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Abstract Plagioclase feldspars are key components of terrestrial planets and deriving their
phase diagram and activity-composition relations has been the subject of many studies.
Three main approaches have been used for thermodynamic modelling of the behaviour of
plagioclase feldspars, and all three broadly disagree in terms of the magnitude and relative
importance of mixing energies and ordering energies.

This study uses Monte-Carlo simulations based on classical atomistic modelling to pro-
vide independent constraints over ordering and mixing for anorthite and along its solid so-
lution with albite.

Unsurprisingly, Al avoidance plays a key role. The competition between first-neighbour
and second-neighbour interactions is highlighted, providing simple explanations to the high
degree of short-range order in macroscopically-disordered plagioclase. The mixing proper-
ties obtained in this study support strong non-ideality, with negative mixing enthalpy and
temperature-dependent mixing entropy. Ordering energies are consistent with studies using
Landau theory. Unfortunately the form of the Landau equations hindered parametrisation
of a full thermodynamic model from albite to anorthite, even though the thermodynamic
formalism remains simple. Reasons, perspectives and implications for the phase diagram of
ternary feldspars are discussed.

Keywords Plagioclase · Landau theory · atomistic modelling · ordering · Al-avoidance

1 Introduction: thermodynamic modelling of plagioclase feldspars

Plagioclase feldspars are major constituents of the crust of terrestrial planets and their satel-
lites, including Earth, the Moon, Venus and Mercury (e.g., Namur et al., 2011; Fegley
et al., 1992; Namur and Charlier, 2017). Composition variations along the albite (ideally
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NaAlSi3O8) to anorthite (ideally CaAl2Si2O8) solid solution depend on pressure-temperature
conditions of crystallisation, making plagioclase a key mineral for reconstruction of pressure-
temperature paths of high-grade metamorphic rocks as well as of the evolution of magmatic
rocks.

Within this solid solution, cation exchange (Na+ + Si4+ = Ca2+ + Al3+) takes place into
minerals with different structures and mutually incompatible Al-Si ordering patterns. Deriv-
ing a complete phase diagram for plagioclase has been a challenging task and the version
proposed by Carpenter (1994) has not been significantly modified. The low-temperature part
remains mysterious as the incommensurately modulated ’e’ structures and their thermody-
namic stability are poorly understood, although evidence for the low-temperature closure
of the Bøggild gap is growing (Jin and Xu, 2017; Jin et al., 2021). The main features of
the phase diagram at lithospheric temperatures are briefly outlined below and the reader is
referred to Carpenter (1994) for more details.

Phase transitions within solid solutions are of primary importance in silicates but com-
plicate thermodynamic modelling. Three main modelling approaches have been followed
for plagioclase feldspars:

– assuming a continuous solid solution and discarding phase transitions (e.g., Ghiorso,
1984; Benisek et al., 2004, 2010; Namur et al., 2012), using a non-ideal mixing model
to reproduce calorimetric and/or phase equilibrium constraints.

– treating each structure as separate solid solutions (one solid solution for C1̄, one for I1̄).
This requires four end-members, two of which are virtual (i.e. C1̄ anorthite and I1̄ albite,
forming ’Darken’s quadratic formalism’, see Holland and Powell, 1992). The transition
from one structure to the other follows the structure with the lowest Gibbs energy.

– using the ’true’ end-members in their equilibrium state and adding an energetic cost
linked to ordering. Carpenter (1988) has shown that Landau theory, which provides a
theoretical framework for phase transitions, may be parametrized on the basis of calori-
metric measurements to do so.

Holland and Powell (1992) have compared the second and third approaches to conclude
that the approach based on Landau theory does not perform as well as Darken’s quadratic
formalism. Using phase equilibria experiments (in particular from Elkins and Grove, 1990)
and cation-exchange data (Orville, 1972; Schliestedt and Johannes, 1990), Holland et al.
proposed activity models relying on near-ideal mixing between albite and anorthite, with
WGAb−An ∼ 0 at 1300°C in the most recent model with ASF (ASymmetric Formalism; Hol-
land and Powell, 1992, 2003; Holland et al., 2022). In agreement, the small volume differ-
ence (∼ 0.3%) between high albite and anorthite suggests symmetric mixing and meets the
criteria set by Kerrick and Darken (1975) for ideality.

But in a critical review of the experiments of Elkins and Grove (1990), Benisek et al.
(2010) retrieved a mixing model based on calorimetry, using non-ideal mixing between al-
bite and anorthite, with large and positive mixing enthalpy and entropy resulting in WGAb−An =
14 and WGAn−Ab = 6 kJ (also at 1300°C). This derivation assumes generalized disordering
and gives a good fit to natural samples, yielding much lower K content in plagioclase (ap-
proaching zero above An60) and lower Ca content near the orthoclase end-member. Authors
suggest that their model is superior because it is based on more direct measurements of the
mixing properties. Yet, the earlier work using Landau theory (summarised by Carpenter,
1994) parametrised on the basis of structural measurements and calorimetry also offers a
very different perspective, where mixing is very non-ideal, with large, negative and asym-
metrical mixing enthalpy along albite-anorthite combined to large ordering enthalpy for
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anorthite. The non-ideality parameters of Carpenter (1992) in the C1̄ domain at 1300°C are
WGAb−An =−82 and WGAn−Ab = 4 kJ.

Striking inconsistencies remain between these models. This contribution aims at provid-
ing independent constraints on the thermodynamics of ordering and mixing in anorthite and
its solid solution with albite. A classical Monte-Carlo simulation approach was selected for
its flexibility and applicability to structures sufficiently large to model short and long-range
ordering, building on previous work such as the two-dimensional model of Vinograd and
Putnis (2001). Emphasis is placed on linking cation distribution to mixing properties. The
enthalpy and configurational entropy of ordering are evaluated along the albite-anorthite
solid solution and compared to models using Landau theory.

Below, the anorthite content of plagioclase is reported as XCa =
Ca

Ca+Na . XAn and XAb
represent the thermodynamic mole fractions used as ideal activities of the anorthite and
albite end-members.

2 Albite to anorthite: ordering and phase transitions within a solid solution

Albite and anorthite have three-dimensional framework structures, shown in Fig. 1 empha-
sizing tetrahedra. Albite is monoclinic (C2/m structure) above 978°C and triclinic below
(Fig. 1 A: C1̄ structure from Harlow and Brown, 1980), with four tetrahedral (T) sites noted
T1o, T1m, T2o and T2m (o standing for original and m for mirror). Anorthite is triclinic
with I1̄ structure above ∼200°C and P1̄ below (Fig. 1 B from Angel et al., 1990), with 16 T
sites, 8 of T1 type and 8 of T2 type. The labelling in Fig. 1 B) is that of Angel et al. (1990)
and allows distinguishing between ’i’ sites becoming equivalent under I1̄ symmetry and ’z’
sites becoming equivalent under C1̄ symmetry. In the albite-anorthite solid solution, the tem-
perature of the C1̄ ⇀↽ I1̄ transition increases linearly with anorthite content and extrapolates
to ∼2320°C for anorthite (above its melting point, Carpenter and McConnell, 1984).

Many studies have shown that these phase transitions are linked to Si-Al ordering and
particularly ’Al avoidance’ – where Al atoms are located as far from one another as possible,
keeping energetically costly Al-O-Al bonds to a minimum.

The P1̄ ⇀↽ I1̄ transition is displacive (Carpenter, 1988; Angel et al., 1990), and the ar-
rangement and linkages of the tetrahedra is identical in P1̄, I1̄ and C1̄ feldspars as shown
in Fig. 1. Each T site has four first-neighbour tetrahedra, each of these connected to three
more tetrahedra, but there are only 10 (not 12) second-neighbour tetrahedra as two of the
second-neighbours are linked to the same first-neighbours (Fig. 1C). Normalising to the
usual AT4O8 basis, with A the Ca-Na site, the arrangement of the 4 tetrahedra, with 4 first-
neighbours each, yields a total of 8 pairs of first-neighbours (i.e. 8 T-O-T bonds) per formula
unit (p.f.u.). Similarly, the 40 second-neighbours p.f.u. make 20 second-neighbour linkages
p.f.u.

