Unbiased Sample (EUS) which means that except for
attribute Ai, T

∗
Ai=v and T have similar distributions. Then, a MEUS (Maximal

EUS ) is intuitively an EUS with a good trade-off between size (larger is better)
and similarity (in distribution) with T . Thus, the MEUS is the largest EUS with
the highest similarity. The gist of the [19] heuristics is to find MEUS in a dataset
and consider their associated Ai = v values as DMVs.

FAHES [25] incorporates the method of [19], to which the authors add two
other methods, in order to distinguish three classes of DMV.
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– The first class contains syntactic outliers. A syntactic outlier is a value
whose syntax is significantly different from that of other values in the same
attribute. Two techniques are used to identify them. (i) Syntactic pattern
discovery infers a frequent syntactic pattern (shape) for the values of each
attribute and points out the values that do not fit the pattern as syntac-
tic outliers. For example, if the attribute is ”blood type”, the recognized
pattern could be one or two uppercase letters followed by a + or a - sign;
then, ”ABO” would be considered a syntactic outlier. (ii) Repeated Pat-
tern Identification singles out values that contain repeated patterns, such as
0101010101 in a 10-digit phone number, or ”blablabla” in a text attribute.

– Second, in numerical attributes, statistical outliers can be found by lever-
aging common outlier detection methods [18]. This allows identifying as
DMVs numerical values that do not fit the extent of the other values, e.g.,
negative values in a distance attribute.

– Finally, some inlier DMVs, called Random DMVs in [25] can be iden-
tified. These are legal attribute values, which do not stand out as outliers;
they are the hardest to find even for an application domain specialist. The
”Alabama” example from Section 1 is a typical example. Inlier DMVs are
detected in [25] under the MAR and MCAR hypotheses; the authors state
that detecting DMVs under the NMAR model is hard to impossible. The
intuition being exploited is that DMVs are frequent values (because the lack
of information is assumed to occur more frequently than an actual, correct
value). Thus, one must find amongst the most frequent values, which ones
are DMVs. To this purpose, each frequent value is successively replaced by
an actual null. If, by doing this, the (original and introduced) null values fol-
low the MAR or MCAR models, then we consider that value as a good DMV
candidate. Then, the MEUS method from [19] is applied to each candidate
to detect the DMVs.

The FAHES team has developed a tool using these methods to detect all three
types of DMV in a relational database.

DMV detection is also related to data error detection and correction, which
has been studied in [1]. A tool called RAHA [23] has been developed for detecting
errors in relational databases; it detects the DMVs that FAHES [25] finds, as
well as errors that are not DMVs. BARAN [22] corrects data errors through a
combination of multiple techniques. The free-text DMVs we are interested in are
not errors, and their values should be preserved as such. From this perspective,
FAHES [25] is closest to our DMV detection goal.

DMV detection is one among the many problems raised by poor data quality
problems that have been traditionally addressed through data cleaning. Data
quality raises many real problems, which to this day still need solutions. Tradi-
tional approaches for data cleaning were rule-based [15,16,26]. Newer techniques
are now based on machine learning, e.g., [20]. DMV detection can also be con-
sidered as part of data profiling [2] since DMV detection also allows the charac-
terization of a certain attribute (set of nodes) by the percentage of their values
which are DMVs.
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Summing up, the existing literature has proposed methods for detecting
DMVs and errors, in categorical or text data, with rule-based and especially
statistical and more recently machine learning techniques. Our focus is on DMV
occurring in free-text data, which are not detected by methods based on value
frequency, as we illustrate below.

3 Motivating example

As part of a data journalism project [6,8], we loaded 400.000 PubMed biblio-
graphic notices in a ConnectionLens graph, out of which we extracted (paper
ID, conflict of interest statement) pairs. These conflict of interest (CoI, in
short) statements cover any kind of benefits (funding, personal fees, etc.) that
authors report with various organizations such as companies, foundations, etc.

Fig. 1. Sample ConnectionLens graph.

In Figure 1, ”Dr. Alice consults for ABCPharma” (in the upper left) is such
a conflict of interest, part of the XML bibliographic notice; ”Dr. Alice thanks
HealthStar... this article” (at the top right) is another one. ”The authors report
no related funding” in the second paper, at the bottom of the figure, illustrates
the DMVs targeted in this work. PubMed data originates from various biomed-
ical journals. Some do not provide CoI information; in this case, the CoI is an
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empty string. Others provide a default DMV, e.g., ”The authors report no con-
flict”. Finally, some journals only allow free text, leading to a large variety of
disguised nulls.

