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Abstract
Contrastive learning enables learning useful audio and speech
representations without ground-truth labels by maximizing the
similarity between latent representations of similar signal seg-
ments. In this framework various data augmentation techniques
are usually exploited to help enforce desired invariances within
the learned representations, improving performance on various
audio tasks thanks to more robust embeddings. Now, selecting
the most relevant augmentations has proven crucial for better
downstream performances. Thus, this work introduces a condi-
tional independance-based method which allows for automati-
cally selecting a suitable distribution on the choice of augmenta-
tions and their parametrization from a set of predefined ones, for
contrastive self-supervised pre-training. This is performed with
respect to a downstream task of interest, hence saving a costly
hyper-parameter search. Experiments performed on two differ-
ent downstream tasks validate the proposed approach showing
better results than experimenting without augmentation or with
baseline augmentations. We furthermore conduct a qualitative
analysis of the automatically selected augmentations and their
variation according to the considered final downstream dataset.
Index Terms: self-supervised learning, data augmentation.

1. Introduction and related works
Self-supervised learning (SSL) enables the use of large
amounts of unlabeled data to obtain substantial performance
improvements in a wide range of downstream tasks, without
relying on costly and maybe imprecise manual annotations.
Various approaches have thus been introduced and applied to
speech data, including predictive coding [1, 2], multi-task learn-
ing [3, 4], encoding techniques [5] or contrastive learning [6, 7].

Contrastive Learning. Specifically, contrastive learning is
one of the leading paradigms in speech self-supervised repre-
sentation learning, especially towards solving paralinguistic
classification tasks [8, 9]. COLA (COntrastive Learning
for Audio) [6] is an audio-adapted version of these models.
It consists in learning representations through assigning
high-similarity to segments extracted from the same audio
file and low-similarity to segments from different files. The
learned representations are then fed to downstream models
solving tasks. However, unlike similar approaches in the
computer vision literature [10], COLA does not explore the
use of data augmentation to enforce further invariances in the
representations. This work explores this use and its variation
with the considered downtream task.

Data augmentation in SSL settings. In this context, the cre-
ation of different versions, often called ”views”, of a given
data point through data augmentation is an essential part of

various self-supervised approaches [10, 11]. On speech data,
Kharitonov and al. [12] have shown that using data augmen-
tation to alter the data during Contrastive Predictive Coding
(CPC) [13, 14] training improves the downstream ASR perfor-
mance. Two works may be considered as close to the purpose
of this paper. First, in image classification settings, adapting the
augmentation distribution used in the contrastive pretraining to
the downstream classification task has proven effective [15, 16].
This is particularly true when certain differences, to which the
representations are trained to be invariant, are crucial for distin-
guishing the downstream classes. Second, experiments led on
contrastive representations (COLA based) on sound classifica-
tion show that augmenting the cut segments leads to better re-
sults, and that the set of best performing augmentations is down-
stream task dependent [17]. Nonetheless, while ablation studies
are conducted on the selected augmentations, no prior justifica-
tion of the choices are developed, making the selection relying
on computationally heavy empirical exploration. Finally, a few
works have attempted to define how views should be created
in contrastive learning settings [18, 19], and thus which and
how augmentations should be used. However, and to the best
of our knowledge, there is no attempt to theoretically motivate
data augmentation in self-supervised settings on speech or au-
dio data. This work will rely on COLA approach as it is one of
the closest to vanilla contrastive learning, and it did not explore
the use of data augmentation on speech. It is, nonetheless, per-
fectly transferable to other contrastive approaches. If we were
to rely only on empirical testing, evaluating a single set of aug-
mentation distribution would require two full trainings. In the
specific case of this paper, a single pretraining takes 2 days on
a V100 GPU. The method we present prevents this, allowing
for an efficient selection of an appropriate data augmentation
distribution. The contributions of this work are thus threefold :

1. To highlight the impact of data augmentation on con-
trastive self-supervised speech representation learning.

2. To propose a method that selects a distribution on the
choice of augmentations and their parametrization ac-
cording to the downstream task of interest, validated on
two different downstream tasks. The selected augmenta-
tions are qualitatively linked to the recording conditions.

3. To release the code base, implemented with SpeechBrain
[20] for replication and further improvements. 1

Figure 1 presents an overview of the led experiments,
summarizing the three steps conducted for every downstream
task. First, an augmentation distribution is selected (Section
2). Second, representations are learned through contrastive pre-
training using the selected augmentation distribution (Section

1https://github.com/salah-zaiem/augmentations
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Figure 1: The three steps of the validation process. (a) select the best augmentation distribution. (b) contrastive pretraining alterating
the input points with the selected augmentation. (c) use the learned speech representations as input for downstream finetuning.

