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A B S T R A C T   

Surface albedo is a key parameter in the surface energy balance and has been identified as a primary essential 
climate variable (ECV). Variations in surface albedo can be used as a diagnostic tool for local climate change. 
This is particularly true in urban areas, where the impacts of land cover conversion due to increasing anthro
pogenic demands can be examined using surface albedo changes. Most of the previous studies of albedo in cities 
have relied on coarse-resolution datasets with short time spans and have disregarded continuous monitoring. In 
addition, it is still unclear which urbanization processes are involved and what effects they have on surface 
albedo over long time periods. This study aimed to identify the contribution of increasing urbanization to the 
regional climate by analyzing spatial and temporal changes in surface albedo. Assigning albedo values to land 
cover types is useful for determining the level of transformation and their impacts in various Chinese cities that 
underwent specific evolutions between 1986 and 2018. The Direct Estimation (DE) approach was modified to 
estimate the daily mean surface albedo at 30 m based on Landsat observations. It resulted root-mean-square 
errors (RMSEs) of less than 0.044 and bias about 0.006 between observations and model estimations. Such ac
curacy obtained after correcting the orbital drift of the Landsat satellite, was deemed satisfactory for detecting 
potential changes in albedo. Major findings are: 1) A notable trend was found over the past 33 years of 11 major 
Chinese cities, i.e. population about 10 million and more, with a general albedo increase from satellite obser
vations. The higher resolution Landsat dataset showed a trend 3 times larger than the Global Land Surface 
Satellites (GLASS) product, which outlines the need for analyzing high resolution imagery in priority for reliable 
estimate of albedo over heterogeneous urban landscapes. 2) An increase in albedo infers a negative radiative 
forcing at an average rate of − 2.771 W/m2 per decade, thereby indicating a cooling effect for most Chinese cities. 
3) Changes in surface albedo were also closely linked to landscape transformation, clearly observed using the 30 
m resolution of the Landsat data. 4) Throughout the study period, surface albedo exhibited a temporal U-shaped 
curve in built-up areas under development, with albedo peaks in old and newly built districts and a decrease in 
albedo between the two eras.   

1. Introduction 

Urban areas represented only 3% of Earth's land surfaces in 2010 (Liu 
et al., 2014b); however, they have expanded rapidly in the past 20 years 
(Zhou et al., 2018b) and now host more than half of the total population 
of the Earth. The United Nations World Urbanization Prospects (WUP) 
has projected that, with ongoing rapid urbanization, the proportion of 
people living in urban areas will increase from 55% (2018 estimate) to 

68% in 2050 foresight. Recent studies have confirmed a trend towards 
unprecedented global urbanization (Li et al., 2019; Liu et al., 2019; 
Radwan et al., 2019), and this process is likely to continue for decades 
(Bagan and Yamagata, 2014; Seto et al., 2014; Seto et al., 2012). 

Urbanization contributes to global climate change in twofold: bio
geochemically first as it increases carbon emissions because of addi
tional people, consumption, and activation (Ali et al., 2019; 
Friedlingstein et al., 2019; Hong et al., 2019; Martínez-Zarzoso and 
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Maruotti, 2011); and secondly as it affects radiative forcing due to a 
modification of the geometry and the composition of surface elements 
(Kuang et al., 2019; McCarthy et al., 2010; Vahmani et al., 2016). The 
latter effect has a serious impact on local and regional climate due to 
alteration of the effective surface albedo (the ratio of the shortwave 
upward radiation from the surface to the shortwave downward radiation 
from the Sun) (Trlica et al., 2017), which leads to local phenomena such 
as urban heat islands (UHIs) (Chapman et al., 2019; Feng et al., 2019; Li 
and Zha, 2019; Li et al., 2017; Yao et al., 2017; Zhang and Liang, 2018; 
Zhou et al., 2018a). 

Changes in surface albedo related to large-scale urban expansion will 
likely affect the climate of a region surrounding a large metropolitan 
area, due to an increased population density, with increased consump
tion and transportation (Barnes and Roy, 2010). Changes in albedo as a 
result of urbanization may constitute an important part of local and 
global climate forcing (Trlica et al., 2017). Therefore, the potential to 
offset UHI temperature effects through albedo manipulation (e.g. by 
using more reflective materials on rooftops) has become a topic of 
extensive discussion and concentrated research efforts using numerical 
simulations (Georgescu et al., 2014; Georgescu et al., 2013; Qin, 2015; 
Santamouris et al., 2011; Trlica et al., 2017). It has been reported that 
adopting highly and retro-reflective materials on urban surfaces (e.g., 
rooftops and pavement) can increase the net albedo in urban areas by 
~0.01–0.1 (Akbari et al., 2012; Akbari et al., 2009; Mackey et al., 2012), 
as a consequence of a negative radiative forcing that causes a daytime 
cooling effect of ~0.7 K (Alchapar and Correa, 2016; Zhao et al., 2014). 
Studies have also established that a 0.1 increase in surface albedo in 
urban locations could lead to a long-term global cooling effect equiva
lent to counterbalancing ~25–150 billion tons of CO2 emissions (Akbari 
et al., 2012; Tang et al., 2018). Several studies have combined 

radiometer data and remote sensing images to assess the albedos of 
various artificial materials in order to improve urban climate modeling 
(Ban-Weiss et al., 2015; Hamoodi et al., 2019; Shi et al., 2019). 

Urbanization leads to albedo changes by altering natural vegetation 
or bare ground to manmade materials, including the complex topog
raphy effect, symbolized by an ‘urban canyon’ in built-up areas (Kuang 
et al., 2019; Santamouris et al., 2011; Tang et al., 2018; Trlica et al., 
2017). Nevertheless, the effect of urbanization on albedo may lead to 
contrasting issues. While a bright material enhances the magnitude of 
the reflectivity, increasing the building density traps more radiation, 
thereby reducing the intensity of the total albedo. 

Satellite albedo products have been used to assess the relationship 
between radiation effects and urban land changes (Cai et al., 2016), 
focusing on the expansion of impervious zones at the expense of green 
zones. Some studies have reported that urbanization can cause the al
bedo to increase (more solar radiation is reflected by Earth's surface) due 
to the introduction of light building materials (Feng et al., 2012; Kuang 
et al., 2019) and less vegetation cover (Hou et al., 2014). Other studies 
have suggested that urbanization has led to a decline in the urban sur
face albedo due to dark streets, building facades, and roofs that have 
replaced vegetated attributes with urban elements (Jacobson et al., 
2015; Trlica et al., 2017). Such varied responses could be explained by 
an examination of the situation at different stages of urban development, 
which was dependent on the heterogeneity among the cities. 

Studies of urban canyons have demonstrated that albedo measure
ments are heavily dependent on the structure (building density and 
height distribution) (Qin, 2015; Santamouris et al., 2011; Yang and Li, 
2015). Hu et al. (2019) found that after rapid urbanization, settlements 
or urban surface structures became more complex, with higher buildings 
and enhanced radiation trapping. Both positive and negative urban- 

Fig. 1. Geographic location of the selected Chinese cities. The white boundaries are the administrative borders of the cities.  
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rural differences have been reported in single cities (Manoli et al., 2019). 
Sugawara and Takamura (2014) analyzed airborne data over cities and 
found that the albedo was lower in areas with more buildings, and 
decreased as the aspect ratio of street canyons increased. From numer
ical simulations, Yang and Li (2015) illustrated that the average urban 
albedo was the lowest in a medium-density city with high-rise buildings 
that had larger building height differences. 