The pattern of Al occupation is fundamentally different between the ordered varieties
of feldspars. Al occupies almost exclusively T1o in low albite but it is evenly distributed
between the T1 and T2 subtypes in ordered anorthite. There are no Al-O-Al bonds in either
case: in ordered anorthite each Al atom has 4 Si neighbours (nSi−O−Al = 8 p.f.u.), ordered
albite has 4 Si-O-Al and 4 Si-O-Si bonds p.f.u. The number of second-neighbour Al-Al pairs
increases from 0.5 p.f.u. in low albite (as T1o has only one T1o out of 10 second neighbours,
Fig. 1C) to 10 p.f.u. in ordered anorthite (half the 20 linkages p.f.u.). Disordered varieties
also differ: fully disordered albite has 0.5 Al-O-Al, 3 Si-O-Al and 4.5 Si-O-Si bonds p.f.u.
on average, fully disordered anorthite has 2 Al-O-Al, 4 Si-O-Al and 2 Si-O-Si bonds p.f.u.
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Fig. 1 Structures of C1̄ albite (A, after Harlow and Brown, 1980) and P1̄ anorthite (B, after Angel et al.,
1990), showing unit cells. Tetrahedra of T1 type are labelled in white, in black for T2 sites. The labelling is
kept to a minimum for readability. In ordered albite and anorthite, gray tetrahedra are filled with Al, pale yel-
low tetrahedra with Si. Note that there are no Al-O-Al bonds in either case, and no Al-Si second-neighbours
in anorthite. Sodium is purple in A and calcium green in B. C Local environment of a T1o tetrahedron (dark
red), with four tetrahedra as first-neighbours (brown) and ten as second-neighbours (pale beige). Note the two
tetrahedra with pink edges, each connecting two first-neighbours to the central T1o. C) applies to albite, anor-
thite and their solid solution. Oxygen atoms not depicted. Drawn with the help of Jmol (http://www.jmol.org/).

on average. These values represent random Al-Si distribution, possibly never met in nature
even for high albite (Prewitt et al., 1976) and certainly not for anorthite (Phillips et al., 1992).

Consequently, disordering affects the nature of first and second neighbours differently
with varying anorthite content. If neighbouring Al and Si atoms are allowed to swap posi-
tions to model disordering, in albite the number of second-neighbour Al-Al pairs increases
before that of Al-O-Al bonds: for example exchanging Al in T1o with Si in T2o results in
one additional second-neighbour Al-Al pair, but no Al-O-Al bonds. In anorthite, disorder-
ing will necessarily increase Al-O-Al bonds and decrease second-neighbour Al-Al pairs,
meaning that the energetic penalty of creating Al-O-Al bonds will be modified by the joint
disappearance of Al-O-T-O-Al linkages. For example, a single exchange of neighbouring
Si and Al creates three Al-O-Al bonds but decreases the number of second-neighbours Al
atoms by 10. This competition effect is significant for disordering of plagioclase feldspars as
second-neighbour interactions are numerous, even though about ten times less energetically
costly than first-neighbour interactions (e.g., Vinograd et al., 2001; Bosenick et al., 2001,
and this study).

An order parameter Qod is generally used to estimate the state of Al-Si ordering, but the
mutually incompatible ordering patterns of albite and anorthite complicate defining an order
parameter for their solid solution. Here, the definition of Angel et al. (1990) is retained for
albite and anorthite: Qod =< Al >Al −< Al >Si, with < Al >Al the average occupancy by
Al of the Al-rich sites and < Al >Si the average occupancy by Al of Si-rich sites (see Fig.
1A-B). In randomly-disordered albite and anorthite, Qod is zero. In anti-ordered anorthite
(with Al occupying all of the Si sites and Si in the Al sites), Qod =−1; if Al was to occupy
a Si site in albite, Qod would be −1/3. Qod is an average, ”macroscopic” parameter and
Qod = 0 does not necessarily imply random cation distribution as short-range order may
remain.

Other schemes may be used to estimate the ordering state, such as the difference between
Al occupancy of the T1 sites for albite (a measure of C1̄ ordering, here noted QAb

od , see e.g.
Salje, 1985; Salje et al., 1985; Tribaudino et al., 2018; Kroll et al., 2020). QAb

od applies to
K feldspar (e.g., Holland and Powell, 1996) but is ill-suited to anorthite because QAb

od = 0
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in both ordered and randomly-disordered anorthite. Holland et al. (2022) combine QAb
od to

a Qt = XT1
Al − XT2

Al parameter, obtaining QAb
od = 0 and Qt = 1 for ordered anorthite with

their 2Q model. However, this is inconsistent with the ordering pattern of anorthite (Fig. 1B
where Qt = 0) and implies Al-O-Al bonds through T1-T1 linkages, following erroneous site
repartition for their ordered anorthite end-member ’oan’.

Here Qod is only evaluated for end-members because site occupancies could not be
strictly defined for the ordered varieties with intermediate composition.

The temperature-dependence of the I1̄ ⇀↽ P1̄ and C1̄ ⇀↽ I1̄ transitions for anorthite-rich
plagioclase and previous work on anorthite show that these phase transitions are essen-
tially tricritical in character, yet there has been fluctuations around the exact order of the
phase transitions. Carpenter (1988) suggested that these transitions become second-order if
a small amount of Na is incorporated, consistent with changes of the Al-Si order state inher-
ited from crystallisation or heat treatment. It has been subsequently noted that a first-order
approximation for anorthite, becoming tricritical with increasing Na content, gives a much
more favourable fit to the measured degree of ordering (Carpenter, 1988; Angel et al., 1990;
Carpenter, 1992, 1994). Salje (1987) and Redfern and Salje (1987) provide further explana-
tions at lattice and Brillouin zone scale for this behaviour, which remains in favour of the
essentially tricritical character of these transitions.

3 Atomistic modelling

Atomistic modelling with the Js approach has been selected as it is well suited to the prob-
lems of cation ordering and solid solutions, allowing fast Monte-Carlo simulations over
structures containing thousands of atoms and bringing constraints at the resolution required
to petrology (e.g., Lanari and Duesterhoeft, 2018). The method is thoroughly reviewed and
detailed by Dove (2001) and Bosenick et al. (2001). Twenty years after these reviews, com-
puting capacities have dramatically increased and Monte-Carlo simulations are much less
time-consuming, but the method remains cumbersome and has not been applied extensively
to feldspars as research efforts have been devoted to other systems since the early 2000’s.

3.1 The JS method

The Js method attributes an energetic cost to selected bonds or cation neighbours: excess
energies are then estimated from the number of these bonds or neighbours. This approach
results in simplifications and requires a set of interaction parameters (the Js) specific to each
structure and composition; yet it has successfully reproduced ordering in many silicates
and has been adapted in various ways. Each J represents the energy of an interaction –
between Al atoms through Al-O-Al linkages for example – then interactions are summed and
added to a reference energy level (see Eq. 1 below). During the Monte-Carlo simulations,
the structure is fixed and neither strain nor phase transitions are modelled, but the Js may
include a strain energy component. Bosenick et al. (2001) report a compilation of Js for a
number of silicates, including albite and anorthite (from Myers, 1999).

Vinograd and Putnis (2001) provide a simplified model using two values of Js (one
for first neighbour Al-Al J1st

Al−Al, one for second neighbour Al-Al J2nd
Al−Al) on a flat (two-

dimensional) grid analogue of feldspar with varying Si/Al ratio. The Js were fitted to exper-
imental results and to the modelling results of Myers (1999), resulting in J1st

Al−Al ∼ 40 kJ/mol
(0.4eV pfu) for anorthite. Scaling the results of Myers (1999) for albite gives J1st

Al−Al ∼ 57.2
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kJ/mol and J2nd
Al−Al = 9.2 kJ/mol, but Vinograd and Putnis (2001) argue that a larger value

of J2nd
Al−Al ( ∼21 kJ/mole) is necessary to stabilize long-range order in albite. However, ap-

plication of this approach is limited as the connections of albite tetrahedra differ from the
flat analogue of Vinograd and Putnis (2001) where each T site has 4 first-neighbours and
8 second-neighbours instead of 10. Consequently the flat analogue precludes modelling the
preference of Al for the T1o site, an important feature of albite disordering (Kroll et al.,
2020). It is noted that the cluster variation method, a statistical model presented in detail
by Vinograd and Putnis (1999), has given an excellent fit to phase transitions in feldspars
(Vinograd et al., 2001).

Here the GULP software (Gale, 1997; Gale and Rohl, 2003, v. 5.1) has been used to cal-
culate the energy level for a large number of plagioclase structures with different cation dis-
tributions and compositions. Large cell sizes are necessary to model disordered and partly-
ordered structures. The set of Js includes first- and second-neighbour Al interactions, namely
Al-O-Al bonds and Al-O-T-O-Al linkages, in addition to Ca-Si and Na-Ca interactions for
the C1̄ solid solution. The Js are estimated via fitting of the GULP energies after counting
the number of each bond type in each structure with dedicated code. The procedure is simi-
lar for P1̄ anorthite and the C1̄ solid solution, using energy minimization over primitive unit
cells and larger replicates of the unit cell (supercells) to allow disorder. The use of supercells
releases space group symmetry constraints, allowing deformation of bonds when compared
to the ordered structure. A 2×2×2 supercell of albite is larger than 14 Å in every direction,
a value in the range of or larger than the diameter of the strain field around a single defect,
which varies depending on the mineral, site and defect type. Authors argue this length is
around 9 Å for Ti in quartz, at least 20 Å for K in albite, and ∼ 16 Å for La in oxide per-
ovskite (see e.g. Hayward and Salje, 1996; Carpenter et al., 2009, and references therein). It
is noteworthy that strain decreases very quickly away from point defects (e.g., Dubacq and
Plunder, 2018; Figowy et al., 2020, 2021), and that setting a hard limit to the strain field is
somewhat arbitrary.

