
HAL Id: hal-03817684
https://hal.science/hal-03817684v2

Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronous semantics of multi-mode multi-periodic
systems

Frédéric Fort, Julien Forget

To cite this version:
Frédéric Fort, Julien Forget. Synchronous semantics of multi-mode multi-periodic systems. SAC
’22: The 37th ACM/SIGAPP Symposium on Applied Computing, Apr 2022, Virtual Event, France.
pp.1248-1257, �10.1145/3477314.3507271�. �hal-03817684v2�

https://hal.science/hal-03817684v2
https://hal.archives-ouvertes.fr

Synchronous semantics of multi-mode

multi-periodic systems

Frédéric Fort and Julien Forget

firstname.lastname@univ-lille.fr

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL
42, rue Paul Duez
Lille, F-59000

France

October 10, 2022

Abstract

This paper tackles the problem of designing and programming a real-
time system with multiple modes of execution, where each mode executes
a different set of periodic tasks. The main problem to tackle is that the
period of Mode Change Requests (MCR) and the period of tasks are
not all the same. Thus, not all tasks perceive MCRs in the same way.
When programming such a system with traditional languages without
mechanisms dedicated to mode changes (e.g. C), it is difficult to ensure
a system is sound and deterministic.

We propose an extension to synchronous dataflow languages to support
mode changes. The semantics of the resulting language is defined formally,
which prevents ambiguous programs. The language is flexible enough to
support different types of mode changes. The compiler of the language
includes a static analysis that rejects programs whose semantics is ill-
defined.

The extension consists in transposing Synchronous State Machines to
the Prelude language. This requires to extend the semantics of Pre-
lude, and to define a new clock calculus, based on refinement typing.

1 Introduction

In this paper, we are interested in the programming of critical real-time appli-
cations that exhibit a multi-mode behaviour. Real-time systems are typically
programmed as a set of tasks executing periodically. In a multi-periodic sys-
tem, tasks may have different periods. In a multi-mode system, each mode
implements a different behaviour, characterised by a different set of tasks to

1

execute. An aircraft control system is a typical example of multi-mode system
with modes such as take-off, cruise, and landing.

Our goal is to propose a language to program this kind of multi-periodic
multi-mode system. The language has sound formal semantics, it is sufficiently
flexible to express different mode change protocols, and it abstracts from the
underlying platform (OS scheduler and hardware platform).

1.1 Motivation

To motivate our work, let us detail the challenges that arise when programming
a multi-periodic multi-mode real-time system.

First, since we consider multi-periodic systems, the period of Mode Change
Requests (MCR) and the period of the different tasks are not all the same.
Thus, not all tasks perceive MCRs in the same way. When using general-
purpose languages, such as C, that do not contain constructs dedicated to the
specification of mode changes, it is difficult to ensure that the behaviour of the
system is unambiguous and deterministic. This leads us to the requirement:

Requirement 1 The language shall provide a sound formal semantics for multi-
periodic mode change protocols.

In the real-time literature, different mode change protocols have been stud-
ied, each offering different advantages and disadvantages. For instance, a pro-
tocol might feature better reaction promptness to MCRs, but require a more
complex schedulability analysis and vice-versa. However, no protocol clearly
dominates the others. Thus, the choice of the protocol depends on the speci-
ficities of the system under design. This leads us to the following requirement:

Requirement 2 The language shall allow the system designer to choose their
mode change protocols.

Because real-time systems are often critical, it is preferable to provide auto-
mated analyses that reject programs whose semantics is ill-defined. This avoids
manual testing or, even worse, run-time errors. This leads us to the last re-
quirement:

Requirement 3 The language compiler must reject programs whose soundness
cannot be guaranteed.

1.2 Contribution

Our work consists in extending a synchronous language to support multi-mode
multi-periodic systems. Synchronous languages [1] are well-adapted to the pro-
gramming of critical real-time systems thanks to their clean formal semantics
and to their formally defined compilation process. Synchronous State Machines
have been proposed in [6] for Lustre [10] and Lucid Synchrone [4], as a way
to program multi-mode systems (each state corresponds to a mode). However,

2

these languages do not support the specification of explicit real-time constraints
(eg. periodicity). On the other hand, the language Prelude [16] provides con-
structs dedicated to the specification of such constraints, but does not support
state machines.

With the state machines of [6], all flows within a state must have the same
period, i.e. only mono-periodic states are allowed. Our objective in this paper
is to transpose state machines to Prelude, and in doing so to extend them to
support programs with multi-periodic states.

This extension relies on the notion of clock views, which allow us to decouple
the period of a task from the period at which it perceives mode change requests.
We provide a formal semantics for this extended language, which allows us to
satisfy Requirement 1. The resulting multi-mode support is generic and allows
programmers to choose the kind of protocol they need for their application,
satisfying Requirement 2. Periods and clock views are inferred and checked for
consistency by the compiler during the clock calculus. The modified semantics
requires us to completely change the type system and base it on refinement
typing [9, 20]. The clock calculus rejects programs whose semantics is ill-defined,
which satisfies Requirement 3. Overall, we believe that our approach prevents
misinterpretations and ambiguities about when and how mode changes actually
occur. To summarize, the contributions are:

• A formal semantics for an extension of Prelude with state machines
(Section 3);

• A clock calculus supporting these extensions (Section 4);

• An illustration of the capabilities of the extended language, showing the
implementation of different Mode Change Protocols (Section 5).

2 Related works

Mode change protocols have been studied extensively by the real-time scheduling
community (see [19] for a survey). However, these works focus on the timing
analysis of the system, and do not consider the semantics of the corresponding
program. A Mode Change Protocol defines how the transition from one mode to
another is handled. A Mode Change Request (MCR) is an event that triggers a
mode change. Mode change protocols surveyed in [19] can be classified according
to three criteria:

• Overlapping1: when do the new-mode tasks start executing?

• Periodicity : are unchanged tasks impacted by mode changes?

• Retirement : what happens to old-mode tasks during a mode change?

1In [19], this property is called synchronicity. We renamed it to avoid confusion.

3

In a non-overlapping protocol, the new-mode tasks are only released at the
end of the mode transition phase. In an overlapping protocol, new-mode tasks
and old-mode tasks can both execute during the transition phase. Overlapping
protocols tend to have shorter transition times at the expense of requiring a
more complicated schedulability analysis. Periodic protocols allow unchanged
tasks, i.e. tasks which are present both in the old-mode and in the new-mode,
to continue their execution uninterrupted. In aperiodic protocols, unchanged
tasks are interrupted for the duration of the transition phase. Late-retirement
protocols allow old-mode tasks to continue their execution for a given amount of
time (for instance until they complete their current activation). Early-retirement
protocols abort them as soon as the MCR is triggered.

