N
N

N

HAL

open science

On the regularity of conical Calabi-Yau potentials

Tran-Trung Nghiem

» To cite this version:

‘ Tran-Trung Nghiem. On the regularity of conical Calabi-Yau potentials. 2022. hal-03817877

HAL Id: hal-03817877
https://hal.science/hal-03817877

Preprint submitted on 17 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03817877
https://hal.archives-ouvertes.fr

ON THE REGULARITY OF CONICAL CALABI-YAU
POTENTIALS

TRAN-TRUNG NGHIEM

ABSTRACT. Using pluripotential theory on degenerate Sasakian mani-
folds, we show that a locally bounded conical Calabi-Yau potential on
a Fano cone is actually smooth on the regular locus. This work is moti-
vated by a similar result obtained by R. Berman in the case where the
cone is toric. Our proof is purely pluripotential and independent of any
extra symmetry imposed on the cone.

1. INTRODUCTION

1.1. Background and motivation. The problem of finding Ké&hler-Einstein
metrics has been central in the development of Kéhler geometry, leading to
the solution by Chen-Donaldson-Sun of the celebrated Yau-Tian-Donaldson
conjecture |[CDS15a, CDS15b,|CDS15¢|. While the problem is well under-
stood on compact Kéahler manifolds, or more generally compact Kéhler va-
rieties [EGZ09,Li22], the non-compact case is still relatively open. In the
pioneering work of Martelli-Sparks-Yau [MSYO08|, the existence of conical
Calabi-Yau metrics (alias Ricci-flat Kédhler cone metrics) on toric varieties
with an isolated singularity is shown to be equivalent to a volume mini-
mization principle for Euclidean convex cones. This principle still holds for
mildly singular toric varieties as proved by Berman |Ber20|. A more system-
atic study of polarized affine varieties with an isolated singularity was done
by Collins and Székelyhidi [CS19], generalizing the work of Chen-Donaldson-
Sun to the context of Kéhler cones, or equivalently, Sasakian manifolds.

A Sasakian manifold is a compact Riemannian manifold such that the
metric cone over it is Kéahler. Sasakian manifolds can be viewed as odd-
dimensional analogs of compact Kéhler manifolds since they have a natural
transverse Kahler structure on an intrinsic horizontal distribution. The exis-
tence of Ricci-flat Kéhler cone metrics on a Kéahler cone is in fact equivalent
to the existence of Sasaki-Einstein metrics on the link, which boils down to
a Kéhler-Einstein-like problem on the transverse structure.

The existence of a (singular) K&hler-Einstein metrics is equivalent to solv-
ing a (degenerate) complex Monge-Ampére equation. An interesting problem
to ask is the regularity of a singular Kéhler-Einstein metric on the smooth
locus. In the present paper, we are concerned with the regularity problem

on a class of mildly singular affine varieties called Fano cones.
1
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In order to state the main result, let us first give some preliminaries on
Fano cones and conical Calabi-Yau potentials. Recall that a normal variety
is called Q-Gorenstein if a multiple of its canonical line bundle is Cartier.
The action of a complex torus 7" on Y is said to be good if it is effective and
has a unique fixed point contained in any orbit closure.

Definition 1.1. A cone Y is a normal affine variety endowed with the good
action of a complex torus T ~ (C*)*. We say that Y is a Fano cone if it is
Q-Gorenstein with kit singularities. The unique fized point of Y, denoted by
Oy, is called the vertex of Y.

Let M := Hom(T,C*) ~ ZF be the weight lattice and N := M* =
Hom(C*,T') the coweight lattice. The ring of regular functions of Y admits
a decomposition in to T-modules

C[Y] = ®acrRa, T :={a € M,Rq#0}

where R, is the T-module with weight a. Let Mg := M ® R and Ny :=
N @ R. The set T' is an affine semi-group of finite type which generates a
strictly convex polyhedral cone 0¥ C Mpg. Equivalently, the dual cone o in
NR is polyhedral of maximal dimension k. This results from the assumption
that Y has a unique fixed point lying in the closure of every T-orbit (cf.
|[AHO6|). The interior of o is then non-empty and coincides with its relative
interior :

Int(o) = {£ € N, (o,&) > 0,YVa €T}

Definition 1.2. The interior of the cone o is called the Reeb cone of Y.
An element & € Int(o) is called a Reeb vector. A Fano cone decorated with
a Reeb vector (Y,€) is said to be a polarized Fano cone. We say that (Y, &)
is quasi-regular if £ € Ny, and otherwise irregular if & ¢ Ny.

The closure inside Aut(Y) of the one-parameter subgroup generated by
the infinitesimal action of § is a compact torus T¢ C T, where T;. ~ (SH*is a
maximal compact subtorus of T'. If £ is quasi-regular then T, ~ S!, but if it
is irregular then Ty ~ (S')™, k > m > 1. Equivalently, in the quasi-regular
(resp. irregular) case, the holomorphic vector field associated to £ generates
an action of C* (resp. (C*)¥). It can be shown that in the quasi-regular
case, the quotient (Y'\ {0y })/C* is a Fano orbifold (see [Kol04, Paragraph
42]). Note however that in the irregular case, the quotient by (C*)* is only
well-defined as an algebraic space (cf. [Kol97] ). For more details on Fano
cones, the reader may consult for example [LLX20|, [DS17] and references
therein.

Given a Fano cone (Y, T), by Sumihiro’s theorem (see [Sum?74, Theorem
1, Lemma 8|), there exists an embedding Y C CV such that T corresponds
to a diagonal subgroup of GLy(CY) acting linearly. Given an embedding
Y C CV, we say that a function f is plurisubharmonic (psh for short) on
Y if it is locally the restriction to Y of a psh function on the ambient space
CN.
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Definition 1.3. A ¢-radial function (or &-comical potential) r2 : Y —
R is a psh function on Y that is invariant under the action of £ and
2-homogeneous under —J&, namely

£§T2 = 0, /:,,Jg?“z = 27’2
on Yieg.

If Y is a Q-Gorenstein cone, then for m > 0 large enough, m Ky is a Cartier
divisor and naturally linearized by the T-action. Moreover, there exists a
T-invariant non-vanishing holomorphic section s € mKy and a volume form
dVy such that

dVy = (i("+1)2ms A 5)1/m
where n+1 = dimc Y. To simplify the notation, by an abuse of language we
will sometimes say that s is a “multivalued” section of Ky and simply write
dVy =i’ s A3,

A canonical volume form dVy on Y is a volume form that is (2n + 2)-
homogeneous under the action of r7dr, namely

LoordVy = 2(n + 1)dVy

on Yieg.

The Q-Gorenstein and klt singularities assumptions on Y guarantee that
there exists a unique canonical volume form on Y up to a constant, see
[MSYO0g]|, [CS19].

A (1,1)-Kahler current w on a polarized Fano cone (Y, &) is said to be a
&-Kdhler cone current if there exists a locally bounded £-radial function such
that

w = dd°r?
This is well-defined thanks to the local theory of Bedford-Taylor [BT76|. If

moreover the function 72 satisfies the Calabi-Yau condition
(1) wnJrl — (ddcr2)n+1 — dVY

in the pluripotential sense, then r2 is said to be a (singular) conical Calabi-
Yau potential.

Definition 1.4. We say that a Kdihler cone current w = dd°r? is a conical
Calabi- Yau metric if the function r? is a singular conical Calabi- Yau potential
which s smooth on the reqular locus of Y.

The motivation for studying these metrics on Fano cones actually has its
origin in the compact Fano case. Concretely, Fano cones arise as metric
tangent cones of the Gromov-Hausdorff limit of a Fano manifolds sequence
[DS17]. If each term of the sequence is moreover Kdhler-Einstein, then the
Fano cone admits conical Calabi-Yau metrics. As discussed in |[Ber20, Section
4] (see also Remark 4.10), it is expected that a singular conical Calabi-Yau
potential restricts to a smooth function on the regular locus of Y. Our goal
in this article is to give an affirmative answer to this problem.
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Theorem 1.5. Let (Y,&) be a polarized Fano cone and r? be a singular &-
conical Calabi-Yau potential on'Y . Then 2 is smooth on the reqular locus of
Y. In particular, the curvature form of r? is a well-defined conical Calabi-
Yau metric.