3.2 Choice of potentials

Interatomic potentials (Table 1) are from Lowitzer et al. (2008) and Sainz-Diaz et al. (2001).
This set of potentials originates mostly from the study of Winkler et al. (1991) and has been
refined to give excellent fits to many silicate structures (e.g., Bosenick et al., 2001; Vinograd
and Sluiter, 2006; Vinograd et al., 2007, 2011; Dubacq et al., 2011), including albite as
emphasized by Lowitzer et al. (2008).

3.3 Derivation of the JS

Albite and the C1̄ albite-anorthite solid solution A set of 1081 GULP simulations has been
used to constrain the Js along the C1̄ albite-anorthite solid solution. Ordered albite (with
Al in T1o) has the lowest energy, with zero Al-O-Al and 0.5 second-neighbour Al atoms
p.f.u. For albitic configurations with Al occupying other T sites (T1m or T2o or T2m),
the numbers of Al-O-Al and Al-O-T-O-Al remain unchanged but these configurations have
higher energies, justifying the need to distinguish between T sites.

Larger cells were used to model structures with varying degrees of order to ensure that a
large range of configurations were sampled, including partially ordered structures, structures
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Fig. 2 Quality of the fit between energy values calculated with GULP and with the Js shown in table 2
for variously-ordered C1̄ structures along the Na-Ca solid solution (A to C) and for P1̄ anorthite (D). All
energy values are expressed p.f.u. A) Comparison of energies relative to that of albite (EAb). B) Comparison
of the energy contribution from the Js compared to GULP energies to which composition-dependent terms
have been removed. C) Residual error and its distribution (right-hand side). D) P1̄ anorthite: comparison of
calculated energies relative to that of ordered anorthite. The grey field shows the domain below 10% error.
The distribution of the residual error is given in inset.

with ordered and anti-ordered domains, and disordered structures with random Si-Al distri-
bution. Configurations that are energetically very unfavourable (with many Al-O-Al bonds)
have also been sampled to evaluate first-neighbour interactions, as well as less unfavourable
structures containing many second-neighbour Al-Al with as little Al-O-Al as possible, to
properly evaluate second-neighbour interactions.

The following equation was used to describe the energy E of variously ordered plagio-
clase feldspars:

E = E0
Ab +XCa∆E0 +(XCa (1−XCa))W +ΣMJs (1)

where E0
Ab is the reference energy level, chosen as that of ordered albite (the lowest), ∆E0 is

the linear energy variation with the Na++Si4+ ⇀↽ Ca2++Al3+ exchange, W is a Margules-
type term for non-linear energy variation along that exchange vector, and M is a matrix
containing the number of neighbours with corresponding Js energies. This approach is sim-
ilar to that of many studies (Vinograd and Sluiter, 2006, for example), where there is a set
of J values for each neighbour type. Here a set of three types of neighbours is necessary, for
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convenience Al-Al (first and second neighbours), Ca-Na and Ca-Si interactions were chosen.
The Js for Al-Al interactions were first estimated for albite where there are no Ca-Na and
Ca-Si neighbours, via minimisation of the squared relative difference to the GULP energies
using the Levenberg-Marquardt algorithm Marquardt (1963) rather than least-square regres-
sion to ensure structures with small ordering energies (e.g. containing Al-Al as second- but
not first-neighbours) were well reproduced. From this set of values, the whole set of parame-
ters was optimized, allowing the first-neighbour Al-Al Js to vary linearly with composition.
Values for JCa−Si, ∆E0 and to a lesser extent W are correlated. As the physical relevance
of W is unclear in this context, the whole procedure including Monte-Carlo simulation was
carried out with W = 0 for XCa = 0.5, 0.75 and 1 to ensure that adding this parameter did
not result in significantly different excess mixing energies. As similar mixing energies were
obtained, the set of optimised values including W was selected because it yielded a slightly
better misfit and with lower values for some of the Js.

The resulting set of parameters is provided in Table 2 and the quality of the fit is shown
in Fig. 2 A-C. The misfit appears better for albite, anorthite and close to end-members than
within the solid solution but the spread was considered acceptable because there is no sys-
tematic pattern of errors (Fig. 2 C). Values for first-neighbour JAl−Al decrease with anorthite
content, consistent with the results of Bosenick et al. (2001) for albite and anorthite. They
remain much larger than second-neighbour Al-Al interactions, particularly for those involv-
ing T1o as this site is favoured by Al (e.g., Kroll et al., 2020). The Ca-Si interaction is
intermediate and positive (unfavourable) as expected from local charge imbalance. In con-
trast the Ca-Na interaction is slightly negative, favouring Ca-Na neighbours. When plotted
according to the median distance between neighbours (Fig. 3), the Js generally decrease
with increasing distance but this is attenuated by the fact that distances vary significantly
between second neighbours in particular: for example in the albite structure refinement of
Harlow and Brown (1980), T1m connects T1o to two T2o as second neighbours, the closest
via Ocm (T2o is ∼ 4.5 Å away from T1o), the furthest via Odm (∼ 5.7 Å).

Anorthite The same set of interactions between tetrahedral cations as for albite has been
selected, and the same procedure and regression analysis have been carried out. The energy
is normalised to that of the lowest (ordered anorthite, E0

An), and it is noted that in anor-
thite the number of Ca-Si neighbours is constant regardless of ordering, therefore JCa−Si is
unnecessary here and Eq. (1) reduces to: E = E0

An +ΣMJs.
A set of 181 structures optimized with GULP has been used to estimate the parameters

listed in Table 2. The starting structure was based on the refinement of Angel et al. (1990)
in the P1̄ space group, selected over I1̄ for modelling simplicity as GULP does not handle
I1̄ structures as readily.

The resulting set of Js is provided in Table 2 and the quality of the fit is shown in Fig.
2 D. Overall the error structure is similar to that of the C1̄ solid solution, with a standard
deviation of 0.06 eV and 87 % of the energies estimated within 10% accuracy.

3.4 Monte Carlo simulation

A Metropolis-like diffusive exchange algorithm has been set up, where tetrahedral cations
are randomly allowed to swap places with their first neighbour. The new structure is accepted
if the exchange is energetically favourable (∆E < 0) or, if unfavourable, with a temperature-
dependent probability P such as P = exp(−∆E/(kBT)) with kB Boltzmann’s constant (see
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neighbour Al atoms are energetically much more costly than second-neighbour Al atoms. The thin arrow
indicates the decrease in JAl−O−Al from albite to anorthite.

Dove, 2001, for details). This straightforward procedure is not specifically aimed at con-
vergence efficiency or at reproducing precisely diffusion, but allows fast calculations simu-
lating equilibrium. This algorithm has been applied to replicates of the structures in Fig. 1
(14× 7× 7 for anorthite, 14× 14× 7 for albite and the C1̄ solid solution) containing 5488
formula units (∼ 110× 90× 100 Å). Simulations started from the ordered structure at 0 K
and temperature increased in steps of 25 K. Each step comprised either 20 million exchanges
or 2 million successful exchanges, depending on which was reached first. Reported energies
and numbers of neighbours are averaged over the last 105 exchanges.

Along the albite-anorthite solid solution, the exact ordered structure is unknown and
must be estimated. To do so, initial structures respecting Al-avoidance were generated from
the ordering pattern of anorthite, to which Ca and Al were replaced by Na and Si at random
positions to match the desired composition. Annealing was then carried out by repeated
heating-cooling cycles between 0 and 1200 K until no lower energy could be found around
absolute temperature, also defining smooth excess mixing energy variations with compo-
sition. Three cycles were sufficient close to end-members but intermediate compositions
around XCa = 0.5 required up to 15 annealing cycles.

4 Results

Results of the Monte-Carlo simulations are tabulated in Online Resource 1.

4.1 Anorthite

Figure 4 shows the evolution of ordering with temperature calculated for C1̄ and P1̄ anor-
thite.

The number of first- (Fig. 4A) and second-neighbour (Fig. 4B) Al atoms evolve jointly
as disordering increases, both showing a step function near the critical temperature (Tc). The
number of second-neighbour Al atoms decreases faster than first-neighbours increase.

Figure 4C shows the evolution of Qod with temperature. Qod decreases steeply around
Tc and remains around zero above that temperature, although the number of Al-O-Al bonds
keeps increasing and that of second-neighbour Al atoms decreasing.
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and the present study (circles), compared to experimental results of Phillips et al. (1992).

