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On the regularity of conical Calabi-Yau potentials

Using pluripotential theory on degenerate Sasakian manifolds, we show that a locally bounded conical Calabi-Yau potential on a Fano cone is actually smooth on the regular locus. This work is motivated by a similar result obtained by R. Berman in the case where the cone is toric. Our proof is purely pluripotential and independent of any extra symmetry imposed on the cone.

1. Introduction 1.1. Background and motivation. The problem of finding Kähler-Einstein metrics has been central in the development of Kähler geometry, leading to the solution by Chen-Donaldson-Sun of the celebrated Yau-Tian-Donaldson conjecture [START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities[END_REF][START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle than 2π[END_REF][START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof[END_REF]. While the problem is well understood on compact Kähler manifolds, or more generally compact Kähler varieties [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF][START_REF] Li | G-uniform stability and Kähler-Einstein metrics on Fano varieties[END_REF], the non-compact case is still relatively open. In the pioneering work of Martelli-Sparks-Yau [START_REF] Martelli | Sasaki-Einstein manifolds and volume minimisation[END_REF], the existence of conical Calabi-Yau metrics (alias Ricci-flat Kähler cone metrics) on toric varieties with an isolated singularity is shown to be equivalent to a volume minimization principle for Euclidean convex cones. This principle still holds for mildly singular toric varieties as proved by Berman [START_REF] Berman | Conical Calabi-Yau metrics on toric affine varieties and convex cones[END_REF]. A more systematic study of polarized affine varieties with an isolated singularity was done by Collins and Székelyhidi [START_REF] Collins | Sasaki-Einstein metrics and Kstability[END_REF], generalizing the work of Chen-Donaldson-Sun to the context of Kähler cones, or equivalently, Sasakian manifolds.

A Sasakian manifold is a compact Riemannian manifold such that the metric cone over it is Kähler. Sasakian manifolds can be viewed as odddimensional analogs of compact Kähler manifolds since they have a natural transverse Kähler structure on an intrinsic horizontal distribution. The existence of Ricci-flat Kähler cone metrics on a Kähler cone is in fact equivalent to the existence of Sasaki-Einstein metrics on the link, which boils down to a Kähler-Einstein-like problem on the transverse structure.

The existence of a (singular) Kähler-Einstein metrics is equivalent to solving a (degenerate) complex Monge-Ampère equation. An interesting problem to ask is the regularity of a singular Kähler-Einstein metric on the smooth locus. In the present paper, we are concerned with the regularity problem on a class of mildly singular affine varieties called Fano cones.

In order to state the main result, let us first give some preliminaries on Fano cones and conical Calabi-Yau potentials. Recall that a normal variety is called Q-Gorenstein if a multiple of its canonical line bundle is Cartier. The action of a complex torus T on Y is said to be good if it is effective and has a unique fixed point contained in any orbit closure.

Definition 1.1. A cone Y is a normal affine variety endowed with the good action of a complex torus T ≃ (C * ) k . We say that Y is a Fano cone if it is Q-Gorenstein with klt singularities. The unique fixed point of Y , denoted by 0 Y , is called the vertex of Y .

Let M := Hom(T, C * ) ≃ Z k be the weight lattice and N := M * = Hom(C * , T ) the coweight lattice. The ring of regular functions of Y admits a decomposition in to T -modules

C[Y ] = ⊕ α∈Γ R α , Γ := {α ∈ M, R α ̸ = 0}
where R α is the T -module with weight α. Let M R := M ⊗ R and N R := N ⊗ R. The set Γ is an affine semi-group of finite type which generates a strictly convex polyhedral cone σ ∨ ⊂ M R . Equivalently, the dual cone σ in N R is polyhedral of maximal dimension k. This results from the assumption that Y has a unique fixed point lying in the closure of every T -orbit (cf. [START_REF] Altmann | Polyhedral divisors and algebraic torus actions[END_REF]). The interior of σ is then non-empty and coincides with its relative interior :

Int(σ) = {ξ ∈ N R , ⟨α, ξ⟩ > 0, ∀α ∈ Γ} Definition 1.2. The interior of the cone σ is called the Reeb cone of Y . An element ξ ∈ Int(σ) is called a Reeb vector. A Fano cone decorated with a Reeb vector (Y, ξ) is said to be a polarized Fano cone. We say that (Y, ξ) is quasi-regular if ξ ∈ N Q , and otherwise irregular if ξ / ∈ N Q .

The closure inside Aut(Y ) of the one-parameter subgroup generated by the infinitesimal action of ξ is a compact torus T ξ ⊂ T c , where T c ≃ (S 1 ) k is a maximal compact subtorus of T . If ξ is quasi-regular then T ξ ≃ S 1 , but if it is irregular then T ξ ≃ (S 1 ) m , k ≥ m > 1. Equivalently, in the quasi-regular (resp. irregular) case, the holomorphic vector field associated to ξ generates an action of C * (resp. (C * ) k ). It can be shown that in the quasi-regular case, the quotient (Y \ {0 Y })/C * is a Fano orbifold (see [START_REF] Kollar | Seifert Gm-bundles[END_REF]Paragraph 42]). Note however that in the irregular case, the quotient by (C * ) k is only well-defined as an algebraic space (cf. [START_REF] Kollár | Quotient spaces modulo algebraic groups[END_REF] ). For more details on Fano cones, the reader may consult for example [START_REF] Li | A guided tour to normalized volume[END_REF], [START_REF] Donaldson | Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry[END_REF] and references therein.

Given a Fano cone (Y, T ), by Sumihiro's theorem (see [Sum74, Theorem 1, Lemma 8]), there exists an embedding Y ⊂ C N such that T corresponds to a diagonal subgroup of GL N (C N ) acting linearly. Given an embedding Y ⊂ C N , we say that a function f is plurisubharmonic (psh for short) on Y if it is locally the restriction to Y of a psh function on the ambient space C N . Definition 1.3. A ξ-radial function (or ξ-conical potential) r 2 : Y → R >0 is a psh function on Y that is invariant under the action of ξ and 2-homogeneous under -Jξ, namely 

L ξ r 2 = 0, L -Jξ r 2 = 2r 2 on Y reg . If Y is a Q-Gorenstein cone,
dV Y = i (n+1) 2 m s ∧ s 1/m
where n + 1 = dim C Y . To simplify the notation, by an abuse of language we will sometimes say that s is a "multivalued" section of K Y and simply write dV Y = i (n+1) 2 s ∧ s.

A canonical volume form dV Y on Y is a volume form that is (2n + 2)homogeneous under the action of r∂r, namely

L r∂r dV Y = 2(n + 1)dV Y on Y reg .
The Q-Gorenstein and klt singularities assumptions on Y guarantee that there exists a unique canonical volume form on Y up to a constant, see [START_REF] Martelli | Sasaki-Einstein manifolds and volume minimisation[END_REF], [START_REF] Collins | Sasaki-Einstein metrics and Kstability[END_REF].

A (1, 1)-Kähler current ω on a polarized Fano cone (Y, ξ) is said to be a ξ-Kähler cone current if there exists a locally bounded ξ-radial function such that ω = dd c r 2 This is well-defined thanks to the local theory of Bedford-Taylor [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF]. If moreover the function r 2 satisfies the Calabi-Yau condition (1)

ω n+1 = (dd c r 2 ) n+1 = dV Y
in the pluripotential sense, then r 2 is said to be a (singular) conical Calabi-Yau potential.

Definition 1.4. We say that a Kähler cone current ω = dd c r 2 is a conical Calabi-Yau metric if the function r 2 is a singular conical Calabi-Yau potential which is smooth on the regular locus of Y .

The motivation for studying these metrics on Fano cones actually has its origin in the compact Fano case. Concretely, Fano cones arise as metric tangent cones of the Gromov-Hausdorff limit of a Fano manifolds sequence [START_REF] Donaldson | Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry[END_REF]. If each term of the sequence is moreover Kähler-Einstein, then the Fano cone admits conical Calabi-Yau metrics. As discussed in [Ber20, Section 4] (see also Remark 4.10), it is expected that a singular conical Calabi-Yau potential restricts to a smooth function on the regular locus of Y . Our goal in this article is to give an affirmative answer to this problem.

Theorem 1.5. Let (Y, ξ) be a polarized Fano cone and r 2 be a singular ξconical Calabi-Yau potential on Y . Then r 2 is smooth on the regular locus of Y . In particular, the curvature form of r 2 is a well-defined conical Calabi-Yau metric.

Such smoothness result is well-known for singular Kähler-Einstein metrics on compact Kähler varieties [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF], [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], [BBE + 19, Lemma 3.6]. In the non-compact setting, when the cone has a unique singularity at the vertex, the Sasakian link is smooth, so the conical metric is automatically smooth outside the vertex. For toric Fano cones with non-isolated singularities, a regularity property was obtained by Berman [START_REF] Berman | Conical Calabi-Yau metrics on toric affine varieties and convex cones[END_REF] by using the toric symmetry to reformulate the problem in terms of real Monge-Ampère equations. As discussed in [Ber20, Remark 4.10], the only places where the toric structure was used were the L ∞ -estimate and uniqueness of the Monge-Ampère equation. Although it is possible to generalize the same approach to a larger class of highly symmetric varieties, such as horospherical varieties, we provide a proof closer to the pluripotential spirit and independent of any symmetry other than the given effective torus action. It is an interesting problem to ask if we can weaken the regularity assumption of the solution.