Such smoothness result is well-known for singular K&hler-Einstein metrics
on compact Kéhler varieties |[EGZ09|, [BEGZ10|, |BBET19, Lemma 3.6].
In the non-compact setting, when the cone has a unique singularity at the
vertex, the Sasakian link is smooth, so the conical metric is automatically
smooth outside the vertex. For toric Fano cones with non-isolated singu-
larities, a regularity property was obtained by Berman |Ber20| by using the
toric symmetry to reformulate the problem in terms of real Monge-Ampére
equations. As discussed in [Ber20, Remark 4.10], the only places where the
toric structure was used were the L°°-estimate and uniqueness of the Monge-
Ampeére equation. Although it is possible to generalize the same approach to
a larger class of highly symmetric varieties, such as horospherical varieties,
we provide a proof closer to the pluripotential spirit and independent of any
symmetry other than the given effective torus action. It is an interesting
problem to ask if we can weaken the regularity assumption of the solution.

1.2. Organization. The organization of the article is as follows.

e In Section 2] we give a quick review of the structure of degenerate
Sasakian manifolds. We then gather results in pluripotential theory
on these manifolds based the on the work of Guedj-Zeriahi |GZ05|
and He-Li [HL21|. We also introduce extremal functions associated to
a Reeb-invariant Borel set on a degenerate Sasakian manifold, which
seems to be new in the literature. These objects were not studied
in |[HL21| in all generality (but see |HL21, Prop. 3.17, Thm. 3.1] for
results concerning weighted global extremal functions). The capacity-
extremal function comparison is crucial in the proof of the uniform
estimate.

e Section [3] is devoted to the proof of our main result. The general
strategy is based on [EGZ09|, |BEGZ10|, |[BBET19| and |Ber20]. Let
us give a brief explanation. After taking a resolution of singularities,
the conical Calabi-Yau problem is translated by pullback to a Calabi-
Yau problem on a degenerate Sasakian manifold.

Our key theorem is the uniform L°°-estimate of a family of solu-
tions, which relies on a domination-by-capacity property (cf. Prop.
. This, combined with a transverse Yau-Aubin inequality, allows
us to obtain a Laplacian estimate of the family, which implies regu-
larity of the solution.

e In Section [, we provide a proof for the transverse version of Yau-
Aubin inequality, which is used in the Laplacian estimate.
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2. PLURIPOTENTIAL THEORY ON SASAKIAN MANIFOLDS

2.1. Structure of Sasakian manifolds. In this section, we introduce the
notion of degenerate Sasakian manifolds. These are compact manifolds hav-
ing all the essential properties of a Sasakian manifold, except that the form
dn is not positive-definite, hence does not define a transverse Kéhler struc-
ture. Still, we assume that a degenerate Sasakian manifold has a transverse
Kahler structure, but that the basic Kéhler form is not induced by the con-
tact form.

Degenerate Sasakian manifolds arise as the link of the resolution of Fano
cones (see Lem. . The reader should compare this setting to the Kéhler
situation: a resolution of a Ké&hler space is still Kéahler, but the Ké&hler
structure of the resolution is not the pullback of the Kéahler structure on the
base.

We refer the reader to [BGO§| for a detailed treatment of almost contact
structures and Sasakian manifolds.

Let S be a compact differentiable manifold of dimension 2n+1. A contact
structure on S is the data of a 1-form 7 on S such that n A (dn)™ # 0. The
manifold S is then said to be a contact manifold. On a contact manifold,
there exists a unique vector field &, called the Reeb vector field, such that
n(§) = 1,L¢en = 0. The distribution D := ker(n) is called the horizontal
distribution of S.

Definition 2.1. An almost contact structure is given by (S,&,n, ®), where n
is a contact form, & the corresponding Reeb vector field, and ® a (1, 1)-tensor
of T'S such that:

PP=—Id+¢@n, dp(®.,®)=dn, dn(.,®.)>0

In particular, ®|p is an almost complex structure.
A degenerate almost contact structure is the same as an almost contact
structure, except that dn(.,®.) is only semipositive, i.e. dn(.,®,.) > 0.

Definition 2.2. A degenerate metric contact structure is a degenerate almost
contact structure (S, &, n, ®) endowed with a Riemannian metric g satisfying

9(®.,®.) =9g(,.) —n®n
Such a metric is said to be compatible.

A (degenerate) almost contact structure is said to be normal if the hori-
zontal distribution D is integrable. A form « on S is said to be basic if

Lea=1t1ca =0
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Definition 2.3. A degenerate Sasakian manifold (S,&,n,wp) is a normal
degenerate contact structure with a transverse Kdhler metric defined by a
basic positive-definite (1,1)-form wp.

Let gp be the Riemannian metric associated to wp. A degenerate Sasakian
manifold admits a Riemannian metric, defined by

gs =n®n+gs,

which restricts to a transverse Kéhler metric on D, but the latter is in gen-
eral different from the semipositive form induced by the contact form. In
particular, a degenerate Sasakian manifold has a degenerate metric contact
structure.

Remark. In [BG08§|, a Sasakian manifold is defined as a normal metric con-
tact structure. In our paper, one should distinguish between a metric con-
tact structure and an degenerate metric contact structure. Both are almost
contact structures with a compatible metric, but the metric of the former is
exactly dn(Id®®), while the latter has a compatible metric gg # dn(Id® ®).

Many properties of Sasakian manifolds still hold on their degenerate coun-
terparts. For example, on a degenerate Sasakian manifold, we still have a
cover by local foliation charts, coming from the foliation F¢ by the Reeb
vector field £ on S.

Definition 2.4. The foliation atlas on a degenerate Sasakian manifold is
defined as a collection of charts (Uy, @) covering S with diffeomorphisms:

D, Wox] =t t[— U,
(Z?:L‘) — (gDa(Z),Ta(Z,l'))
such that:

e The open interval | — t,t[C R has coordinate x. Here, t can be taken
to be independent of a.
o For all o, Wy, ~ Bs(0) is the ball of radius 6 > 0 centered in 0 €
C™ with coordinates z = (z1,...,2n). Moreover, the transition map
PaB = Pa © <p§1 from Wy N Wy to itself is holomorphic. In pratice,
we usually take 6 = 1.
FEach chart (Uy, ®y) is called a foliation chart, and each W, is said to be a
transverse chart (or transverse neighborhood ).
In a foliation chart U,, we may identify & with 0, and a point p € S can
be written as p = (21,...,2n, T).

Let Q’g be the sheaf of basic k-forms on .S. Since the exterior differential d
on S preserves basic forms, it descends to the basic exterior differential dp :=
d|Q%. We then have a subcomplex Q5 (F¢) of the de Rham complex, and
the corresponding basic cohomology Hy. The integrable complex structure
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on D leads to the decompositions

dg = Op —{—53, Q]fg = @ Q%q
pt+g=k
as well as the basic Dolbeault complex and the corresponding cohomologies
HY9. We then say that a basic function is transversely holomorphic if it
vanishes under dg. The Kihler structure on D induces the decomposition
in basic cohomologies as in the classic Hodge theory:

i~ @
pH+q=k
In short, usual Kéhler properties still hold for a Kéhler leaf space. We refer
the reader to [EKA90| for proofs.

2.2. Quasipsh functions and capacities. We present here some results
concerning intrinsic capacities on degenerate Sasakian manifolds, following
the lines of Guedj-Zeriahi |GZ05|, slightly generalizing the work of He-
Li |[HL21]. Apart from a subtlety in the definition of capacity, there are
generally no supplementary difficulties compared to the case of a classic
Sasakian manifold studied by He and Li.

Let (S,&,n,wp) be a degenerate Sasakian manifold of dimension (2n+1),
where wp a basic Kdhler form on .S, while 6 := dn is smooth, semipositive
and big; the latter meaning:

0 < voly(S) := / 0" Nn < 400
S

Let gs := n ® n 4+ gp be the corresponding Riemannian metric on S. We
denote by

Hop = wg A1)
the volume form on S associated to gg.

Definition 2.5. By a &-invariant object (function, set, etc.), we mean that
the object is invariant under the action of the compact torus Tt generated by
&.

By a function in L'(S), we mean a function being L' with respect to the
measure [l,, on S.

A (p, q)-transverse current is a collection {(Wy, T,,)} where W, is a trans-
verse neighborhood and Ty, a current of bidegre (p,q) on W, such that

CapLslwarws = Talwanwy

The current T is said to be closed (resp. positive) if each T, is closed (resp.
positive) on W,. Recall that a basic function on S is a {-invariant function.
A basic psh function v on U, is a basic, upper-semicontinuous function on
U, such that uly, is a classical psh function. In particular, u is locally
integrable.
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Definition 2.6. We say that a function u: S — R U {—o0} is basic 0-psh
if u is locally the sum of a basic smooth function and a basic psh function,
such that

(0 + dpdfu)|p >0

in the sense of transverse currents. We will denote by PSH(S,§,0) the set
of basic 0-psh functions. If uw € PSH(S,&,0), we put 6, := 0 + ddu.