As shown in many previous studies, the value for Tc obtained with Js derived from ab
initio techniques is too high, respectively ∼ 2200°C and ∼ 3000°C for C1̄ and P1̄ anorthite.
Possible reasons for this include algorithmic deficiencies (poor convergence or simplistic
diffusion model), overestimated Js, structural evolution neglected, models remaining below
the length scale of coherence of X-ray diffraction, and structures too perfect for comparison
with real crystals possibly containing defects such as impurities and dislocations. The Js
being in line with previous studies, overestimation is probably not the main reason for this
misfit but cannot be entirely ruled out. A correction factor for the temperatures of 2/3 pro-
vides a much better fit with experimentally-derived values of Qod (in I1̄, with which the P1̄
results should be broadly consistent). This correction factor is in the high range (i.e. closer
to unit value) of factors given by Dove et al. (1996, citing Ashcroft and Mermin (1976))
for the ’adjusted’ Bragg-Williams model. The correction factor has been retained thereafter
for more realistic temperature estimates (labelled Tcorr in subsequent figures, as opposed to
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Fig. 5 Results of Monte Carlo simulations on P1̄ anorthite, comparing a macroscopically-disordered structure
(Qod ∼ 0) sampled just above Tc to a pseudo-random distribution of tetrahedral cations. The structure with
σ = 0.6 has 0.8 Al-O-Al bonds p.f.u., the random structure with σ = 0 has 2 Al-O-Al bonds p.f.u. A) and
B) highlight first-neighbour Al atoms (crimson segments). C) and D) show sites counting as ordered in green
(Al in Al site, Si in Si site) and disordered in orange (Al in Si site, Si in Al site).

Tmodel), affecting the temperature dependency but not the relationships between ordering
state and properties such as ordering enthalpy.

The decrease in Qod is compared to the experimental results of Phillips et al. (1992), us-
ing their short-range order parameter index σ defined as σ = 1−nAl−O−Al/2. The present
results are in much better agreement with the NMR data of Phillips et al. (1992) than pre-
vious models, a result of the well-defined second-neighbour interactions. Crucially, simula-
tion results are consistent with approximately linear relationship between Q2

od and σ , with
σ ∼ 0.7 when Qod reaches zero. As emphasized by Phillips et al. (1992) and Carpenter
(1992), the high degree of short-range order in macroscopically disordered anorthite has
implications for the energetic cost of ordering. As discussed below and suggested by Vino-
grad and Putnis (2001), competition between first- and second-neighbour interactions is a
strong control over ordering in feldspars.

Figure 5 compares the ordering state, as approximated by the number of Al-O-Al bonds,
of macroscopically-disordered P1̄ anorthite with and without short-range ordering. The
structure retaining short-range ordering (left) is sampled just above Tc where Qod reaches
zero and the number of Al-O-Al bonds is still low (σ ∼ 0.6). It is noteworthy that this
structure is just a snapshot of the constantly evolving distribution, in contrast energies and
numbers of bonds (Fig. 4) are averaged. For comparison, a structure was generated with a
pseudo-random distribution (right) mimicking complete disorder. The number of Al-O-Al
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bonds are dramatically lower in the structure with short-range order. Overall, as many tetra-
hedral cations are in their own site (green in Fig. 5C-D) as in the other cation site (orange)
in both cases. Yet in the structure with short-range order, anti-ordered micro-domains ap-
pear so that the number of Al-O-Al bonds is restricted. The size of these micro-domains is
fluctuant and smaller at higher temperature. As shown on Fig. 5, these micro-domains form
intricate lenses ∼15 to ∼30 Å long, apparently elongated along the b and c axes (see Online
Resource 2).

4.2 Albite & the C1̄ albite-anorthite solid solution

Albite Figure 6 shows the temperature evolution of ordering calculated for C1̄ albite. The
number of Al-O-Al bonds increases with temperature, very modestly when compared to
anorthite (Fig. 4). At Tmodel = 3000K, there are less than a fifth of the number of Al-O-Al
bonds of randomly-ordered albite. The number of second-neighbour Al atoms increases with
temperature (Fig. 6 B), in opposite direction to anorthite, reaching then exceeding the value



Ordering in plagioclase feldspars 13

n 
A

l-O
-A

l p
.f.

u.

2

4

6

8

10

0

n 
A

l-O
-X

-O
-A

l p
.f.

u.

0 500 1000 1500 2000

Tcorr (K)

X
An=1

B)

C) D)

F)

X(Ca)
0 0.2 0.4 0.6 0.8 1

1

2

3

0

4

n 
ne

ig
hb

ou
rs

 p
.f.

u.

Ca-Si

Na-Ca

ra
ndom

random

E)

n 
A

l-O
-A

l p
.f.

u.

X(Ca)

0
0 0.2 0.4 0.6 0.8 1

0.25

0.50

0.75

1

1.25

1.50

1.75

2

random

A)

random 2T

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Tcorr (K)

random

X(Ca)
0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

0

n 
A

l-O
-X

-O
-A

l p
.f.

u.

random 2T

Carpenter (1992)

X(Ca)
0 0.2 0.4 0.6 0.8 1

0

2

-5

-15

-10

M
ix

in
g 

en
th

al
py

 (
kJ

/m
ol

 f.
u.

)
XAn=.75

XAn=.5

XAn=.25

XAn=0

0

.25

.50

.75

1

0 500 1000 1500 2000

X An
=1

Tcorr (K)

X An
=.75

XAn=.5

XAn=.25
XAn=0

Fig. 7 Results of Monte-Carlo simulation along the C1̄ solid solution. The number of bonds expected from
random distribution is shown as dotted lines. A) Number of Al-O-Al bonds versus composition, shown for
selected temperatures (every 200K). B) Temperature evolution of the number of Al-O-Al bonds for 5 selected
compositions. Note that the scale is restricted compared to A). C) Number of second-neighbour Al pairs
versus composition for selected temperatures, and in D) versus temperature for selected compositions. E)
Number of Ca-Si (top) and Na-Ca (bottom) neighbours versus composition for selected temperatures. F)
Mixing enthalpy versus composition for selected temperatures. Colour scales are similar in A-C-E-F and in
B and D.

for randomly-ordered anorthite. This increase is strong around Tmodel = 750K, at which
temperature Qod decreases sharply (Fig. 6C). Yet Qod does not reach zero as abruptly as
for anorthite but decreases steadily above this temperature. Average site occupancies are
shown in Fig. 6D: Al is entirely located in T1o in ordered albite and favours this site over
the entire temperature range. The decrease in T1o occupancy is balanced by increasing Al
principally in T1m, then in T2o and T2m. Site occupancies are broadly consistent with ex-
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perimental work (Kroll et al., 2020, and references therein) although in the simulations, T2o
is preferred over T2m just above Tc, which is interpreted as a bias from the Js. This suggests
that the modelling should be even more heavily parametrised for optimal results, possibly
introducing third-neighbour interactions as suggested by Vinograd and Putnis (2001), yet
differences are small and therefore will be neglected below.

The C1̄ albite-anorthite solid solution The simulated number of first- and second-neighbour
Al atoms along the C1̄ albite-anorthite solid solution is shown in Fig. 7. Panels A and C also
show values expected from random mixing over two or four T sites p.f.u. B and D are
selected every 0.25 XCa and plotted on a restricted scale for readability.

In any case the number of Al-O-Al bonds increases with temperature but remains much
smaller than random distribution over the four T sites. This increase is stronger at high
anorthite content and sharper (Fig. 7 B). The temperatures at which Al-O-Al bonds increase
also vary with composition. The increase is felt at lower temperature around XCa = 0.75 than
at other anorthite content.

Consistent with results for end-members, the number of second-neighbour Al atoms
is higher at higher anorthite content for any given temperature (Fig. 7 C and D). At low
anorthite content (XCa < 0.4) the number of second-neighbour Al atoms increases with tem-
perature, but decreases with temperature at higher XCa. Temperature variations are much
sharper for albite and anorthite than for their solid solution (Fig. 7 D).

Between XCa = 0.45 and 0.85, a small number of Al-O-Al bonds (< 0.1 pfu) is predicted
at T = 0K. The number of second-neighbour Al atoms is then slightly lower than expected
(possibly by 0.5 pfu, Fig. 7A). As simulations started from the ordering pattern of anorthite
without Al-O-Al bonds but with many second-neighbours Al-Al linkages, this is a case
where competing first- and second-neighbour interactions favour configurations with a few
Al-O-Al bonds rather than many second-neighbour Al atoms. This may also indicate that
the simulations have not truly reached equilibrium, despite the annealing cycles.