ConnectionLens extracts named entities from all text nodes, regardless of
the data source they come from, using trained language models. In the figure,
blue, green, and yellow nodes denote Organization, Person, and Location enti-
ties, respectively. Each entity node is connected to the text node it has been
extracted from, by an extraction edge, which also records the confidence (be-
tween 0 and 1) of the extractor. Finally, nodes are compared to find that some
may be equivalent, or similar.

Entity extraction is a costly operation since it involves predicting, for each
token encountered in a given text, if it is part of an Organization entity, Per-
son entity, Location entity, or none. The prediction is made by computations
that involve a large, trained model. Trying to extract entities from a DMV is a
computational effort spent for no benefit.

4 Detecting DMVs with entity profiles

Inspecting the ConnectionLens graph illustrated in Figure 1, together with our
journalist partner, we immediately made the following observation. An actual
CoI (such as those involving Alice in Figure 1) is either of the form ”Researcher
A was funded by B”, or of the form ”The authors acknowledge funding from
C”. Thus, a person’s name may be present (in other cases, we just find ”The
authors”), but an organization is always involved. Thus, we can say that the
entity profile of a CoI is: it must contain at least an organization.

This leads to the following DMV detection method:

– Extract all named entities from the CoI strings (through regular Connec-
tionLens data ingestion);

– Declare those CoI strings in which no Organization entity was found, as
DMVs.

One could also call such DMVs uninformative answers. We use the result
of the above entity-based DMV detection method as a ground truth
in our work, for several reasons: (i) Named Entity Recognition is by now a
relatively well-mastered task, thus its precision is quite good, and considered
acceptable by our end-users; (ii) Constructing an ideal human-authored ground
truth would require time or monetary costs out of reach for our setting; (iii) The
very purpose of our work is to save Named Entity extraction time, in other words:
Named Entity extraction at the core of ConnectionLens’ integration is a given
in our context.

The accuracy of this method is exactly that of the entity extractor; it has
been shown in [4,5] (for English) and in [7] (for French) that the accuracy is
quite high. Its drawback is that extracting entities from all CoI strings is very
lengthy.
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This motivates the search for a faster technique, which, on one hand, could
identify the DMVs, while at the same time also reducing the entity extraction
(thus, the actual ConnectionLens graph creation) time.

5 DMV detection through embedding and classification

Our initial DMV detection approach, which does not require extracting named
entities from all strings, has been to cluster the text values from our motivating
example dataset, in order to obtain DMV cluster(s) separated from non-DMV
clusters. In particular, we experimented with the K-means [18] algorithm, setting
the number of clusters to 10 which was the optimal number of clusters determined
using the elbow method6. Some clusters contained a majority of DMVs and
others a majority of CoIs. However, the clustering was not very successful at
separating DMVs from meaningful CoIs.

Thus, we looked for an alternative method. Our idea is: we could extract
entities from a small part of the data, so we have a small automatically labeled
dataset to train a Machine Learning model to recognize DMVs (based on the
method described in Section 4). We could then use this model to predict whether
a yet-unseen value is a DMV or not. Such a model could detect DMVs faster
than using the entity extraction technique.

5.1 Textual data representation

Many techniques can be used to represent textual data. Transformers like BERT
[14] have been proven really efficient for many Natural Language Processing
(NLP) tasks; Sentence-BERT [27] provides sentence-level embeddings.

An alternative, less costly textual data representation can be computed by
first applying a set of common text pre-processing steps: suppressing punctu-
ation, normalization, and stemming. Embeddings can then be computed using
the well-known TF-IDF (Term-Frequency - Inverse-Document-Frequency) rep-
resentation, also frequently used in NLP. TF-IDF weights term frequencies in
each document according to the frequency of the term across the corpus. If a
word occurs many times in a document, its relevance is boosted (TF part of
the score), as this word is likely to be more meaningful. Conversely, IDF stands
for the fact that if the word appears frequently in many documents, then it is
probably frequent in any text, and its relevance should be decreased. Finally,
to reduce the dimensionality of the representation, we only consider the terms
having the 20.000 highest TF-IDF scores.

We will compare Sentence-BERT representation with TF-IDF representa-
tion for this task of detecting DMVs in free-form texts. However, we integrate
into ConnectionLens (Section 6.2) the TF-IDF version, because it is faster yet
provides equivalent quality.