3.1). Finally, the learned representations are fed to the down-
stream model to solve the considered task (Section 3.2).

2. Selecting the Augmentation Distribution
This section details the method developed to find a data aug-
mentation distribution for the contrastive learning part, suitable
to the final downstream task of interest. It starts by detailing the
theoretical motivations behind the method, before delving into
the technical details of the implementation.

2.1. Theoretical Motivation

During self-supervised training, the representations are learned
through solving automatically generated pretext tasks. Lee and
al. [21] theoretically proved a link between the downstream
task performance and the conditional independence (CI) be-
tween the pretext task labels and the training samples given the
downstream labels. In previous works [22, 4], we have shown
that this relation holds even without the theoretical assumptions
in [21], introducing a practical method to compute the condi-
tional independence. Precisely, let X , Y and Z be, respec-
tively, the downstream data points, the downstream labels and
the pretext labels whose prediction is used as a pretext task. We
have shown that the more is Z conditionally independent of X
given Y , the more using the prediction of Z as a pretext task
leads to a better downstream performance. To quantify the util-
ity of a given pretext task, we use the kernelized independence
test Hilbert Schmidt Independence Criterion (HSIC) [23]. Intu-
itively, the HSIC value is high if similar speech samples have
similar pretext labels. The more the HSIC value is high, the
more dependent are X and Z conditionally on Y . In [22, 4],
we demonstrated that choosing the pretext labels Z minimizing
HSIC(Z,X|Y ) leads to better downstream performances.

In this work, we extend these findings to the contrastive
learning settings through the following steps. First, the key con-
sists in considering that in the contrastive learning setting, the
pretext task of assigning high similarity to segments originating
from the same file can be seen as the prediction, given a random
augmented segment, of the file it was generated from. An aug-
mentation distribution τ is defined by a set of parameters defin-

ing how a chain of augmentations is sampled during training to
be applied to the upcoming data points. More precisely, every
distribution τ is represented as a vector of P = 14 parameters,
where every parameter (τ(p))1≤p≤P is either the probability of
applying an augmentation or a boundary for a uniform law from
which a augmentation’s internal parameter (e.g. room scale) is
sampled. With X the speech samples and τ a distribution of
augmentations, we define X ′ = f(X, τ) with f a function that
randomly cuts segments from the speech samples and applies
augmentations sampled from τ on them. Given a downstream
dataset of samples (X,Y ) and an augmentation distribution τ ,
we can generate N augmented segments per speech sample to
get the augmented set of data points X ′. To find the optimal
augmentation distribution τ∗ we resort to minimizing the HSIC
quantity with the augmented dataset X ′ = f(X, τ) according
to:

τ∗ = argmin
τ

HSIC(f(X, τ), Z|Y ) (1)

with (X,Y ) the downstream datapoints and labels, and Z the
pretext labels corresponding here for every augmented view of a
speech sample to the ID of the speech sample it originates from.

2.2. Implementation

In this work, we chose to limit ourselves to the set of augmen-
tations used in [12] for two reasons. First, they have shown
effective with the contrastive predictive coding approach im-
proving the final discrimination performances. Second, they
are easily implemented within PyTorch using the WavAug-
ment library. Hence, five augmentations are considered: time
dropping[24], pitch shifting [25], reverberation, clipping and
band rejection[24]. The first parameters concern the probability
of applying each one of the considered augmentations. The sec-
ond set of parameters are related to those of the chosen augmen-
tations in terms of signal effects; these are described in Table 1.

Since the considered augmentations are not differentiable,
to minimize the HSIC test described above, we resort to a ran-
dom search, sampling random distributions and selecting the
one with the lowest dependance scoring. It is important to note
here, that this phase does not involve any training, and is largely
more efficient than thorough testing of the distributions, as a



computation takes 3 hours on 20 CPUs. More precisely, for
every considered downstream task, we first sample p = 100
parametrizations (τi)i∈[1,p]. For every parametrization τi, we
compute the HSIC quantity in Eq.(1) following two steps. First,
computing the augmented set X ′

i = f(X, τi), by computing
N = 20 views of every speech sample in X . Then, com-
puting HSIC(X ′, Z|Y ) following the technique described in
[22]. For every downstream task, the augmentation distribution
with the lowest conditional dependance value is selected and
will be used during the pretraining to train the encoder that will
be exploited as a feature extractor in the downstream training.