Figure 7E shows the number of Ca-Si and Ca-Na neighbours. The number of Ca-Si
neighbours increases with XCa and with temperature but remains below the random mix-
ing value, as expected from the relatively high value of JNa−Ca (Table 2). Accordingly, the
number of Ca-Na neighbours appear very slightly above random. Carpenter (1994) favour
random mixing of Na and Ca but Jin and Xu (2017) argue that Ca shows a site preference in
e-labradorite.

The Js method allows the mixing enthalpy to be estimated within solid solutions. Figure
7F shows that strongly negative mixing enthalpies are obtained for almost all temperatures.
In the low (Tmodel ≤ 800K) and high (Tmodel ≥ 2400K) range of temperatures, the mixing
enthalpy appears globally symmetric. In between, the mixing enthalpy appears more nega-
tive at low anorthite contents around 800 K and with convex shape at high anorthite content
around 1200 K. Care should be taken not to put too much faith in the details of these results,
as uncertainties can not be estimated. Yet, overall comparison with the mixing enthalpy
of Carpenter (1992, assuming temperature-independent values) is striking in that negative
values are predicted but with less asymmetry.

4.3 Estimating configurational entropy

Kerrick and Darken (1975) provided a simple frame to estimate configurational entropy
changes (∆Sconfig) in plagioclase feldspars, via estimation of the number of sites available
for cation exchange. In fully disordered (randomly distributed) albite and anorthite, 4 sites
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p.f.u. are accessible to Al (noted nAl
acc = 4). Kerrick and Darken (1975) estimate ∆Sconfig

through the number of accessible configurations Ω:

∆Sconfig = kB ln(Ω) = kB ln
(

nAl
acc!

nAl!(nAl
acc −nAl)!

)
. (2)

Using Stirling’s approximation for factorials of large numbers, Kerrick and Darken (1975)
obtained ∆Sconfig = 18.7 J/mol/K between ordered and totally disordered albite, in agree-
ment with previous estimations. The same approach yields ∆Sconfig = 23.1 J/mol/K between
ordered and totally disordered anorthite (nAl = 2 p.f.u.). This is an unrealistic maximum
value for geological applications as short-range ordering in anorthite remains important up
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to temperatures above its melting point. Following the reasoning of Kerrick and Darken
(1975) who note that in essence, exclusion of Al-O-Al bonds decreases the randomness of
structure, it is observed that at low temperature, Al in ordered anorthite cannot migrate be-
cause creating Al-O-Al bonds is too energetically costly (therefore nAl

acc = nAl and Ω = 1).
The probability of any Si-Al exchange taking place is zero.

Due to the temperature-dependent short-range order found at low Qod values, one can-
not use the approach of Malcherek et al. (1999) to link directly ln(Ω) to Qod. Instead, the
number of sites available to Al increases with temperature and ∆Sconfig was approximated
by averaging the rates of Si-Al exchange in simulations, in a simplified version of thermo-
dynamic integration. The number of sites available to Al becomes:

nAl
acc = nAl +

nSi−O−AlPSi↔Al

nAl
(3)

with PSi↔Al the probability of Si-Al exchange, calculated from the average acceptance rate
(over the same number of tried exchanges as for Fig. 7). The number of Si-O-Al bonds
nSi−O−Al is tied to that of Al-O-Al and Si-O-Si bonds through the relation nSi−O−Si = 4+
nAl−O−Al − 4×XCa, which holds for any configuration of albite, anorthite and their solid
solution. ∆Sconfig is obtained from Eq. 2 and 3 using Stirling’s approximation.

Albite and anorthite Figure 8 shows the estimated number of sites available to Al and the
corresponding ∆Sconfig increase from the ordered configuration for albite and anorthite.

In ordered anorthite, none of the Si sites are available to Al at low temperature (PSi↔Al =
0). With increasing temperature, disorder increases through increasing PSi↔Al but decreasing
nSi−O−Al as Al-O-Al and Si-O-Si bonds appear.

In albite, disordering takes place at lower temperature because the availability of Si sites
to Al is controlled by weaker second-neighbour interactions, without creating costly Al-O-
Al bonds.

For both minerals ∆Sconfig increases rapidly with macroscopic disordering (Fig. 8C).
For Qod = 0.75, ∆Sconfig has reached ∼ 40% of its maximum value in albite and ∼ 50% in
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anorthite. Above Tc and closer to Qod = 0, ∆Sconfig keeps increasing with temperature but
at slower pace. Maximum values for ∆Sconfig are not reached in the simulations, as for the
number of Al-O-Al bonds not reaching random distributions (Fig. 7A). Again this reflects
the importance of short-range order above Tc (σ > 0, Fig. 10A).

Figure 8D shows ∆Sconfig calculated with the Landau equations and the parametrisation
of Carpenter (1992, orange curve with a = 38 J, identical equation for a first-order or tri-
critical phase transition). While absolute values are fundamentally similar to estimates of
∆Sconfig from the simulations, the latter grow initially faster with disordering than predicted
by Landau theory, and the model of Carpenter (1992) predicts higher ∆Sconfig close to Tc.
A value of a ≃ 31 J gives a better fit to the simulations just above Tc, a ≃ 46 J is necessary
to reproduce ∆Sconfig obtained for complete disorder, but gives a much poorer fit to the data
without increasing significantly the quality of the fit to nearly-ordered minerals. The sig-
moid dependency of ∆Sconfig on Qod found for albite cannot be reproduced with the Landau
formalism where ∆Sconfig varies with Q2

od.

The C1̄ solid solution For the albite-anorthite solid solution, the low value for JNa−Ca is
consistent with random mixing for Na-Ca but Ca-Si interactions are relatively unfavourable
(Fig. 3), implying that all A sites are not effectively available to Ca. The expression for Ω

becomes:

Ω =
nCa

acc!
nCa!(nCa

acc −nCa)!
.

nAl
acc!

nAl!(nAl
acc −nAl)!

(4)

and associated exchange probabilities PNa↔Ca and PSi↔Al are estimated from the success
rates of exchange.

Figure 9A shows the obtained temperature-composition evolution of ∆Sconfig along the
C1̄ albite-anorthite solid solution, compared to the Al-avoidance model of Kerrick and
Darken (1975) and to random mixing models (over the A site, the four T sites, and over
the A site plus the four T sites). Overall, ∆Sconfig appears dominated by contributions from
the T sites. The corresponding mixing entropy ∆Smix is shown in Fig. 9B.

Consistent with the greater critical temperature of anorthite compared to albite, ∆Sconfig
generally decreases with increasing anorthite content, especially between 600 and 1600 K,
with a plateau between XCa = 0.3 and XCa = 0.8 . Below 600 K, there is a small increase
of ∆Sconfig at low anorthite content compared to albite, attributed to the greater degree of
freedom of the system, where Al content remains sufficiently low for easy migration with-
out creating Al-O-Al bonds (see Fig. 7 A). Above 1600 K, the sharp increase in ∆Sconfig
of anorthite has been reached and the composition evolution of ∆Sconfig is slightly convex
with maximum values around XCa = 0.6, far from reaching random mixing values. The Al-
avoidance model of Kerrick and Darken (1975) shown for comparison uses ordered anorthite
and disordered albite for end-members. In this model only two T sites are accessible to Al-Si
mixing. Simulation results clearly depart from all ideal mixing models.

The evolution of ∆Sconfig translates as a positive mixing entropy (∆Smix in Fig. 9B)
below ∼500 K, becoming strongly negative at low anorthite content around 600 K as disor-
dering increases much faster in albite than in anorthite. For the same reason, mixing entropy
appears strongly asymmetric below ∼1400 K.
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5 Implications and discussion

5.1 Enthalpy: implications of competing short- and long-range interactions

Competition between first and second-neighbour interactions is known to be of importance
for disordering in plagioclase (e.g. Vinograd and Putnis, 2001). Here second-neighbour
JAl−Al values are overall around 0.1 eV (per pair, Fig. 3, ∼9.6 kJ per mole of pairs), much
smaller than first-neighbour JAl−Al values around 0.9 eV (per pair), consistent with previous
studies, but as second neighbours are in greater numbers than first neighbours, competition
is direct.