Synchronous state machines [6] enable to specify multi-mode systems in a
synchronous data-flow language. The original publication requires tasks within
the same mode to have the same clock and implements a non-overlapping, pe-
riodic protocol with late retirement (tasks finish the current execution when
a MCR occurs). The restriction on clocks was later lifted in [22]. However,
the language does not support the specification of explicit real-time constraints
such as periodicity constraints. Prelude [8] introduces mechanisms to explic-
itly specify real-time constraints in a synchronous program. Other languages
require the programmer to express such constraints using boolean conditions,
which do not allow to automatise real-time scheduling and schedulability anal-
ysis [3]. However, Prelude does not tackle the problem of combining real-time
constraints with state machines.

Outside the synchronous languages community, several other languages ded-
icated to real-time systems have addressed the implementation of multi-mode
systems. The mode change protocol available in AADL [2] allows tasks of differ-
ent periods in the same mode, but suffers from long transition delays between
modes. First, the system must wait for a duration equal to the least com-
mon multiple of the periods (the hyperperiod) of the old-mode task. Then, the
mode transition begins and takes up to one hyperperiod of the new-mode tasks
to complete. This is thus a non-overlapping, periodic protocol with late retire-
ment (tasks execute until the synchronisation point). The mode change protocol
of Giotto [11] requires MCRs to occur at multiples of the hyperperiod of the
tasks affected by the mode change. This mode change protocol is also non-
overlapping, periodic with late-retirement (tasks finish the current execution).
Multi-mode systems are also at the core of the Statechart model. However, they
suffer from poor formalisation, which leads to many different interpretations of
program semantics [23]. All these languages opt for one specific mode change
protocol. Instead, our model is more generic and allows to control the kind of
protocol to use in a program.

The clock calculus of the present paper relies on refinement typing [9, 20], a
typing discipline which extends classic Hindley-Milner type inference with type
predicates. Predicates refine types allowing to more precisely specify which
values an expression may contain. Refinement typing has been applied to the
clock calculus of the Signal language in [21]. However, the clock types used in
this context do not enable the specification of real-time constraints.

4

3 Language definition

In this section, we present an overview of our extension of the Prelude lan-
guage. In particular, we detail how to extend the existing when and merge

operators to support multi-periodic states. First, we present clocks, which de-
fine task rates, in Section 3.1. Section 3.2 presents the surface language the
programmer interacts with. Programs of the surface language are transpiled
into the core language, presented in Section 3.3. The semantics and the clock
calculus of the core language are presented in Sections 3.4 and 4 respectively.

3.1 Clocks

3.1.1 Reminder

In the Prelude language, time is represented as a sequence of instants. Clocks
specify the instants at which flows produce values. Clocks are modelled using
the tagged-signal model [14], and tags represent the dates associated to instants.
The operator . denotes concatenation on sequences. The

∏
operator extends

the . operator over ranges, for instance 4.7.10.13 =

(
2∏

i=0

(4 + 3 ∗ i)
)
.13.

A flow s is an infinite sequence of tagged values. The sequence of tagged
values produced by s is denoted s# = (v, t).s′#. Its head (v, t) is composed of
the value v produced at tag t and tail is s′#. Intuitively, the value v is the value
carried by the flow until its next tag. Let ŝ denote the clock of flow s, i.e. its
sequence of tags. Because tags provide a total ordering over value-tag pairs, we
can use the (unordered) set-theoretic notation of a flow s = {(v, t) | (v, t) ∈ s#}.
We denote (vn, tn) the n-th value (according to the tag ordering relation) vn of
a flow produced at its n-th tag tn.

Timing constraints are specified using a specific class of clocks called strictly
periodic clocks, defined below.

Definition 1 (Strictly Periodic Clock) A strictly periodic clock is denoted
as a pair (n, p), with n, p in N, and:

• The infinite sequence of tags generated by (n, p), denoted (n, p)#, is defined
as follows: (n, p)# = {i ∗ n+ p | i ∈ N}.

• π((n, p)) = n is the period and φ((n, p)) = p is the offset of (n, p).

The acceleration (∗.), deceleration (/.), and delay (→ .) operators are defined
below. These clock definitions are illustrated in Figure 1 (see end of Section 3.1
for a more detailed description).

Definition 2 (Periodic Clock Operators)

π(ck ∗. k) = π(ck)/k φ(ck ∗. k) = φ(ck)

π(ck /. k) = π(ck) ∗ k φ(ck /. k) = φ(ck)

π(ck→ . k) = π(ck) φ(ck→ . k) = φ(ck) + k

5

In existing synchronous languages, and also in Prelude without our pro-
posed extension, a clock ck on C(c) denotes a clock ck that is sub-sampled on
condition dataflow c. It produces a tag t, iff ck produces that tag t and dataflow
c produces at t the value C. It is defined as follows:

Definition 3 (Mono-periodic conditional sub-sampling)

(ck on C(c))# = {t | t ∈ ck# ∧ (C, t) ∈ c#}

Throughout this paper, we will denote divisibility constraints using the re-
lation x div y ⇔ y mod x = 0, which reads “x divides y”.

3.1.2 Our extension: Clock views

In a multi-periodic context such as the present paper, we want to extend the
definition of ck on C(c) to allow ck and c to have different periods. To this
intent, we introduce the concept of clock views. The clock ck on C(c, w) denotes
the clock ck sub-sampled on condition c, such that it produces tags only if c,
perceived according to view w, produces a value C. A view is a clock that
specifies the rate at which the condition is observed. The semantics of the on
operator with views is defined as follows.

Definition 4 (Multi-periodic conditional sub-sampling with clock views)
A multi-periodic conditional clock is denoted ck on C(c, w) where ck is a clock,
C is a constant, c is a condition dataflow, and w is a strictly periodic clock
called view.