1.2. Organization. The organization of the article is as follows.

• In Section 2, we give a quick review of the structure of degenerate Sasakian manifolds. We then gather results in pluripotential theory on these manifolds based the on the work of Guedj-Zeriahi [START_REF] Guedj | Intrinsic capacities on compact Kähler manifolds[END_REF] and He-Li [START_REF] He | Geometric pluripotential theory on sasaki manifolds[END_REF]. We also introduce extremal functions associated to a Reeb-invariant Borel set on a degenerate Sasakian manifold, which seems to be new in the literature. These objects were not studied in [START_REF] He | Geometric pluripotential theory on sasaki manifolds[END_REF] in all generality (but see [HL21, Prop. 3.17, Thm. 3.1] for results concerning weighted global extremal functions). The capacityextremal function comparison is crucial in the proof of the uniform estimate. • Section 3 is devoted to the proof of our main result. The general strategy is based on [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF], [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], [BBE + 19] and [START_REF] Berman | Conical Calabi-Yau metrics on toric affine varieties and convex cones[END_REF]. Let us give a brief explanation. After taking a resolution of singularities, the conical Calabi-Yau problem is translated by pullback to a Calabi-Yau problem on a degenerate Sasakian manifold.

Our key theorem is the uniform L ∞ -estimate of a family of solutions, which relies on a domination-by-capacity property (cf. Prop. 3.7). This, combined with a transverse Yau-Aubin inequality, allows us to obtain a Laplacian estimate of the family, which implies regularity of the solution. We refer the reader to [START_REF] Boyer | Sasakian geometry. Oxford Mathematical Monographs[END_REF] for a detailed treatment of almost contact structures and Sasakian manifolds.

Let S be a compact differentiable manifold of dimension 2n + 1. A contact structure on S is the data of a 1-form η on S such that η ∧ (dη) n ̸ = 0. The manifold S is then said to be a contact manifold. On a contact manifold, there exists a unique vector field ξ, called the Reeb vector field, such that η(ξ) = 1, L ξ η = 0. The distribution D := ker(η) is called the horizontal distribution of S.

Definition 2.1. An almost contact structure is given by (S, ξ, η, Φ), where η is a contact form, ξ the corresponding Reeb vector field, and Φ a (1, 1)-tensor of T S such that:

Φ 2 = -Id + ξ ⊗ η, dη(Φ., Φ.) = dη, dη(., Φ.) > 0
In particular, Φ| D is an almost complex structure.

A degenerate almost contact structure is the same as an almost contact structure, except that dη(., Φ.) is only semipositive, i.e. dη(., Φ, .) ≥ 0. Definition 2.2. A degenerate metric contact structure is a degenerate almost contact structure (S, ξ, η, Φ) endowed with a Riemannian metric g satisfying g(Φ., Φ.) = g(., .) -η ⊗ η Such a metric is said to be compatible.

A (degenerate) almost contact structure is said to be normal if the horizontal distribution D is integrable. A form α on S is said to be basic if

L ξ α = i ξ α = 0
Definition 2.3. A degenerate Sasakian manifold (S, ξ, η, ω B ) is a normal degenerate contact structure with a transverse Kähler metric defined by a basic positive-definite (1, 1)-form ω B .

Let g B be the Riemannian metric associated to ω B . A degenerate Sasakian manifold admits a Riemannian metric, defined by

g S := η ⊗ η + g B ,
which restricts to a transverse Kähler metric on D, but the latter is in general different from the semipositive form induced by the contact form. In particular, a degenerate Sasakian manifold has a degenerate metric contact structure.

Remark. In [START_REF] Boyer | Sasakian geometry. Oxford Mathematical Monographs[END_REF], a Sasakian manifold is defined as a normal metric contact structure. In our paper, one should distinguish between a metric contact structure and an degenerate metric contact structure. Both are almost contact structures with a compatible metric, but the metric of the former is exactly dη(Id⊗Φ), while the latter has a compatible metric g S ̸ = dη(Id⊗Φ).

Many properties of Sasakian manifolds still hold on their degenerate counterparts. For example, on a degenerate Sasakian manifold, we still have a cover by local foliation charts, coming from the foliation F ξ by the Reeb vector field ξ on S.

Definition 2.4. The foliation atlas on a degenerate Sasakian manifold is defined as a collection of charts (U α , Φ α ) covering S with diffeomorphisms:

Φ α : W α ×] -t, t[→ U α (z, x) -→ (φ α (z), τ α (z, x))
such that:

• The open interval ] -t, t[⊂ R has coordinate x. Here, t can be taken to be independent of α. • For all α, W α ≃ B δ (0) is the ball of radius δ > 0 centered in 0 ∈

C n with coordinates z = (z 1 , . . . , z n ). Moreover, the transition map

φ αβ := φ α • φ -1 β from W α ∩ W β to itself is holomorphic.
In pratice, we usually take δ = 1.

Each chart (U α , Φ α ) is called a foliation chart, and each W α is said to be a transverse chart (or transverse neighborhood).

In a foliation chart U α , we may identify ξ with ∂ x and a point p ∈ S can be written as p = (z 1 , . . . , z n , x).

Let Ω k B be the sheaf of basic k-forms on S. Since the exterior differential d on S preserves basic forms, it descends to the basic exterior differential d B := d| Ω k B . We then have a subcomplex Ω . B (F ξ ) of the de Rham complex, and the corresponding basic cohomology H * B . The integrable complex structure on D leads to the decompositions

d B = ∂ B + ∂ B , Ω k B = p+q=k Ω p,q B
as well as the basic Dolbeault complex and the corresponding cohomologies H p,q B . We then say that a basic function is transversely holomorphic if it vanishes under ∂ B . The Kähler structure on D induces the decomposition in basic cohomologies as in the classic Hodge theory:

H k B = p+q=k H p,q B
In short, usual Kähler properties still hold for a Kähler leaf space. We refer the reader to [START_REF] Kacimi-Alaoui | Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications[END_REF] for proofs.

2.2. Quasipsh functions and capacities. We present here some results concerning intrinsic capacities on degenerate Sasakian manifolds, following the lines of Guedj-Zeriahi [START_REF] Guedj | Intrinsic capacities on compact Kähler manifolds[END_REF], slightly generalizing the work of He-Li [START_REF] He | Geometric pluripotential theory on sasaki manifolds[END_REF]. Apart from a subtlety in the definition of capacity, there are generally no supplementary difficulties compared to the case of a classic Sasakian manifold studied by He and Li.

Let (S, ξ, η, ω B ) be a degenerate Sasakian manifold of dimension (2n + 1), where ω B a basic Kähler form on S, while θ := dη is smooth, semipositive and big; the latter meaning:

0 < vol θ (S) := S θ n ∧ η < +∞
Let g S := η ⊗ η + g B be the corresponding Riemannian metric on S. We denote by µ ω B := ω n B ∧ η the volume form on S associated to g S . Definition 2.5. By a ξ-invariant object (function, set, etc.), we mean that the object is invariant under the action of the compact torus T ξ generated by ξ.

By a function in L 1 (S), we mean a function being L 1 with respect to the measure µ ω B on S.

A (p, q)-transverse current is a collection {(W α , T α )} where W α is a trans- verse neighborhood and T α a current of bidegre (p, q) on W α such that φ * αβ T β | Wα∩W β = T α | Wα∩W β The current T is said to be closed (resp. positive) if each T α is closed (resp. positive) on W α . Recall that a basic function on S is a ξ-invariant function.
A basic psh function u on U α is a basic, upper-semicontinuous function on U α such that u| Wα is a classical psh function. In particular, u is locally integrable.

Definition 2.6. We say that a function u: S → R ∪ {-∞} is basic θ-psh if u is locally the sum of a basic smooth function and a basic psh function, such that

(θ + d B d c B u)| D ≥
0 in the sense of transverse currents. We will denote by P SH(S, ξ, θ) the set of basic θ-psh functions. If u ∈ P SH(S, ξ, θ), we put θ u := θ + dd c u.

In particular, a θ-psh function is ξ-invariant, upper-semicontinuous and L 1 (S). A Sasakian analogue of the Bedford-Taylor theory was developed by van Coevering [vC18] in the case where θ is Kähler and u is a θ-psh bounded function on S. Let us give some details of the construction.

Let u ∈ P SH(S, ξ, θ) ∩ L ∞ (S) and T a transverse closed positive current on S. Since θ is a closed and basic (1, 1)-form, θ u defines a transverse (1, 1)current. After perharps resizing the transverse neighborhood W α , there exists a local ξ-invariant potential v such that θ = dd c v. We then define on each

W α θ u ∧ T := dd c ((v + u).T )
This allows one to define inductively θ k u ∧ T on each W α . Passing to the foliation chart U α = W α ×]-t, t[, the Monge-Ampère operator of u is defined as θ n u ∧ dx where we identify the contact form η with dx in the local coordinate of ]-t, t[. One can check that this definition is independent of the foliation chart. We will denote the (sasakian) Monge-Ampère measure of u by MA θ (u) := θ n u ∧ η In particular, MA θ (u) is a ξ-invariant Radon measure, which has the following continuity property.