This implies a very strong decrease in the energetic penalty of disordering in (ordered)
anorthite, as diffusive exchange of Si-Al neighbours creates three Al-O-Al bonds (∼ +2.7
eV for the structure) but decreases the number of second-neighbours Al-Al by ten (∼ −1
eV). Slow increase of Al-O-Al bonds with temperature, and faster decrease of second-
neighbour pairs (Fig. 4AB), reflect that this competition is maintained with increasing dis-
ordering, leading to the appearance of micro-domains (Fig. 5 ). This effect is comparatively
even stronger in anorthite-rich plagioclase. Assuming an ordered, anorthite-rich plagioclase
containing one Na and one Si cation in neighbouring A and T sites (keeping charge imbal-
ance to a minimum), Si-Al exchange in the vicinity of this albitic component is greatly
favoured. Any Si-Al exchange around the Si-rich T site will create two Al-O-Al bonds
(∼ +1.8 eV) and decrease the number of second-neighbours Al-Al by nine (∼ −0.9 eV),
halving the energetic cost of disordering. This effect favours the presence of diffuse albite
components in anorthite-rich plagioclase rather than strict exsolution features (albite-like
and anorthite-like domains separated by well-defined walls), which would result in higher
energies: higher number of second-neighbour Al-Al pairs (from the anorthite component),
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as well as Al-O-Al bonds through domain walls due to the mutually incompatible ordering
patterns of albite and anorthite. This interpretation is consistent with the analysis of Jin and
Xu (2017) reporting smooth chemical variations through structural variations resembling al-
ternating I1̄-like lamellae in incommensurate An51 ’e’-plagioclase, but comparison with the
present simulations remains limited as structural variations are neglected with the Js method.

Short-range order remains high in macroscopically-disordered plagioclase feldspars over
the temperature range of the lithosphere, as seen through the number of Al-O-Al bonds be-
ing significantly less than expected for random distribution in disordered anorthite (Fig. 4),
albite (Fig. 6) and their solid solution (Fig. 7).

High short-range order in macroscopically-disordered anorthite (Fig. 10 B: σ ̸= Q2
od)

decreases ordering enthalpies from a ∼ 102 (±10) kJ/mol difference between ordered and
randomly disordered anorthite (σ = Q2

od = 0) to a ∼ 30 kJ/mol ordering enthalpy – with
disordered anorthite at σ ≈ 0.7 for Qod = 0. The ±10 kJ/mol uncertainty is the standard
deviation of the energy of structures considered as disordered here (when the number of
Al-O-Al bonds was within 30% of the random value, see Fig. 10 A, calculated with GULP
and used in Fig. 2).

This ∼ 30 kJ/mol ordering enthalpy is in agreement with the experimental results of
Carpenter (1991) yielding 27 (±8) kJ/mol for the structural change between Qod = 1 and
Qod = 0. Using these value and their NMR measurements, Phillips et al. (1992) found 39
(±12) kJ per mole of Al-Si exchange via the reaction:

2(Si−O−Al) = (Si−O−Si)+(Al−O−Al). (5)

Malcherek et al. (1999) obtained 40 kJ per mole of Al-Si exchange using simulations. The
present modelling is consistent with ∼ 38 kJ per mole of Al-Si exchange.

Ordered micro-domains co-existing with anti-phase domains (as in Fig. 5) allow reach-
ing macroscopic disorder with a minimum number of Al-Al linkages. It is noteworthy that
the transition from ordered anorthite to σ ≈ 0.7 and Qod = 0 represents only a third of
the total ordering enthalpy (Fig. 10). Increasing disordering above Tc is more energetically
costly (∼ 72 kJ/mol from σ ≈ 0.7 to σ = 0, representing ∼ 55 kJ per mole of Al-Si ex-
change) as the beneficial effect of second-neighbour interactions disappears with increasing
randomness.

In albite and albitic plagioclase, complete disordering is much less costly (Fig. 10 A)
than in anorthite (∼ 30 kJ/mol instead of ∼ 102 kJ/mol). This mainly reflects the effect of
composition where Al-Al linkages are less likely at lower Al content (see also Dove et al.,
1996; Vinograd et al., 2001). However because disordering to Qod = 0 initially takes place
with very little creation of Al-Al linkages (Fig. 6 and 7), it is not meaningful to express
ordering enthalpies per mole of Al-O-Al bonds as the energetic cost arises from second-
neighbour interactions. In other words, reaction 5 remains an important control to Si-Al
exchange in that it is avoided during disordering, but for the same reason this reaction does
not reproduce disordering in albitic plagioclase over lithospheric temperatures.

5.2 Effect over configurational entropy

Configurational entropy exerts a fundamental control over the thermodynamics of mixing
and ordering reactions.

In the simulations, accepting a single cation exchange leads to negligible contribution
of ∆Sconfig to the energetic increase (∼0.003 eV at 25 K to ∼0.02 eV at 5000 K, much
smaller than enthalpy contributions from the Js), therefore enthalpy variations control cation
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exchange. The contribution of ∆Sconfig to the chemical potential becomes significant as soon
as macroscopic disorder increases (Fig. 8). If ordered albite and anorthite are selected as
thermodynamic components, the contribution of ∆Sconfig to the chemical potential appears
to be of the same magnitude or greater than that of ordering enthalpy (T ×∆S ≥ Hord).
Consequently activity-composition relations in plagioclase feldspars are at least as much
affected by entropy as by enthalpy changes during disordering.

The contribution of ∆Sconfig is important at low anorthite content from temperatures as
low as 200 K but remains small for anorthite up to ∼1000 K (Fig. 8 and 9). Unfortunately,
none of the simple mixing models usually cited in the literature, such as random Si-Al mix-
ing over 2 or 4 sites, with or without Al avoidance, appear to draw a realistic picture of cation
distribution over an extended composition range (Fig. 9) due to the complexity of compet-
ing first- and second-neighbour interactions (Fig. 7 A and C for example). Appearance of
micro-domains at high anorthite content during disordering (e.g. Fig. 5) is inconsistent with
distributing Al into fixed preferred sites. In addition, an ordered ”low albite” end-member
appears acceptable for low temperatures (Qod > 0.9) but the ”high albite” end-member con-
tains short-range order that cannot be well represented by any model where mixing is not
temperature-dependent, because average site distributions are temperature-dependent (Fig.
6D) and do not reach random mixing values.

Therefore using non-ideal mixing models is necessary, and large mixing parameters may
be expected. The magnitude of the values obtained here for ∆Sconfig and mixing entropy
(Fig. 8 and 9) remain speculative considering that uncertainties from the modelling are very
poorly constrained, particularly over temperature. However, the asymmetry of the mixing
entropy and its temperature variations are logical consequences of the large temperature
difference between disordering of albite and anorthite. Benisek et al. (2010) suggested that
’the asymmetry of the excess mixing properties may change with temperature’, which is
clearly reflected by this study.

Examples of asymmetric and/or negative mixing entropy in silicate solid solutions are
plentiful, such as for the Mg-Fe exchange in orthopyroxene (Berman and Aranovich, 1996),
the muscovite-paragonite solvus in mica (Chatterjee and Flux, 1986), the clinochlore-sudoite
solvus in chlorite (Vidal et al., 2006), the diopside-hedenbergite solution in omphacite (Meyre
et al., 1997) and even in the regression of Benisek et al. (2004) for the albite-anorthite so-
lution (considered continuous). But the strong temperature dependency of ∆Sconfig – hence
that of the mixing entropy – is a challenge that classical formalisms with Margules param-
eters (see e.g. Berman, 1988) cannot meet without allowing WS terms to vary with tem-
perature. In the temperature range of stability of the C1̄ solid solution (approximated to
600 - 1600 K for comparison with Fig. 9B), the present results suggest WSAb−An ≃ −37
and WSAn−Ab ≃ −58 at 600 K, WSAb−An ≃ −8 and WSAn−Ab ≃ −53 at 1100 K, and with
a much poorer fit WSAb−An ≃ WSAn−Ab ≃ −30 at 1600 K (WS in J/mol/K). These values
are obtained using ideal contributions from the Al-avoidance model of Kerrick and Darken
(1975), showing much more pronounced curvature for ∆Sconfig than the current simulation
results (Fig. 9A). If ideal contributions of the albite and anorthite components to mix-
ing entropy are taken as equal to their mole fraction, the following values are obtained:
WSAb−An ≃−15 and WSAn−Ab ≃−51 at 600 K, WSAb−An ≃ 11 and WSAn−Ab ≃−42 at 1100
K, and WSAb−An ≃WSAn−Ab ≃−20 at 1600 K.

For anorthite, differences from the parametrisation by Carpenter (1992, Fig. 8D) are
small but highlight difficulties in defining Qod for meaningful comparison between simu-
lations and diffraction experiments. At face value, results of the simulations suggest weak-
nesses of the Landau equations in reproducing disordering with temperature-independent
parameters, and a possible overestimation of the a parameter by Carpenter (1992). It is also
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Fig. 11 Gibbs free energy of mixing estimated from mixing enthalpy and entropy (Fig. 7F and 9) along the C1̄
solid solution. The dashed dark curve is calculated at 1073 K with WGAbAn =−20 kJ/mol and WGAnAb =−35
kJ/mol using mole fractions of the albite and anorthite components for ideal contributions. The bold dark
curve is also calculated at 1073 K but with the Kerrick and Darken (1975) Al-avoidance model for ideal
contributions, and WGAb−An =−10 kJ/mol and WGAn−Ab =−15 kJ/mol.

noteworthy that the algorithm only allowing for nearest-neighbour cation swaps may be re-
strictive for evaluating ∆Sconfig (and Qod), for example if longer jumps take place. Yet, as
for enthalpy, at first order the present estimates of ∆Sconfig are consistent with the results of
Carpenter (1992).