• The infinite sequence of tags generated by ck on C(c, w), denoted
(ck on C(c, w))#, is defined as follows:

(ck on C(c, (n, p)))# = {t | t ∈ ck#,∃(C, t′′) ∈ c#, t′ ∈ (n, p)#

∧ t′ ≤ t < t′ + n ∧ t′′ = t′ + φ(ĉ)− p}

• A view is valid iff π(ck) div π(w) ∧ π(ĉ) div π(w)

• Extending the previous notation, we have π(ck on C(c, w)) = π(ck) and
φ(ck on C(c, w)) = φ(ck). A conditionally sub-sampled clock has the
same period and offset as its base clock (ck), but in addition filters tags
according to a condition.

Intuitively, the view w delimits intervals where only a single value produced
by c is responsible for all tags produced by ck within that interval. If that value
equals C, then ck on C(c, w) produces all tags within that interval. Otherwise,
it produces no tag within that interval. The requirement on the view period is
needed so that applying a rate-transition operator (Section 3.4) always results
in a dataflow with a view that is a strictly periodic clock.

Figure 1 illustrates the clocks described in this section. The first 4 timelines
represent the instants at which different clocks produce tags. Below, we have

6

(2, 0)

(2, 0) ∗. 2 = (1, 0)

(2, 0) /. 2 = (4, 0)

(3, 0)

c
falsetrue truefalsetrue

(2,0) on c(true,(6,0))

(2,0) on c(true,(12,0))

Figure 1: Clocks

x (2, 0)
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

x*^2 (1, 0)
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

x/^2 (4, 0)
x0 x2 x4 x6 x8

x/^2*^2 (6, 0)
x0 x0 x2 x2 x4 x4 x6 x6 x8 x8

x' = x when true(c); (view (6, 0))
x0 x1 x2 x9

y' (clock (2, 0) on false(c, (6, 0)))
y3 y4 y5 y6 y7 y8

merge(c,true->x',false->y')
x0 x1 x2 y3 y4 y5 y6 y7 y8 x9

Figure 2: Dataflows

the timeline for a condition dataflow c with clock (3, 0). The two timelines
below show different sub-samplings of (2, 0) by condition c. They differ only in
their views. The first one observes c according to view (6, 0) and the second
one according to view (12, 0). Note that the first one produces tags at instants
6, 8 and 10 because c is true at instant 6. The fact that c is false at instant 9
is ignored because the view (6, 0) considers c only at tags that are multiples of
6. For the same reason, the true value of c at instant 3 is ignored. The figure
shows that changing the view ((2, 0) on true(c, (12, 0))) produces a different set
of tags.

3.2 The surface language

As in [6], we distinguish between the surface language the programmer uses
and the core language for which a formal semantics is defined. During the
compilation process, the compiler transpiles the program in the surface language

7

to an equivalent program in the core language. Being smaller than the surface
language, formalizing the core language is simpler.

Figure 3 details the extended Prelude syntax considered in this paper.
Figure 5 illustrates a program written according to this syntax and we briefly
summarize those rules below. A program is structured in nodes, the synchronous
languages equivalent to functions. An imported node lifts a function over scalar
values from the target language (e.g. C) to flows by performing a point-wise
application of the function. User-specified nodes define via definitions how local
and output variables are computed from input variables. A definition is either an
equation or an automaton (composed of further definitions). An equation of the
form x = e; defines variable x as equal to expression e. Note that equations
are unordered. An expression can be a variable (x), a constant (42), a node
application (f(a,b)) or the result of the application of one of the following
built-in operators (assuming i has clock ck):

• i/^k keeps one out of k successive values of i and has clock ck /. k;

• i*^k repeats each value of i, k times, and has clock ck ∗. k;

• i~>k delays each value of i by k and has clock ck→ . k;

• k fby i produces value k followed by the values of i and has clock ck,
effectively delaying values of i by π(ck)

• i when true(c) sub-samples i such that it produces values only if c

produces true. It has clock ck on true(c, w). Note that the view is not
specified by the program, but instead inferred by the compiler;

• merge(c, true->i_true, false->j_false) combines the complemen-
tary flows i_true and i_false with respective clocks ck on true(c, w)
and ck on false(c, w) and has clock ck.

We assume that all node inputs have rate annotations (e.g. rate (10,0)),
i.e. their periods and offsets are always specified in the program. We believe
that this restriction has little impact on the ability to express realistic real-time
systems, even though it prevents users from defining intermediate polymorphic
nodes. Lifting this restriction is left for future work.

3.3 The core language

The link between the surface and core language is done via a translation se-
mantics. Compared to the surface language, the core language features two
important distinctions:

• Automata are replaced by equations with the same semantics;

• Expressions are in Administrative Normal Form (ANF), i.e. arguments of
node and operator applications are either variables or constants.

8

⟨prog⟩ ::= ⟨decl⟩∗
⟨decl⟩ ::= ⟨nd⟩ | ⟨ind⟩
⟨ind⟩ ::= imported node ⟨id⟩(⟨var⟩+) returns (⟨var⟩+)

⟨nd⟩ ::= node ⟨id⟩(⟨var⟩+) returns (⟨var⟩+)

(var ⟨var⟩+ ;)? let ⟨def⟩+ tel

⟨var⟩ ::= ⟨id⟩:⟨ty⟩?⟨ck⟩?
⟨ty⟩ ::= int | real | bool
⟨ck⟩ ::= rate (⟨int⟩, ⟨int⟩) | ⟨ck⟩ on ⟨id⟩(⟨id⟩)

⟨def⟩ ::= ⟨auto⟩ | ⟨eq⟩
⟨auto⟩ ::= automaton ⟨state⟩+
⟨state⟩ ::= | ⟨id⟩ -> (var ⟨var⟩+)? ⟨st⟩ ⟨def⟩+ ⟨wt⟩

⟨st⟩ ::= unless ⟨expr⟩ then ⟨id⟩;
⟨wt⟩ ::= until ⟨expr⟩ then ⟨id⟩;
⟨eq⟩ ::= ⟨id⟩(, ⟨id⟩)∗ = ⟨expr⟩

⟨expr⟩ ::= ⟨id⟩ | ⟨const⟩ | ⟨id⟩ (⟨expr⟩(, ⟨expr⟩) ∗)
| ⟨expr⟩ /^ ⟨int⟩ | ⟨expr⟩ *^ ⟨int⟩ | ⟨expr⟩ ~> ⟨int⟩
| ⟨const⟩ fby ⟨expr⟩ | ⟨expr⟩ when ⟨id⟩(⟨id⟩)
| merge(⟨id⟩(, ⟨id⟩->⟨expr⟩) +)

Figure 3: The surface language syntax

9

The automata flattening process is detailed in [6]. Our translation process
remains the same because we simply extend the semantics of the when operator.
We provide an intuitive overview of [6] below to make the paper more self-
contained.