Previous studies of remotely sensed urban albedo have mostly 
considered coarse-resolution data such as from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) with a 500 m resolution (Jun et al., 
2013; Reinmann et al., 2016; Wang et al., 2006; Zoran et al., 2018), or 
the Global Land Surface Satellites (GLASS) shortwave surface albedo 
product (Hu et al., 2019; Hu et al., 2016; Tang et al., 2018). Several 
urban remote sensing studies have determined that changes in urban 
landscapes usually occur on small scales (Jin et al., 2005; Trlica et al., 
2017; Zhou et al., 2014). However, the lack of high-resolution urban 
albedo data has limited in-depth explorations of the causes of changes in 
various urban functional zones (Feng et al., 2019). Studies using satellite 
imagery to analyze temporal changes in urban albedo have mostly used 
the ‘endpoints’ approach (Woodcock et al., 2020), which relies on the 
difference in albedo between the initial year and the final years of the 
study period (Feng et al., 2012; Kuang et al., 2019; Royer et al., 1988). 
The outcomes may be questionable because additional changes in al
bedo could occur in the middle of the time series, which is a feature that 
has rarely been explored. 

The use of Landsat Thematic Mapper (TM) images as a data source 
requires the consideration of orbital drift. The Landsat 5 orbit was 
relatively stable during the periods of 1984–1994 and 2007–2011, but 
the periods of 1995–2000 and 2003–2007 had significant deviations in 
satellite positioning (Gao et al., 2014; Zhang and Roy, 2016). It has been 
reported that the difference in nadir reflectance between Landsat 5 TM 
overpass times and a fixed 10 a.m. local time can reach 0.015 and 0.018 
for the red and NIR bands, respectively (Gao et al., 2014). The overpass 
time of the TM has been continuously delayed, which has produced an 
unrealistic decrease in the observed albedo during the lifetime of the 
satellite. This has previously been disregarded in analyses of the Landsat 
TM data that focused on albedo time series (Feng et al., 2012; Hou et al., 
2014; Hu et al., 2016; Kuang et al., 2019). 

As the largest developing country, China has experienced rapid ur
banization and economic development (Liu et al., 2019), with the urban 
population soaring from 25% in the 1980s to 60% in 2018 (Gong et al., 
2012; Guan et al., 2018). Due to increasing human activity, carbon 
emissions from cities account for 85% of the total in China (Shan et al., 

2018), which directly contributes to global warming. As China's cities 
have undergone different stages of urbanization, the associated surface 
albedo changes may have been complex. This study may be helpful for 
understanding the historical background of changes in the surface en
ergy budget, as well as for future decisions that foster the urban 
development. 

The main goal of this study is to understand the changes in surface 
albedo during the summer in 11 Chinese cities characterized by rapid 
urbanization, and to develop a method for estimating the daily average 
surface albedo. The study was conducted over a long period 
(1986–2018) by analyzing Landsat data (30 m resolution). We also 
discussed how land cover changes affected patterns of changes in al
bedo, and how they modified the radiative forcing in the study area. 

2. Materials and method 

2.1. Study area 

In this study, we selected 11 cities (Fig. 1) at different stages of 
economic development and urbanization to study the impact of growing 
cities on albedo and surface radiative forcing. Three characteristics were 
considered when selecting the cities: population, gross domestic product 
(GDP), and location (Huang et al., 2019). China's first wave of urbani
zation occurred in coastal areas, from which 7 representative cities were 
selected, forming three mega-urban agglomerations (Lyu et al., 2018; 
Schneider and Mertes, 2014): the Yangtze River Delta (Shanghai, Wuxi, 
and Suzhou), Pearl River Delta (Shenzhen, Foshan, and Dongguan), and 
the Beijing-Tianjin-Hebei region (Beijing). Considering that China's 
early industrialization began in the northeastern part of the country, two 
cities from that region (Shenyang and Anshan) were also selected. 
Wuhan was chosen to represent the cities in central China. In addition, 
Qingdao was selected to represent northern Chinese urban agglomera
tions. Furthermore, in order to determine the changes in albedo in cities 
with different economic volumes and populations, we classified the 11 
cities into three categories (Table 1) based on their 2015 populations 
(Güneralp et al., 2020; Huang et al., 2019). 

2.2. Data sources 

2.2.1. Landsat data 
The Landsat program is the longest-running enterprise for the 

acquisition of satellite imagery of the Earth system. In the absence of 
other types of monitoring, Landsat remains the best data source for 
estimating any changes in surface albedo effects at fine-scale resolution 
on a continental scale (Markham and Helder, 2012). However, radio
metric calibration control is necessary for sensors onboard the Landsat 
satellites. Such efforts have been conducted regularly throughout the 
last three decades to calibrate the system with an absolute accuracy of 
5% (Chander et al., 2009; Markham et al., 2014), as well as good tem
poral consistency (Kim et al., 2013). Level 1 T (L1T) data is the highest 
quality product in level 1 for time series analysis, with a geolocation 
uncertainty of less than a half pixel for Thematic Mapper (TM), 
Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager 
(OLI) images (He et al., 2018). Such accuracy relies on terrain correc
tion, which provides the necessary radiometric and geodetic accuracy by 
incorporating ground control points, while using a digital elevation 
model (DEM) for topographic displacements (Chander et al., 2004; 
Chander and Markham, 2003; Kim et al., 2013; Roy et al., 2014). 

Landsat TM images from 1986 to 2011 and Landsat OLI images from 
2013 to 2018 during the summer (June, July, and August) were used to 
estimate the surface albedo. Only data acquired in clear sky conditions 
or that had effective cloud removals using the Function of Mask (Fmask) 
version 4 (Qiu et al., 2019) were considered in this study. Table 2 rep
resents the Landsat Path/Row values corresponding to the study area 
and, Fig. 2 shows the number of scenarios used per year. 

The Landsat Surface Reflectance product (Collection 1 Level 2) 

Table 1 
The selected representative 11 cities.  

City level Population (million) City names 

Level 1 >10 Shanghai, Beijing, Shenzhen, Suzhou, Wuhan 
Level 2 8– 10 Qingdao, Shenyang, Dongguan 
Level 3 <8 Foshan, Wuxi, Anshan  

Table 2 
Landsat Path/Row of study area.  