5.3 Implications for mixing and activity-composition relations

The large values for ordering enthalpy of anorthite obtained here (Fig. 10), together with
the large negative mixing enthalpy along the C1̄ solid solution (Fig. 7 F) are in much better
agreement with the results of Carpenter (1992, and references therein) than with the mod-
elling based on near-ideal Si-Al mixing and small ordering enthalpies of Holland and Powell
(1992) and Holland and Powell (2003) fitted to phase equilibria.

Estimated mixing enthalpy (Fig. 7F) and ∆Sconfig variations (Fig. 8A) yield the Gibbs
mixing energy (∆Gmix) shown in Fig. 11. The combined effects of negative mixing enthalpy
and large ∆Sconfig lead to negative ∆Gmix values. The temperature dependency is weak and
possibly not meaningful considering the probably large uncertainties at this point Using the
Al-avoidance model of Kerrick and Darken (1975) for ideal activities, Margules parameters
of WGAb−An = −10 kJ/mol and WGAn−Ab = −15 kJ/mol give an approximate fit to ∆Gmix
at 800°C (bold curve on Fig. 11). Assuming that ideal contributions of the albite and anor-
thite components are equal to their mole fraction, Margules parameters of approximately
WGAb−An =−20 kJ/mol and WGAn−Ab =−35 kJ/mol give an equally good fit (dashed curve
on Fig. 11). It is noteworthy that only one pair of W parameters is needed, even though
mixing takes place on two sites (see Powell and Holland, 1993).
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members are noted µ0. ∆Gmix is the difference between the Gibbs energy of the stable mixture and the
combination of the equilibrium end-members (here, AbC1̄ and AnI1̄). The other end-members are metastable.

The magnitude and shape of ∆Gmix derived here are consistent with that of the model
of Carpenter (1992). The ordering energy Gord calculated with the Landau equations (see
e.g. Carpenter and McConnell, 1984) must be added to the mixing model along the albite-
anorthite solid solution. There are essentially two approaches: using a mixing model for each
domain and four end-members, or a mixing model in the C1̄ domain only, requiring only
three end-members. Figure 12 shows the corresponding shapes of ∆Gmix. The difference
between the C1̄ and I1̄ anorthite end-members is the same in both models, and equals the
ordering energy of anorthite. The Gibbs energy of the mixture is that of the lowest domain
(bold curve on Fig. 12) and ∆Gmix is shown as the difference between the combination of the
chemical potential of the stable end-members (dashed line) and the energy of the mixture.
A crucial point is that the activity of the end-members in the stable phase depends on the
ordering energy and on the mixing model, such as, for the three end-member case (Fig.
12B):

RT lnaAb,C1̄ = RT lnXAb +RT lnγ
W
Ab,C1̄ +RT lnγ

ord
Ab (6)

RT lnaAn,C1̄ = RT lnXAn +RT lnγ
W
An,C1̄ +RT lnγ

ord
An (7)

RT lnaAn,I1̄ = RT lnXAn +RT lnγ
W
An,C1̄ +RT lnγ

ord
An −GAn

ord (8)

where γW is an activity coefficient arising from non-ideality as classically modelled
with Margules or ASF parameters (see Holland and Powell, 1992, for the formalism). The
term GAn

ord allows activity to be referred to the equilibrium end-member in the I1̄ domain.
RT lnγord is the deviation from ideality arising from ordering in the I1̄ domain:

RT lnγ
ord
An = Gord +(1−XAn)

∂Gord

∂XAn
(9)

RT lnγ
ord
Ab = Gord −XAn

∂Gord

∂XAn
(10)

and RT lnγord = 0 in the C1̄ domain. It is noteworthy that in the I1̄ domain, the chemical
potential of the I1̄ anorthite component is lower (more negative) than that of the C1̄ anorthite
component (in anorthite: µ0

AnI1̄ < µ0
AnC1̄, Fig. 12). To describe µAnC1̄ in I1̄ anorthite, equating
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chemical potentials yields: µAnC1̄ = µ0
AnC1̄ +RT lnγord

An = µ0
AnI1̄. It follows that RT lnγord

An
is negative and therefore the activity of the C1̄ anorthite component is below 1 when I1̄
anorthite is stable (aAn,I1̄ = 1). This may appear trivial but is a source of confusion (compare
e.g. Carpenter and McConnell (1984) Fig. 5 and Carpenter and Ferry (1984) Fig. 2).

From there, proposing a robust thermodynamic model for structural changes and phase
equilibria relies on correct parametrization of the mixing parameters (Margules or ASF pa-
rameters) and of the Landau parameters (a, b, and c with a first-order model, see solutions
given in Carpenter, 1988). The latter proved very difficult, as Landau parameters may vary
with XCa, strongly affecting activity coefficients in particular (through Eq. 9 and 10). In
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addition, Tc also varies with XCa, apparently linearly in the range 800-1400°C, further com-
plicating the expression of ∂Gord

∂XAn
.

Carpenter (1992) studied the parametrization of Landau coefficients along the albite-
anorthite solid solution at 1300°C, crossing the C1̄ ⇀↽ I1̄ transition around XCa = 0.78. In
their favoured model, the a parameter is constant at the value of anorthite and the values of
b and c change linearly with composition, with b = 0 close to the transition. In this view
there is a tricritical point at XCa = 0.78 and the transition is second-order (b > 0) at lower
anorthite content. Unfortunately, this approach does not apply well to lower temperatures
(transition below XCa = 0.78), first because Landau equations imply that c = a.Tc if the
transition is tricritical, and that c vanishes (or is negligible) if the transition is second-order.
Attempts to, for example, zero the c parameter in the second-order domain may yield a
satisfying expression for Gord but its derivative will show a discontinuity bringing chaos to
activity coefficients (Eq. 9 and 10), and c cannot be or approach zero at the phase transition
(otherwise Qod → ∞). Forcing the b parameter to zero value at the phase transition is also
unsatisfactory, as this implies that b varies with temperature, which is at odds with Landau
theory. The phase transition should be described of the same order along the albite-anorthite
solid solution to allow smooth activity coefficient variations.

For anorthite, Carpenter (1992) showed that the first-order model gives the best fit to
experimental constraints over Qod, linearly extrapolating Tc to 2010°C. The transition being
thermodynamically continuous along the albite-anorthite solid solution, a tricritical model
(b = 0) is probably better than a first-order model (see also Redfern and Salje, 1987; Salje,
1987), but a tricritical model implies increasing Tc to ∼ 3250°C to reach the same quality
of fit to the measured ordering degree of anorthite as for the first-order model. In turn,
this implies that the temperature of the phase transition increases very non-linearly above
∼ An78, with strong implications for γord (Eq. 9 and 10).

Figure 13 illustrates calculations using the least problematic model, where the phase
transition is first-order for anorthite and tricritical along its solid solution with albite (b = 0
and c = a.Tc at the phase transition, even though this implies temperature-dependent Landau



Ordering in plagioclase feldspars 25

parameters). Strikingly, a wide solvus appears around the phase transition, despite strongly
negative Margules parameters based on the mixing enthalpy of Carpenter (1992) and the
mixing entropy of Benisek et al. (2010). The values are only illustrative and should not be
directly used for petrological applications.

Compositional continuity along the albite-anorthite solid solution is suggested by avail-
able data above at least 900°C, and definitive evidence for a solvus above the ’e1’ field of
plagioclase is still missing. A limited miscibility gap has been suggested around the C1̄⇀↽ I1̄
transition near 800°C (e.g., McConnell, 1974; Jin et al., 2021) but remains uncertain. In any
case, negative Margules parameters in the C1̄ domain are implied, as in Carpenter (1992),
and smooth variations of∆Gmix around the phase transition. In particular, the second deriva-
tive of ∆Gmix with respect to XAn must remain positive to avoid apparition of a solvus.
However, the form of the equation governing Gord implies Gord becomes very rapidly more
negative with increasing XCa, inevitably leading to a solvus around the transition (however
small) and to strong variations in γord. The unwanted presence of a solvus generated by the
Landau approach has already been mentioned (e.g., Carpenter, 1992), leading Holland and
Powell (1992) to dismiss their Landau model.