Within an automaton, we distinguish local from non-local variables. A local
variable is defined within a specific state, while a non-local variable is available
within all states of an automaton. In Figure 5, variables pos and GPS are
non-local, while controls is local to state Actuate. The main steps of the
translation are:

• A new type is introduced, the variants of which are the (potentially man-
gled) names of the automaton states. For an automaton with states
StateA and StateB, this would introduce a type auto0_state with vari-
ants StateA and StateB;

• We introduce state variables, which represent the current automaton state.
Transitions update these variables as appropriate;

• For each state, we project equations into that automaton state, i.e. we
apply a when to non-local variables and mangle the left-hand side vari-
ables to state-specific ones. For instance, an equation x = f(i); in state
StateA becomes StateA_x = f(i when StateA(state)) where state is
the current-state variable;

• Non-local equations are merged. For instance, we would find the following
equation x = merge(state, StateA-> StateA_x, StateB->StateB_x);

Once all automata are flattened, we transform equations into ANF. This
transformation is straightforward. If the argument of a node or operator appli-
cation is not an atom (a variable or a constant), we introduce a new equation
with that argument. We substitute the original argument by the left-hand side
of our fresh equation. Then, we recursively call that procedure on the right-
hand side of our fresh equation. For instance, when transpiling the equation x

= (i when true(c))*^2/^3; we obtain the following equations:
x = v0/^3; v0 = v1*^2; v1 = i when true(c);

Once the program has been transpiled to the core language and all static
analyses have been performed, the compiler proceeds to translating the program
into a low-level language (e.g. C). This compilation step is out of the scope of
this paper. In [16], a complete compilation process for Prelude without our
extended when and merge is proposed. In future work we will adapt the proposed
node communication protocols to take into account clock views.

3.4 Synchronous Kahn semantics

In this section, we present the semantics of the core language based on syn-
chronous Kahn networks [12, 5]. The term ⋄#(s0, . . . , sn) denotes the flow re-
sulting from the application of the operator ⋄ on flows s0, . . . , sn. Operators fall

10

op#(s0, ... , sn) = {(opf (v0, ... , vn), t) |

(v0, t) ∈ s#0 , ... , (vn, t) ∈ s#n }
∗∧#(s, k) = {(v, t+ i ∗ π(ŝ)/k) | (v, t) ∈ s#, i ∈ J0..kJ }
/∧#(s, k) = {(v, t) | (v, t) ∈ s# ∧ t ∈ (ŝ /. k)#}

∼>#(s, k) = {(v, t+ k) | (v, t) ∈ s#}
fby#(v, s) = {(v, t0)} ∪ {(vi, ti+1) |

(vi, ti), (vi+1, ti+1) ∈ s#}
when# (s, c, C,w) = {(v, t) | (v, t) ∈ s, t ∈ (ŝ on C(c, w))#}

merge# (c, s0, ... , sn) =

n⋃
i=0

s#i

Figure 4: Kahn semantics of operators

into three categories: imported operators, rate-transition operators and condi-
tional operators. The semantics for the first two categories remains as previously
defined in [8] and is recalled in Figure 4. The figure also details the semantics of
our extended conditional operators (opf denotes an operator over scalars from
the compiler target language). The when# operator is a direct transposition of
the on operator on flows. The merge# combines flows that have complementary
clocks. Examples are provided in Figure 2.

Note that merge# is deterministic iff the merged flows are complementary,
i.e. only one is present at any given instant. Similarly, the imported node appli-
cation requires arguments that are synchronous, i.e. that have the same clock.
Also, ∗∧#(s, k) is defined iff k div π(ŝ). Finally, the semantics for when# and
merge# require clock views, which are not specified by the program. Instead,
they are inferred by the compiler. The clock calculus, defined in the next sec-
tion, is responsible for checking clock constraints, and inferring the clocks and
views of the program. Thus, the semantics of a program is well-defined only if
the clock calculus succeeds.

3.5 Illustrative example

In this section, we illustrate the presented language. Figure 5 presents an im-
plementation of the control software of a large sized Unmanned Aerial Vehicle
(UAV) from [13, 11]. Figure 5 shows the corresponding program written with
our extended version of Prelude using Synchronous State Machines. The sys-
tem perceives its environment via a GPS and an Inertial Navigation System
(INS). In addition, it receives via a wireless communication an enabling sig-
nal specifying in which mode it shall execute (isEnabled) and a destination
point (waypoint). The system actuates via servo motors. We perform ampli-

11

tude saturation on the computed instructions for the servo motors. This ceils
the difference between two consecutive instructions, protecting the servo motors
from extreme variations.

The application has two modes. In the Estimate mode, the UAV preserves
its previous course and measurements serve only to update the UAV position. In
the Actuate mode, the UAV computes orders for the servo motors so as to reach
the current waypoint. The automaton switches from mode Estimate to mode
Actuate when expression isEnabled is true, and from Actuate to Estimate

when not(isEnabled) is true. As a consequence, Mode Change Requests are
emitted with clock (10, 0).

Due to the dataflow nature of the language, the period of nodes (e.g. h_f,
control, servo_driver) is determined by the period of their inputs. For in-
stance control has clock (10, 0) on Actuate(state, (10, 0)), while servo_driver
has clock (20, 0) on Actuate(state, (20, 0)), even though both nodes are ex-
ecuted within the mode Actuate. This difference in views means that task
control will respond to a change of state immediately, while servo_driver

can in some cases respond with a delay of 10 time units. Thus, this automaton
implements an overlapping mode change protocol, i.e. nodes are not all impacted
simultaneously by a mode change.

Figure 6 shows an excerpt of the transpilation into the core language. To
improve readability, we renamed the identifiers generated by the compiler. The
automaton state is defined by the variable state, which has clock (10, 0). For
a state S (either Estimate or Actuate), MCRs are emitted by the equation
s_S which has clock (10, 0) on S(state, (10, 0)). An MCR instantly updates
the value of the variable state. However this state change is observed by tasks
depending on their view as seen above.

Let us detail how the equations of servos are translated. For each state
equation (e.g. srvs = servos_driver(controls/^2); in state Actuate), we
replace it by a state-specific equation, (e.g. the equation for Actuate_srvs).
State-specific dataflows (such as Actuate_srvs, Estimate_srvs) are then merged
together (e.g. srvs = merge(state, Estimate->Estimate_srvs, Actuate->

Actuate_srvs);), producing a flow with clock (20, 0). To respect the dataflow-
nature of the language, state non-local variables (e.g. GPS) are projected on the
automaton state they are used in (e.g. GPS when Actuate(state)).