In particular, a #-psh function is £-invariant, upper-semicontinuous and
L'(S). A Sasakian analogue of the Bedford-Taylor theory was developed by
van Coevering [vC18| in the case where 6 is Kédhler and u is a #-psh bounded
function on S. Let us give some details of the construction.

Let w e PSH(S,£,0) N L>*(S) and T a transverse closed positive current
on S. Since 6 is a closed and basic (1, 1)-form, 6,, defines a transverse (1,1)-
current. After perharps resizing the transverse neighborhood W, there ex-
ists a local &-invariant potential v such that § = dd“v. We then define on
each W,

Ou NT = dd°((v+u).T)

This allows one to define inductively 8% A T on each W,. Passing to the
foliation chart U, = W, x]—t, t[, the Monge-Ampére operator of u is defined
as

0, A\ dx
where we identify the contact form 7 with dz in the local coordinate of | —t, ¢[.

One can check that this definition is independent of the foliation chart. We
will denote the (sasakian) Monge-Ampére measure of u by

MAy(u) := 6, An

In particular, MAy(u) is a &-invariant Radon measure, which has the follow-
ing continuity property.

Proposition 2.7. [vC18, Theorem 2.3.1] The sasakian Monge-Ampére op-
erator is continuous for monotone convergence. In other words, if (uy)ren C
PSH(S,£,0)NNL>®(S) increases (or decreases) towards u, then MAg(uy) —
MAg(u) in the sense of measures.

If u is bounded, then by supposing u > 0 and noting that «? is basic and
psh, one can define the transverse closed positive current:

1
dunduNT = gddu* AT = udd* AT
As in the (transverse) Kéahler case, we have for all u € PSH(S,&,0)NL>(S)
/ 0, Am=volg(5)
S

i.e. a locally bounded 6-psh function is of full mass.
We record the following regularization property for a later use:
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Lemma 2.8. Given u € PSH(S,&, wp), there exists a sequence (ug)ren C
PSH(S,&,wp) NC™(S) decreasing to u.

Proof. We use the regularization procedure as in [Ber19, Theorem 3.3]. First,
for a smooth basic function f and 8 > 0, consider the basic Calabi-Yau-type
problem on S:

(wp + dpdppg)™ An =P Ps=Dult Ay

A solution ¢g verifying sup pg = 0 exists and is unique (cf. [EKA90, 3.5.5]).
We will denote by Pg(f), 8 > 0 the unique solution.
Now let

Pop(f)(p) :=sup{p(p),o < f,o € PSH(S,{,wB)},

This function belongs to PSH(S, &, wp) (cf. [HL21, Proposition 3.17]). Con-
sider

/

P, (f)(p) :==sup{p(p),¢ < f,¢ € PSH(S,§,wp) N C*(S5)}
Since u is u.s.c. and basic, it is a decreasing limit of a sequence of smooth
basic functions (f;). We assert that the sequence (vj);en = (PL;B(fj))jeN,
which consists of basic functions, decreases to u. Indeed, since PL;B is a
decreasing operator, (vj) is a decreasing sequence and f; > v; > u by con-
struction. Since f; N\, u, for all z and ¢ > 0, there exists jo such that for all
J = Jo:
u(@) <vj(x) < fi(z) <ule) +e

hence v;(x) decreases to u(x).

Arguing as in [Berl19| Proposition 2.3|, one can show that the sequence of
basic wp-psh functions v; 3 := P3(f;) converges uniformly to v; as § — oo,
hence for appropriate €; — 0, the sequence

Uj 7= V() T Ej
which consists of smooth basic wg-psh functions, decreases to wu. O

We also have the comparison principle for 6-psh functions in the degener-
ate Sasakian context.

Proposition 2.9. For all u,v € PSH(S,&,0) N L>(5),

/ MAy(u) < / MAg(u)
{v<u} {v<u}

Proof. We first prove the following mazimum principle:
1{U<U}MA9(maX(u,v)) = 1{U<U}MA9(U)

It is enough to prove the equality on a foliation chart U,. First remark
that since u, v are both basic, on U, they depend only on the z-coordinates,
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hence Uy, N{v < u} =|—t,t[x {z € Wy, v < u}. Since MAy(u) is &-invariant,
it restricts to 0 A dx on U,. The equality is then equivalent to

Lt tx {zeWaw<u}Imax(uw) N 9% = Lt t{x {zeWa v<u}bu A dT
on each foliation chart. By contracting with £ = 9., this is exactly the

classical local maximum principle for -psh functions.
It follows from the maximum principle that

/{v<u} MAg(u) = /S Liy<uyMAg(max(u,v))
= voly(S) — /{vzu} MAy(max(u, v))

< /S MA(v) - /{ L Mas(max(ue) = R

{v<u}

By arguing the same way with u — ¢ and v, we obtain

[ vmws [ Maws [ Maw)
{v<u—e} {v<u—e} {v<u}

The proof is now concluded by remarking that {v < u — e} increases to
{v < u}. O

We record the following result for a later use.

Proposition 2.10. Let U = B;(0)x] — t,t] be a foliation chart on S. For
every ¢ € PSH(S,€,0) N L*°(S), there exists a unique ¢ € PSH(S,¢,0) N
L*>(S) such that

MAy(p) =0onU, g =pon S\U, p > pon S
Moreover, if 1 < 9, then @7 < @o.
Proof. The proof is a direct consequence of the local Dirichlet problem on
a degenerate Sasakian manifold. The problem can be solved in exactly the

same way as in the classical case by remarking that for a basic function « in
a foliation chart (z1,..., 2, ).

0%u N
dpdzu)" =det | ——— —d dzi AN dx = det(u,z) =
(dpdzu)" An=de <3Zi32j>k/\12 zp Ndzg Nde =0 <= det(uz) =0

Hence the local Dirichlet problem on a degenerate Sasakian manifold be-
comes the classical Dirichlet problem (see [BT76|, [BT82| for a proof). O

Proposition 2.11. Let (¢;)jen C PSH(S,&,0)N.
1. There exists a constant C' = C'(pu,, 0) such that for allu € PSH(S,&,0):

—C +supu < / udply,; < voly,, (S)supu
S S S

2. If (¢;) is uniformly bounded on S, then either (¢;) converges locally
uniformly to —oo, or (i;) is relatively compact in L(S).
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3. Ifp; = ¢in L'(S), then ¢ coincides almost-everywhere with a func-
tion ¢* € PSH(S,&,0). Moreover,
Sup "= jiiinm SUp ¢
4. The family
Fo:={p € PSH(S,&,0),supp =0}
is a compact subset of PSH(S,¢,6).

Proof. For 1), we can adapt the strategy in |[HL21, Prop. 3.3] to the non-
degenerate Sasakian case. Let us sketch the arguments. We only need to
prove the first inequality in the statement (the second one is trivial). Assum-
ing without loss of generality that supgu = 0, the inequality then reduces
to

/UdeB > -C
S

There exists two finite covering of S by foliation charts V,, C U, such that
Vo =~ B1(0)x] —t, ] is relatively compact in U, ~ B4(0)x]—2t,2t[. To prove
the desired result, it is enough to show that

/ udpty,; > —Cy

@

where C,, = C,(0). But on V,, this is equivalent to

/ udply » = 2t/ w(z)dp, > —Cly,
B1(0)X}—t7t[ B1(0)

where dy. , and dpu. are respectively the measures wi A n and W on V,
and Bi1(0). Let ¢, be a local potential of § on By(0) (¢o exists by the
Op0p-lemma). The function ¢, + u is independent of x and psh in B4(0).
By upper-semicontinuity, u attains its local supremum u(p;) = 0 at p; =
(21,0) € B4(0) . By the submean inequality on Ba(z1) C B4(0),

1
(ot 0)(21,0) = $al21,0) € s /B (ot 00

Since u < 0 and B;(0) C Ba(z1), this completes our proof.

2) is a consequence of 1) (cf. [HL21, Proposition 3.4|).

3) is a consequence of the local result for psh functions (see e.g. [GZ17,
Theorem 1.46 (2)]). Indeed, by assumption, on each foliation chart U, =~
B1(0)x] — t,t[, we have p; — ¢ in Li (U,). In particular, ¢; — ¢ in
Ll (B1(0)) as psh functions.