Smoothly-evolving activity coefficients appear necessary, and Carpenter and Ferry (1984)
mention the difficulty of deriving activity coefficients close to the transition. Interestingly,
the fluid-plagioclase exchange data of Orville (1972) and Schliestedt and Johannes (1990)
suggest smooth and near-ideal activity-composition relations in the range 600-700°C (see
fits obtained by Holland et al., 2022), without discontinuity for activity coefficients in pressure-
temperature-composition domains containing phase transitions and solvi. Holland et al.
(2022) state that phase transitions and the presence of ’e’ plagioclase ”appear to have only
small consequences for the thermodynamics of the solid solution”, but Schliestedt and Jo-
hannes (1990) highlight that their experiments did not allow equilibration of Al-Si distribu-
tion, yielding disordered plagioclase only. Therefore drawing conclusions about the relative
impacts of phase transitions and of cation exchange over activity-composition relations for
the entire albite-anorthite solid solution requires additional work and will probably remain
difficult. Previous work, e.g. on sodium feldspar including the C1̄ ⇀↽C2/m transition (Salje,
1985; Salje et al., 1985), has shown that the structural parameter (Q, the ”displacive driving
force”) is dominant over Al-Si ordering (Qod) in high albite, and inversely in low albite.

Extrapolation of the approach to ternary feldspars is straightforward in terms of formal-
ism, but again requires better parametrisation. An example is shown in Fig. 14, assuming
identical Landau coefficients for the sanidine-anorthite binary as for albite-anorthite, and
WSan−An = 20 kJ. Random mixing over the 4 T sites and the A site has been used for ideal
activities. The mixing model for albite-sanidine equilibria is described in Appendix A.

The main differences between the models of Holland et al. (2022), Benisek et al. (2010)
and the formalism using Landau equations (this study) are the undesired albite-anorthite
solvus and the K content of plagioclase around the phase transition.

6 Conclusion

The results of atomistic modelling using Monte-Carlo simulations argue in favour of large
ordering enthalpies and entropies for anorthite, as well as for very significant short-range
ordering maintained in macroscopically-disordered structures (Qod = 0) keeping the number
of Al neighbours to a minimum, in agreement with previous studies (Phillips et al., 1992,
among others). In the C1̄ domain, large and asymmetrical mixing enthalpy and entropy
along the albite-anorthite solid solution are obtained, resulting in largely negative but mostly
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symmetrical ∆Gmix. Competition between first- and second-neighbour interactions is key to
the complexity of Al-Si ordering in plagioclase feldspars, even though these interactions
may be idealised and simplistic with the JS method.

Combining Landau theory equations in the I1̄ domain to a non-ideal mixing model in
the C1̄ domain appears to provide reliable results in terms of energy and ordering. Unfor-
tunately, the chosen Landau equations also appear impossible to parametrise for the albite-
anorthite solid solution to yield realistic activity-composition relations and phase relations,
and the atomistic modelling is too crude to provide a thermodynamic model reflecting the
complexities of phase equilibria within this solid solution. On the other hand, activity mod-
els based on near-ideal mixing appear erroneous in the light of the necessary large mixing
enthalpies and entropies, but have successfully modelled phase equilibria in many applica-
tions to natural rocks. It is likely that the constraints used to derive such models (e.g. in the
recent model of Holland et al., 2022) do not represent the true equilibrium values, due to e.g.
incomplete Al-Si order (Schliestedt and Johannes, 1990) and/or biased experimental phase
equilibria (see discussion in Benisek et al., 2010). In this case, the success of near-ideal
mixing models would probably be explained by overall correct symmetry of these mod-
els and absence of solvus, with the difference (Gibbs mixing energy insufficiently negative
and/or solvi ignored) being minor for petrological applications to high-temperature rocks,
and where modelling the equilibrium structure and stability gaps of lower-temperature pla-
gioclase such as in the ’e’ domain may be perceived as unnecessary. Yet the analysis of Jin
et al. (2021) sets the temperature above which stability gaps become significant well above
800°C, and it appears that using Landau theory would be much more satisfying to reconcile
crystallographic data to phase equilibria. Overcoming apparent incompatibilities between
thermodynamic formalisms is required, possibly by decoupling Al-Si order parameters from
structural parameters.
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Table 1 Values of the selected potentials. Corresponding equations are available elsewhere (e.g., Gale,
1997).

Potential type Atoms Parameter values
A (eV) ρ (Å) C (eV.Å6)

Buckingham Si-Oshell 1283.9073 0.3205 10.6616
(rmax = 12 Å) Al-Oshell 1460.3 0.29912 0

Ca-Oshell 2272.74 0.2986 0
Na-Oshell 5836.885 0.2387 0
Oshell-Oshell 22764 0.149 27.88

Core-shell spring Ocore-Oshell K = 74.92 eV.Å−2

k (eV.rad−2) Θ0 (°) rmax (Å) rmax (Å)
cat.-Oshell Oshell-Oshell

Three-body Oshell-Si-Oshell 2.0972 109.47 1.8 3.2
Oshell-Al-Oshell 2.0972 109.47 1.8 3.2
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Table 2 Values of the regressed interaction energies Js and energy constants along the C1̄ solid solution and
for P1̄ anorthite used to produce Fig 2.

Interaction Value (eV)
Ab-An (C1̄) An (P1̄)

First-neighbour interactions (Al-O-Al)
dAl−Al < 3.1Å 0.95−0.13XCa 0.81
dAl−Al > 3.1Å 0.87−0.02XCa 0.72
Second-neighbour interactions (Al-O-X-O-Al)
T2o-T2m 0.23 0.11
T2m-T2m 0.16 -0.09
T1m-T1m 0.13 -0.06
T1o-T1m 0.13 0.16
T1o-T2o 0.12 0.06
T1m-T2m 0.11 0.14
T2o-T2o 0.10 0.21
T1m-T2o 0.06 0.05
T1o-T1o 0.06 0.05
T1o-T2m 0.03 0.04
Others
Ca-Si 0.31 –
Ca-Na -0.08 –
Composition-related terms
∆E0 23.64 –
W 0.38 –
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A (Appendix) Mixing model and phase equilibria along the albite-sanidine binary

Mixing parameters may be analytically derived from phase equilibria along binaries by equating chemical
potentials of phase components (see derivation in De Capitani and Peters, 1982; Dubacq et al., 2013). Im-
portantly, the phase equilibrium is independent from the standard-state chemical potentials which disappear
during derivation in some cases. Along the albite-sanidine binary, there is a pressure-temperature dependent
solvus with binodal compositions reported by Thompson and Waldbaum (1969) around 0.2 GPa - mostly
using selected data from Orville (1963) and Luth and Tuttle (1966) - and by Goldsmith and Newton (1974)
around 1.5 GPa. The mixing parameters depend on the model selected for ideal mixing, even though this is
not explicitly stated by De Capitani and Peters (1982) and Dubacq et al. (2013). The following expressions
allow estimating WAb−San and WSan−Ab with various ideal mixing models:

WAb−San =
RT

(x1 − x2)3 (−2ln(aAb
x1
)(x2

1 + x1(x2 −2)+(x2 −1)2)+ (11)

2 ln(aAb
x2
)(x2

1 + x1(x2 −2)+(x2 −1)2)+

(2x2
1 + x1(2x2 −1)+ x2(2x2 −1))(ln(aSan

x1
)− ln(aSan

x2
)))

WSan−Ab =
RT

(x1 − x2)3 (−(ln(aAb
x1
)(2x2

1 + x1(2x2 −5)+2x2
2 −5x2 +4))+ (12)

ln(aAb
x2
)(2x2

1 + x1(2x2 −5)+2x2
2 −5x2 +4)+

2(x2
1 + x1(x2 −1)+(x2 −1)x2)(ln(aSan

x1
)− ln(aSan

x2
)))

where x1 is the K content of the A site (K/(K+Na)) of the first phase with aAb
x1

the activity of the albite
component in this phase, and so on.

Figure A1 presents values obtained with the ordered model (B) and with the Al-avoidance model of
Kerrick and Darken (1975) (C). For the randomly disordered 4T model, values are identical to B due to
analytical simplification. Values from each model will fit the phase diagram identically, but the ordered and
4T models allow straightforward fitting of the pressure-temperature evolution of the mixing parameters (Fig.
A1B). With the Al-avoidance model, mixing parameters vary strongly non-linearly, especially near the critical
mixing point, as evident from Fig. A1C. The selected parametrization uses the ordered (or 4T) model and:

WAb−San = 34.958−0.0278∗T +0.0280∗P (13)

WSan−Ab = 13.847−0.00932∗T +0.0536∗P (14)

with T temperature (in K, referred to standard temperature) and P pressure (in GPa). The obtained phase
diagram is shown with experimental binodal compositions in Fig. A1A.
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Fig. A1 Experimental phase equilibria along the albite-sanidine binary (A) and corresponding Margules
parameters, using B) an ordered ideal mixing model (or a 4T-disordered model), and C) the Al-avoidance
model of Kerrick and Darken (1975). Margules parameters in B) are fitted using equations 13 and 14 and
shown here as lines. This regression allows calculating the curves shown in A). Experimental results are from
Orville (1963), Luth and Tuttle (1966) and Goldsmith and Newton (1974).
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