4 Clock Calculus

The previous implementation of thePrelude clock calculus proceeds by Hindley-
Milner type inference extended with subtyping [8]. In order to support our
extended on clock operator, we rely on a clock calculus based on refinement
typing [9, 20].

Let us first briefly illustrate a refinement typing system. In such a type
system, types may be ascribed with predicates. For instance the expression 4

would have type {ν:int | ν = 4}, meaning “an int whose value is equal to 4”.
The type int is called the base type, the variable ν represents the value of the

12

1 node main(GPS: GPSMessage rate(10,0); INS : INSMessage rate(10,0);
2 isEnabled: bool rate(10,0); waypoint: real[4] rate(10,0))
3 returns(servos: ServoMessage)
4 var pos, srvs;
5 let
6 servos = saturate(srvs, 0 fby servos);
7 automaton
8 | Estimate ->
9 unless isEnabled then Actuate;

10 var GPS_f, INS_f, pos_f;
11 GPS_f,INS_f,pos_f = h_f(GPS, INS, init_pos fby* pos);
12 pos = filter(GPS_f, INS_f, pos_f);
13 srvs = init_servos fby* srvs;
14

15 | Actuate ->
16 unless not(isEnabled) then Estimate;
17 var GPS_c, INS_c, pos_c,
18 waypoint_c, controls;
19 GPS_c,INS_c,pos_c,waypoint_c =
20 h_c(GPS, INS, init_pos fby* pos, waypoint);
21 pos,controls = control(GPS_c, INS_c, pos_c, waypoint_c);
22 srvs = servo_driver(controls/^2);
23 end
24 tel

Figure 5: The case-study in the surface language

1 node main(GPS: GPSMessage rate(10,0); INS : INSMessage rate(10,0);
2 isEnabled: bool rate(10,0); waypoint: real[4] rate(10,0))
3 returns(servos: ServoMessage)
4 var state, previous_state, s_Estimate, s_Actuate, ...;
5 let
6 previous_state = Estimate fby state;
7 state = merge(previous_state, Estimate->s_Estimate, Actuate->s_Actuate);
8

9 s_Estimate = if Estimate_isEnabled then Actuate else Estimate;
10 s_Actuate = if Actuate_not_isEnabled then Estimate else Actuate;
11

12 srvs = merge(state, Estimate->Estimate_srvs, Actuate->Actuate_srvs);
13

14 Estimate_isEnabled = isEnabled when Estimate(previous_next_state);
15 Actuate_not_isEnabled = not(Actuate_isEnabled);
16 Actuate_isEnabled = isEnabled when Actuate(previous_next_state);
17

18 Estimate_srvs = srvs_fby when Estimate(state);
19 srvs_fby = init_servos fby srvs;
20

21 GPS_c, INS_c, pos_c, waypoint_c =
22 h_c(Actuate_GPS, Actuate_INS, Actuate_waypoint_fby);
23 Actuate_GPS = GPS when Actuate(state);
24 Actuate_INS = INS when Actuate(state);
25 Actuate_waypoint_fby = waypoint_fby when Actuate(state);
26 waypoint_fby = init_pos fby waypoint;
27 Actuate_pos, controls = control(GPS_c, INS_c, pos_c, waypoint_c);
28 controls_div_2 = controls/^2;
29 Actuate_srvs = servo_driver(controls_div2);
30 ...
31 tel

Figure 6: The case-study in the core language (excerpt)

13

1 node main(i: rate(100,0); c: rate(200,0)) returns (o)

2 var iwc;

3 let

4 iwc = i when true(c);

5 o = iwc ~>50;

6 tel

Figure 7: The running example

typed expression and “ν = 4” is called the refinement. The refined function (/)

would have type a:int → b:{ν:int | ν ̸= 0} → {ν:int | ν = a/b}, meaning “a
function taking an argument a of type int and an argument b of type int whose
value is not equal to 0, returning an int whose value is equal to a/b”. In our
clock calculus, we use linear integer arithmetic predicates and rely on the Z3
SMT solver [15] to check the satisfiability of these predicates.

Throughout this section, we will illustrate our clock calculus via the running
example in Figure 7. Node main has two inputs, i and c with different periods.
The local variable iwc holds the dataflow of conditionally sub-sampling i to only
produce values when c produces true. The output o is the result of delaying
iwc by 50 time units.

4.1 Clock language

The goal of our clock language is to describe the clocks of Section 3.1 using
refinement types. A full definition can be found in Figure 8. For instance, the
clock (3, 0) is described by the clock type {ν:pck | π(ν) = 3 ∧ φ(ν) = 0}. The
base type here is pck, i.e. a strictly periodic clock. The refinement states that
the clock period is 3 and the clock offset is 0. For brevity’s sake, we will write
such types as {ν:pck | ⟨3, 0⟩}.

Definition 5 The clock type {ν:ckb | ⟨n, p⟩} is a shorthand for the clock type
{ν:ckb | rn ∧ rp} where

rn ≡ π(ν) = n rp ≡ φ(ν) = p

The clock (3, 0) on true(c, (15, 0)) is described by the clock type
{ν:pck on true(c, {ν:pck | ⟨15, 0⟩}) | ⟨3, 0⟩}. Again, the refinement (⟨3, 0⟩)
specifies the clock period and offset. The condition is found inside the base type
(on true(c, . . .)). The view of the condition is itself specified as a periodic
(refined) clock ({ν:pck | ⟨15, 0⟩}).

In a functional clock x:ckr → cke, x is the called the input binder, ckr is the
input type and cke is the output type.