Proposition 2.7. [vC18, Theorem 2.3.1] The sasakian Monge-Ampère operator is continuous for monotone convergence. In other words, if

(u k ) k∈N ⊂ P SH(S, ξ, θ) N ∩ L ∞ (S) increases (or decreases) towards u, then MA θ (u k ) → MA θ (u) in the sense of measures.
If u is bounded, then by supposing u ≥ 0 and noting that u 2 is basic and psh, one can define the transverse closed positive current:

du ∧ d c u ∧ T := 1 2 dd c u 2 ∧ T -udd c ∧ T
As in the (transverse) Kähler case, we have for all

u ∈ P SH(S, ξ, θ) ∩ L ∞ (S) S θ n u ∧ η = vol θ (S)
i.e. a locally bounded θ-psh function is of full mass. We record the following regularization property for a later use:

Lemma 2.8. Given u ∈ P SH(S, ξ, ω B ), there exists a sequence (u k ) k∈N ⊂ P SH(S, ξ, ω B ) ∩ C ∞ (S) decreasing to u.

Proof. We use the regularization procedure as in [Ber19, Theorem 3.3]. First, for a smooth basic function f and β > 0, consider the basic Calabi-Yau-type problem on S:

(ω B + d B d B φ β ) n ∧ η = e β(φ β -f ) ω n B ∧ η A solution φ β verifying sup φ β =
0 exists and is unique (cf. [EKA90, 3.5.5]). We will denote by P β (f ), β > 0 the unique solution.

Now let

P ω B (f )(p) := sup {φ(p), φ ≤ f, φ ∈ P SH(S, ξ, ω B )} ,
This function belongs to P SH(S, ξ, ω B ) (cf. [HL21, Proposition 3.17]). Consider

P ′ ω B (f )(p) := sup {φ(p), φ ≤ f, φ ∈ P SH(S, ξ, ω B ) ∩ C ∞ (S)} Since u is u.s.c
. and basic, it is a decreasing limit of a sequence of smooth basic functions (f j ). We assert that the sequence (v j ) j∈N := (P ′ ω B (f j )) j∈N , which consists of basic functions, decreases to u. Indeed, since P ′ ω B is a decreasing operator, (v j ) is a decreasing sequence and f j ≥ v j ≥ u by construction. Since f j ↘ u, for all x and ε > 0, there exists j 0 such that for all j ≥ j 0 :

u(x) ≤ v j (x) ≤ f j (x) ≤ u(x) + ε hence v j (x) decreases to u(x).
Arguing as in [Ber19, Proposition 2.3], one can show that the sequence of basic ω B -psh functions v j,β := P β (f j ) converges uniformly to v j as β → ∞, hence for appropriate ε j → 0, the sequence u j := v j,β(j) + ε j which consists of smooth basic ω B -psh functions, decreases to u. □

We also have the comparison principle for θ-psh functions in the degenerate Sasakian context. Proposition 2.9. For all u, v ∈ P SH(S, ξ, θ)

∩ L ∞ (S), {v<u} MA θ (u) ≤ {v<u} MA θ (u)
Proof. We first prove the following maximum principle:

1 {v<u} MA θ (max(u, v)) = 1 {v<u} MA θ (u)
It is enough to prove the equality on a foliation chart U α . First remark that since u, v are both basic, on U α they depend only on the z-coordinates,

hence U α ∩ {v < u} =] -t, t[× {z ∈ W α , v < u}. Since MA θ (u) is ξ-invariant, it restricts to θ n u ∧ dx on U α . The equality is then equivalent to 1 ]-t,t[×{z∈Wα,v<u} θ n max(u,v) ∧ dx = 1 ]-t,t[×{z∈Wα,v<u}
θ n u ∧ dx on each foliation chart. By contracting with ξ = ∂ x , this is exactly the classical local maximum principle for θ-psh functions.

It follows from the maximum principle that

{v<u} MA θ (u) = S 1 {v<u} MA θ (max(u, v)) = vol θ (S) - {v≥u} MA θ (max(u, v)) ≤ S MA θ (v) - {v>u} MA θ (max(u, v)) = {v≤u} MA θ (v)
By arguing the same way with u -ε and v, we obtain

{v<u-ε} MA θ (u) ≤ {v≤u-ε} MA θ (v) ≤ {v<u} MA(v)
The proof is now concluded by remarking that {v < u -ε} increases to {v < u}. □

We record the following result for a later use.

Proposition 2.10. Let U = B 1 (0)×] -t, t[ be a foliation chart on S. For every φ ∈ P SH(S, ξ, θ) ∩ L ∞ (S), there exists a unique φ ∈ P SH(S, ξ, θ) ∩ L ∞ (S) such that

MA θ ( φ) = 0 on U, φ = φ on S\U, φ ≥ φ on S Moreover, if φ 1 ≤ φ 2 , then φ 1 ≤ φ 2 .
Proof. The proof is a direct consequence of the local Dirichlet problem on a degenerate Sasakian manifold. The problem can be solved in exactly the same way as in the classical case by remarking that for a basic function u in a foliation chart (z 1 , . . . , z n , x).

(d B d c B u) n ∧ η = det ∂ 2 u ∂z i ∂z j n k=1 i 2 dz k ∧ dz k ∧ dx = 0 ⇐⇒ det(u ij ) = 0
Hence the local Dirichlet problem on a degenerate Sasakian manifold becomes the classical Dirichlet problem (see [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF], [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF] for a proof). □ Proposition 2.11. Let (φ j ) j∈N ⊂ P SH(S, ξ, θ) N . 1. There exists a constant C = C(µ ω B , θ) such that for all u ∈ P SH(S, ξ, θ):

-C + sup S u ≤ S udµ ω B ≤ vol ω B (S) sup S u 2. If (φ j
) is uniformly bounded on S, then either (φ j ) converges locally uniformly to -∞, or (φ j ) is relatively compact in L 1 (S).

3. If φ j → φ in L 1 (S), then φ coincides almost-everywhere with a function φ * ∈ P SH(S, ξ, θ). Moreover,

sup S φ * = lim j→+∞ sup S φ j
4. The family

F 0 := {φ ∈ P SH(S, ξ, θ), sup φ = 0}
is a compact subset of P SH(S, ξ, θ).

Proof. For 1), we can adapt the strategy in [HL21, Prop. 3.3] to the nondegenerate Sasakian case. Let us sketch the arguments. We only need to prove the first inequality in the statement (the second one is trivial). Assuming without loss of generality that sup S u = 0, the inequality then reduces to

S udµ ω B ≥ -C
There exists two finite covering of S by foliation charts

V α ⊂ U α such that V α ≃ B 1 (0)×] -t, t[ is relatively compact in U α ≃ B 4 (0)×] -2t, 2t[. To prove the desired result, it is enough to show that Vα udµ ω B ≥ -C α where C α = C α (θ). But on V α , this is equivalent to B 1 (0)×]-t,t[ udµ z,x = 2t B 1 (0) u(z)dµ z ≥ -C α
where dµ z,x and dµ z are respectively the measures ω n B ∧ η and ω n B on V α and B 1 (0). Let φ α be a local potential of θ on B 4 (0) (φ α exists by the ∂ B ∂ B -lemma). The function φ α + u is independent of x and psh in B 4 (0). By upper-semicontinuity, u attains its local supremum u(p 1 ) = 0 at p 1 = (z 1 , 0) ∈ B 4 (0) . By the submean inequality on B 2 (z 1 ) ⊂ B 4 (0),

(φ α + u)(z 1 , 0) = φ α (z 1 , 0) ≤ 1 µ z (B 2 (z 1 )) B 2 (z 1 ) (φ α + u)(z, 0)dµ z Since u ≤ 0 and B 1 (0) ⊂ B 2 (z 1 ), this completes our proof. 2) is a consequence of 1) (cf. [HL21, Proposition 3.4]).
3) is a consequence of the local result for psh functions (see e.g. [GZ17, Theorem 1.46 (2)]). Indeed, by assumption, on each foliation chart

U α ≃ B 1 (0)×] -t, t[, we have φ j → φ in L 1 loc (U α ).
In particular, φ j → φ in L 1 loc (B 1 (0)) as psh functions. 4) is a direct consequence of 2) and 3). □

The following is a Chern-Levine-Nirenberg-type inequality.