6 https://en.wikipedia.org/wiki/Elbow method (clustering)

https://en.wikipedia.org/wiki/Elbow_method_(clustering)
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5.2 Classification model

To classify texts as DMVs or non-DMVs, we decided to rely on a Random
Forests classifier [11]. These classifiers are not the fastest, but they are quite
efficient over complex data. Random Forests rely on decision trees, which seemed
appropriate in our context, as they could learn specific discriminating words that
help to differentiate the classes. Other classifiers might work as well; our goal
here is to investigate whether the above approach, which trains the classifier
on extraction results, can provide a more efficient DMV detection method, by
avoiding extracting entities from a certain part of the input.

As we show in Section 7.5, this is indeed the case; even for small training
set sizes (that is, even if entities are fully extracted only from a small part of
the data), the classifier learns to predict DMVs quite accurately, while sparing
significant entity extraction time comparing to the entity profile method.

5.3 Placing our DMV detection methods in context

To further clarify the relationship between our work and prior DMV detection
work, Figure 2 depicts known types of DMVs as rectangles carrying white ti-
tles, and the values which various techniques find to be DMVs, as ovals with
black titles. As no method is perfect, rectangles and ovals only partially overlap;
further, some DMVs are detected by more than one method, and thus some
ovals overlap. We assigned numbers to some areas in the figure, and comment
on them below. It helps to keep in mind that an area in a rectangle but outside
of an oval comprises DMVs that the method corresponding to the oval does not
detect; conversely, an area within an oval but outside of the DMV rectangle(s)
is a declared by the method to be a DMV, while it is not.

1. Correctly detected statistical outliers, e.g.: In a human height attribute, a
height of 3 meters.

2. Wrongly detected statistical outliers, e.g.: In a dataset containing salaries of
the employees of a company, if the CEO’s salary is 10 times higher than any
of his employees, this could be wrongly detected as a DMV.

3. Correctly detected syntactic outliers, e.g.: In a blood type attribute, the
value ’ABO’.

4. Wrongly detected syntactic outliers, e.g.: In a name attribute, François-Noël
which is a composed name is detected as a syntactic outlier because of the
’-’, even though it is a valid name.

5. Correctly detected Random DMVs, e.g.: A default value such as Alabama
for a state, detected thanks to the MEUS technique.

6. Correctly detected Random DMVs found by the MEUS technique, and also
by syntactic and statistic outliers detections. A DMV can be at the same
time detected as a syntactic outlier, a random DMV, and a statistical outlier,
e.g., a default distance value of -1.

7. Wrongly detected random DMVs. In a poll where we ask for favorite colors,
blue might come often. Lacking correlation with other attributes, blue could
be wrongly detected as a random DMV.
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Fig. 2. DMVs and the scope of each DMV detection technique.

8. Correctly detected DMV with entity profile technique, e.g.: In a conflict of
interest paragraph: ”The authors report no conflict of interest.”

9. Wrongly detected DMV with entity profile technique. These are errors of the
entity extractor when it misses an organization.

10. Correctly detected DMV with the classification method that was not de-
tected by the entity extraction method. For example, in ’John McDonalds
declares no conflict of interest’, the entity extractor could detect McDon-
alds as an Organisation, and classify the value as an actual CoI instead of a
DMV.

11. Wrongly detected DMV with the classification method, these are errors of
the classifier.

12. Correctly detected DMV with both classification and entity profile tech-
nique. Most of the DMVs detected by the entity profile technique are as well
detected by the classification technique.

With respect to the the diagram in Figure 2, we target the Uninformative
answers rectangle, with two methods: the Entity profile one, corresponding to
the blue oval that encompasses the areas numbered 8, 9, and 12; and the Classi-
fication one, corresponding to the green oval, that comprises the areas numbered
10, 11 and 12. The closest method from the literature, FAHES, excels in finding:
Syntactic outliers, Random DMVs, and Statistical outliers.
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Fig. 3. ConnectionLens architecture (based on [7]).

6 Integrating our DMV detection methods within
ConnectionLens

We recall the architecture of the ConnectionLens system (Section 6.1), then
discuss how we integrated our DMV detection module within it (Section 6.2).

6.1 ConnectionLens architecture

The architecture of the ConnectionLens software platform is outlined in Fig-
ure 3. To consolidate heterogeneous data sources into a single graph, the sources
are traversed, creating primary nodes and edges which represent the source con-
tents (black solid nodes and edges in Figure 1). On the fly, also during the data
source traversal, all the text values encountered in the data are sent to an en-
tity extraction module, which may recognize named entities within these texts.
Extracted entities are shown as colored nodes in Figure 1, and edges connecting
them to their parent nodes are called secondary edges. ConnectionLens’ entity
extraction (for French and English) is based on Flair [4]. The cost of an extrac-
tion operation is relatively high compared with other kinds of processing taking
place in memory on a data item, and quite high also when compared to the cost
of storing data persistently on disk [7].