4.2 Overview

In this section, we provide on overview of the different passes of the clock cal-
culus, which are:

14

σ ::= ∀α.σ | cke
cke ::= x:ckr → cke | cke × cke | ckr
ckr ::= {ν:ckb | r}
ckb ::= pck | α | ckb on C(c, ckr)
r ::= r ∧ r | p = a | a div p | p ≥ a | true
p ::= π(ν) | φ(ν)
a ::= k | π(x) | φ(x) | a+ a | a− a | a ∗ k | a/k
H ::= ∅ | H;x:σ

x : Variable k : Constant

Figure 8: Clock system

1. Structural Clock Calculus

2. Refinement Clock Calculus

(a) Refinement Instantiation

(b) Refinement Checking

3. View Closing

In the Structural Clock Calculus, only the structure of clocks is inferred. This
pass is very similar to Hindley-Milner typing, except that clocks are annotated
with refinement holes, i.e. refinement placeholders. In the second pass, the
Refinement Clock Calculus, we verify the actual refinements. We divide this
pass into two steps: Refinement Instantiation and Refinement Inference. In
the Refinement Instantiation step, we bridge the gap between the structural
clocks and the refinement clocks. In the Refinement Inference step, the actual
typing decisions are performed. Finally, we delay view computations until the
last point, the View Closing pass. Before that, views only collect constraints
without checking them.

Inference rules use bi-directional typing [18, 7]. Synthesis judgements H ⊢
e ⇒ t signify that in environment H, the type t is associated to expression e.
Checking judgements H ⊢ e ⇐ t′ signify that in environment H, the type t′ is
valid for expression e (even though e might be associated to a different type t).
The link between these two judgements is provided in Definition 6 below. To
check an expression e against a type t, first a type t′ has to be synthesised and t′

has to be a subtype of t. The subtyping relation t′ <: t is defined for refinement
types as follows: a type t′ is a subtype of type t, iff the base type of t′ is a
subtype of the base type of t and the refinement of t′ implies the refinement of
t. For instance, if we want to check that {ν:int | ν = 4} <: {ν:int | ν ̸= 0}, we
have to prove ∀ν:int. (ν = 4) =⇒ (ν ̸= 0).

15

Definition 6 (Core refinement typing rules)

Chk-Syn
H ⊢ e⇒t′ t′ <: t

H ⊢ e⇐t

Sub-Ref
t <: t′ ∀ν:t. r0 =⇒ r1

{ν:t | r0} <: {ν:t′ | r1}

4.3 Structural Clock Calculus

The goal of this pass is to infer the structure of clocks, that is to say clock
types where refinements are left unknown and represented by variables. This
means in particular that clock conditions are inferred during this pass, while
periods and offsets are inferred during the following pass, i.e. the refinement
clock calculus. To differentiate between judgements of both clock calculi, we

denote judgements of the Structural Clock Calculus with an S, e.g. H ⊢ e
S⇒ ck

and H ⊢ e
S⇐ ck. We detail the main principles of the structural clock calculus

on our running example:

• Concerning node variables, clock annotations dictate clock structures and
refinements are represented by fresh refinement holes. So for instance, i
has clock {ν:pck | ⋆0}, c has clock {ν:pck | ⋆1} (both variables are declared
with strictly periodic clocks), while iwc has clock {ν:α | ⋆2};

• When typing an operator or a node application, first we instantiate its
type with fresh refinement holes. So for instance, for operator when we
get clock e:{ν:ϵ | ⋆4} → c:{ν:ϵ | ⋆5} → {ν:ϵ on true(c, w′′) | ⋆6} where
w′′ = {ν:pck | ⋆7}. Note that since all refinements are different, this
implies that the operands of a when can have different periodic clocks;

• The second step of the application consists in checking arguments against
input types. In our example, this implies that ϵ is substituted by pck, so
expression i when true(c) gets clock {ν:pck on true(c, w) | ⋆8};

• Concerning equations, left and right-hand sides must synthesise to the
same clock, so iwc and i when true(c) both get clock
{ν:pck on true(c, w) | ⋆2};

The complete results for our running example are detailed in Table 1. A full
definition of structural inference rules can be found in Appendix A.

4.4 Refinement Clock Calculus

In the Refinement Clock Calculus pass, clock refinements are inferred in place of
refinement holes. Types structures are considered fixed, only refinements may
change. A full definition of inference rules can be found in Appendix B.

16

Item After
i {ν:pck | ⋆0}
c {ν:pck | ⋆1}

iwc {ν:pck on true(c, w) | ⋆2}i when true(c)

o {ν:pck on true(c, w′) | ⋆3}iwc ~>50

w {ν:pck | ⋆9}
w′ {ν:pck | ⋆10}

Table 1: The typing environment after the structural clock calculus

Item Refinement Clock Calculus View closing
i {ν:pck | ⟨100, 0⟩}
c {ν:pck | ⟨200, 0⟩}

iwc {ν:pck on true(c, w) | ⟨100, 0⟩}
i when true(c)

o {ν:pck on true(c, w′) | ⟨100, 50⟩}
iwc ~>50

w {ν:pck | ⟨n, φ(i)⟩ ∧ π(i) div π(ν) ∧ π(c) div π(ν)} {ν:pck | ⟨200, 0⟩}
w′ {ν:pck | ⟨π(w), φ(w) + 50⟩} {ν:pck | ⟨200, 50⟩}

Table 2: The typing environment during the refinement clock calculus

4.4.1 Refinement Instantiation

In this step, we bridge the gap between structural clocks and refinement clocks.
Some refinements are initially known: refinements corresponding to clock an-
notations, refinements of nodes typed previously, and refinements of predefined
operators. Refinement Instantiation consists in injecting these refinements into
structural types. We detail the main principles of this step on our running
example:

• Concerning variables, we inject refinements related to clock annotations
declared in the program (if any). For instance, for i and c we instantiate
their refinements to {ν:pck | ⟨100, 0⟩} and {ν:pck | ⟨200, 0⟩};

• Concerning operator or node applications, in our example the structural
clock of the when is
e:{ν:pck | ⋆4} → c:{ν:pck | ⋆5} → {ν:pck on true(c, w′′) | ⋆6}
where w′′ = {ν:pck | ⋆7}.
After instantiation, we obtain the following refinements:
e:{ν:pck | true} → c:{ν:pck | ⟨n, φ(e)⟩} →
{ν:pck on true(c, w′′) | ⟨π(e), φ(e)⟩} where w′′ = {ν:pck | ⟨n, φ(e)⟩ ∧
π(e) div π(ν)∧π(c) div π(ν)}. These refinements impose that: 1) inputs
and outputs all have the same offset (φ(e)); 2) e and c can have different

17

periods; 3) the output has the same period as e; 4) the period of the view
must be divisible both by the periods of e and c.