Lemma 2.12. Let v, u ∈ P SH(S, ξ, θ) such that 0 ≤ u ≤ 1. Then

0 ≤ S |v| θ n u ∧ η ≤ S |v| θ n ∧ η + n(1 + 2 sup v)vol θ (S)
Proof. We first suppose that v ≤ 0. It is enough to establish the equality for v k := max {v, -k}. Indeed, the sequence -v k increases to -v, which allows us to conclude by monotone convergence theorem. Now let us prove the desired result for v k . It is clear that v k is θ-psh. We then have the following chain of inequalities:

S (-v k )θ n u ∧ η = S (-v k )θ n-1 u ∧ (θ + √ -1∂ B ∂ B u) ∧ η = S (-v k )θ n-1 u ∧ θ ∧ η + S (-v k )θ n-1 u ∧ √ -1∂ B ∂ B u ∧ η = S (-v k )θ n-1 u ∧ θ ∧ η + S uθ n-1 u ∧ (- √ -1∂ B ∂ B v k ) ∧ η ≤ S (-v k )θ n-1 u ∧ θ ∧ η + S θ n-1 u ∧ θ ∧ η
A simple induction allows us to conclude for the case v ≤ 0. The general case follows by considering v ′ := v -sup S v. □ Definition 2.13. The capacity of a Borel set E ⊂ S is defined as:

Cap θ (E) := sup E MA θ (u), u ∈ P SH(S, ξ, θ), 0 ≤ u ≤ 1
This definition makes sense since θ is supposed to be big (otherwise Cap would be identically zero). It is clear by definition that Cap θ (.) ≥ 0. Now let P SH -(S, ξ, θ) be the set of negative, basic θ-psh functions.

Proposition 2.14. 1) If θ 1 ≤ θ 2 are two basic semipositive (1, 1)-forms on S, then Cap θ 1 (.) ≤ Cap θ 2 (.). Moreover, for all δ ≥ 1,

Cap θ (.) ≤ Cap δθ (.) ≤ δ n Cap θ (.)
For every Borel set K ⊂ E, we have

0 ≤ Cap θ (K) ≤ Cap θ (E) ≤ Cap θ (X) = vol θ (X)
2) For all v ∈ P SH -(S, ξ, θ), there exists a constant C = C(S, θ) > 0 such that :

Cap θ (v < -t) ≤ C t for all t > 0. In particular, lim t→+∞ Cap θ (v < -t) = 0. Proof. 1) It is clear that if θ 1 ≤ θ 2 then MA θ 1 (.) ≤ MA θ 2 (.
) by a property of the complex Hessian in local coordinates. Moreover, if θ 1 ≤ θ 2 , then P SH(S, ξ, θ 1 ) ⊂ P SH(S, ξ, θ 2 ), so Cap θ 1 ≤ Cap θ 2 . For all δ ≥ 1 and u ∈ P SH(S, ξ, δθ), 0 ≤ u ≤ 1, we have u ∈ P SH(S, ξ, θ) and:

0 ≤ (u/δ) ≤ (1/δ) ≤ 1, (δθ + d B d c B u) n = δ n θ + d B d c B u δ n Therefore Cap δθ (.) ≤ δ n Cap θ (.) by definition.
For all K ⊂ E and all candidate function u in the definition of Cap,

K MA θ (u) ≤ E MA θ (u), hence Cap θ (K) ≤ Cap θ (E) ≤ Cap θ (X).
Finally, Cap θ (X) = vol θ (X) since a locally bounded function has full mass.

2) By the Chern-Levine-Nirenberg inequality in Lem. 2.12, for a θ-psh function u such that 0 ≤ u ≤ 1 and v ∈ P SH(S, ξ, θ), v ≤ 0, we have:

(2)

S (-v)θ n u ∧ η ≤ S (-v)θ n ∧ η + nvol θ (S)
This inequality allows us to complete the proof. Indeed, for all u ∈ P SH(S, ξ, θ) such that 0 ≤ u ≤ 1:

{v<-t} θ n u ∧ η ≤ 1 t S (-v)θ n u ∧ η ≤ 1 t S (-v)θ n ∧ η + nvol θ (S) ≤ 1 t (C(S, θ) + nvol θ (S)) (by Prop. 2.11)
We conclude then by the definition of capacity. □

The following uniqueness result still holds in the context of degenerate Sasakian manifolds.

Proposition 2.15. Let u, v ∈ P SH(S, ξ, θ) ∩ L ∞ (S).

If MA θ (u) = MA θ (v) then u = v + cst.
Proof. We borrow the proof from [GZ07, Theorem 3.3] (see also [START_REF] He | Geometric pluripotential theory on sasaki manifolds[END_REF] Theorem 6.4]), which still applies when θ is only semipositive. Let f = (u -v)/2 and h = (u+v)/2. We can assume that u, v ≥ -C θ so that S (-h)θ n h ∧η ≥ 1. The key idea is to obtain the following inequalities:

S d B f ∧ d c B f ∧ θ n-1 h ∧ η ≤ S f 2 (θ n u -θ n v ) ∧ η (3) S d B f ∧ d c B f ∧ θ n-1 ∧ η S (-h)θ n h ∧ η ≤ 3 n S d B f ∧ d c B f ∧ θ n-1 h ∧ η 1/2 n-1 (4) 
As a consequence, if θ n u ∧ η = θ n v ∧ η, then combining (3) and (4) yields ∇f = 0, hence u = v + cst as desired. We give a quick proof of (3).

Note that the current under integration on the lhs of (3) is well-defined since u and v are supposed to be bounded. A direct calculation yields

S d B f ∧ d c B f ∧ θ n-1 h ∧ η ≤ n-1 k=1 S d B f ∧ d c B f ∧ θ k u ∧ θ n-1-k v ∧ η = S f (d B d c B f ) ∧ θ k u ∧ θ n-1-k v ∧ η = S f 2 (θ n u -θ n v ) ∧ η
The first inequality follows from C k n-1 ≤ 2 n-1 , the second one from Stokes' theorem, and the third from the fact that 2d B d c B f = θ u -θ v . The proof of (4) still goes through unchanged. It consists of proving inductively that for T = θ l h ∧ θ n-2-l ∧ η, l = n -2, . . . , 0, we have

S df ∧ d c f ∧ θ ∧ T S (-h)θ 2 h ∧ T 1/2 ≤ 3 S df ∧ d c f ∧ θ h ∧ T 1/2
using an integration by parts and Cauchy-Schwartz inequality. □ 2.3. Extremal functions. Motivated by extremal functions in pluripotential theory, we introduce the following counterpart in the Sasakian setting.

Definition 2.16. Let K ⊂ S be a ξ-invariant Borel subset. The extremal function associated to θ and K is defined as:

V K,θ (p) := sup {φ(p), φ ∈ P SH(S, ξ, θ), φ ≤ 0 on K} Let V * K,θ be the u.s.c. regularization of V K,θ . We say that a ξ-invariant Borel set K ⊂ S is P SH(S, ξ, θ)-pluripolar if K belongs to the -∞ locus of a basic θ-psh function. Clearly {u = -∞} is ξ-invariant if u is basic θpsh. Here we impose the symmetry by ξ on K so that there is no inherent contradiction in the definition of pluripolarity. The pluripolarity of K is determined by its extremal function, as the following lemma shows.

Lemma 2.17. Let K ⊂ S be a ξ-invariant Borel set.

1)

K is P SH(S, ξ, θ)-pluripolar ⇐⇒ V * K,θ = +∞ ⇐⇒ sup V * K,θ = +∞.
2) If K is not P SH(S, ξ, θ)-pluripolar, then V * K,θ ∈ P SH(S, ξ, θ) and V * K,θ = 0 on Int(K). Moreover,

K MA θ (V * K,θ ) = K (V * K,θ ) n ∧ η = vol θ (S), S\K MA θ (V * K,θ ) = 0
Proof. 1) Suppose that sup S V * K,θ = +∞. By Choquet's lemma, there exists an increasing sequence of functions φ j ∈ P SH(S, ξ, θ) such that φ j = 0 on K and V * K,θ = (lim ↗ φ j ) * . Up to extracting a subsequence, we can assume that sup S φ j ≥ 2 j . Define ψ j := φ j -sup S φ j . The sequence {ψ j } j∈N ⊂ P SH(S, ξ, θ) is compact and satisfies S ψ j dµ ω B ≥ -C(µ ω B ) (cf. Lem. 2.11). Let

ψ := j≥1 2 -j ψ j
The function ψ is basic θ-psh as a limit of basic θ-psh functions, and satisfies

ψdµ ω B ≥ -C(µ ω B ). It is clear that ψ j (x) = -sup S φ j , ∀x ∈ K, hence K ⊂ {ψ = -∞}. Now suppose that K ⊂ {ψ = -∞} where ψ ∈ P SH(S, ξ, θ). For all c ∈ R, ψ + c ∈ P SH(S, ξ, θ) and ψ + c ≤ 0 on K. It follows that V * K,θ ≥ ψ + c, hence V * K,θ = +∞ on S\ {ψ = -∞}. Finally, V * K,θ = +∞ on S since {ψ = -∞} has zero mass with respect to µ ω B = ω n B ∧ η. 2) Clearly V *
K,θ = 0 in Int(K) by definition. The function V K,θ is basic as the sup-envelope of basic functions, hence its u.s.c. regularization V * K,θ is also basic. The fact that V * K,θ is θ-psh follows from (3) of Prop. 2.11. Since a locally bounded θ-psh function has full mass, we have

K MA θ (V * K,θ ) = S MA θ (V * K,θ ) = S (θ + d B d c B V * K,θ ) n ∧ η = vol θ (S)
It only remains to show that MA θ (V * K,θ ) = 0 on S\K, which is equivalent to showing

Uα MA θ (V * K,θ ) = 0
on each foliation chart U α = B 1 (0)×] -t, t[⊂ S\K. By Choquet's lemma, there exists an increasing sequence of functions φ j ∈ P SH(S, ξ, θ) such that φ j = 0 on K and V * K,θ = (lim ↗ φ j ) * . Let φ j the unique solution of local Dirichlet problem with initial datum φ j (which exists by Prop. 2.10). In particular, MA θ ( φ j ) = 0 on U α Moreover, the sequecne ( φ j ) is increasing and φ j = φ j on S\U α , hence φ j = 0 on K. This shows that φ j ≤ V * K,θ , therefore φ j ↗ V * K,θ . By continuity of the Monge-Ampère operator along a monotone sequence (cf. Thm 2.7), MA θ (V * K,θ ) = 0 on U α . □

Let us now state an important comparison theorem between capacity and extremal functions.