City Name Path/Row 

Shanghai 118/038 118/039 
Beijing 123/032  
Shenzhen 122/044 121/044 
Suzhou 119/038  
Wuhan 123/039  
Qingdao 120/035  
Shenyang 119/031  
Dongguan 122/044  
Foshan 122/044  
Wuxi 119/038  
Anshan 119/032   
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(Masek et al., 2006; Vermote et al., 2016) for the same periods was used 
to obtain the normalized difference vegetation index (NDVI) throughout 
the study area (Shanghai, Foshan, and Suzhou). Processing of the 
Landsat Surface Reflectance dataset includes the elimination of atmo
spheric effects to reach a steady uncertainty over time (Claverie et al., 
2015; Vermote et al., 2016). These data are available from the Earth 
Explorer (https://earthexplorer.usgs.gov/) program developed by the 
United States Geological Survey (USGS). 

2.2.2. GLASS albedo products 
The Global Land Surface Satellite (GLASS) project (http://glass- 

product.bnu.edu.cn/) aims to provide a suite of important land surface 
parameter datasets with high temporal resolution and accuracy for 
global change studies (Liu et al., 2013a). It provides long-term global 
surface broadband albedo product from 1981 to 2010, which is a com
bination of Advanced Very High Resolution Radiometer (AVHRR, 
1981–1999) and MODIS (2000− 2010) data (Liang et al., 2013) with an 
accuracy similar to that of the broadly used MODIS MCD43 product (Liu 
et al., 2013b). The GLASS albedo product is a gap-filled dataset with 
long-term continuity and self-consistency (Liu et al., 2013b; Qu et al., 
2014). In this study, the 0.05-degree resolution GLASS albedo product 

was used and compared with the Landsat albedo data to help assess the 
effects of spatial resolution on long-term albedo trend analysis. 

2.2.3. Ground measurements 
Accessing precise ground-based measurements in different climatic 

regions is essential for refining and verifying satellite-based estimates. In 
this study, in-situ data from the Surface Radiation budget (SURFRAD) 
network and the Heihe Integrated Observatory Network (Table 3) were 
used for validation. 

The SURFRAD network was established in 1993 by the National 
Oceanic and Atmospheric Administration (NOAA) Office of Global 
Programs (Augustine et al., 2000; Augustine et al., 2005) and consists of 
seven stations. Ground measurements of surface albedo were calculated 
as the ratio of total upward to total downward radiation, or the blue-sky 
albedo, which is a useful variable for radiation budget assessments. 
SURFRAD datasets are freely available (ftp://aftp.cmdl.noaa.gov/data 
/radiation/surfrad/RadFlux/). 

The method used for Landsat albedo estimation in this study has been 
extensively evaluated at globally distributed sites (He et al., 2018); 
however, previous validation efforts have rarely included sites in China. 
The Heihe integrated observatory network was established in 2007 

Fig. 2. The frequency of each path/row of Landsat images used in each year.  

Table 3 
List of information of the ground stations used in this study.  

Site name Landsat Path/Row Network Center Latitude/Longitude (◦N/◦E) Land cover Tower height (m) 

BON 023/032 SURFRAD 40.05◦ N 88.37◦ W Cropland 10 
TBL 034/032 SURFRAD 40.12◦ N 105.24◦ W Grassland 10 
DRA 040/035 SURFRAD 36.62◦ N 116.02◦ W Open shrub land 10 
FPK 035/026 SURFRAD 48.31◦ N 105.10◦ W Grassland 10 
GWN 023/036 SURFRAD 34.25◦ N 89.87◦ W Grassland 10 
PSU 016/032 SURFRAD 40.72◦ N 77.93◦ W Cropland 10 
SXF 029/030 SURFRAD 43.73◦ N 96.62◦ W Grassland 10 
Yakou 133/034 Heihe 38.01◦ N 100.24◦ E Alpine meadow 6 
Zhangye 133/033 Heihe 38.98◦ N 100.45◦ E Reed 6 
Huazhaizi 133/033 Heihe 38.77◦ N 100.32◦ E Desert 6 
Arou 133/034 Heihe 38.05◦ N 100.46◦ E Subalpine meadow 5 
Daman 133/033 Heihe 38.86◦ N 100.37◦ E Maize 12 
Dashalong 134/033 Heihe 38.84◦ N 98.94◦ E Marsh alpine meadow 6 
Ebao 133/034 Heihe 37.95◦ N 100.92◦ E Alpine meadow 6 
Heihe 133/033 Heihe 38.83◦ N 100.48◦ E Grassland 1.5 
Desert 134/031 Heihe 42.11◦ N 100.99◦ E Reaumuria desert 6 
MixedForest 133/031 Heihe 41.99◦ N 101.13◦ E Populus euphratica and Tamarix 24 
Jingyangling 133/034 Heihe 37.84◦ N 101.12◦ E Alpine meadow 6 
Sidaoqiao 133/031 Heihe 42.00◦ N 101.14◦ E Tamarix 10  
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during the Heihe Watershed Allied Telemetry Experimental Research 
(WATER) experiment and was completed in 2013 during the Heihe 
Watershed Allied Telemetry Experimental Research (HiWATER) exper
iment (Liu et al., 2018). The surface fluxes and meteorological param
eters were derived from superstations and ordinary stations (including 
up to 23 observation stations) encompassing the entire Heihe River 
Basin (HRB). These data are also freely available (http://heihe.westgis. 
ac.cn/). 

2.2.4. Land cover datasets 
Land-use/land-cover (LUCC) data (Liu et al., 2014a; Liu et al., 2002) 

was obtained from the Data Center for Resources and Environmental 
Sciences at the Chinese Academy of Sciences (RESDC) (http://www. 
resdc.cn). We used seven epochs (late 1980, 1990, 1995, 2000, 2005, 
2010 and 2015) of the data, all of which had 100 m spatial resolutions. 
The main data sources of the LUCC database are the Landsat Multi- 
spectral Scanner (MSS), TM, and ETM+, supplemented by data from 
the China-Brazil Earth Resource Satellite (CBERS). The LUCC database 
was generated from visual interpretations of remote sensing images. The 
classification system of LUCC is divided into cropland, forests, grassland, 
water, built-up land and other unused land (Xu et al., 2012). This dataset 
has been widely used to study land use and land cover changes in China 
(Huang et al., 2019). The classification accuracy of the first level is 
better than 94.3% (Liu et al., 2014a). 

2.2.5. Surface downward solar radiation data 
Downward shortwave radiation (DSR) represents the incident solar 

radiation over the land surface in the shortwave spectrum (0.3–4 μm) 
and is the major energy source over the land surface. MCD18A1 
(Collection 6.0) refers to the Level-3 (L3) Terra and Aqua combined 
MODIS-derived DSR product (Wang et al., 2020). MCD18A1 provides 3- 
h global data at 5 km resolution in a sinusoidal gridded map projection 
every day, and fills a long-persisting gap in the requirements of terres
trial modeling and application communities. Validation of MCD18A1 
products using ground measurements has suggested that the MODIS 
land surface radiation products are reliable and highly accurate, with an 
average coefficient of determination of 0.91, a root mean square error 
(RMSE) of 90 W/m2, and a bias of 17 W/m2 (Liang and Wang, 2017). 