Table 1: Parameters considered, descriptions and ranges

Name Description Range

Room scale min Min room size [0,30]
Room scale max Max room size [30,100]
Band Scaler Scales the rejected band [0,1]
Pitch Shift Max Amplitude of a pitch shift [150,450]
Pitch Quick pr. Speeds pitch shifting [0,1]
Clip Min Minimal clip factor [0.3, 0.6]
Clip Max Maximal clip factor [0.6, 1]
Timedrop max Size of a time dropout [30-150] ms

3. Experimental setup
This section describes the experiments led to validate the pro-
posed approach and the selected augmentation distributions. It
starts by describing the details of the contrastive learning phase
before reporting the downstream finetuning conditions.

3.1. Contrastive Learning

As shown in Figure 1, during the contrastive pre-training, we
start by extracting two random segments from every speech
sample of a given batch. These segments are then alterated us-
ing the considered augmentation distribution before being fed
to the encoder. Our pretraining model takes as input the speech
samples as 64-Mel band spectrograms. The frame size is 25ms
and hop size 10ms. As in COLA, the encoder is an EfficientNet-
B0 [26], a lightweight convolutional neural network. We cut
from the input speech samples 1-second long segments that
are augmented using the considered augmentation distribution.
Fixing the length of the extracted segments allows the use of
EfficientNet-B0 even though it has been originally proposed for
computer vision, as fixed length Mel-spectrograms have a 2D
structure similar to image inputs. The encoder applies a global
time-pooling at its final layer to get a 1280-dimensioned em-
bedding h that represents the whole segment and that will be
the one used for downstream finetuning. During the pretrain-
ing phase, this embedding is then projected with a dense layer
followed by a layer normalization and a hyperbolic tangent ac-
tivation to a 512-sized vector v. Learning consists in maximiz-
ing the similarity of segments originating from the same file,
while minimizing that of those that do not. As suggested by
the final results obtained with COLA, the similarity is com-
puted using the bilinear similarity. More precisely, if g is the
function regrouping the encoder and the projection head, x1

and x2 two speech segments and W the bilinear parameters,
then the similarity function is s(x1, x2) = g(x1)

T W g(x2).
The input is a batch of size B of distinct speech files that we
denote (xi)i∈[1,B], and a selected augmentation distribution τ
from which we can sample at each iteration two augmentation
functions Aτ and A′

τ . From each speech sample, two random
segments of length 1 second are cut. The first is altered using
Aτ while the second undergoes the A′

τ alteration, leading to

two sets (x̃i)i∈[1,B] and (x̃′
i)i∈[1,B]. Finally, the loss function

for pretraining is the multi-class cross entropy over the bilinear
similarity scores:

L = − log
es(x̃i,x̃

′
i)

es(x̃i,x̃
′
i) +

∑
j ̸=i e

s(x̃i,x̃
′
j)
. (2)

Pretraining dataset. The train set of the English Common
Voice dataset (version 8.0) [27] is used for SSL pretraining
(2185 hours). Common Voice is a collection of speech utter-
ances from worldwide users recording themselves from their
own devices. Hence, the closeness to natural settings makes
it a suitable choice for self-supervised learning. We remove
from Common Voice the sentences lasting more than 10 sec-
onds, as they often contain long silence parts due to open micro-
phones. It is important to note that since the COLA embeddings
were originally introduced to set non-speech tasks as well, they
were trained on AudioSet [28], which contains speech and non-
speech utterances. Since we will be only working on speech
downstream tasks, we chose to use a speech-only pretraining.
We also use a 1024 batch size. All the models are pre-trained
for 100 epochs with ADAM and a 10−4 learning rate.

3.2. Downstream finetuning

Two downstream tasks are considered in this work: speaker
identification and language identification. Two reasons moti-
vate this choice. First, among the list of tasks COLA was ap-
plied on, we chose the two downstream tasks exhibiting the
largest room for improvement. Second, we wanted two tasks
that would require different aspects of the considered speech
signal, thus maybe requiring different sets of augmentations.
A study validating this assumption is provided in Section 4.1.
VoxCeleb1 [29] is used for the speaker recognition task. The
training set contains 148, 642 utterances from 1251 different
speakers. We use the available identification split for testing.
VoxForge [30] is used for language identification. 6 European
languages are present in the 176,438 samples of the dataset, two
tenths are kept for validation and testing.