4) is a direct consequence of 2) and 3). O

The following is a Chern-Levine-Nirenberg-type inequality.
Lemma 2.12. Let v,u € PSH(S,&,0) such that 0 <wu < 1. Then

O</]v|93/\77</|v|9”/\77+n(1—I—2supv)volg(S)
S S
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Proof. We first suppose that v < 0. It is enough to establish the equality for
vg := max {v, —k}. Indeed, the sequence —uvy, increases to —v, which allows
us to conclude by monotone convergence theorem. Now let us prove the
desired result for vg. It is clear that vy is #-psh. We then have the following
chain of inequalities:

/(—vk)QZ An= /(—vk)Qzl A (0 ++/—10g0pu) An
S S

= /(—vk)eﬁl NO AN+ /(—vk)efjl AV—=10p0pu A1
S S

= /(—Uk)egl ANO AN+ / u63,1 A (—vV —183537%) An
S S

g/(—vk)eglAeAnJr/H;}lAeAn
S S

A simple induction allows us to conclude for the case v < 0. The general
case follows by considering v’ := v — supg v. O

Definition 2.13. The capacity of a Borel set E C S is defined as:
Capg(FE) := sup {/ MAg(u),u € PSH(S,£,0),0 <u< 1}
E

This definition makes sense since 6 is supposed to be big (otherwise Cap
would be identically zero). It is clear by definition that Capg(.) > 0.
Now let PSH™(S,&,6) be the set of negative, basic #-psh functions.

Proposition 2.14.
1) If ; < 6y are two basic semipositive (1, 1)-forms on S, then Capy, (.) <
Capy,(.). Moreover, for all 6 > 1,
Capg(.) < Capsg(.) < 0" Capy(.)
For every Borel set K C E, we have
0 < Capy(K) < Capg(E) < Capg(X) = volp(X)
2) For all v € PSH™(S,¢&,0), there exists a constant C' = C(S,60) > 0
such that : o
Capg(v < —t) < T
for all £ > 0. In particular, lim;_, ., Capg(v < —t) = 0.
Proof. 1) It is clear that if §; < 0 then MAy, (.) < MAy,(.) by a property
of the complex Hessian in local coordinates. Moreover, if 67 < 65, then

PSH(S,¢,61) € PSH(S,&,602), so Capg, < Capp,. For all § > 1 and
u€ PSH(S,£,00),0<u <1, we have u € PSH(S,&,6) and:

dpds "
0< (u/6) < (1/0) <1, (80 + dpdizu)" = 6" <0 + Bg“)

Therefore Capsg(.) < 0"Capg(.) by definition.
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For all K C E and all candidate function u in the definition of Cap,
Jre MAg(u) < [ MAg(u), hence Capy(K) < Capg(E) < Capp(X). Finally,
Capg(X) = volyp(X) since a locally bounded function has full mass.

2) By the Chern-Levine-Nirenberg inequality in Lem. for a 6-psh
function u such that 0 <u <1 and v € PSH(S,£,0),v <0, we have:

2) [t an< [0 nn+nvl(s)

S

This inequality allows us to complete the proof. Indeed, for allu € PSH(S, &, 0)
such that 0 <u < 1:

| eansq [oman

{v<—t} tJs

! (/(—v)@" /\77+nV019(S))
t \Js

% (C(S, ) + nvolg(S)) (by Prop. Z11)

IN

IN

We conclude then by the definition of capacity. O

The following uniqueness result still holds in the context of degenerate
Sasakian manifolds.

Proposition 2.15. Let u,v € PSH(S,&,0) N L*>®(S). If
MAg(u) = MAy(v)

then u = v + cst.

Proof. We borrow the proof from |GZ07, Theorem 3.3] (see also |[HL21, The-
orem 6.4]), which still applies when 6 is only semipositive. Let f = (u—v)/2
and h = (u+v)/2. We can assume that u, v > —Cj so that [¢(—h)0p An > 1.
The key idea is to obtain the following inequalities:

@ [dofndpfnans [Lor-onny

deBf/\chf/\gn—l /\77 </ 1 )1/2n—1
4 < 3" dpf NdGf N A
( ) fs(_h)ez/\n = g Bf Bf h n

As a consequence, if 6 An = 0} A n, then combining and yields
Vf =0, hence u = v + cst as desired. We give a quick proof of .
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Note that the current under integration on the lhs of is well-defined
since v and v are supposed to be bounded. A direct calculation yields

n—1
/dBfAdCBf/\eg‘l/\nSZ/dBfAdCBfAHﬁAGZ1’“/\n
S /s

=X [ rsdip) nosner T ag
_ f mn n
_/52(911,_011)/\7]

The first inequality follows from CX_; < 27~1 the second one from Stokes’
theorem, and the third from the fact that 2dpd4 f = 0, — 0,,.

The proof of still goes through unchanged. It consists of proving
inductively that for T'= «9;1 A2 b A, l=n—2,...,0, we have

df Nd°fF NOAT 1/2

Jsdf N 1/2§3</df/\dcf/\9h/\T>
(Js(=h)0 A T) S

using an integration by parts and Cauchy-Schwartz inequality. ([

2.3. Extremal functions. Motivated by extremal functions in pluripoten-
tial theory, we introduce the following counterpart in the Sasakian setting.

Definition 2.16. Let K C S be a &-invariant Borel subset. The extremal
function associated to 0 and K is defined as:

Vi,0(p) :==sup {p(p), € PSH(S,£,0),0 <0 on K}

Let V;},B be the u.s.c. regularization of Vg y. We say that a {-invariant
Borel set K C S is PSH(S,&,0)- pluripolar if K belongs to the —oo locus
of a basic 6-psh function. Clearly {u = —oo} is &-invariant if w is basic 6-
psh. Here we impose the symmetry by £ on K so that there is no inherent
contradiction in the definition of pluripolarity. The pluripolarity of K is
determined by its extremal function, as the following lemma shows.

Lemma 2.17. Let K C S be a &-invariant Borel set.
1) K is PSH(S,&,0)-pluripolar <= Vi, = oo <= supVg, =
+00.
2) If K is not PSH(S,¢,0)-pluripolar, then Vi, € PSH(S,¢,0) and
Vi g =0 on Int(K'). Moreover,

[ MAVieg) = [ Vigr nn=volo(), [ MAo(Vip) =0

K K S\K

Proof. 1) Suppose that supg V% , = +00. By Choquet’s lemma, there exists
an increasing sequence of functions ¢; € PSH(S,§,0) such that ¢; = 0
on K and Vi, = (lim 7 ¢;)*. Up to extracting a subsequence, we can

assume that supgp; > 27, Define Y = @; —supg ;. The sequence
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{¥j};eny © PSH(S,€,0) is compact and satisfies Js¥jdpy > —Clpuy)
(cf. Lem. 2.11)). Let
b= 2774,

i>1
The function ) is basic 6-psh as a limit of basic -psh functions, and satisfies
JWdpwy > —C(pwy). It is clear that ¢;(z) = —supggj, Vo € K, hence
K C {1 = —oo}.

Now suppose that K C {ip = —oco} where ¢y € PSH(S,&,0). Forallc € R,
Y+ce PSH(S,£,0) and +c < 0on K. It follows that Vg = ¥ +c, hence
Vi g = +00 on S\ {1 = —oo}. Finally, Vi, = +o0o on S since {¢) = —oo}
has zero mass with respect to pi,, = W A n

2) Clearly Vi, = 0 in Int(K) by definition. The function Vi g is basic
as the sup—envelépe of basic functions, hence its u.s.c. regularization V;;ﬂ is
also basic. The fact that Vfé,e is 0-psh follows from of Prop. Since
a locally bounded 6-psh function has full mass, we have

/ MAg(Vy: ) = /S MAg(Vi ) = /S (6+ dpdlVie o)" A = volg(S)
K

It only remains to show that MA@(VI’QQ) =0 on S\ K, which is equivalent to
showing
MA@(VI?Q) =0
Ua

on each foliation chart U, = B1(0)x] — t,t[C S\K. By Choquet’s lemma,
there exists an increasing sequence of functions ¢; € PSH (S, €, 0) such that
@; =0on K and Vi, = (lim 7 ¢;)*. Let ¢; the unique solution of local
Dirichlet problem with initial datum ¢; (which exists by Prop. [2.10). In

particular,

MAy(@;) =0on Uy,
Moreover, the sequecne (p;) is increasing and @; = ¢; on S\U,, hence
¢; = 0 on K. This shows that ¢; < Vg, , therefore ¢; ~ Vi, By
continuity of the Monge-Ampére operator along a monotone sequence (cf.
Thm [2.7), MAg (V5 ) = 0 on Us. O

Let us now state an important comparison theorem between capacity and
extremal functions.