2.3. Methods 

2.3.1. Surface albedo estimation 
Albedo estimation relies on an algorithm that is based on the Direct 

Estimation (DE) method, originally proposed by Liang et al. (1999), 
which is a unified, simple, and fast empirical algorithm. Unlike existing 
algorithms for Landsat albedo estimation (Shuai et al., 2011; Shuai et al., 
2014; Wang et al., 2016; Wang et al., 2017), the DE method neither 
requires surface reflectance from an explicit atmospheric correction, nor 
requires concurrent clear-sky observations from the MODIS for bidi
rectional reflectance distribution function (BRDF) correction (instead 
relying on a pre-built BRDF database derived from MODIS products, 
which will be explained later). The DE algorithm has been applied to 
data from a variety of sensors, including MODIS (Liang, 2003), Visible 
Infrared Imaging Radiometer Suite (VIIRS) (Wang et al., 2013), Multi- 
angle Imaging SpectroRadiometer (MISR) (He et al., 2017), and Land
sat (He et al., 2018). 

The DE method consists of two steps (Liang, 2003; Liang et al., 
2005). The first step simulates the top of atmosphere (TOA) directional 
reflectance and surface albedo under different surface and atmospheric 
conditions from a radiative transfer model. The second step develops 
empirical relationships between the simulated TOA reflectance and 
shortwave surface albedo in considering all simulations: 

αins =
∑

ρTOA
i ⋅ci + c0 (1)  

where αins is the instantaneous surface albedo for the wavelength region 

Landsat L1T DataSurface BRDF Database 

Solar zenith 
angle Look-up 

Table 

Cloud-free 
Observa�on?

TOA 
Reflectance

Radia�ve Transfer 
Simula�on

Simulated TOA 
Reflectance (ρ) 

Simulated 
Surface Albedo in 

One Day (Eq.3)

Atmospheric 
Parameters 

Look-up Table

Simulated Daily / Local 
solar noon Surface 

Albedo (Eq.6-8) 

Regression (Eq.4 & Eq.5)

Daily / Local solar noon
Albedo Regression 

Coefficients Look-up Table
Landsat Surface  

Daily / Local solar 
noon Albedo

Calibra�on

Yes

Fig. 3. Flowchart of local solar noon and daily albedo estimation from Landsat data.  

Table 4 
Configurations of LUT for simulating surface albedo and TOA reflectance data.  

Parameters Value 

Solar zenith angle (◦) 0, 20, 40, 60, and 70 
View zenith angle (◦) 0 and 15 
Relative azimuth angle (◦) 0, 30, 60, 90, 120, 150, and 180 
Aerosol optical depth at 555 

nm 
0.05, 0.10, 0.15, 0.20, 0.30, 0.40, and 0.60 

Latitude (◦) 0, 10, 20, 30, 40, 50, and 60 
Day of year 1, 32, 63, 94, 125, 156, 187, 218, 249, 280, 311, 

342  
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of 300-3000 nm; ρi
TOA is the TOA reflectance for the spectral band i; and 

ci and c0 are regression coefficients. 
In earlier versions of the DE method, a spectral library was needed 

for surface albedo calculation as well as for TOA reflectance simulations. 
In addition, atmospheric parameters and sensor spectral responses were 
needed in TOA reflectance simulations (Liang, 2003; Liang et al., 2005; 
Liang et al., 1999). 

To consider the surface anisotropic effects on both the surface albedo 
and TOA reflectance, a BRDF database was introduced to replace the 
surface reflectance spectral library for simulating the surface albedo and 
TOA reflectance (Wang et al., 2013). The BRDF database was built from 
the multiyear 500 m MODIS albedo products (MCD43A Collection 5) 
that consists of high-quality samples over different land cover types. 
Details of the BRDF database establishment refer to Wang et al. (2013) 
and He et al. (2018). The incorporation of surface BRDF improves the 
accuracy and stability of surface albedo estimates, especially for surface 
areas with strong anisotropy characteristics. Recently, such DE method 
has been further adapted and applied to Landsat data (He et al., 2018). 
The instantaneous Landsat albedo estimates have been validated 
extensively, and the data accuracy has been reported to have an RMSE of 
0.022–0.034, with a long-term albedo stability difference of less than 
0.003 (He et al., 2018). The empirical relationships between TOA 
reflectance and surface albedo were established on an angular-bin basis 
to reduce non-linear errors, as shown in Eq. (2). 

αins =
∑

ρTOA
i (θs, θv,φ)⋅ci + c0 (2)  

where αins is the instantaneous surface albedo for the wavelength region 
of 300-3000 nm; ρi

TOA(θs,θv,φ) is the TOA reflectance with a solar zenith 
angle θs, view zenith angle θv, and relative azimuth angle φ for spectral 
band i; and ci and c0 are the regression coefficients. 

Specifically, surface albedo, which is used to derive the statistical 
relationship in Eq. (1), can be calculated using the angular and spectral 
integrations of surface directional reflectance, with the support of sur
face BRDF kernel parameters, as shown in Eq. (3). 

ρ(θs, θv,φ) = fiso + fgeokgeo(θs, θv,φ)+ fvolkvol(θs, θv,φ) (3)  

where ρ(θs,θv,φ) is the surface reflectance with a θs, θv, and φ; kgeo and 
kvol are kernels representing the geometric optical mutual shadowing 
and volumetric scattering components of the surface reflectance, 
respectively; fgeo and fvol are the weights of the two components; and fiso 
is the isotropic reflectance component. The simulated surface albedo can 
then be calculated as the hemispherical integration of the surface 
directional reflectance. Once the regression coefficients in Eq. (1) were 
obtained using the simulated datasets, the actual surface albedo was 
estimated using Landsat TOA directional reflectance data. A detailed 
description of the Landsat albedo estimation can be found in He et al. 
(2018). 

Land surface albedo estimates are dependent on the time of 

Fig. 4. Relationship between instantaneous and local solar noon albedo/daily albedo.  
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acquisition and solar zenith angle (SZA) (Liu et al., 2009; Wang et al., 
2005; Yang et al., 2008). Over most surfaces, the black-sky albedo (BSA) 
of the same object decreases with an increase in the SZA, and the BSA at 
noon is the lowest in the day. The Landsat 5 mission required that the 

mean local time at any descending node crossing remained constant 
(between 9:30 and 10:00 a.m.) (Hassett and Johnson, 1984). However, 
the Landsat 5 orbit was not consistently maintained. Due to orbital drift, 
the overpass time was delayed from 1995 to 2000 and from 2003 to 
2007 (Gao et al., 2014; Zhang and Roy, 2016). This delay involved an 
acquisition towards local noontime and thereby a smaller SZA at the 
time of image acquisition. This produced an artificial downward (up
ward) trend in the instantaneous albedo estimated on the same date of 
each year. 

Landsat orbit drift had certainly an impact when considering long- 
term series analysis in this study. The instantaneous estimated albedo 
trend does not reflect real albedo changes due to the inconsistency of the 
SZA during data acquisition. Therefore, applying an algorithm is 
mandatory for estimating the average daily and local solar noon albedos. 
We developed a statistical method (Eqs. (4) and (5)) based on the 
traditional Landsat DE approach (He et al., 2018) to estimate the local 
solar noon albedo and daily average albedo to correct for the impact of 
orbit drift. 