4.4.2 Expression Refinement

With our operators refined, we can proceed to type expressions and equations.
The objective of this pass is to check the consistency of the refinements of all ex-
pressions inside a node. The calculus infers the constraints that the refinements
must satisfy. The set of constraints is then submitted to the SMT solver for
resolution. We detail the main principles of this pass on the when application
in our running example:

• First, arguments are type checked against input types. Type checking for
i succeeds trivially and substitutes i for e in the clock of when;

• Type checking for c must then check the following judgement: H ⊢
c⇐{ν:pck | ⟨n, φ(i)⟩}. This is verified trivially by the solver because
both variables have offset 0;

• Finally, the type of the result of the application is the output type where
input binders are substituted by the actuals:
{ν:pck on true(c, w) | ⟨100, 0⟩} where
w = {ν:pck | ⟨n, φ(i)⟩ ∧ π(i) div π(ν) ∧ π(c) div π(ν)}. Note that the
period and offset of the view are still unknown at this point.

4.5 View Closing

The final pass, the view closing pass, computes the period and offset of views.
Constraints of the form π(i) div π(ν) are nonlinear, i.e. they belong to an un-
decidable fragment of integer arithmetic. However, since we postponed view
resolution, the periods and offsets of flows are all solved (constants). Further-
more, we perform a constant propagation step before sending constraints to
the solver. This yields a system of constraints with few variables, which can
rather easily be solved by the solver heuristics (despite the undecidability of the
theoretical problem). For instance, on our running example:

• Before closing, the views are

w = {ν:pck | ⟨n, φ(i)⟩ ∧ π(i) div π(ν) ∧ π(c) div π(ν)}
w′ = {ν:pck | ⟨π(w), φ(w) + 50⟩}

• Performing constant propagation yields:

w = {ν:pck | ⟨n, 0⟩ ∧ 100 div π(ν) ∧ 200 div π(ν)}
w′ = {ν:pck | ⟨π(w), φ(w) + 50⟩}

18

• This results in the following request to the SMT solver:

100 div wperiod ∧ 200 div wperiod ∧ woffset = 0∧
w′

period = wperiod ∧ w′
offset = woffset + 50

minimize(wperiod, w
′
period)

• The solution returned by the solver is:

w = {ν:pck | ⟨200, 0⟩}
w′ = {ν:pck | ⟨200, 50⟩}

5 Evaluation

Comparing our implementation of the clock calculus with the implementation
of [8], our clock calculus requires around 800 additional lines of OCaml code.
In addition, we observe a noticeable but still reasonable overhead in compila-
tion time. For instance, the compilation time of the ROSACE case study [17]
increases from 10ms to 50ms (including the constraints resolution time of Z3).

In the rest of this section, we illustrate the capabilities of the extended lan-
guage through examples showing the implementation of different mode change
protocols. Recall the criteria of [19] by which a mode change protocol can be
classified:

• Overlapping : when do the new-mode tasks start executing?

• Periodicity : are unchanged tasks impacted by mode changes?

• Retirement : what happens to old-mode tasks during a mode change?

Unchanged tasks In our work, unchanged tasks correspond to dataflows
computed outside the automaton. For instance, in Figure 5, saturate is an
unchanged task.

Retirement In our work, old-mode tasks continue their execution until their
views perceive the state change. Since the period of the view cannot be shorter
that the period of the task, this implies that we cannot implement early-
retirement protocols. Supporting early-retirement would require to interrupt a
task during its execution, which raises serious semantics concerns in a dataflow
context.

Periodicity Our work only supports periodic protocols. Indeed, the execution
of a node is triggered by the arrival of its inputs, it cannot be interrupted once
it starts processing its inputs. As for early-retirement, supporting aperiodicity
is antagonistic with dataflow semantics.

19

@@ -4,8 +4,9 @@

-var pos;

+var pos, isEnabled_slow;

let

servos = saturate(srvs, 0 fby servos)

+ isEnabled_slow = isEnabled/^2;

automaton

| Estimate ->

- unless isEnabled then Actuate;

+ unless isEnabled_slow then Actuate;

@@ -14,15 +15,16 @@

| Actuate ->

- unless isEnabled then Estimate;

+ unless isEnabled_slow then Actuate;

Figure 9: Changes for a non-overlapping

Overlapping We can implement both overlapping and non-overlapping proto-
cols. For instance, Figure 5 implements an overlapping protocol. Nodes filter
and control, which compute pos, have the same view, (10, 0). Thus, during a
transition from one state to another, there is no overlap between nodes filter
and control. However, in case of a transition from state Actuate to state
Estimate, there can be an overlap, since filter (from the new mode) and
servo_driver (from the old mode) may co-exist (because servo_driver has
view (20, 0)).

To change the automaton protocol into a non-overlapping protocol, one must
change the program such that all nodes share the same view. One possibility is
to slow down the period of transitions. Figure 9 shows the changes required. We
define a new dataflow isEnabled_slow, a down-sampled version of isEnabled,
and replace it everywhere inside the automaton. Now, state has clock (20, 0)
and the views of all expressions inside the automaton become (20, 0). Thus, the
automaton implements a non-overlapping mode change protocol.

These examples illustrate the benefit of separating the execution rate of a
flow (its strictly periodic clock) from the rate at which it perceives mode change
requests (its state transition view). This allows us to reason about mode change
protocols, and avoids misinterpretations and ambiguities (Requirement 1). Ex-
amples also demonstrate the flexibility of the language (Requirement 2).

6 Conclusion

We defined an extension for synchronous dataflow languages to support appli-
cations with multiple modes of execution and tasks of different periods within
the same mode. The extension allows the programmer to implement custom
mode change protocols best adapted to the application. We defined a formal

20

semantics for these extensions and a clock calculus based on refinement typing.
In future works, we plan to extend the clock calculus to support nodes with
polymorphic clocks.

Acknowledgement

We would like to thank Giuseppe Lipari whose valuable input helped us produce
the best version of this article. This work is partially funded by the French
National Research Agency, Corteva project (ANR-17-CE25-0003).

References

[1] Albert Benveniste et al. “The synchronous languages 12 years later”. In:
Proceedings of the IEEE 91.1 (2003), pp. 64–83.

[2] Dominique Bertrand et al. “A study of the aadl mode change protocol”.
In: 13th IEEE International Conference on Engineering of Complex Com-
puter Systems (iceccs 2008). IEEE. 2008, pp. 288–293.

[3] Alan Burns and Andrew J Wellings. Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. Pearson Educa-
tion, 2001.

[4] Paul Caspi, Grégoire Hamon, and Marc Pouzet. “Synchronous functional
programming: The lucid synchrone experiment”. In: Real-Time Systems:
Description and Verification Techniques: Theory and Tools. Hermes (2008),
pp. 28–41.