Lemma 2.18. Let M K,θ := sup S V * K,θ . For all compact non-pluripolar and ξ-invariant K ⊂ S we have:

1 ≤ vol θ (S) 1/n Cap θ (K) -1/n ≤ max(1, M K,θ )
Proof. The inequality on the left is clear by Prop. 2.14. First suppose that M K,θ ≤ 1, then V * K,θ is bounded. Since K is non-pluripolar, V * K,θ ∈ P SH(S, ξ, θ). Moreover, MA θ (V * K,θ ) is supported in K (cf. Lem. 2.17), hence

Cap θ (K) ≥ K MA θ (V * K,θ ) = S MA θ (V * K,θ ) = vol θ (S),
which completes the proof in the M K,θ ≤ 1 case. Assume now that M := M K,θ ≥ 1. Since the function V * K,θ /M is a candidate in the definition of Cap θ , it follows that

Cap θ (K) ≥ K MA θ (M -1 V * K,θ ) = S MA θ (M -1 V * K,θ ) (by Lem. 2.17) ≥ M -n S MA θ (V * K,θ ) = M -n vol θ (S)
This allows us to conclude. □ 2.4. Lelong number and integrability. We define the Lelong number of a basic psh function u on a foliation chart U α at a point p with coordinates (z, x) by ν(u, p) := lim

r→0 + 1 log(r)vol(B(z, r)) B(z,r) u(z)ω n B
This number does not depend on the foliation chart since the transition maps restrict to biholomorphisms on transverse neighborhoods and that the right-hand side is invariant under biholomorphisms by a theorem of Siu.

It is clear by our definition that the Lelong number is ξ-invariant. Moreover, in a foliation chart B 1 (0)×] -t, t[, the function x ∈] -t, t[→ ν(u, (z, x)) is constant for all z ∈ B 1 (0). The Lelong number at a point p on a Sasakian manifold therefore equals to its value at the projection of p to the transverse holomorphic ball of a foliation chart. Local properties of Lelong number can be translated word by word to the Sasakian setting. Proof. Since S is compact, there exists a basic Kähler form θ ′ such that θ ′ ≥ θ, hence P SH(S, ξ, θ ′ ) ⊃ P SH(S, ξ, θ), so ν({θ ′ }) ≥ ν({θ}). It is then enough to prove the assertion when θ is transverse Kähler.

For p ∈ S, we define χ to be a smooth function equals to 1 in a neighborhood of p and 0 outside a larger neighborhood. Let g p (.) := χ(.) log d(., p) where d is the Riemannian distance associated to θ. It is clear that g p is smooth on S\ {p} and psh on a neighborhood of p, hence Aθ-psh for A > 0.

Since S is compact, we can choose a uniform constant A = A(θ) such that for all p ∈ S:

dd c g p ≥ -Aθ
By taking average with respect to the action of the compact torus generated by ξ, we can suppose that g p is ξ-invariant, hence g p ∈ P SH(S, ξ, Aθ).

A basic psh function φ in a foliation chart B 1 (0)×] -t, t[ restricts to a psh function on the ball B 1 (0), so we have

ν(φ, 0) = {0z} d B d c B φ ∧ (d B d c B log |z|) n-1
with 0 z being the center of B 1 (0) (see e.g. [GZ17, Lemma 2.46] for a proof). It follows from this local result that for any a = (z, x)

(5) ν(φ, a) = {z} θ φ ∧ (Aθ + d B d c B g a ) n-1
The right-hand side is bounded by S A n θ n ∧ η = A n vol θ (S). This completes our proof. □ Theorem 2.20.

Let F 0 := {φ ∈ P SH(S, ξ, θ), sup S φ = 0}. If A < 2ν({θ}) -1 , then sup φ∈F 0 S e -Aφ ω n B ∧ η ≤ C
for a constant C depending only on ω B and θ.

Proof. We will reduce the problem to the classic Skoda's integrability theorem. First remark that there exist two covers of S by a finite number of foliations charts (V j ) 1≤j≤N and (U j ) 1≤j≤N , where

U j = B 1 (0)×] -t, t[, such that V j ⊂ U j .
We need to show that on each foliation chart U j , there exists a constant

C j = C(V j , F 0 , A) satisfying U j e -Aφ ω n B ∧ η ≤ C j
But since on U j , φ depends only on the z coordinates and η coincides with dx, it is enough to show that

U j e -Aφ ω n B ∧ η = 2t B 1 (0) e -Aφ ω n B ≤ C j
This follows from the local Skoda's integrability theorem since the family F 0 is compact (cf. [GZ17, Theorem 2.50] for a proof). □

Regularity of the potential

This part is dedicated the proof of our main theorem. Let us first give some preliminaries and outline the arguments of the proof. Consider a Fano cone Y of complex dimension n + 1 with a good action by T ≃ (C * ) k . Let T c ≃ (S 1 ) k be the maximal compact subtorus of T .

Consider a T c -equivariant embedding of Y into C N such that T c corresponds to a diagonal group acting linearly on C N . Recall that ξ generates the action of a compact torus T ξ ⊂ T c . Now fix a locally bounded conical Calabi-Yau potential r 2 and a Reeb vector ξ on Y , whose action by T ξ extends to C N through the embedding. Let r 2 ξ be the radial function on C N associated to ξ with conical metric ω ξ = dd c r 2 ξ . Then r 2 ξ restricts to a ξ-conical potential on Y . The link of Y is homeomorphic to the set Y ∩ r 2 ξ = 1 . Now let π : X → Y be a T -equivariant resolution of Y (which exists by Lem. 3.1). Let

U := π -1 (Y reg )
be the open Zariski subset of X isomorphic to Y reg . Consider the following submanifold of X:

(S = π -1 (Y ∩ r 2 ξ = 1 ), ξ, η, ω B )
where by an abuse of notation ξ still denotes the pullback of the given Reeb field on C N , ω B is a transverse Kähler form on S (cf. Lem. 3.3), and η = 2π * d c log r 2 ξ the contact form on S, which is pullback of the contact form associated to ξ on C N . Since dθ is only semipositive, S is degenerate Sasakian. One can show (see Prop. 3.5) that the conical Calabi-Yau equation

(dd c r) n+1 = dV Y
is in fact equivalent to the following transverse equation on U ∩ S:

(θ X + d B d c B φ X ) n ∧ η = e -(n+1)φ X e (n+1)(Ψ + -Ψ -) ω n B ∧ η Here • θ X := dη, • φ X := π * φ, φ := log(r 2 /r 2 ξ ), • Ψ ± are basic Aω B -quasi-psh on S for A > 0 large enough,
Remark that θ X is a semipostive and big form on S. By construction, φ X is invariant under the induced actions of ξ and -Jξ on X. In a foliation chart (z 1 , . . . , z n , x) of S, the equation can be written as:

det θ X,ij + ∂ 2 φ X ∂z i ∂z j = e -(n+1)φ X (z) e (n+1)(Ψ + (z)-Ψ -(z)) det(ω B,ij )
The smoothness r 2 = r 2 ξ e φ on Y reg is then equivalent to the regularity of φ X := π * φ on S ∩ U. Consider the family of equations:

(θ X + εω B + d B d c B φ j,ε ) n = e (n+1)(ψ +,j -ψ -,j ) ω n B
where ψ ±,j are two sequences of basic Aω B -qpsh functions decreasing to ψ + := Ψ + and ψ -:= Ψ -+ φ X for A > 0 large enough. The existence of a unique φ j,ε verifying sup φ j,ε = 0 is guaranteed by the transverse Calabi-Yau theorem of [START_REF] Kacimi-Alaoui | Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications[END_REF]. Finally, to obtain the regularity of φ X , we proceed by the following classic steps:

1) Uniform estimate: The functions φ j,ε are uniformly bounded, i.e. there exists a constant C independent of j and ε, such that:

∥φ j,ε ∥ L ∞ (S) ≤ C
2) Laplacian uniform estimate: Using the uniform estimate of the previous step, one can show that there exists C ′ such that for all j, ε,

sup S∩U |∆ ω B φ j,ε | ≤ C ′
where

Tr ω B f := n d B d c B f ∧ ω n-1 B ω n B
3) By the complex Evans-Krylov theory, we obtain the following uniform estimate:

∥φ j,ε ∥ C 2,β (S) ≤ C ′′ ,
which implies C k+2,β -estimates for all k > 0 by Schauder estimate and a bootstrapping argument.

The last step is classic and well-known in the literature (cf. [START_REF] Blocki | The Calabi-Yau Theorem[END_REF]). Our focus will be mostly on the first and second steps (see Prop. 3.10 and Prop. 3.12).