αnoon =
∑

ρTOA
i (θs, θv,φ, LAT,DOY)⋅ci + c0 (4)  

αdaily =
∑

ρTOA
i (θs, θv,φ, LAT,DOY)⋅ci + c0 (5)  

where αnoon and αdaily are the daily and local noon surface albedos for the 
wavelength region of 300-3000 nm; ρi

TOA(θs,θv,φ,LAT,DOY) is the TOA 
reflectance with a θs, θv, φ, latitude (LAT), and day-of-year (DOY) for 

Fig. 5. Relationship between estimated shortwave albedo and ground measurements at SURFRAD sites.  

Fig. 6. Relationship between estimated shortwave albedo and ground mea
surements at Heihe sites. 
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spectral band i. A flowchart of this method is shown in Fig. 3. The Second 
Simulation of a Satellite Signal in the Solar Spectrum (6 s) (Vermote 
et al., 1997) is a set of radiative transfer codes used in this study. Water 

vapor, ozone, and CO2 settings are prescribed in the “US62” atmospheric 
profiles in 6S. 

A series of parameters, including BRDF, SZA, latitude (LAT) and day- 
of-year (DOY) are required to be combined for modeling and estimating 
the local solar noon and daily mean albedos. Note that the aforemen
tioned relationships between TOA reflectance and local solar noon or 
daily mean surface albedos are statistical and based on radiative transfer 
simulations. Compared to the original instantaneous look-up table (LUT) 
(He et al., 2018), the new LUT (Table 4) included the LAT and the DOY 
to better account for the spatiotemporal dynamics. Coefficients 
appearing in Eqs. (4) and (5) are pre-calculated and stored in the two 
LUTs, 

The blue-sky albedo was simulated using the ratio of the surface 
downward diffuse radiation to the total shortwave radiation, which is a 
function of the SZA and the aerosol optical depth. The 6S is used to 

Fig. 7. City land cover and spatial distribution of urban expansion. The first two rows are level 1 cities, and the third and fourth rows are level 2 and level 3 cities, 
respectively. 

Table 5 
The transition matrix of land cover change area ratio from 1980s to 2015 (types 
with change area less than 0.1% are ignored).  

2015 
1980s 

crop forest grass water built-up 

crop 45.58% 0.31% – 1.22% 8.32% 
forest 0.51% 19.40% – – 0.90% 
grass 0.26% – 3.10% – 0.17% 
water 0.31% – – 8.79% 0.51% 
built-up – – – – 9.33%  
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simulate the fraction of diffuse skylight. The blue-sky albedo was 
calculated as a combination of the BSA and white-sky albedo (WSA), 
weighted by the sky light ratio factor, as shown in Eq. (6) (Qu et al., 
2016). ρdiffuse represents the ratio of the diffuse irradiance to the total 
downward irradiance. 

ablue− sky = aBSA⋅
(
1 − ρdiffuse

)
+ aWSA⋅ρdiffuse (6) 

Daily albedos were calculated as the average instantaneous albedo, 
weighted by the instantaneous downward fluxes at 30 min intervals (i) 
during the daytime (Wang et al., 2015), as shown in Eqs. (7) and (8), 
where Id(ti) denotes the instantaneous downward flux at time t. 

adaily =
∑

i
[a(ti)⋅w(ti) ] (7)  

w(ti) = Id(ti)

/
∑

i
Id(ti) (8)  

2.3.2. Trend analyses 
Determining the pixel-by-pixel temporal changes in surface albedo 

relies on an inversion method that consider a least-squares linear 
regression (Eq. (9)). 

yi = b+ kaxi + ε i ∈ {1, 2,…,N} (9)  

where ka represents the inter-annual change rate of the albedo, b is the 
intercept, i is the ordinal number of the year, xi is the year, yi is the 
surface albedo value in the ith year, and N represents the number of 
years. When generating city maps, only pixels with more than 20 years 
of clear-sky values were used, which exhibited rather stationary trends. 

We evaluated the significance of the trend using the F-test. The F- 
statistic is the test statistic of the regression model. The F-test determines 
the level of significance of the linear regression between the observed 
and predicted variables. The P-value indicates the reliability of the fit. 
The smaller the P-value, the more reliable the change is in the corre
sponding pixel. 

2.3.3. Surface radiative forcing 
Radiative forcing (RF) is the difference between the insolation 

absorbed by the Earth and the energy radiated back to space (Shindell 

et al., 2013). RF infers changes in the Earth's climate system by altering 
the Earth's radiative equilibrium and by forcing the temperature to rise 
or to fall. A positive RF means that the Earth receives more incoming 
energy from sunlight than it radiates to space, which produces warming, 
and vice versa. With a changing surface albedo, the upward surface 
shortwave radiation varies, leading to negative or positive RF. 

Surface shortwave RF was calculated by multiplying the change in 
albedo (Δα) from 1986 to 2018 by the average value of the multi-year 
(2001–2008 summer) DSR (DSRave

MODIS), derived from the MODIS 
DSR product MCD18A1 (Dintwe et al., 2017), using Eq. (10). The change 
in albedo was calculated using Eq. (11), where αT1 represents the 
average value of the albedo from 1986 to 1990 and αT2 represents the 
average value of the albedo from 2014 to 2018. 

RF = −
(
Δα⋅DSRMODIS

ave

)
(10)  

Δα = αT2 − αT1 (11)  

3. Results 

3.1. Validation of derived surface albedo products 

Surface albedos from SURFRAD anchor stations were selected to 
calculate the correlation between daily and instantaneous albedos. 
There was a very good correlation between the observed and simulated 
albedo, as the R2 value was ~0.99, the bias was less than 0.01, and the 
RMSE was ~0.01 (Fig. 4). The correlation between the local solar noon 
albedo and the instantaneous albedo provides similar results. This sus
tains the derivation of transfer coefficients from the instantaneous ob
servations to local solar noon albedo or daily average albedo. 

To ensure that our albedo estimates were dependable, data from the 
SURFRAD anchor stations and Heihe sites were used to validate the 
shortwave daily and local solar noon albedo products. The results over 
the SURFRAD sites are shown in Fig. 5. For noon and daily albedo es
timates, the coefficient of determination R2 was >0.72, with a small bias 
of ~0.003–0.014 and RMSEs of 0.039–0.044. The results for snow-free 
cases exhibited bias of 0.002–0.014 and RMSEs of 0.037–0.041. At the 
Desert Rock (DRA) site, the albedo was slightly overestimated using 
both TM and OLI data. The overestimations were likely caused by not 
using the “desert” aerosol type in the radiative transfer simulation as 

Fig. 8. Albedo change slopes over changed and unchanged land cover types. The changed land cover types were derived from land cover data in the 1980s and 2015. 
The legend of →crop (2015) means that land cover types in the 1980s was converted to cropland in 2015, and so on. The black line represents the average value. The 
upper and lower sides of the rectangle correspond to the values of the third quartiles (Q3) and the first quantiles (Q1), respectively. 
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reported in He et al. (2018). For the rest of the sites included in this 
study, the default “continental” aerosol type adopted in the radiative 
transfer simulation did not produce any significant systematic errors in 
albedo estimation. 