Lemma 2.18. Let Mgy := supg V;;ﬂ. For all compact non-pluripolar and
&-invariant K C S we have:

1 < voly(S)Y"Capy(K) ™™ < max(1, My g)

Proof. The inequality on the left is clear by Prop. First suppose
that Mg < 1, then V[’gﬁ is bounded. Since K is non-pluripolar, Vfé,a €
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PSH(S,&,0). Moreover, MA@(VI?@) is supported in K (cf. Lem. ,

hence
Capy(K) 2/ MAg(ngo) = /SMAQ(VERQ) = voly(9),
K

which completes the proof in the Mg <1 case.
Assume now that M := Mg > 1. Since the function V[’g@/M is a
candidate in the definition of Capy, it follows that

Capy(K) > / MA(M Vi )
K

— [ MAWMViey) (by Lem. ETD
S
> M / MAG(VE ) = M~voly(S)
S
This allows us to conclude. O

2.4. Lelong number and integrability. We define the Lelong number of
a basic psh function u on a foliation chart U, at a point p with coordinates

(z,2) by

v(u,p) = rE%IJr log(r)vol(B(z,r)) /B(z,r) u(z)wp

This number does not depend on the foliation chart since the transition
maps restrict to biholomorphisms on transverse neighborhoods and that the
right-hand side is invariant under biholomorphisms by a theorem of Siu.

It is clear by our definition that the Lelong number is -invariant. More-
over, in a foliation chart B;(0)x]|—t,¢[, the function x €] —t, t[— v(u, (2, ))
is constant for all z € B1(0). The Lelong number at a point p on a Sasakian
manifold therefore equals to its value at the projection of p to the transverse
holomorphic ball of a foliation chart. Local properties of Lelong number can
be translated word by word to the Sasakian setting.

Proposition 2.19. The number
v({0}) = sup{v (¢, z), (p,x) € PSH(S,§,0) x S}

is finite and depends only on the basic cohomology class of 6.

Proof. Since S is compact, there exists a basic Kahler form 6’ such that
¢’ > 0, hence PSH(S,&,0") D PSH(S,&,0), so v({0'}) > v({0}). It is then
enough to prove the assertion when 6 is transverse Kéhler.

For p € S, we define x to be a smooth function equals to 1 in a neighbor-
hood of p and 0 outside a larger neighborhood. Let

9p(.) == x(.) logd(., p)

where d is the Riemannian distance associated to 6. It is clear that g, is
smooth on S\ {p} and psh on a neighborhood of p, hence A#-psh for A > 0.



ON THE REGULARITY OF CONICAL CALABI-YAU POTENTIALS 17

Since S is compact, we can choose a uniform constant A = A(#) such that
for all p € S:

ddg, > — A6

By taking average with respect to the action of the compact torus generated
by &, we can suppose that g, is {-invariant, hence g, € PSH(S, &, Af).

A basic psh function ¢ in a foliation chart By (0)x] —t, ¢] restricts to a psh
function on the ball B;(0), so we have

V(,0) = /{ | e A (dd log )"

with 0, being the center of B;(0) (see e.g. |GZ17, Lemma 2.46] for a proof).
It follows from this local result that for any a = (z, z)

(5) v(pra) = / 6, A (A8 + dpdSyg,)""
{z}

The right-hand side is bounded by |, g A"0" A = A"volg(S). This completes
our proof. O

Theorem 2.20. Let Fy:={p € PSH(S,¢,0),supgp = 0}. If
A<2w({oh)7

sup {/ e~ Aeun /\77} <C
weFo S

for a constant C' depending only on wp and 6.

then

Proof. We will reduce the problem to the classic Skoda’s integrability the-
orem. First remark that there exist two covers of S by a finite number of
foliations charts (Vj)i1<j<n and (Uj)i<j<n, where U; = B1(0)x] —t,t[, such
that Vj C Uj. We need to show that on each foliation chart Uj, there exists
a constant C; = C(V}, Fo, A) satisfying

/ e MLl A < O
Uj
But since on Uj, ¢ depends only on the z coordinates and 7 coincides with
dx, it is enough to show that

J,

J

e~ AP Ay = 2t/ e Pl < C;
B1(0)

This follows from the local Skoda’s integrability theorem since the family Fy
is compact (cf. |GZ17, Theorem 2.50| for a proof). O
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3. REGULARITY OF THE POTENTIAL

This part is dedicated to the proof of our main theorem. Let us first give
some preliminaries and outline the arguments of the proof. Consider a Fano
cone Y of complex dimension n 4 1 with a good action by T ~ (C*)*. Let
T. ~ (S")* be the maximal compact subtorus of 7.

Consider a T.-equivariant embedding of Y into CN such that T, corre-
sponds to a diagonal group acting linearly on CV. Recall that ¢ generates
the action of a compact torus T; C T.. Now fix a locally bounded con-
ical Calabi-Yau potential 72 and a Reeb vector ¢ on Y, whose action by
T¢ extends to C" through the embedding. Let rg be the radial function
on CN associated to ¢ with conical metric we = ddcrg. Then rg restricts
to a &-conical potential on Y. The link of Y is homeomorphic to the set

Yn {r? = 1}. Now let
T: X =Y
be a T-equivariant resolution of ¥ (which exists by Lem. [3.1)). Let

U =1 (Vreg)

be the open Zariski subset of X isomorphic to Y;es. Consider the following
submanifold of X:

(S = 7r_1(Y N {r? = 1}),5,77,@03)

where by an abuse of notation & still denotes the pullback of the given Reeb
field on CV, wp is a transverse Kihler form on S (cf. Lem. , and
n = 2n*d°log 7“2 the contact form on S, which is pullback of the contact

form associated to & on CV. Since df is only semipositive, S is degenerate
Sasakian. One can show (see Prop. |3.5) that the conical Calabi-Yau equation

(ddr)"™*! = dVy
is in fact equivalent to the following transverse equation on U N S"
(Ox + dpdhox)" A= e ("Tex D= m Ay

Here

e Ox :=dn,

® VX = 71—*@7 P = log(rz/rg),

e U are basic Awp-quasi-psh on S for A > 0 large enough,
Remark that 6y is a semipostive and big form on S. By construction, ¢x is
invariant under the induced actions of £ and —J& on X. In a foliation chart
(#1,...,2n,x) of S, the equation can be written as:

2
det <9X72,j L Dex ) _ o~ Dex (9 (D (4 ()-¥- () g (

S
Oziﬁzj B’Z])
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2

The smoothness of 72 = r2e¥ on Yieg is then equivalent to the regularity of

px =7 p on SNU. Consider the family of equations:
(Ox +ewp +dpdpp;)" = e(n+1)(q’b+"7—¢_’j)w%

where 94 ; are two sequences of basic Awp-qpsh functions decreasing to
Yy =V, and ¢_ = V_ + ¢px for A > 0 large enough. The existence of a
unique @; . verifying sup ¢;. = 0 is guaranteed by the transverse Calabi-Yau
theorem of [EKA90|. Finally, to obtain the regularity of ¢x, we proceed by
the following classic steps:

1) Uniform estimate: The functions ¢;. are uniformly bounded, i.e.
there exists a constant C' independent of j and ¢, such that:

||<Pj,s||Loo(s) <C

2) Laplacian uniform estimate: Using the uniform estimate of the previ-
ous step, one can show that there exists C’ such that for all j, ¢,

sup |Awppjel < C’
SnuU

where

dpdif AW

3) By the complex Evans-Krylov theory, we obtain the following uniform
estimate:

||90j,s||c2,6(5) < C”a

which implies C*T28_estimates for all k& > 0 by Schauder estimate
and a bootstrapping argument.

The last step is classic and well-known in the literature (cf. [Blo12]). Our
focus will be mostly on the first and second steps (see Prop. and Prop.
3.12]).

3.1. Transverse Kihler form. Let V' be an irreducible projective variety.
Following |Kol07, Paragraph 3|, by a strong resolution we mean a proper
morphism 7 : V/ — V such that

e V' is smooth and 7 is birational.

o m: T 1 (Vieg) = Vieg is a biholomorphism.

o 71 (Ving) is a divisor with simple normal crossings (s.n.c).
In the sense of [Kol07, Paragraph 4], we say that a resolution is functorial
if for any varieties V, W with resolutions my : V! — V., 7y : W — W,
every smooth morphism ¢ : V. — W can be lifted to a smooth morphism
¢ V' — W’ such that my o ¢’ = pomy.