3.1. Transverse Kähler form. Let V be an irreducible projective variety. Following [Kol07, Paragraph 3], by a strong resolution we mean a proper morphism π :

V ′ → V such that • V ′ is smooth and π is birational. • π : π -1 (V reg ) → V reg is a biholomorphism. • π -1 (V sing ) is a divisor with simple normal crossings (s.n.c).
In the sense of [Kol07, Paragraph 4], we say that a resolution is functorial if for any varieties V, W with resolutions π V :

V ′ → V , π W : W ′ → W , every smooth morphism φ : V → W can be lifted to a smooth morphism φ ′ : V ′ → W ′ such that π W • φ ′ = φ • π V .
Lemma 3.1. There exists a smooth T -equivariant resolution of singularities π : X → Y .

Proof. Let us embed Y in a T -equivariant into C N such that T is identified with a diagonal group. Let Y ⊂ P N be the closure of Y in P N . There exists a T -equivariant resolution π : X → Y . Indeed, it is enough to take a π as a strong and functorial resolution in the sense of Kollar as recalled above (see [START_REF] Kollar | Resolution of singularities[END_REF]Theorem 36] for a proof of existence).

The functoriality of the resolution implies that the action of all algebraic group on Y lifts on X such that π is equivariant (see [START_REF] Kollar | Resolution of singularities[END_REF]Paragraph 9]). We conclude that π :

X := X ∩ C N → Y is a T -equivariant resolution of Y . □
Now let (X, π) be the resolution of Y , constructed in the previous lemma. Let E 0 := π -1 (0 Y ) be the "vertex exceptional divisor". Since π is equivariant, the vector fields ξ and -Jξ induce by pullback the respective actions on X (still denoted by ξ and -Jξ). The action generated by -Jξ is an action of R * + .

The pullback by π of the holomorphic vector field v ξ := (-Jξ -√ -1ξ)/2 defines a holomorphic foliation F v ξ on X\E 0 . At every point p ∈ X\E 0 , there exists a transverse holomorphic coordinates (z 1 , . . . , z n , w) such that

v ξ .z j = 0, ∂ ∂ℑw = ξ, ∂ ∂ℜw = (-Jξ)
which restrict to the coordinate (z, x) on S. In other words, w = π * log r ξ + √ -1x. A form α on X\E 0 is said to be basic if

L V α = i V α = 0, ∀V ∈ R {ξ, -Jξ}
The restriction map allows us to identify basic forms on X\E 0 and basic forms on S.

Lemma 3.2. There exists a T c -invariant Kähler form ω on X and a global smooth function Φ ω defined on U such that

dd c Φ ω = ω, Φ ω → -∞ near ∂U Proof.
Let π : X → Y ⊂ P N be the resolution as in the previous lemma. Let O(1) be the T -linearized hyperplane line bundle of P N and E the exceptional divisor of (X, π). Since π is relatively ample, there exists an ample line bundle A on X such that: 

π * O(1) = A + E Now let ∥.∥ E a T c -invariant metric on E = {s E = 0} and φ E := -log ∥s E ∥ 2 E its potential. Let h A be a T c -invariant
ω := dd c Φ ω | X = -dd c log h(s)
is clearly and positive definite. Indeed, since s ̸ = 0 in X, we have

-dd c log h(s) = -dd c log h A | X > 0 Finally, since s E → 0 near ∂U, we have Φ ω = -log h A + φ E → -∞ near ∂U. □ Lemma 3.3. [Ber20, Prop. 4.3] There exists a global smooth function Φ B on U satisfying L ξ Φ B = 0, L -Jξ Φ B = 2, Φ B → -∞ near ∂U
and a transverse basic Kähler form ω B on X\E 0 such that dd c Φ B = ω B on U.

Remark. The information on the behavior of Φ B near the border of U is crucial in the Laplacian estimate of the potential φ X .

Proof. The proof in [START_REF] Berman | Conical Calabi-Yau metrics on toric affine varieties and convex cones[END_REF] is an adaptation of the construction of reduced Kähler metrics on a symplectic quotient (see e.g. [BG04, Formulae 4.5, 4.6]).

We provide here the details for the reader's convenience. Remark however that in our case, the symplectic quotient is not well defined since the action generated by ξ on the level set of the hamiltonian is not free in general. However, the construction still applies since it is local in nature.

Let ω be the T c -invariant Kähler form on X, constructed in Lem. 3.2. Remark that the action generated by ξ is hamiltonian with respect to ω (since by the embedding of Y into C N , ξ is identified with a hamiltonian action on C N ). It follows that there exists a smooth function H : X → R such that: dH(.) = -ω(ξ, .) = g ω (-Jξ, .)

where g ω is the metric associated to ω. In particular, dH(-Jξ) > 0, so d x H is surjective for x / ∈ E 0 . It follows that H is a submersion for x / ∈ E 0 ; hence for λ positive, sufficiently large,

S λ = {H = λ} is a compact submanifold of X\E 0 , diffeomorphic to (X\E 0 )/R * + . Now let π λ : X\E 0 → S λ , i λ : S λ → X\E 0
be the natural projection and inclusion. Let Φ ω be the global potential on U constructed in Lemma 3.2. Let V p be the neighborhood of a point p ∈ X\E 0 with local transverse coordinates (z, w). Consider the following ξ-invariant function on S λ ∩ U:

Φ λ := i * λ (Φ ω -λℑw) The function (6) Ψ B = π * λ Φ λ + λℑw = π * λ Φ ω | S λ + λ(ℑw -i * λ ℑw)
is then ξ-invariant on V p and well-defined V p . Indeed, let V p ′ be another local transverse neighborhood of a point p ′ ∈ S λ ∩ V p . By the definition of w, v ξ (w -w ′ ) = 0, so there exists a basic transversely holomorphic function f (z) on V p ∩ V p ′ such that w -w ′ = f (z). It follows that: 

ℑ(w -w ′ )| Vp∩V p ′ = ℑ(w -w ′ )| S λ ∩Vp∩V p ′ = i * λ ℑ(w -w ′ )| Vp∩V
Φ B := 2(Ψ B /λ) satisfies L ξ Φ B = 0, L -Jξ Φ B =
Φ B → -∞ on ∂U. Indeed, on U ∩ V p , Φ B - 2λ -1 Φ ω = ℑw -i * λ (ℑw) for all p ∈ S λ . It follows that Φ B -2λ -1 Φ ω is bounded on S λ ∩ U, so Φ B = (Φ B -2λ -1 Φ ω ) + 2λ -1 Φ ω → -∞ near ∂U since Φ ω → -∞ near ∂U. □
Since X is a T c -invariant resolution of Y and that Y has klt singularities, there exists a T c -invariant divisor D such that:

π * K Y = K X + D, D = a j >-1 a j D j ,
We have moreover a decomposition D = D + -D -where:

D + := a j >0 D j , D -:= a j <0
(-a j )D j are two effective T c -invariant Q-divisors. There exists then a T c -invariant volume form dV X on X, two multivalued sections s ± and hermitian T cinvariant metrics h ± on D ± , such that:

(7) π * dV Y = ∥s + ∥ 2 h + ∥s -∥ -2
h -dV X To be precise, we may choose:

∥s + ∥ 2 h + := a j >0 |s j | 2a j h j , ∥s -∥ 2 h -:= a j <0 |s j | -2a j h j
where h j are T c -invariant hermitian metrics of the fiber O X (D j ). Up to a positive constant, we have the following volume form on S:

dV X (-Jξ, .) = ω n B ∧ η Lemma 3.4. There two basic psh T c -invariant functions Ψ ± on S, smooth on U and a constant A > 0 such that on S,

π * dV Y (-Jξ, .) = e (n+1)(Ψ + -Ψ -) ω n B ∧ η, i 2π ∂ B ∂ B Ψ ± ≥ -Aω B
Moreover, e -Ψ -∈ L p (S), p > 1.

Proof. Assume that there exists a positive constant C > 0 satisfying:

(8) i 2π ∂ B ∂ B log ∥s ± ∥ 2 h ± | S ≥ -Cω B
Then by choosing Ψ ± such that:

(n + 1)Ψ ± = log ∥s ± ∥ 2 h ± | S ∈ C ∞ B (S)
we obtain the equality between volume forms from (7) and the estimate of

∂ B ∂ B Ψ ± follows immediately.
It remains to prove (8). By definition of s ± and ∥.∥ h ± , in a transverse holomorphic chart of X\E 0 with coordinates (z, w), there exist T c -invariant local potentials φ ± and holomorphic T c -semi-invariant local functions f ± such that:

∥s ± ∥ h ± = |f ± (z, w)| e -φ ± (z,w) In particular, there exist λ ± ∈ R satisfying: ∂ ∂ℑw f ± = iλ ± f
After replacing f ± by f ± e -λ ± w , one can suppose that f ± are ξ-invariant (hence basic), so ∂ B f ± = 0. It follows that f ± are transversely holomorphic, hence d B d c B log |f ± (z, w)| 2 ≥ 0, so locally:

d B d c B log ∥s ± ∥ 2 h ± | S ≥ -Cd B d c
B φ ± for some constant C depending only on the local open set. Moreover, since ω B is Kähler, one can find in a transverse neighborhood a constant A > 0 (which depends only on the neighborhood) such that

d B d c B φ ± ≤ Aω B
The compacity of S then completes the proof of (8). Finally, since Y has klt singularities, D j are normal crossing divisors, hence there exists p > 1 such that pa j > -1 for all j, so e -Ψ -∈ L p (S) for some p > 1. □ 3.2. Transverse Monge-Ampère equation.