During the downstream finetuning the projection head is
discarded and replaced with a linear classifier directly on top
of the encoder. The contrastive encoder is frozen during the
finetuning phase as we want it to be used solely as a fixed fea-
ture extractor to properly assess the impact of our data augmen-
tation selection on the obtained representation. In the COLA
paper, the final class prediction is obtained through averaging
the predictions of non-overlapping cut segments of a given test
utterance. However, we found it more effective to use the mean
over the embeddings of overlapping segments. We proceed in
this manner: during training and testing, we cut a 1-s long seg-
ment every 200ms , encode every segment separately, and then
use the mean over the encoded representations as a sequence
embedding to the classifier. We train on the downstream task
for 10 epochs with ADAM with a 10−3 learning rate and the
additive angular margin loss [31] with margin 0.2 and scale 30.

4. Results and Discussion
Table 2 shows the results obtained on the two considered down-
stream tasks. The “COLA” column shows the results obtained
in the original paper. The “Without” column is our implemen-
tation of the algorithm without any augmentation during pre-
training. “Basic” shows the results reached using the baseline
WavAugment augmentation parameters. Finally, the results ob-
tained using the augmentation choice based on the proposed
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Figure 2: Difference of the probability of picking an augmentation between the best and worst scoring augmentations, depending on the
downstream dataset. Green bars show augmentations that are more likely to get picked for the best scoring distributions for that task.
For instance, the far right bars indicate that clipping is an encouraged augmentation on VoxForge, and is discouraged on VoxCeleb1.

technique can be found in the “Selected” column. The first
observation is that the selected augmentation technique outper-
forms the baselines on the two considered tasks. For speaker
identification, the accuracy obtained with the selected distribu-
tion is 46% higher than the non-augmented COLA, and 4%
higher than the baseline augmentations. An important point
is that in the baseline augmentation setup (i.e. “Basic”), all
the augmentations are systematically performed on the input
points, thus considerably slowing the pretraining. Indeed, with
WavAugment augmentations being CPU-processed, we wit-
nessed that dividing by half the conducted augmentations by
lowering their probability, leads to 20% faster trainings.

4.1. Discussion

In this part, we will discuss the automatically selected data aug-
mentations, and analyze their dependence on the downstream
dataset. We will study first the dependence of the probabili-
ties of applying a given augmentation according to the down-
stream dataset of interest. Then, we will consider the choice of
a few interpretable parameters. This is done through the follow-
ing procedure: for every downstream task, we start by selecting
k = 10 best and worst augmentation distributions according to
our HSIC scoring. The “Mean Extremal Difference” or “MED”
is finally obtained by computing the difference between the two
means originating from these two groups i.e., best and worst.
More precisely, for an augmentation parameter p:

MED(p) =
1

k
(

k∑
i=0

τ best
i (p)− τworst

i (p)) (3)

with τ best
i being the i-th best distribution, τworst

i being the i-th
worst and τ(p) being the value of parameter p in τ .

Figure ?? depicts these values for the probabilities of apply-
ing each of the five considered alterations in this work. Green
bar means are for positive values, indicating that this augmenta-
tion is more likely to be applied in the supposedly best distribu-
tions. We observe that clipping and reverberation are more se-
lected for language identification on VoxForge than for speaker
identification on VoxCeleb. We think that this is mainly due to
the type of recording rather than to the nature of the task. Vox-
Forge samples come from individual contributors that record
themselves speaking their native language. The varying record-
ing conditions lead to clipping or heavy reverberation issues,
which may be the reason behind the selection of these augmen-
tations in this case. Figure 3 shows the mean difference de-
fined above on 3 parameters, which are time dropping and room
scale boundaries. Concerning reverberation, it is worth noting
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Figure 3: MED for selected parameters, for every downstream
task. Reverb room sizes are coherent with the difference in
recording conditions between the two datasets.

Table 2: Results for the two considered downstream tasks.
COLA column shows the result of the original paper. ”Basic”
shows the result with the basic WavAugment recipe. ”Selected”
shows our approach results.

Down. Task COLA Our Implementations
Without Basic Selected

Language ID 71.3 84.9 84.3 85.2
Speaker ID 29.9 32.0 45.1 46.9

that room scales are smaller for VoxForge than for VoxCeleb1,
which is once again coherent with the recording conditions, as
the first ones are recorded at home, compared to studio condi-
tions. Samples of augmented speech files with various distribu-
tions are provided for quantitative comparison by the readers.2
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6. Conclusion
Self-supervised learning of speech representations is a com-
putationally intensive technology, especially when using data
augmentation within contrastive schemes. We introduced a
novel informed method enabling the automatic selection and
parametrization of the crucial data augmentation pipeline. Our
findings open a range of possibilities in signal alterations explo-
ration for self-supervision.

2salah-zaiem.github.io/augmentedsamples/
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