Within the ConnectionLens platform, the Flair entity extractor is deployed
as a Python Web service using the Flask web service library; we were able to
experimentally check that the performance overhead of calls from the main Java
software to the Python web service was negligible. Depending on how many text
nodes a data source contains, and how long they are, entity extraction may take
a very large part of the graph construction time. A method we implemented to
alleviate to some extent speeds up entity extraction by exploiting the parallel
processing (multi-core) capabilities of the server on which the extraction runs.
Concretely, a batch mechanism is implemented: text nodes accumulate in a
fixed-size batch and the Flask service is called when the batch is full. It is more
efficient for a multi-core machine to apply its prediction model to a set of values
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Fig. 4. Integration of DMV detection module within ConnectionLens.

in parallel, as enabled by sending them in batches; the benefits range from 2× on
a 4-cores laptop to 20× on a powerful server [7]. However, entity extraction costs
remain quite significant, and in some cases, they dominate the ConnectionLens
graph construction time.

The remaining ConnectionLens modules are: a File converter, that allows
ingesting document formats such as PDF, Word, Excel, etc. by converting them
to JSON HTML, and/or RDF, which can be directly loaded; a Node matching
module that creates equivalence or similarity links between entities (red, respec-
tively, dashed graph edges in Figure 1); an Entity disambiguation service, which,
for each entity identified in the graph, attempts to find its URI in a knowledge
base; finally, a Keyword search algorithm (GAMSearch) [6,7] which enables users
to search for information within ConnectionLens graphs.

6.2 Integrating our DMV detection method within ConnectionLens

We now describe how we integrated our DMV detection approach described in
Section 5 within ConnectionLens, to speed up graph construction. In a nutshell:
we train our classifier during the graph construction process, then, in the same
process, we use the classifier to predict which strings are DMVs, and thus, not
worth the Named Entity Recognition effort.

Value contexts The DMV detection method applies to a set of values describing
the same kind of data. Thus, while loading complex-structure data, we need to
dynamically form such groups of values. For this, we view each value as occurring
in a context, based on the structure of the dataset it comes from. On hierarchical
data sources (JSON, XML, HTML, etc.), a natural context to attach to a value
is the root-to-leaf label path on which the value occurs in a given document. In
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PubMed bibliographic data, for instance, CoI values appear as text children of
the XML elements on the path PubMedArticles.PubMedArticle.CoIStatement. Thus,
we pair each value on which extraction could be performed (or which could be a
DMV), with its context; all the values in a certain context form a set on which
we can learn.

Entity profiles (EP) The next ingredient we need is entity profiles (Section 4),
spelling which entities we expect to find in values from a certain context that are
not DMVs; such a judgment is easily made by a human expert. Thus, currently,
for each context where an entity profile is known, we allow users to specify them
in a configuration file given to ConnectionLens.

SmartExtract Web service We deployed our DMV detection approach as
a standalone Python Web service, called smartExtract in Figure 3, and also
deployed using Flask. It is called by the Entity extraction module with each
(value, context) pair, and works as follows (see Figure 4). To each context, we
associate a state that represents the existence (or not) of a TF-IDF vectorizer
and a trained Random Forest model (Section 5.2) able to predict, based on the
entity profile (EP) associated with that context, whether a value occurring in
the context is a DMV (Section 5). We consider the model has been sufficiently
trained when it has reached a determined quality, measured by its f1-score. The
quality to reach is a parameter of the service. For each value (text node) that
ConnectionLens finds in that context (top box in Figure 4), we test this state
(diamond box below the top box in the figure):

– Yes, the model associated with this EP has been fully trained on values
previously encountered in the same context. In this case, we send the value
to the smartExtract Web Service, which returns a boolean answer:
• yes, this value is worth extracting entities from (through the Flair entity
extraction service mentioned in Section 6.1); in this case, the value is
added to the extraction batch;

• no, this value is not worth the entity extraction effort, since our model
predicts that the value is a DMV.

– No, the model for this EP has not been fully trained yet. In this case, our
module needs to learn more about values in this context (by examining more
results of the Flair extraction for values in this context). In this case, the
node is added to the extraction Batch.