Proposition 3.5. The conical potential r is a solution in the pluripotential sense of the equation:

(9) (dd c r 2 ) n+1 = dV Y
on Y reg if and only if φ X satisfies the following equation on S ∩ U:

(10) (θ X + d B d c B φ X ) n ∧ η = e -(n+1)φ X e (n+1)(Ψ + -Ψ -) ω n B ∧ η
In particular, in a transverse holomorphic neighborhood S U,

(θ X + d B d c B φ X ) n = e -(n+1)φ X e -(n+1)(Ψ + -Ψ -) ω n B
Proof. By definition Φ = log r 2 , hence:

dd c r 2 = e Φ (dd c Φ + dΦ ∧ d c Φ) = r 2 (dd c Φ + dΦ ∧ d c Φ)
in the current sense. We have

(dd c Φ+dΦ∧d c Φ) n+1 = c k,n (dd c Φ) k ∧(dΦ∧d c Φ) n-k = (dd c Φ) n ∧dΦ∧d c Φ Indeed, in the transverse coordinates (z, w) on X\E 0 , ∂Φ ∂w = ∂Φ ∂w = 1 hence (dd c Φ) n+1 = 0. It follows that (dd c r 2 ) n+1 = dV Y ⇐⇒ r 2n+2 (dd c Φ) n ∧ dΦ ∧ d c Φ = dV Y Since L ξ Φ = 0, the restriction of Φ in S is basic. It follows that (dd c Φ) n ∧ dΦ ∧ d c Φ = det ∂ 2 Φ ∂z l ∂z m (i/2)dz k ∧ dz k ∧ dΦ ∧ d c Φ = (dd c Φ) n ∧ (dw + dw) ∧ (d c w + d c w) = (dd c Φ) n ∧ 2dℜw ∧ 2d c ℜw
The conical Calabi-Yau equation then becomes

r 2n+2 (dd c Φ) n ∧ 2dℜw ∧ 2d c ℜw = dV Y
By contracting the equality with -Jξ, and using 2dℜw(-Jξ) = 1, we have:

r 2n+2 (dd c Φ) n ∧ 2d c ℜw = dV Y (-Jξ) = ω n B ∧ η By using dd c Φ = θ +dd c φ = θ +d B d c B φ, 2d c ℜw = η,
the previous lemma and the fact that S = X ∩ π -1 ( r 2 ξ = 1 ), we obtain by pullback the following equation on S ∩ U:

(θ X + d B d c B φ X ) n ∧ η = e -(n+1)φ X e -(n+1)(Ψ + -Ψ -) ω n B ∧ η
Finally by applying i ξ and using that η(ξ) = 1, the equation on S ∩ U becomes

(θ X + d B d c B φ X ) n = e -(n+1)φ X e -(n+1)(Ψ + -Ψ -) ω n B
The converse is proved in the same manner. □ 3.3. Uniform estimate. ψ ±,j be two sequences of smooth basic quasipsh functions which decrease to

ψ + := Ψ + , ψ -:= Ψ -+ φ X ,
such that :

(11) d B d c B ψ ±,j ≥ -Cω B for a uniform constant C independent of j. Such a sequence exists by virtue of Lem. 2.8.

Let ε > 0. Recall that the form θ X = π * dd c log r 2 ξ is semi-positive, big and basic, hence θ X + εω B is a transverse Kähler form. Consider the following equation on S for a smooth basic (θ X + εω B )-psh function φ j,ε :

(12) (θ X + εω B + d B d c B φ j,ε ) n ∧ η = e (n+1)(ψ +,j -ψ -,j
) ω n B ∧ η By the transverse Calabi-Yau theorem of El-Kacimi Alaoui [EKA90, 3.5.5], for all j, ε, there exists a unique basic solution satisfying: sup φ j,ε = 0 Now let µ j be the smooth volume form e (n+1)(ψ +,j -ψ -,j ) ω n B ∧ η on S. The following lemma is elementary: Lemma 3.6. Let µ be an inner-regular positive Borel measure on S. Then for all ξ-invariant Borel set E ⊂ S, µ(E) = sup {µ(K), K ⊂ E compact, ξ -invariant} In particular, µ j satisfies this property.

Proof. It is enough to show that for all j ∈ N * , there exists a compact ξ-invariant K j such that:

µ(E) ≤ µ(K j ) + 1 j
By inner regularity of E, there exists a compact C j ⊂ E such that:

µ(E) ≤ µ(C j ) + 1/j
The idea is to average C j by the action of T ξ . We define

K j := ∪ g∈T ξ g.C j = T ξ .C j
For each j, the set K j is compact and ξ-invariant by construction. Moreover, K j ⊂ E since g.C j ⊂ g.E ⊂ E. Finally, the fact that C j ⊂ K j implies µ(C j ) ≤ µ(K j ). This completes our proof. □

We also have the important domination by capacity property of the measures µ j .

Proposition 3.7. The measures µ j satisfy the A, θ) condition for all α. Namely, for all α > 0, there exists a constant A independent of j such that:

µ j (E) ≤ ACap θ (E) 1+α for all ξ-invariant Borel subset E ⊂ S.
Proof. By inner regularity of µ j , it is enough to establish the lemma for a compact ξ-invariant K ⊂ S. Indeed, suppose that the inequality is true for all such K, then for all Borel ξ-invariant set E,

µ j (E) = sup {µ j (K), K ⊂ E compact, ξ -invariant} ≤ A sup Cap θ (K) 1+α , K ⊂ E compact, ξ -invariant ≤ ACap θ (E) 1+α (by Prop. 2.14(1))
We can suppose furthermore that K is non-pluripolar (otherwise µ j (K) = 0 and the inequality is then trivial). Now let K be a compact ξ-invariant and non-pluripolar. Let p > 1 be as in Lemma 3.4. By Hölder inequality, we have:

0 ≤ µ j (K) ≤ ∥f j ∥ L p (ω n B ∧η) vol ω B (K) 1/
q where 1/p + 1/q = 1. Since ψ +,j ≤ ψ +,1 and that ψ j ≥ ψ -, the function e (n+1)(ψ +,j -ψ -,j ) is bounded in L p by e (n+1)(C-ψ -) , where C := sup S ψ +,1 . It follows that the norm ∥f j ∥ L p (ω n B ∧η) is uniformly bounded, therefore it is enough to show that

vol ω B (K) ≤ C exp -γ(Cap θ (K)) -1/n )
where C = C(θ, ω B ), γ = γ(θ) are constants independent of j. The conclusion then follows from the elementary equality exp(-x β ) ≤ A α x α , for all x ∈ [0, 1], α > 0.

By Theorem 2.20, for γ := 2/(ν({θ}) + 1), there exists a constant C = C(θ, ω B ) such that:

sup ψ∈F 0 S exp(-γψ)ω n B ∧ η ≤ C In particular, for ψ := V * K,θ -M K,θ (recall that M K,θ = sup V * K,θ ), we obtain S exp(-γV * K,θ )ω n B ∧ η ≤ C exp(-γM K,θ )
Note that V * K,θ is well defined thanks to the ξ-invariance of K. Finally, since V * K,θ ≤ 0 µ ω B -a.e. on K, we have vol ω B (K) ≤ C exp(-γM K,θ )

An application of Lemma 2.18 then completes our proof. □

Let us first establish some more useful lemmas before proving the uniform estimate.

Lemma 3.8. Let ∈ P SH(S, ξ, θ) ∩ L ∞ (S) be a negative function. For all s ≥ 0, 0 ≤ t ≤ 1, Proof. Let f (s) := Cap θ (φ j,ε < -s) 1/n . It is clear that f : R + → R + is right-continuous, and lim s→+∞ f (s) = 0 (cf. Prop. 2.14). Moreover, f is decreasing: for all t > s, {φ < -t} ⊂ {φ < -s} , ∀t > s, hence f (t) ≤ f (s). Following Lem. 3.8 and the fact that µ j satisfy H(α, A, θ), f satisfies the condition H(α, B) with B = A 1/n . Indeed,

t n f (s + t) n ≤ t n Cap θ+εω B (φ j,ε < -s -t) ≤ {φ j,ε <-s} (θ + εω B + d B d c B φ j,ε ) n ∧ η = {φ j,ε <-s} µ j ≤ ACap θ (φ j,ε < -s) 1+α = Af (s) n(1+α)
The first inequality follows from Lem. 2.14, the second is direct from Lem.