Fig. 6 shows the validation results over the Heihe sites during in 
2016–2017. The albedo accuracy in China was comparable to that at 
SURFRAD, with a bias of 0.002, an R2 of 0.759, and a RMSE of 0.042. 
Such accuracy allows for the reasonable quantification of surface albedo 
changes due to urbanization in China. 

We also chose Lunar Lake (a dry lake playa in Nevada, USA, 38.40◦N, 
115.99◦W Landsat Path/Row 040/033), which has a land cover that has 
not changed for an extended period, to explore the changes in the cor
relation coefficient between the solar zenith angle of the Landsat images 
and surface albedo. For instantaneous, local solar noon, and daily 
average surface albedos, the R2 of the correlation with solar zenith angle 
decreased from 0.062 to 0.013 and 0.011, respectively. This indicates 
that our method can offset the impact of solar zenith angle changes 
caused by orbit drift on surface albedo to a certain degree. 

3.2. Urban expansion and land cover change 

In the past 33 years, the urban land area in China has doubled, and is 
4–5 times larger in coastal areas. To understand how cities are changing 
across China, we sorted the urban class of each pixel by the time it was 
classified as built-up land. This relies on the assumption that the ur
banization process is irreversible (Li et al., 2015); that is, a transition 
from urban to another land cover type is unlikely. We also included 
pixels that exhibited reversibility in urbanization to avoid possible er
rors. Less than 0.3% (±0.1%) of all pixels in each city exhibited this 
phenomenon, indicating that such a difference can be ignored. The re
sults of urban land expansion in the 11 cities from 1980 to 2015 are 
shown in Fig. 7. Most of the stable urban regions were located at the 
center of each city. However, many ‘stable urban’ areas in the region 
around the periphery of the city were observed in the northern cities of 
Qingdao, Shenyang, and Anshan. These are township-gathering areas. 

To identify how land cover changes, we counted the pixels that were 
converted from one land cover type to another from the 1980s to 2015 
(Table 5, unclassified land did not count). As a largely agricultural 

Fig. 9. Average surface shortwave albedo maps of 11 cities in China from 1986 to 2018.  
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country, the percentage of cultivated land is the highest (45–55%) in the 
majority of Chinese cities, followed by forest and built-up land. Never
theless, most areas (~86.2%) did not experience significant land 
transformations over the past three decades. Among the land cover type 
conversions, the conversion from cropland to built-up land was the 
largest (up to 8.32%). 

Land cover change is one of the main factors that causes changes in 
surface albedo (Hu et al., 2019; Tang et al., 2018). We determined the 
slope characterizing the albedo changes over time to better understand 
the impacts of land cover conversions on albedo (Fig. 8). The albedo 
increased the most in areas where a conversion from water to built-up 
land occurred. However, this only depicts a small proportion of all the 
pixels. Fig. 8 shows that cropland albedo had a slightly increasing trend 
and that the increasing trend for the conversion of cropland to built-up 
land was larger. However, croplands in/around cities are usually small 
and fragmented, and the crop types grown there are variable, resulting 
in unstable land cover classification accuracy. The resulting crop albedo 
trend analysis may not be reliable, which requires future exploration. 
Moreover, the albedo of pixels converted from other types of land cover 
to built-up land increased more than any other land conversion type, 
although there was also an overall increase in albedo. 

3.3. Spatiotemporal changes of urban surface albedo 

As shown in Fig. 9, the average multi-year albedo in the central 
urban areas (e.g. Fig. 7) of most cities was lower than that of its sur
roundings, except in Shenzhen and Dongguan. 

To highlight the spatiotemporal patterns of albedo changes in the 
study area, Landsat and GLASS data were selected with the closest dates 
as possible, and the albedo trends were calculated using the method 
described in Section 2.3.2. Fig. 10(a) shows the slope of the albedo 
obtained from the regression of every pixel of the Landsat images from 
1986 to 2018. Fig. 10(c) shows the slope calculated using the GLASS 
data. In total, 59% of the areas exhibited increasing trends in albedo and 
22% of the areas exhibited decreases in albedo. Cities with longer du
rations of urbanization, such as Beijing, Shanghai and Wuhan, had more 
than 28% of the built-up land exhibiting decreasing trends, which is 
twice the area in other cities. The Landsat albedo of the Pearl River Delta 
cities (Shenzhen, Foshan, and Dongguan) increased significantly, with 
all values being above average. Cities such as Shenzhen and Foshan 
rapidly developed after reforms in the late 1980s. The newly constructed 
buildings and roads lead surface albedo rose significantly (Hamoodi 
et al., 2019). 

The ranges of albedo trends for each city are shown in Fig. 11. In the 
11 study cities, the spatial distribution and overall statistics of trends 
derived from the Landsat and GLASS data were generally similar in most 
regions, especially in areas with steep slopes. On the pixel level, the 
trends derived from Landsat can reach from − 0.03 to 0.06 per decade, 
while trends derived from GLASS are mostly between − 0.01 to 0.01. The 
magnitude of the albedo trend derived from 30 m Landsat data is 
generally 2.1 to 4.8 times greater than that derived from the 0.05-degree 
GLASS data. The absolute trends estimated from high-resolution Landsat 
albedos are larger, which can reflect more details in terms of spatial 
heterogeneity over the urban landscape. The spatially aggregated 

Fig. 10. 1986–2018 Summer albedo change slope per decade and p-value maps of 11 cities in China. (a) Landsat as data source; (b) p-value map of (a); (c) GLASS as 
data source; (d) p-value map of (c). 
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Landsat albedo values at 0.05-degree was also added into the inter- 
comparison in Fig. 11. In general, the statistics of 0.05-degree aggre
gated Landsat albedo values were very close to those from the 0.05-de
gree GLASS product, which demonstrates a good agreement between 
these two datasets at the 0.05-degree scale. Small albedo differences 
between these two datasets can still be observed, which may be attrib
uted to the difference in their sensor calibrations, retrieval algorithms, 
and temporal aggregations. Nevertheless, the difference between the 
two products at 0.05-degree scale was much smaller than the difference 
between statistics calculated at two different scales (30 m and 0.05-de
gree). As a result, the average value with Landsat of all the study cities 
was 3.6 times larger than that from the GLASS albedo product. It comes 
out that studies using coarse-resolution data may underestimate the 
impact of urbanization, as well as the role of growing cities on climate 
change. This clearly emphasizes the need for high-resolution sensors. 

By comparing the two data sources, it appears that albedo maps 
generated using Landsat data contained interesting features. One block 
in a city is a single pixel in the GLASS images. However, lines of streets or 
boundaries of buildings can be observed in the Landsat images. The 
roads produce a smaller change in albedo than the adjacent roof because 
they use black asphalt, which is a low-albedo material. This kind of 
detail is meaningful with regard to urban development. It is worth 
noting that an increase in albedo was observed in the center of Shanghai 
and a ring-shaped albedo reduction zone was observed at the edge of the 
center of the city, the magnitude of which was approximately-0.0199 
per decade. A comparable decrease approximately − 0.0126, was also 
observed in Suzhou (Fig. 10(a)). These features would not be visible in 
coarse-resolution datasets. The Yangtze River running through Wuhan 
even exhibited a strong albedo trend. However, the overall trend was not 

affected by changes in the river because the river area was only 2.25% of 
the whole city of Wuhan. 