Once the extraction batch is full, ConnectionLens sends all the batch values to
its Flair entity extraction service, to find out the entities contained in each value.
We then capture these extraction results and share them with the smartExtract
service to train its models (one different model for each entity profile). In turn,
smartExtract may answer with the information that the state(s) associated with
some context(s) have become true (the respective models are sufficiently trained).
ConnectionLens keeps track of the context states on which it bases its decision
(test box in Figure 4).

Performance of online learning In the above integration of smartExtract
within ConnectionLens, the smartExtract models are continuously trained with
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each value sent to extraction (online learning). In contrast, in the approach we
described in Section 5, we trained the model once and for all with the training
set, and then just used it to predict which values are DMVs. This difference has
several consequences:

1. The training effort of our DMV technique drastically increases in this online
integration within ConnectionLens.

2. To keep the TF-IDF representation of the data accurate with respect to all
the data seen until a certain point during the graph construction, we need
to compute a new vectorization and a new model for each new value.

While this online integration strategy achieves a high quality of data represen-
tation and prediction, it is computationally very expensive. Indeed, the cost of
recomputing the vectorization and repeatedly re-training the model increases
quickly with the number of nodes.

To reduce this high computational cost, we initially computed a new vector-
ization only when re-training the model (after each batch of values sent to the
extractor). This strategy allowed us to save some time compared to the prece-
dent, however, we were still losing time (when our goal is to save it) by using
the smartExtract Web Service.

Next, we decided not to re-train the model after each batch, but to test it
on each batch and re-train only if the quality of the model (as measured by the
f1 prediction score) is under a determined threshold. This also brought some
modest savings. However, using the smartExtract Web Service was still more
computationally expensive than running the entity extractor on all values.

The change that actually brought visible performance benefits was to re-
engineer the smartExtract service so that it does not load its model each time a
prediction is made. Instead, we kept it in memory on the server side, which sig-
nificantly reduced the time needed to call the smartExtract service and allowed
it to speed up the ConnectionLens graph construction.

7 Experimental evaluation

In this section, we experimentally study several aspects related to the DMV
methods that we have considered in the previous sections. After describing our
datasets (Section 7.1) and experimental settings (Section 7.2), we show how
FAHES performs on these datasets and that there is room for improvement in
Section 7.3. Then, Sections 7.4 and 7.5 study DMV detection through entity
profiling and through embedding (TF-IDF embedding and sentence-BERT em-
bedding) and classification, respectively. In Section 7.6 we detail the results of
our methods and of FAHES, over a small dataset manually labeled. Section 7.7
studies DMV detection impact in ConnectionLens extraction time.

7.1 Datasets

To conduct our experiments, we have built three ConnectionLens graphs out
of real-world datasets. These were datasets Le Monde journalists suggested we
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should integrate in ConnectionLens, for applications including that described
in [6,8], and which inspired the research described in this paper. We believe these
datasets are representative of many Open Data that is published through gov-
ernment and scientific transparency initiatives: data involving names of people,
organizations, and partially obtained by asking individual to fill forms including
free text fields.

1. We have loaded the most complete HATVP XML transparency dataset
(35MB), with data about 270.000 people, in a ConnectionLens graph. From
this, we extracted the montant (monetary amount) fields which appeared to
contain many DMVs 7.

2. We loaded a smaller HATVP CSV dataset (2.1 MB), containing informa-
tion about 9.000 people; this dataset is relational-looking, which simplifies
processing it through FAHES.

3. We loaded 400.000 PubMed bibliographic notices in a graph, out of
which we extracted (paper ID, conflict of interest statement) pairs. These
CoI statements cover any kind of benefits (funding, personal fees, etc.) that
authors report with various organizations such as companies, foundations,
etc., as illustrated in Figure 1. PubMed data originates from various medical
journals. Some do not provide CoI information; in this case, the CoI is an
empty string. Others provide a default DMV, e.g., ”The authors report no
conflict”. Finally, some journals only allow free text, leading to a large variety
of DMVs.

We will denote these datasets as DS1, DS2, and DS3, respectively.
In practice, of course, we only extract entities once from each distinct string.

It turns out that DS3 had a high number of duplicates (especially some very
popular disguised nulls). Removing duplicates led to a new dataset we denote
DDS3 consisting of 82.388 values.

7.2 Settings

All experiments were performed on a MacBook Pro 16 inches from 2019, with
a 2.4 GHz Intel Core i9 8-core processor and 32 GB 2667 MHz DDR4 memory.
Experiments using sentence-BERT (Table 2) had to be run on Google Colab8

because of the MacBook’s lack of support for CUDA. For consistency, all results
in Table 2 are obtained in Google Colab, with a Tesla-T4 GPU. We used Con-
nectionLens9 to build the graphs, including in particular the extraction of named
entities using Flair [5,4], which we had retrained for French [7]. ConnectionLens
graphs are stored in Postgres 9.6; experiment code was written in Python 3.6.