Lemma 3.1. There exists a smooth T-equivariant resolution of singularities
m: X =Y.
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Proof. Let us embed Y in a T-equivariant manner into CV such that T is
identified with a diagonal group. Let Y C P¥ be the closure of Y in PV,
There exists a T-equivariant resolution 7 : X — Y. Indeed, it is enough
to take a 7 as a strong and functorial resolution in the sense of Kollar as
recalled above (see |[Kol07, Theorem 36| for a proof of existence).

The functoriality of the resolution implies that the action of all algebraic
group on Y lifts on X such that 7 is equivariant (see [Kol07, Paragraph 9]).
We conclude that 7 : X := X NCY — Y is a T-equivariant resolution of
Y. O

Now let (X, 7) be the resolution of Y, constructed in the previous lemma.
Let Ep := 7~ 1(0y) be the “vertex exceptional divisor”. Since 7 is equivariant,
the vector fields ¢ and —J¢ induce by pullback the respective actions on X
(still denoted by § and —J¢&). The action generated by —J¢ is an action of
R*.

The pullback by 7 of the holomorphic vector field v := (—=J& — /—1¢)/2
defines a holomorphic foliation JF,, on X\Ep. At every point p € X\Ej,
there exists a transverse holomorphic coordinates (z1, ..., zp, w) such that

0 0
5w = © arw — 7Y
which restrict to the coordinate (z,z) on S. In other words, w = 7* log r¢ +
V—=1z. A form a on X\Ej is said to be basic if

Lya=iya=0, VYV e R{E —JE}

V¢.z25 = 0,

The restriction map allows us to identify basic forms on X\FEjy and basic
forms on S.

Lemma 3.2. There exists a T.-invariant Kahler form w on X and a global
smooth function ®,, defined on U such that

dd°®, = w, ®, — —o0 near OU

Proof. Let m: X — Y C P be the resolution as in the previous lemma. Let
O(1) be the T-linearized hyperplane line bundle of P and E the exceptional
divisor of (X, 7). Since 7 is relatively ample, there exists an ample line
bundle A on X such that:

mO(1)=A+E

Now let ||| a To-invariant metric on E = {sp = 0} and pp := —log ||sg|/%
its potential. Let h4 be a T.-invariant metric of strictly positive curvature
on A. Let h be the T,-invariant metric h := hge” %2 on 7*O(1) and P, :=
— log h the potential of h. Since X is contained in an open affine set ~ C" of
PV, there exists a global trivializing T.-invariant section s of the line bundle
7 O(1)|x. The global form

w = dd°®,|x = —ddlog h(s)
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is clearly closed and positive definite. Indeed, since s # 0 in X, we have
—dd®logh(s) = —dd°loghalx >0

Finally, since sp — 0 near 0, we have &, = —logha + ¢p — —00 near
ou. O

Lemma 3.3. |Ber20, Prop. 4.3] There exists a global smooth function ®p
on U satisfying

Le®p=0,L_5¢Pp =2,Pp — —00 near U

and a transverse basic Kéhler form wp on X\ Ey such that dd“®p = wp on
U.

Remark. The information on the behavior of ®5 near the border of I/ is
crucial in the Laplacian estimate of the potential ¢x.

Proof. The proof in [Ber20] is an adaptation of the construction of reduced
Kéhler metrics on a symplectic quotient (see e.g. [BG04, Formulae 4.5, 4.6]).
We provide here the details for the reader’s convenience.

Remark however that in our case, the symplectic quotient is not well
defined since the action generated by £ on the level set of the hamiltonian is
not free in general. However, the construction still applies since it is local in
nature.

Let w be the T.-invariant Kahler form on X, constructed in Lem. [3:2]
Remark that the action generated by ¢ is hamiltonian with respect to w
(since by the embedding of Y into CV, ¢ is identified with a hamiltonian
action on CV). It follows that there exists a smooth function # : X — R
such that:

dH(.) = —w(§,.) = gu(=JE, )
where g, is the metric associated to w. In particular, dH(—J&) > 0, so d,H

is surjective for x ¢ Ey. It follows that H is a submersion for x ¢ Ey; hence
for A positive, sufficiently large,

Sy={H =X}
is a compact submanifold of X\ Ey, diffeomorphic to (X\Ep)/R* . Now let
7T)\:X\E0—>S,\, i)\:S)\—>X\E0

be the natural projection and inclusion. Let &, be the global potential on U
constructed in Lemma . Let V, be the neighborhood of a point p € X\ Ey
with local transverse coordinates (z,w). Consider the following &-invariant
function on Sy NU:

D) =i\ (P, — ASw)
The function

(6) Up = W;(P)\ + A\Sw = Wiq)w|s>\ + )\(Sw — ’Li%’(l))
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is then &-invariant on V), and well-defined on V). Indeed, let V,y be another
local transverse neighborhood of a point p’ € Sy N'V,. By the definition of
w, ve(w —w') = 0, so there exists a basic transversely holomorphic function
f(z) on V, N'V,y such that w —w’ = f(z). It follows that:

S(w —w)lvav, = S(w —w)ls,avny, = i3Sw —w)ly,av,

By construction, we have £_;:¥p = A, hence ¥p extends uniquely to a
smooth function on . The function

CI)B = 2(\113/)\)
satisfies LePp = 0, L_;6Pp = 2. We assert that the following global form
on U
wp = ddCCI)B

defines a transverse Kéhler metric on #. By a direct computation from
the equation @ as in [BG04, Section 9], 2A71w is exactly wp on Sy. After
replacing ® g with 2A\~1®,, on each Vp, we see that wp extends to a transverse
Kéhler metric on X\ Ey.

It remains to show that ®p — —oo on OU. Indeed, on U NV, &p —
227D, = Sw — ix(Sw) for all p € Sy. It follows that ®p — 2271, is
bounded on Sy NU, so &g = (P — 2A71®,,) + 2A"1d, — —o0 near U
since @, — —o0 near JU. O

Since X is a T.-invariant resolution of Y and that Y has klt singularities,
there exists a T.-invariant divisor D such that:

mKy =Kx+D, D= Y a;Dj,
aj>—1
We have moreover a decomposition D = Dy — D_ where:
Dy:=Y Dj, D_:=) (-a;)D;
a; >0 a;<0

are two effective T.-invariant Q-divisors. There exists then a T.-invariant
volume form dVx on X, two multivalued sections s+ and hermitian 7T,.-
invariant metrics h* on D, such that:

(7) T dVy = |lsllpe lls- 152 dVx
To be precise, we may choose:
2 2a; 2 —2a.
sl = T Issl s sol- = T Issl™
a]->0 a]'<0

where h; are T,-invariant hermitian metrics of the fiber Ox(D;). Up to a
positive constant, we have the following volume form on S:

dVx(=J§,.) =wp A1
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Lemma 3.4. There exist two basic psh T.-invariant functions ¥4 on S,
smooth on U and a constant A > 0 such that on S,

T dVy (=JE,.) = e D@ +==)n A g %0353% > —Awp
Moreover, e~¥- € LP(S),p > 1.
Proof. Assume that there exists a positive constant C' > 0 satisfying:
(8) 5050 10g [lsellf < > —Cwp
Then by choosing ¥ such that:
(n+1)W = log [[s< 3+, € CF(S)

we obtain the equality between volume forms from and the estimate of
00V follows immediately.

It remains to prove (8)). By definition of s+ and ||.[[,+, in a transverse
holomorphic chart of X\ Ey with coordinates (z,w), there exist T,-invariant
local potentials ¢4+ and holomorphic T,.-semi-invariant local functions f+
such that:

lsxllpe = [ f(z,w)|em#x(=)

In particular, there exist Ay € R satisfying:
0
—fr =i
RS +f

After replacing fi by fre Y one can suppose that fi are &invariant
(hence basic), so Opf+ = 0. It follows that fyi are transversely holomorphic,
hence dpd$ log |f+(z,w)[* > 0, so locally:

dpdflog||sc|js), > —Cdpdpes

for some constant C' depending only on the local open set. Moreover, since
wp is Kéhler, one can find in a transverse neighborhood a constant A > 0
(which depends only on the neighborhood) such that

dpdgp+ < Awp

The compacity of S then completes the proof of . Finally, since Y has klt
singularities, D; are normal crossing divisors, hence there exists p > 1 such

that pa; > —1 for all j, so e™¥" € LP(S) for some p > 1. O
3.2. Transverse Monge-Ampére equation.