To explore the differences in the albedo changes of the built-up land 
during different time periods, we calculated the mean, first quartile and 
third quartile of the albedo slope for each urban class, as shown in 
Fig. 12. The albedo of the newer built-up land increased compared to the 
albedo of the built-up land that has existed for a longer period. It is 
worth emphasizing that the albedo slopes of the different urban classes 
in most cities had ‘U-shaped’ trends. In other words, the slope of the 
‘stable’ area had more positive changes than that of the ‘1980–1990’ and 
‘1990–1995’ areas. This is due to the positive impacts of the recon
structed internal structure of the ‘stable’ areas or the renovation of 
surface materials used for urban development. 

3.4. Details of time series changes in urban surface albedo 

The region of interest (ROI) presented in Fig. 13 indicates industrial 
zones that occurred in nearly all Chinese cities. The ROI was 1 km2. The 
conversion of cultivated land to built-up land has led to sudden increases 
in albedo. In 2005, a significant turning point was detected using a 
piecewise regression approach (Chen et al., 2014; Wang et al., 2011). 
According to Google Earth images, 2005 was when building construc
tion really began. One reason for the increase in albedo is that most of 
the factory buildings were low, and the building density was not high. 
Another reason is that the roof layer was mostly light-colored steel with 
a strong reflectance (Hamoodi et al., 2019). The correlation between 
surface albedo and NDVI (derived from NIR SR minus red SR divided by 
their total) at the regional scale was − 0.707, exhibiting a strong nega
tive correlation as long-term construction replaced the original 

Fig. 10. (continued). 
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cultivated land. The NDVI decreased as the vegetated areas were sub
sumed by buildings and roads. 

A ring-shaped descending zone was observed in Shanghai and Suz
hou (Fig. 14). As shown in Fig. 14(f), the NDVI decreased rapidly from 
1986 to 2000, but increased slowly after 2000. According to Google 
Earth images, the construction period occurred before 2000. After 2000, 
the main areas of the regional construction did not change significantly. 
The correlation coefficient between the surface albedo and NDVI from 
2000 to 2015 was − 0.581, indicating that vegetation growth was one 
major reason for the decrease in albedo. In addition, the aging of surface 
materials (such as concrete and asphalt) may lead to changes in albedo 
(Hamoodi et al., 2019; Shi et al., 2019). The road material in the ROI was 
also converted from cement to asphalt, which has a much lower albedo. 

The albedos in the central urban areas of Shanghai, Suzhou, and 
Wuxi exhibited slight increasing trends. Fig. 15 shows the details of the 
ROI in central Shanghai. The downtown area of Shanghai is mainly 
located on the western side of the Huangpu River and was already a 
bustling area in the mid-20th century. In the 1980s, the planar expan
sion stage ended, and urban development mostly consisted of internal 
urban reconstruction. The correlation coefficient between the surface 
albedo and NDVI in the ROI was 0.289, possibly because the green areas 
located in central Shanghai are too small to have a significant effect on 
the albedo. However, the albedo in the central area (old district) 
exhibited decreasing trends in Beijing, Shenyang, Wuhan, etc. This 
phenomenon, which was not present in all cities, may be due to aging 
materials (Ban-Weiss et al., 2015; Kalantar et al., 2017), shadows, and 
increase in the vegetation fraction. 

3.5. Surface radiative forcing 

The spatial distributions of radiative forcing (RF) caused by albedo 
changes in all study areas over the past 33 years are shown in Fig. 16. 
Because DSR does not vary drastically in space, the spatial distribution 
of the RF was consistent with changes in albedo, except for data losses 

caused by the MODIS DSR product. 
The average RF for each city is listed in Table 6. The 33-year average 

RF value of all cities was negative (approximately − 7.757 W/m2). 
Foshan had the most negative RF (− 29.359 W/m2), while Beijing had 
the least negative RF (− 0.475 W/m2). Ignoring factors such as anthro
pogenic heat emissions, the urbanization process has a cooling effect on 
cities from an albedo perspective. 

Moreover, we also used a piecewise regression approach (Chen et al., 
2014; Wang et al., 2011) to detect possible turning points (TPs) in the 
inter-annual changes in annual mean albedo of the study areas from 
1986 to 2018. The RF caused by changes in albedo before and after a 
possible TP in each city is also listed in Table 6. Cities such as Wuhan 
exhibited positive RFs before a possible TP, then negative RFs afterward; 
however, Foshan exhibited negative RFs both before and after a possible 
TP. These results indicate that with urban development in a city, the RF 
may first turn positive and then negative. 

In addition, the biogeophysical impacts of albedo fluctuations should 
be considered in climate model simulations. Insolation budgets affected 
by changes in albedo would probably alter the local climate. This could 
include an enhancement of the UHI effect due to a decrease of the 
albedo. 

4. Discussion 

4.1. Albedo estimation method 

The DE method has a high retrieval rate and does not require 
ancillary data inputs, which is preferable for high-resolution satellite 
data with a low frequency of revisit. The algorithm was validated on a 
variety of land cover types and climate regions (He et al., 2017; Liang 
et al., 2005). The validation results had satisfactory estimation accu
racies with RMSEs of less than 0.044 and good temporal continuity for 
albedos estimated from the different Landsat sensors (e.g., TM and OLI) 
(He et al., 2018). The application of the temporal estimations over urban 

Fig. 11. Comparison chart of albedo trend magnitude per decade of each city derived from Landsat at 30 m (left, yellow lines with black ‘*’), Landsat aggregated to 
0.05-degree (middle, red lines with blue ‘*’), and GLASS at 0.05 degree (right, blue lines with red ‘*’). The top and bottom horizontal lines represent 95% and 5% of 
the values respectively. The upper and lower sides of the rectangle correspond to the values of the third quartiles (Q3) and the first quantiles (Q1). The horizontal line 
in the rectangle represents the average of the albedo trend of all pixels. The ‘*’ indicates the albedo trend in the aggregate. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