3.8, while the fourth is a consequence of Lem. 3.7. Now let ω ε := θ X + εω B . For ε sufficiently small and δ large enough, there exists δ = δ(S) ≥ 1 such that ω ε ≤ δω B . In particular, φ j,ε ∈ P SH -(S, ξ, δω B ). Again by Lem. 2.14, For the reader's convenience, we provide here some details of the proof. By the transverse Yau-Aubin inequality, we have on S ∩ U:

∆ ω ′ ε h ≥ Tr ω ′ ε (ω ε ) -A 2
where A 2 depends only on A 1 and n. Since φ j,ε is uniformly bounded and that ψ → -∞ near ∂(S ∩ U), h attains its maximum at x 0 ∈ S ∩ U. It follows from the maximum principle that 0 ≥ ∆ ω ′ ε h(x 0 ) ≥ Tr ω ′ ε (ω ε )(x 0 ) -A 2 By local elementary reasonings as in the compact Kähler case, we obtain the following inequality for two transverse Kähler forms:

Tr ωε (ω ′ ε ) ≤ n (ω ′ ε ) n ω n ε
(Tr ω ′ ε (ω ε )) n = (n + 1)e ψ +,j -ψ -,j (Tr ω ′ ε (ω ε )) n

Taking log on both sides gives us log(Tr ωε ω ′ ε ) ≤ log(n) + (n + 1)(ψ +,j -ψ -,j ) + n log(Tr ω ′ ε ω ε ) hence by definition of h, h ≤ log(n) + (n + 1)ψ +,j + n log(Tr ω ′ ε ω ε ) -A 1 (φ j,ε -ψ) Therefore

sup S∩U h ≤ h(x 0 ) ≤ A 3 -A 1 inf S∩U (φ j,ε -ψ) ≤ A 3 -A 1 inf S∩U φ j,ε
where A 3 is a uniform constant since ψ +,j and Tr ω ′ ε ω ε (x 0 ) are both uniformly bounded. As a consequence, there exists a uniform constant A 4 such that: h := log(Tr ωε ω ′ ε ) + (n + 1)ψ -,j -A 1 (φ j,ε -ψ) ≤ A 4 which leads to:

Tr ωε ω ′ ε ≤ e -(n+1)ψ -,j e A 1 (φ j,ε -ψ) e A 4 hence the existence of uniform constants A 1 , A 5 , depending only on C in inequality (11), κ, and the bound of the L ∞ -estimate 3.10 such that: sup S∩U Tr ωε ω ′ ε ≤ A 5 e -A 1 ψ-ψ -,j ≤ A 4 e 

  then for m > 0 large enough, mK Y is a Cartier divisor and naturally linearized by the T -action. Moreover, there exists a T -invariant non-vanishing holomorphic section s ∈ mK Y and a volume form dV Y such that

  Proposition 2.19. The number ν({θ}) := sup {ν(φ, x), (φ, x) ∈ P SH(S, ξ, θ) × S} is finite and depends only on the basic cohomology class of θ.

  metric of strictly positive curvature on A. Let h be the T c -invariant metric h := h A e -φ E on π * O(1) and Φ ω := -log h the potential of h. Since X is contained in an open affine set ≃ C N of P N , there exists a global trivializing T c -invariant section s of the line bundle π * O(1)| X . The global form

  p ′ By construction, we have L -Jξ Ψ B = λ, hence Ψ B extends uniquely to a smooth function on U. The function

tn

  Cap θ (u < -s -t) ≤ {u<-s} θ n u ∧ η Proof. Let v ∈ P SH(S, ξ, θ), 0 ≤ v ≤ 1. Then {u < -s -t} ⊂ {u ≤ tv -s -t} ⊂ {u < -s}By definition of the Monge-Ampère operator{u<-s-t} MA θ (v) ≤ {u≤tv-s-t} MA θ (v) ≤ t -n {u≤tv-s-t} MA θ (tv)Applying the comparison princple 2.9 to the functions u + s + t and tv,t -n {u≤tv-s-t} MA θ (tv) ≤ t -n {u≤tv-s-t} MA θ (u) ≤ {u<-s} MA θ (u)which terminates our proof. □ Lemma 3.9. [EGZ09, Lem. 2.4] Let f : R + → R + be a right-continuous decreasing function such that lim s→+∞ f (s) = 0. If f satisfies the conditionH(α, B), tf (s + t) ≤ Bf (s) 1+α , ∀s ≥ 0, 0 ≤ t ≤ 1then there exists s 0 = s 0 (α, B) such that f (s) = 0, ∀s ≥ s 0 .Proposition 3.10. There exists a uniform constant C such that:∥φ j,ε ∥ L ∞ (S) ≤ C

f

  (s) n ≤ Cap δω B (φ j,ε < -s) ≤ δ n s S (-φ j,ε )ω n B ∧ η + nvol ω B (S)Proof. The function is clearly basic θ X -psh and ψ → -∞ near ∂U by the construction of Φ B in Prop. 3.3. Moreover,ω B | U = (θ X + dd c ψ)| U is the restriction into U of the transverse Kähler form ω B , constructed on X\E 0 .Consider the following smooth function on S ∩ U:h := log(Tr ωε ω ′ ε ) + nψ -,j -A 1 (φ j,ε -ψ) where A 1 := A 1 (κ)is a constant sufficiently large and depends on κ. The compacity of S, the L ∞ -estimate in Prop. 3.10, combined with transverse Yau-Aubin inequality in Lem. 3.11 are all the ingredients we need to repeat the arguments of [BBE + 19, Appendice B] to conclude.

  • In Section 4, we provide a proof for the transverse version of Yau-Aubin inequality, which is used in the Laplacian estimate. Kähler space is still Kähler, but the Kähler structure of the resolution is not the pullback of the Kähler structure on the base.
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But by (1) of Lem. 2.11:

Therefore, f (s) ≤ (C 1 /s 1/n ), where C 1 = C 1 (ω B , θ X ). We can then apply Lem. 3.9 to select s 0 = s 0 (n, α, A, ω B , θ X ) as in [EGZ09, Lemma 2.3, Theorem 2.1] such that:

Cap θ X (φ j,ε < -s) = 0, ∀s ≥ s 0

In particular, µ j (φ j,ε < -s 0 ) = 0 by Lem. 3.7. Hence φ j,ε ≥ s 0 on S, so there exists C = C(n, α, A, ω B , θ X ) such that: ∥φ j,ε ∥ L ∞ (S) ≤ C □ 3.4. Laplacian estimate. We will need the transverse version of the Yau-Aubin inequality, obtained by Siu for two cohomologous forms [START_REF] Tong | Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics[END_REF], but the proof can be generalized to any couple of Kähler forms. Let

be the Laplacian associated to the transverse Kähler form ω ′ B . Lemma 3.11. For all transverse Kähler form ω ′ B , there exists a constant κ depending only on the transverse bisectional curvature of ω B such that:

where Ric(ω ′ B ) is the transverse Ricci curvature. Proof. On each foliation chart, the transverse Kähler forms depend only on the z-coordinates. The inequality thus follows from the purely local proof in the compact Kähler case. The reader may consult Appendice 4 for a proof. □

The following proposition gives a a priori Laplacian estimate of the solution φ j,ε of equation (12). We follow the arguments of [BBE + 19, Appendice B]. In this section, by a uniform constant, we mean a constant independent of the j, ε parameters.

In particular, there exists a uniform constant C 3 such that

For the estimate of ∆ ω B φ , we make the following remark. By compacity of S, there exists a uniform constant δ sufficiently large such that

this completes our proof. □

Conclusion.

Proof of the main Theorem. By using the L ∞ -estimate in Lem. 3.10 and the transverse Yau-Aubin inequality 3.11, we obtained in Lem. 3.12 the estimate of ∆ ω B φ j,ε . As a consequence, ∆ ω B φ j,ε is locally uniformly bounded on S ∩U since ψ -:= Ψ -+ φ X is locally bounded by our assumption. It follows that there exists a subsequence φ j,ε(j) which is

) on S ∩ U. The equation admits a unique solution up to constant (cf. Prop. 2.15), hence: φ 0 = φ X + c which implies that ∆ ω B φ X is locally bounded. This allows us to obtain a C 2,α -estimate of φ X , as well as higher order estimates using Schauder's estimate and complex Evans-Krylov theory as in [Blo12, 5.3, p.210], hence the smoothness of φ X on S ∩ U.

By definition, r 2 = r 2 ξ e φ and φ X = π * φ. Using symmetry by R >0 -action generated by -Jξ, we conclude that φ X = φ • π is actually smooth on U, hence φ is smooth on Y reg . In particular, r 2 is smooth on Y reg . □

Appendice : Transverse Yau-Aubin inequality

In the sequel, we will use the summation convention. Let ω B , ω ′ B be two transverse Kähler forms on S. Let (z, x) be the coordinates on a foliation chart of S such that:

After choosing a normal transverse holomorphic chart, one can suppose that g jk = δ jk and that ω ′ B is diagonal. Let (g jk ) denote the inverse of (g jk ). We have:

Recall the statement of the transverse Yau-Aubin inequality:

Lemma 4.2.

where R ′ jkpq is the local expression of the transverse curvature form of ω ′ B . Let us estimate the three terms of the expression above.

• Since ω B and ω ′ B are diagonal, we have for the first term:

where κ is the infimum of the transverse sectional curvature (which exists since S is compact). • In the second term, g ′pq R jkpq = R ′ jk , where R ′ jk is the local expression of the transverse Ricci-form Ric(ω ′ B ). • For the third term, we have:

It follows that