Proposition 3.5. The conical potential r is a solution in the pluripotential
sense of the equation:

(9) (dd°r*)" ! = dVi
on Y, if and only if px satisfies the following equation on S NU:
(10) (Ox + dpdzex)" An= e_(”H)“DXe(”H)(\p*_\L)w% An
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In particular, in a transverse holomorphic neighborhood S N,
(Ox + dpdgox)" = e—(n+1)<Pxe—(n+1)(\1’+—‘1h)w%
Proof. By definition ® = log 2, hence:
dd°r* = e®(dd°® + d® A d°®) = r*(dd°® + dP A d°D)
in the current sense. We have
(dd°D+dP D)™ =" ¢, (dd°®)F A (AP AI°D)"F = (dd°®)" AdD NP

Indeed, in the transverse coordinates (z,w) on X\ Ey,
o 0
ow 0w

hence (dd°®)"*! = 0. It follows that

1

(dd°r®)"*! = dVy <= r""(dd°®)" NdD A d°D = dVy

Since
Le® =0,
the restriction of ® in S is basic. It follows that
0*®
0210Zm,
= (dd°®)" A (dw + dw) A (d°w + d“w)
= (dd°®)" A 2dRw A 2d°Rw

(dd°®)™ A dD A d°® = det ( > \(i/2)dz, A dZj A dD A d°D

The conical Calabi-Yau equation then becomes
P22 (dde®)™ A 2dRw A 2d°Rw = dVy
By contracting the equality with —J¢, and using 2dRw(—J&) = 1, we have:
P2 2(dde®)" A 2d°Rw = dVy (—JE) = wh An
By using dd“® = 0+4-dd‘p = 0+dpdgp, 2d°Rw = 7, the previous lemma and

the fact that S = X N Wﬁl({rg = 1})7 we obtain by pullback the following
equation on S NU:

(Ox + dpdsox)" An = e—(vﬂrlmx6—(n+1)(‘1’+—\1’7)w?3 An

Finally by applying i¢ and using that 7({) = 1, the equation on S NU
becomes

(GX + dBdCBng)n = 6_(n+1)<PX6_(n+1)(‘1’+—\117)w%

The converse is proved in the same manner. O
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3.3. Uniform estimate. Let 14 ; be two sequences of smooth basic quasi-
psh functions which decrease to

Yyp=Vy, Yo =V_+opx,
such that :
(11) dpdgy+ j > —Cuwp

for a uniform constant C' independent of j. Such a sequence exists by virtue

of Lem. 2.8

Let € > 0. Recall that the form 0x = 7*dd®log r? is semi-positive, big and
basic, hence 0x + ewp is a transverse Kahler form. Consider the following
equation on S for a smooth basic (6x + ewp)-psh function ¢;.:

(12) (Ox + cwp + dpdppje)" A= eI =)y Ay
By the transverse Calabi-Yau theorem of El-Kacimi Alaoui [EKA90, 3.5.5],

for all 7, e, there exists a unique basic solution satisfying:
sup @je =0

Now let ; be the smooth volume form et W+ *w*vﬂ')w% Anon S. The
following lemma is elementary:

Lemma 3.6. Let p be an inner-regular positive Borel measure on S. Then
for all £&-invariant Borel set £ C S,

u(E) = sup {u(K), K C E compact, £ — invariant }
In particular, u; satisfies this property.
Proof. 1t is enough to show that for all j € N*  there exists a compact
&-invariant K; such that:
1

u(E) < p(K;) + J

By inner regularity of E, there exists a compact C; C E such that:
W(E) < u(C))+1/5
The idea is to average C by the action of T¢. We define
K;:= UgEng-Cj = Tg.Cj

For each j, the set K is compact and {-invariant by construction. Moreover,
K; C E since g.C; C g.FF C E. Finally, the fact that C; C Kj implies
1(Cj) < u(K;). This completes our proof. O

We also have the important domination by capacity property of the mea-
sures fi;.
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Proposition 3.7. The measures 1, satisfy the H(c, A, §) condition for all
«. Namely, for all @ > 0, there exists a constant A independent of j such
that:

pi(E) < ACapy(E)'+*

for all &-invariant Borel subset £ C S.

Proof. By inner regularity of p;, it is enough to establish the lemma for a
compact &-invariant K C S. Indeed, suppose that the inequality is true for
all such K, then for all Borel £-invariant set E,

pi(E) =sup {p;(K), K C E compact, & — invariant }
< Asup {Capg(K)Ha, K C FE compact, £ — invariant}
< ACapy(E)'** (by Prop. 1))

We can suppose furthermore that K is non-pluripolar (otherwise y;(K) =
0 and the inequality is then trivial).

Now let K be a compact &-invariant and non-pluripolar. Let p > 1 be as
in Lemma By Hoélder inequality, we have:

0< Mj(K) < Hfj”Lp(wg/\n) VO]WB (K)l/q
where 1/p +1/q = 1. Since ¥4 ; < 941 and that ¢; > 9_, the function
et DW+5=v=3) is bounded in LP by e+(C=¥-) where C := supg v, 1.
It follows that the norm || f; is uniformly bounded, therefore it is
enough to show that

voluy (K) < Cexp (=1(Capo(K)) "))

where C' = C(A,wp),y = 7(f) are constants independent of j. The con-
clusion then follows from the elementary equality exp(—z?) < A,x?, for all
x €10,1],a > 0.

By Theorem for v := 2/(v({0}) + 1), there exists a constant C' =
C(6,wp) such that:

o e )

sup / exp(—yY)wp An < C
PYeEFo J S

In particular, for ¢ := Vi y — Mk ¢ (recall that Mg g = sup V}% ), we obtain

[ exp(=aVicg)ly A < Cexp(—Mico)
S
Note that Vi , is well defined thanks to the {-invariance of K. Finally, since
Vo <0 pyz-a.e. on K, we have
vol,; (K) < Cexp(—yMkp)
An application of Lemma then completes our proof. O

Let us first establish some more useful lemmas before proving the uniform
estimate.
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Lemma 3.8. Let w € PSH(S,&,60) N L>(S) be a negative function. For all
s>0,0<t<1,

t"Capp(u < —s —t) < / 0, A
{u<—s}
Proof. Let v € PSH(S,£,0),0<wv < 1. Then
{u<—-—s—t}c{u<tv—s—t} C{u< —s}
By definition of the Monge-Ampére operator

[ <[ MAg() <677 [ MAy(to)
{u<—s—t} {utv—s—t} {u<tv—s—t}

Applying the comparison princple 2.9] to the functions u + s + ¢ and tv,

£ / MAg(tv) < £ / MAg(u) < / MAg(u)
{u<tv—s—t} {u<tv—s—t} {u<—s}

which terminates our proof. ([

Lemma 3.9. |EGZ09, Lem. 2.4| Let f: Rt — R* be a right-continuous

decreasing function such that limg_, 1 f(s) = 0. If f satisfies the condition
H(a,B), tf(s+t) <Bf(s)'™® Vs>0,0<t<1

then there exists so = so(a, B) such that f(s) =0, Vs > so.

Proposition 3.10. There exists a uniform constant C' such that:

losell s < €

Proof. Let f(s) := Capg(p;je < —s)V/™. Tt is clear that f : RT — R is
right-continuous, and lims_ 4 f(s) = 0 (cf. Prop. . Moreover, f is
decreasing: for all ¢ > s, {p < —t} C {¢ < —s}, V& > s, hence f(t) < f(s).
Following Lem. and the fact that p; satisfy H(a, A,0), f satisfies the
condition H(a, B) with B = A", Indeed,

t"f(s+1)" <t"Capgiewy (e < —s—1t)

< / (9 +cwp + dBd%gojVa)n An
{pj,e<—s}

= / 11 < ACapg(pje < —s)1+ = Af(s)n1Fe)
{pje<—s}

The first inequality follows from Lem. the second is direct from Lem.
[3:8] while the fourth is a consequence of Lem. Now let w, 1= 0x + cwp.

For e sufficiently small and ¢ large enough, there exists § = §(S) > 1 such
that w. < dwp. In particular, p;. € PSH™(S,&,0wp). Again by Lem.

F(5)" < Capsun (10 < —3)
577/
s(/kﬂ%@w%An+nmung
S

S
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But by (1)) of Lem.
/ —pjediwy < —suppje + C(wp) = C(wp)
S

Therefore, f(s) < (Cl/sl/”), where C; = Ci(wp,fx). We can then ap-
ply Lem. to select sg = so(n,a, A,wp,0x) as in [EGZ09, Lemma 2.3,
Theorem 2.1| such that:

Capg, (pje < —s) =0, Vs > s

In particular, pj(¢;e < —so) = 0 by Lem. Hence ;. > sp on S, so
there exists C' = C(n, o, A,wp, 0x) such that:

||‘Pj76||Loo(5) <C
O

3.4. Laplacian estimate. We will need the transverse version of the Yau-
Aubin inequality, obtained by Siu for two cohomologous forms [Siu87|, but
the proof can be generalized to any couple of Kéhler forms. Let

A,y =Tr, dpdp
be the Laplacian associated to the transverse Kéhler form w/.