Precision, recall, and F1 measures For our purposes, given that we
aim to detect a certain form of DMV, a ”positive” example is a DMV, while

7 The transparency entry forms require filling in the worth of participations or own-
erships in various companies; companies that have closed or did not make benefits,
or only have a pro-bono activity, lead to DMVs.

8 https://colab.research.google.com/
9 Available from https://gitlab.inria.fr/cedar/connectionlens

https://www.hatvp.fr/livraison/merge/declarations.xml
https://www.hatvp.fr/files/open-data/liste.csv
https://colab.research.google.com/
https://gitlab.inria.fr/cedar/connectionlens
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Table 1. Entity extraction method times

Values Total characters Extraction times (s)

500 163.203 56
5.000 1.604.141 669

10.000 3.281.345 1.320
15.000 5.000.364 2.175
20.000 6.728.493 2.620

a ”negative” example is an informative value. This interpretation is used in
all the experiments described below. In the context of our project, precision
is more important than recall, since low precision means wrongly considering a
value as a DMV, while it contains valid information, which journalists would
not want to miss. In comparison, low recall ”only” means that we would waste
time extracting entities from DMVs that turn out not to contain interesting
information. While undesirable, the impact, from an application perspective, is
lower.

7.3 DMV detection through FAHES

We have applied FAHES [25] on the three datasets described previously, asking it
to detect DMVs. It is worth mentioning that FAHES is an unsupervised method;
we use it for comparison as its goal of DMV detection is closest to our work. We
comment on its results below.

Results on DS1 Among the 270.000 values of the numeric amount attribute,
FAHES correctly found the 0 (which occurs 45.000 times) as a Random DMV
(Inlier). It also detected 372.2196 (4 occurrences) as a numerical outlier DMV;
this is wrong. All the amount values are numbers, and as far as we could see,
there are no other DMVs.

Results on DS2 In this relational dataset, in an attribute called filename,
FAHES identified correctly the DMV dispense (120 occurrences) as a Random
DMV. Then, FAHES identified wrongly other values as being DMVs, in all
cases as Syntactic Outliers DMV. The values falsely flagged as DMVs are:

– François-Noël (3 occurrences) in the attribute given name;
– BÉRIT-DÉBAT (6 occurrences) and KÉCLARD-MONDÉSIR (3) in the at-

tribute name;
– di (4480 occurrences) in the attribute document type; this is the acronym for

déclaration d’intérêt;
– 2A and 2B as departement numbers; they are, in fact, correct numbers of

French departments in Corsica;
– four distinct, correct URLs within the photo url attribute, probably because

their structure did not resemble the others’.

DS2 seems to include no other DMVs.

Results on DS3 Out of the 400.000 values, FAHES correctly identified ”The
authors have declared that no competing interests exist” (31.891 occurrences) as
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a Random DMV. However, visual inspection exhibited many other DMVs (we
will revisit this below). FAHES fails to find them because freely written texts
rarely coincide, thus FAHES’ statistical approach based on value frequencies
leads it to consider a rarely occurring DMV as a valid value, which is wrong. All
DMVs detected by FAHES on this dataset are actual DMVs (precision of 1.0).
However, in this example, the entity profile technique identifies 351.123 DMVs,
most of which FAHES misses, leading to a recall of 0, 0909. This low recall shows
the need for alternative techniques for detecting the DMVs we are interested in:
uninformative, free-text answers.

From these experiments, we conclude that FAHES fails to detect the DMVs
we are interested in; DMVs detected as Syntactic outliers are often false positives.
With a bit of domain knowledge, it is possible to manually discard these DMVs.
However, importantly, FAHES has also shown its limitations on uninformative
free text DMVs, by missing a vast majority of them. This shows the need of
dedicated methods to detect such DMVs.

7.4 DMV detection through entity profiles

To measure performances of the entity profiles technique, we performed 5 exper-
iments with respectively the 500, 5.000, 10.000, 15.000, and 20.000 first values
of dataset the duplicate-free dataset DDS3. The objective here is to measure the
extraction time as a function of the input size; this indicates the time needed to
extract DMVs using the Entity Profile method. We present the results in Table
1. We observe that extracting entities is time consuming and that the extraction
time is almost linear to the number of values. For the complete dataset DDS3, we
can expect to have an extraction time of around 11.000 seconds (183 minutes),
which is quite lengthy.