T. Guo et al.                                                                                                                                                                                                                                     



Remote Sensing of Environment 269 (2022) 112832

14

Fig. 12. The slope of albedo change in different urban classes, corresponding to the urban classes shown in Fig. 7. The red line represents the average value. The 
upper and lower sides of the rectangle correspond to the values of the third quartiles (Q3) and the first quantiles (Q1), respectively. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Region of interest (ROI) in new built-up area in Foshan: (a) Image from Google Earth, white lines represent the boundaries of the city, the red box represents 
ROI; (b) and (c) Detailed map of ROI (red box area shown in (a)) on Google Earth, the number in the upper right corner represents the year of acquisition; (d) Landsat 
ROI albedo change details; (e) GLASS ROI albedo change details; (f) The moving average method was used to show the trend of albedo and NDVI variation of ROI. 
The solid curve corresponds to annual rolling average (using a 5-year moving window). (b), (c), (d) and (e) represent the same area of 1 km2. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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areas should be reliable particularly for temporal analyses. Due to the 
lack of ground measurements of surface albedo over urban areas, an 
unmanned aerial vehicle (UAV) carrying instruments is likely the best 
option for measuring at the fine-scale surface albedo of urban environ
ment at different times (Cao et al., 2018). Baldinelli et al. (2017) used 
albedometer measurements for verification and improved two satellite 
albedo estimation algorithms. In addition, the three-dimensional struc
ture of a city forms a complex system and a well-defined BRDF dataset is 
required to improve the accuracy of urban albedo assessments made 

through modeling. 
Because the temporal distribution of cloud-free Landsat data is 

sparse (only one image every 16 days), we only selected images acquired 
during the summer to avoid possible errors caused by image acquisition 
at different seasons. In the future, more data sources such as the Système 
Probatoire d'Observation de la Terre (SPOT) archive data sets should be 
utilized. Combining multi-source satellite data sets could result in an 
enhanced trend, while the overall tendency (positive or negative) should 
not be affected. 

Fig. 14. Similar to Fig. 13 but for fringe drop zone in Suzhou.  

Fig. 15. Similar to Fig. 13 but for central area in Shanghai.  
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4.2. Time series analysis 

The urbanization process is accompanied by the rapid expansion of 
the imperviousness and shrinkage of natural surfaces, most of which 
have been converted from cropland to built-up land (Table 5). When 
land cover was transformed from a natural surface to urban land, the 
surface albedo increased in 21% of the areas, while it only decreased in 
5% of the areas (Fig. 8). Compared to coarser-resolution MODIS data, 
the Landsat data highlighted the impacts of small-scale land cover 
changes on albedo. Indeed. there is an urgent need to better identify 
which are the main drivers behind this land cover change process in 
relation to albedo as a reference for future albedo modification that are 
in line with expected recommendations. 

The trends derived from the Landsat and GLASS data were generally 
similar in most regions. However, the absolute slopes estimated from the 
high-resolution Landsat albedo were larger than those estimated from 
the coarse-resolution GLASS albedo. Coarse-resolution data, especially 
products with kilometer-scale resolution, cannot reflect the distribution 
of albedo and its temporal changes at an urban block scale. The positive 

Fig. 16. 1986–2018 radiative forcing caused by albedo change.  

Table 6 
Average Radiative Forcing (W/m2) from 1986 to 2018, before and after the 
possible TP.  

City Names Whole Area RF TP RF before TP RF after TP 

Shanghai − 7.259 1996 − 4.794 − 2.465 
Beijing − 0.475 1993 5.401 − 5.877 
Shenzhen − 15.029 2009 − 15.224 0.195 
Suzhou − 6.164 2006 − 10.505 4.341 
Wuhan − 0.542 1990 3.271 − 3.813 
Qingdao − 14.523 2008 − 4.691 − 9.837 
Shenyang − 12.336 1990 − 3.379 − 8.957 
Dongguan − 18.043 2012 − 9.529 − 8.514 
Foshan − 29.359 2007 − 16.251 − 13.108 
Wuxi − 7.054 1991 − 12.563 5.509 
Anshan − 4.760 2008 4.429 − 9.189 
Total Average − 7.757     
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and negative changes in high-resolution and small-scale observations 
could hide each other in coarse-resolution observations. The trends 
derived from the GLASS and Landsat data were the same because the 
albedo is a linearly process that can be scaled at various temporal and 
spatial resolutions. However, the average values of the trends obtained 
from datasets with different resolutions cannot be calculated by simply 
using linear scale conversion, because of the non-linear relationship/ 
process in the estimation algorithm. The scale issue is rather complex 
and requires further investigation. 

This study only discussed the relationship between land surface al
bedo and land cover in cities. However, changes in albedo could be 
influenced by other factors (tree canopy cover, surface materials etc.). 
Future research work should explore the detection versus attribution 
factors that are the main drivers of albedo changes. This will reinforce 
our understanding of the influence of surface albedo on regional and 
global climate change. In addition, the relationship between urban al
bedo and urban canopy structure should be investigated by introducing 
the Digital Surface Model (DSM) (Landier et al., 2016; Mohajeri et al., 
2019). The combined impacts of the urban landscape and albedo 
changes on urban microenvironments should also be investigated 
(Alchapar and Correa, 2016; Morini et al., 2018; Xu et al., 2020). Earth 
observations can also provide constraints for the radiative description of 
urban surfaces for numerical studies of surface energy flux or for urban 
climate models that simulate energy exchange in complex urban 
canopies. 

Comparing the stage of urban development and the changes in the 
city's albedo, we observed that cities with medium-sized populations 
generally exhibited faster increase in albedo. Owing to the different 
levels of heterogeneity among cities, it is difficult to classify them based 
on a single indicator. Analyzing the temporal changes in albedo and the 
difference in RF before and after a turning point yielded some interesting 
recurring features. Provided that most cities in China will continue to 
expand according to the current scenario, urban albedo in general 
should follow the same trend, which involves an initial decrease fol
lowed by an increase, and yields a negative contribution to RF. 

5. Conclusion 

In this study, we refined the method previously used for estimating 
the instantaneous surface albedo to derive the daily average albedo from 
Landsat data. The use of daily average albedos can offset the influence of 
TM orbit drift on the albedo trend to a certain degree. This further 
allowed us to explore the inter-annual changes of the surface albedo. 

We used both Landsat and GLASS data to quantitatively assess the 
surface albedo trends in various districts of expanding cities in China 
during the same time period. We found that Landsat data exhibited a 
larger albedo trend magnitude (3–4 times on average) compared to 
GLASS data. As expected, the coarse-resolution satellite data under
estimated the actual changes due to the spatial heterogeneity of the 
urban land surface. The findings revealed an increase in albedo of 
+0.0044 per decade (based on Landsat) in the study areas from 1986 to 
2018, with an average radiative forcing of − 7.757 W/m2. Decreases in 
absorbed solar energy means that urbanization has a cooling effect. Such 
an increase in surface albedo rise is linked to the conversion of land 
cover types during urbanization. The conversion of natural surfaces to 
bright and sparse buildings leads to an increase in albedo. However, the 
conversion of natural surfaces to dark and dense buildings reduces the 
albedo. Accompanying the development of cities, increases in urban 
green areas will also cause a decrease in surface albedo. In the lifetime of 
an expanding city, the associated albedo exhibits a reduction before 
reaching a peak. 

In summary, the main goal of this study was to address the knowl
edge gap regarding changes in surface albedo in 11 Chinese cities over 
the past 33 years, as well as the relationship between albedo and land 
cover characteristics. This study offers an analysis of high-resolution 
satellite data to better understand how the albedo of cities at different 

development stages and from contrasting climatic zones varies over an 
extended period of time. Understanding the spatiotemporal differences 
in albedo maps will help us perform additional research on urban 
climate change and UHIs, as they can produce major issues for health of 
the residents. This study also provides a useful tool for managing energy 
consumption over cities undergoing permanent land cover 
transformations. 
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