Lemma 3.11. For all transverse Kéahler form w/;, there exists a constant
depending only on the transverse bisectional curvature of wp such that:

Tr,,, Ric(wh)

Ay log Try, w > —k Try Wi — ;
Try, wp

where Ric(w';) is the transverse Ricci curvature.

Proof. On each foliation chart, the transverse Kéhler forms depend only on
the z-coordinates. The inequality thus follows from the purely local proof
in the compact Kéahler case. The reader may consult Appendice (4] for a
proof. O

The following proposition gives a a priori Laplacian estimate of the solu-
tion ;. of equation . We follow the arguments of |[BBE™19, Appendice
BJ. In this section, by a uniform constant, we mean a constant independent
of the j,e parameters.

Proposition 3.12. Let ¢ := &p — rg and w, = Ox + ewp, W, = we +
dpd%pj.e. There exist uniform constants C, Co such that:

sup Tr,,_ w; < 026—011/1—1&7,;- < C’Qe_cw_w*

Snu
In particular, there exists a uniform constant Cs such that

sup |Aupje| < Cye  C1v—v-
SsnuU



ON THE REGULARITY OF CONICAL CALABI-YAU POTENTIALS 29

Proof. The function v is clearly basic 6x-psh and 1) — —oo near OU by the

construction of ®p in Prop. Moreover, wgly = (0x + dd°y)|y is the

restriction into U of the transverse Kéhler form wp, constructed on X\ Ejy.
Consider the following smooth function on S NU:

h:=log(Tr,, wl) + ny_; — A1(pje — V)

where A; := Aj(k) is a constant sufficiently large and depends on k. The
compacity of S, the L*-estimate in Prop. combined with transverse
Yau-Aubin inequality in Lem. [3.11] are all the ingredients we need to repeat
the arguments of [BBE™T19, Appendice B| to conclude.

For the reader’s convenience, we provide here some details of the proof.
By the transverse Yau-Aubin inequality, we have on S NU:

Ayrh > Tryr (we) — Az

where Ay depends only on A; and n. Since ¢;. is uniformly bounded and
that ¢¥» — —oo near (S NU), h attains its maximum at xg € SNU. It
follows from the maximum principle that

0> Ay h(wo) > Tryy (we)(zo) — Az

By local elementary reasonings as in the compact Kahler case, we obtain the
following inequality for two transverse Kéhler forms:

"\n
Tre, (wfs) = n((:ag (Trwé (we)" = (n+ 1)ew+’j_¢_’j (Trwé (we))"™
e

Taking log on both sides gives us
log(Try, wl) < log(n) + (n + 1)(v4; — ¥—;) + nlog(Try, we)
hence by definition of A,
h <log(n) + (n + 1)1y ; + nlog(Tr, w:) — A1(pje — ¥)
Therefore

zggh < h(zo) < Az — Ay égg(%',s — ) < Az — A4 élr% Dje

where A3 is a uniform constant since ¢, ; and Tr,; we (7o) are both uniformly
bounded. As a consequence, there exists a uniform constant A4 such that:

h:=1og(Try, wl) + (n+ 1)1_ j — A1(pje — ) < Ay

which leads to:
Tr,, wl < e~ (Nt j JAi(pje—1) pAa

hence the existence of uniform constants Ay, As, depending only on C' in
inequality (L1)), x, and the bound of the L>-estimate such that:

sup Try, w! < Age™ MY 7¥=d < Age~M¥—¥-
snu
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For the estimate of A, ,¢j., we make the following remark. By compacity
of S, there exists a uniform constant ¢ sufficiently large such that

we =0+ cewp < dwp

hence
Tro, () <07 Ty ()
But since
sup Try, (we + ddpjc) = n 4 sup Ay, ) < Ao v —v-
snu snu
this completes our proof. O

3.5. Conclusion.

Proof of the main Theorem. By using the L°°-estimate in Lem. and the
transverse Yau-Aubin inequality [3.11] we obtained in Lem. [3.12)the estimate
of Ay pje. Asaconsequence, A, ;. is locally uniformly bounded on SN/
since ¥_ := V_ + px is locally bounded by our assumption. It follows that
there exists a subsequence p; ;) which is C'-convergent on SNU to

wo € Lw(Sﬂu),AngOO € L%C(SQU)
which is a solution of
(13) (0 + dpdSpo)™ A = e~ PHVEX XAV (— JE )

on S NU. The equation admits a unique solution up to constant (cf. Prop.
, hence:
Yo =px t+c¢

which implies that A, ,¢x is locally bounded. This allows us to obtain
a C?*“estimate of ¢y, as well as higher order estimates using Schauder’s
estimate and complex Evans-Krylov theory as in [Blo12, 5.3, p.210]|, hence
the smoothness of px on SNU.

By definition, r% = rge‘f’ and px = m*p. Using symmetry by Rsg-action
generated by —J¢, we conclude that ¢ x = ¢ o 7 is actually smooth on U,
hence ¢ is smooth on Y;e.. In particular, r2 is smooth on Yieg. U

4. APPENDICE : TRANSVERSE YAU-AUBIN INEQUALITY

In the sequel, we will use the summation convention. Let wp,wy be two
transverse Kahler forms on S. Let (z,z) be the coordinates on a foliation
chart of S such that:

wp = ng\/—ldzj A dzF, wh = g;.E\/—ldzj A dzF
After choosing a normal transverse holomorphic chart, one can suppose that

9;% = 0jk and that wi; is diagonal. Let (¢7F) denote the inverse of (9;7)- We
have:

= , = =
Tropwp =979z = gz Trgwp=9"g5;=> ¢%
j j
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Denote
0 - o - 02
9z 0= g 00 = g

0; =
Lemma 4.1. We have the following inequality:

glpﬁ(apgfza)@pg;g) < (Try, W) Z 9Py
D,0,]

2

!
Op 9

Proof. The lemma follows from repeated applications of Cauchy-Schwartz
inequality:

ngp p.gaa pgbb ) < Z PP ‘a 9a ’ 1/2 pp )8109
p,ab a,b
Z ngp ‘8pgaa 1/2
Z /gaa ngpg/aa ‘8;0 ‘ 1/2
< Zgaa ngpglaa ‘apgaﬂ
a p,a

< (Trop wi) (Y 979
D;a,J

)1/2

2
)

8pg ;3

Recall the statement of the transverse Yau-Aubin inequality:

Lemma 4.2.

Tr,,, Ric(wl)
/ wB B
Aw% log Trp wp = =k Try, wp — —TrwB o

Proof. We have:
ijB Try,, Wi 7 (5q Try,, w)(0p Try, W)

Ay log Try, wp =

Try,, wh (Try,, wh)?
_ ijg Tro,, Wi _ gpﬁ(apgéa)(apggg)
- Try,, W (Try,, wh)?

By definition,
Ay, Tro, wp = g”’a(ﬁ gqgjk)g/.f + ¢™Pg7*9 gqg’.—

P1(8), 8qgjk) glpqgij;kpq + leqgjkglab(apggg)(gqgflg)
where R;‘qu is the local expression of the transverse curvature form of w';.

Let us estimate the three terms of the expression above.
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e Since wp and w/; are diagonal, we have for the first term:
g/pq(apgqgjk)Q;E = glpﬁ(apgpgjj)ggg > —k(Truy, WjB)(Trwjg wp)

where & is the infimum of the transverse sectional curvature (which
exists since S is compact).
e In the second term, g?1R 7 _ = R;'E’ where R;'E is the local expression

Jjkpg

of the transverse Ricci-form Ric(w'y).
e For the third term, we have:

7 ik ,lab 3 o 2
9797 g™ (09 3) Dag) = 974" | Oy,

aj

It follows that

- o 2
Ay, Tryp wp > —k Try, wp Tryr wp — g]kR;.E - Z 979" |0pg
D,0,J
hence
Tr,,, Ric(wh)
/ ] B
Ay log Tryp wp > —kTry wp — T, o
2
Ipp laa / 7 oy
" 2pag 99 apgaj _ gp”(apgéa)(apg;g)
Try,, wh (Tr,, wp)?
> kT, wp — Des(RicWs)
B Try, wp
by the previous lemma. O
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