7.5 DMV detection through embedding and classification

The most common training-test split method consists on separating the dataset
with 20% used for training and 80% for testing. We know that in our case,
the most time-consuming operation is to label the training set with the entity
extraction technique. Thus, to gain time, we want to reduce the training set.

To evaluate the impact of the training set size on the performance of the
model used to detect DMVs over DDS3, we have performed three experiments.
We trained models with respectively 20% (16.477 values), 10% (8.238 values),
and 1% (823 values) of the dataset and report the comparison of the perfor-
mances of each model in Table 2. In this table, the precision, recall, and thus
F1 are computed using the result of the entity profile method (Section 4) as the
gold standard. In bold, we highlight the best performance result between TF-
IDF and sentence-BERT. Table 2 shows that we can attain very good precision,
even if the model is trained on a small part of the dataset while saving significant
amounts of time. Table 2 also shows that using sentence-BERT to represent our
data does not significantly improve performance, while it heavily increases exe-
cution time. This happens despite speeding up its execution as much as possible,
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Table 2. Impact of the training set size on the performance of DMV detection.

Training-set size 16.477 8.238 823

Embedding type TF-IDF s-BERT TF-IDF s-BERT TF-IDF s-BERT

Embedding Times (s) 99 509 99 509 99 509

Extraction Times (s) 2.153 2.153 1.075 1.075 108 108

Training Times (s) 20 75 10 30 2 1

Prediction Times (s) 4 2 4 2 3 1

Total Times (s) 2.276 2.739 1.206 1.616 212 619

Precision 0,939 0,956 0,933 0,956 0,926 0,946

Recall 0,922 0,877 0,923 0,870 0,872 0,856

F1-score 0,931 0,915 0,928 0,911 0,899 0,899

Table 3. Comparing FAHES, Entity profile and classification over a sample of 200
manually-labeled values.

Techniques TP FP TN FN Precision Recall F1-score

FAHES 0 0 96 104 0 0 0

Entity profile 82 4 92 22 0,953 0,788 0,862

Classification TF-IDF 94 2 94 10 0,979 0,904 0,940

by parallelizing execution over batches of 1.000. Interestingly, Table 2 also shows
that in our problem, precision is less sensitive than recall to the reduction of the
training-set size which suits our purpose.

With respect to our motivating example, building the graph for DDS3 took
around 11.000 seconds. Using our method with a training-set of 1% of the values
(823 values) takes now the time to predict to which values we have to apply the
extractor (125 seconds), to which we add the time to extract the valuable values.
We have found on our dataset that there are around 45.000 valuable values. We
need 5.900 seconds to extract those. That brings us to a total of 6.000 seconds
to build our graph instead of 11.000 seconds previously, without losing
much information.

7.6 Comparison on manually labeled data

To get a better understanding of the performance of our entity profile technique,
our classification technique, and FAHES, we labeled by hand a sample of 200
values from DDS3. The sample contains 96 actual CoIs, and 104 DMVs, labeled
following the instructions of our domain expert (journalist).

Table 3 shows, for each method, the numbers of true and false negatives (TN
and FN), as well as the precision, recall, and F1 score of each technique with
respect to the human-labeled gold standard. Our first observation is that FAHES
has not found a single DMV in this dataset, leading to recall, precision, and F1
of 0.

The Entity Profile technique performed quite well (F1 of 0, 86). A few valid
CoI statements are wrongly detected as DMVs, but the contrary is quite rare,
and that suits our application needs since we should not skip extraction on valid
CoIs.
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Our classification method performed even better (F1 of 0, 94). Since this
method is based on word frequency, we can suppose that some words are specific
to DMVs and others are specific to valid CoIs.

Inspecting the false negatives (DMVs detected as valid CoIs), we noticed that
they mention ”ICMJE”, as in Conflicts of Interest: All authors have completed
the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/atm-
20-3650). The authors have no conflicts of interest to declare. ICMJE has been
wrongly detected as an entity, which led astray our entity profile technique.
As our classification model is trained with entity profile results, ”ICMJE” has
probably been identified as associated with valid CoIs.

On the other hand, the entity profile technique has led to only having 4 CoIs
identified as DMVs (false positives). In those, the authors mentioned patents
they have, which may be seen as creating a conflict of interest with the research
presented in the paper. However, by the domain experts’ (journalists’) rule, these
statements are no conflicts of interest.

Finally, we found that the NER has missed an organization entity in the
value ”The authors are supported by the use of resources and facilities at the
Michael E. Debakey VA Medical Center, Houston, Texas”, thus the entity profile
detection technique has wrongly considered this string to be a DMV. However,
the classification model did not make the same mistake and correctly considered
this value an informative COI.

7.7 DMV detection integrated in ConnectionLens

As explained in Section 6.2, we developed a Python Flask service for DMV de-
tection based in entity profiles, to save extraction time in specified contexts. We
only kept TF-IDF representation, because sentence-BERT has proven to be way
slower. To measure its impact on the time spent extracting entities, we loaded
100.000 XML PubMed bibliographic notices into ConnectionLens, without the
smartExtract service (that is, following the graph construction method prior
to this work), then also using the smartExtractor service as described in Sec-
tion 6.2. The quality parameter (F1-score mentioned in Section 6.2) is set to
0.9. To mesure the F1-score, we split each batch of values used for training, into
training testing subsets, the latter containing 20% randomly chosen values from
the batch. We used a batch size of 160, that is: the Flair NER entity extrac-
tor was called on groups of 160 values. In this experiment, the smartExtract
service is called to ConflictOfInterest values, for which an entity profile is man-
ually provided. Thus, in this experiment, we only apply entity extraction on the
ConflictOfInterest values.

As we can see in Table 4, we saved 557 calls to the Flair NER Service (which
amounts to 70% of the calls) thanks to the smartExtract service. This corre-
sponds to saving 1.770 seconds on extraction (33% of the extraction time) and
2.215 seconds from the total graph construction time. Finally, using our smar-
tExtract service leads to missing out on 3.225 organization entities that would
have been extracted without it. These represent about 10% of the total orga-
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Table 4. Impact of the smartExtract web service on entity extraction within Connec-
tionLens.

Is the smartExtract web service used? Yes No

Number of calls to Flair NER service 228 785

Time needed for extraction (seconds) 3.514 5.284

Total graph construction time (seconds) 6.865 9.080

Number of organization entities extracted 35.110 38.335

nization entities, which is consistent with our quality parameter (F1-score =
0.9).

The overall time saving is slightly higher than the one corresponding only to
extraction. This is because not creating some entities also means we do not have
to store them, nor the edges that connect them to their parents in the graph.

8 Conclusion

Integration of very heterogeneous data, such as we encountered in data journal-
ism applications [8,9], requires extracting Named Entities from all values found
in the data, in order to interconnect sources through the presence of the same en-
tity in two or more sources. The ConnectionLens [7,6] system we have developed
leverages this idea.

In this work, we sought to automatically find uninformative answers: these
are free texts that users write in response to some question, and which do not
provide the information required by the question. These can be seen as a par-
ticular class of textual DMVs. While many kinds of DMVs have been studied in
the literature, as we discussed in Section 2 and 5.3, when uninformative answers
are basically all distinct, existing methods cannot detect them.

The first technique we studied leverages ConnectionLens’ effort carried to
extract Named Entities from each value of the database. Our technique exploits
so-called entity profiles (expected entities in a valid value) to identify DMVs.
While highly accurate, this is expensive time-wise, because of the extraction.
For efficiency, instead, our second method trained a Random Forest classifier
on a small subset of our dataset, labeled with entity profiles, and classified the
other values as DMVs or not. This technique saves significant extraction time,
while also having very good accuracy.

We have included this method within the ConnectionLens platform and
demonstrated that it allows to avoid a large part of the Named Entity Recog-
nition (NER) effort. This is significant, since as shown in [7], NER dominates
the graph construction time. Thus, the method proposed here allows speeding
up the construction of integrated graphs out of heterogeneous data sources.

Acknowledgments This work was supported by the ANR AI Chair project
SourcesSay Grant no ANR-20-CHIA-0015-01. Galhardas’ work was supported
by national funds through FCT under the project UIDB/50021/2020.



Efficiently identifying DMVs in heterogeneous, text-rich data 21

References

1. Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas,
Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. Detecting
data errors: Where are we and what needs to be done? Proc. VLDB Endow.,
9(12):993–1004, aug 2016.

2. Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. Data
Profiling. Morgan and Claypool, 2020.

3. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

4. Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and
Roland Vollgraf. Flair: An easy-to-use framework for state-of-the-art NLP. In
ACL, 2019.

5. Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings
for sequence labeling. In ACL, 2018.

6. Angelos-Christos Anadiotis, Oana Balalau, Théo Bouganim, Francesco Chimienti,
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