[5] Paul Caspi and Marc Pouzet. “Synchronous Kahn networks”. In: ACM
SIGPLAN Notices 31.6 (1996), pp. 226–238.

[6] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. “A Conservative Ex-
tension of Synchronous Data-Flow with State Machines”. In: Proceedings
of the 5th ACM International Conference on Embedded Software. EM-
SOFT ’05. Jersey City, NJ, USA: Association for Computing Machinery,
2005, pp. 173–182.

[7] Jana Dunfield and Neel Krishnaswami. “Bidirectional Typing”. In: ACM
Comput. Surv. 54.5 (May 2021). issn: 0360-0300. doi: 10.1145/3450952.
url: https://doi.org/10.1145/3450952.

[8] Julien Forget et al. “A Multi-Periodic Synchronous Data-Flow Language”.
In: 2008 11th IEEE High Assurance Systems Engineering Symposium.
2008, pp. 251–260. doi: 10.1109/HASE.2008.47.

21

https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
https://doi.org/10.1109/HASE.2008.47

[9] Tim Freeman and Frank Pfenning. “Refinement Types for ML”. In: Pro-
ceedings of the ACM SIGPLAN 1991 Conference on Programming Lan-
guage Design and Implementation. PLDI ’91. Toronto, Ontario, Canada:
Association for Computing Machinery, 1991, pp. 268–277. isbn: 0897914287.
doi: 10 . 1145 / 113445 . 113468. url: https : / / doi . org / 10 . 1145 /
113445.113468.

[10] Nicholas Halbwachs et al. “The synchronous data flow programming lan-
guage LUSTRE”. In: Proceedings of the IEEE 79.9 (1991), pp. 1305–1320.

[11] Thomas A Henzinger, Benjamin Horowitz, and Christoph MKirsch. “Giotto:
A time-triggered language for embedded programming”. In: Proceedings
of the IEEE 91.1 (2003), pp. 84–99.

[12] Gilles Kahn. “The semantics of a simple language for parallel program-
ming”. In: Information processing 74 (1974), pp. 471–475.

[13] H.Jin Kim and David H. Shim. “A flight control system for aerial robots:
algorithms and experiments”. In: Control Engineering Practice 11.12 (2003).
Award winning applications-2002 IFAC World Congress, pp. 1389–1400.
issn: 0967-0661. doi: https://doi.org/10.1016/S0967- 0661(03)
00100-X. url: https://www.sciencedirect.com/science/article/
pii/S096706610300100X.

[14] Edward A Lee and Alberto Sangiovanni-Vincentelli. “Comparing models
of computation”. In: Proceedings of International Conference on Computer
Aided Design. IEEE. 1996, pp. 234–241.

[15] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by C. R. Ramakrishnan and Jakob Rehof. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 337–340. isbn: 978-3-540-78800-3.

[16] Claire Pagetti et al. “Multi-task implementation of multi-periodic syn-
chronous programs”. In: Discrete event dynamic systems 21.3 (2011),
pp. 307–338.

[17] Claire Pagetti et al. “The ROSACE case study: From Simulink specifica-
tion to multi/many-core execution”. In: 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE. 2014,
pp. 309–318.

[18] Benjamin C Pierce and David N Turner. “Local type inference”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 22.1
(2000), pp. 1–44.

[19] Jorge Real and Alfons Crespo. “Mode change protocols for real-time sys-
tems: A survey and a new proposal”. In: Real-time systems 26.2 (2004),
pp. 161–197.

[20] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. “Liquid Types”.
In: SIGPLAN Not. 43.6 (June 2008), pp. 159–169. issn: 0362-1340. doi:
10.1145/1379022.1375602. url: https://doi.org/10.1145/1379022.
1375602.

22

https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468
https://doi.org/https://doi.org/10.1016/S0967-0661(03)00100-X
https://doi.org/https://doi.org/10.1016/S0967-0661(03)00100-X
https://www.sciencedirect.com/science/article/pii/S096706610300100X
https://www.sciencedirect.com/science/article/pii/S096706610300100X
https://doi.org/10.1145/1379022.1375602
https://doi.org/10.1145/1379022.1375602
https://doi.org/10.1145/1379022.1375602

[21] Jean-Pierre Talpin, Pierre Jouvelot, and Sandeep Kumar Shukla. “To-
wards refinement types for time-dependent data-flow networks”. In: 2015
ACM/IEEE International Conference on Formal Methods and Models for
Codesign (MEMOCODE). IEEE. 2015, pp. 36–41.

[22] Jean-Pierre Talpin et al. “Polychronous mode automata”. In: Proceedings
of the 6th ACM & IEEE International conference on Embedded software.
2006, pp. 83–92.

[23] Michael Von der Beeck. “A comparison of statecharts variants”. In: Formal
techniques in real-time and fault-tolerant systems. Springer. 1994, pp. 128–
148.

A Structural Inference Rules
Var

H;x:ck ⊢ x
S⇒ ck

Cst

H ⊢ c
S⇒ ck

Appl

H ⊢ N
S⇒ x:ckb → ck′e H ⊢ e

S⇐ ckb cke = fresh(ck′e)

H ⊢ N(e)
S⇒ cke

H ⊢ x
S⇒ ck H ⊢ e

S⇒ ck

H ⊢ x = e
pck

S
<: pck α

S
<: α

ckb
S
<: ckb w

S
<: w′

ckb on C(c, w)
S
<: ck′b on C(c, w′)

ckb
S
<: ck′b

{ν:ckb | ⋆}
S
<: {ν:ck′b | ⋆′}

fresh(x:ckr → cke) = x:fresh(ckr) → fresh(cke)

fresh(ck0e × ck1e) = fresh(ck0e)× fresh(ck1e)

fresh({ν:ckb | ⋆n} = {ν:fresh(ckb) | next()}
fresh(ckb on C(c, w)) = fresh(ckb) on C(c, {ν:pck | fresh(w)})

fresh(pck) = pck

fresh(α) = α

next() = ⋆i where i is unused previously

23

e when C(c) : ∀α.e:{ν:α | ⋆0} → c:{ν:α | ⋆1} →
{ν:α on C(c, {ν:pck | ⋆2}) | ⋆3}

merge(c, C0->e0, C1->e1):

∀α.c:{ν:α | ⋆0} → e0:{ν:α on C0(c, w) | ⋆1} →
e1:{ν:α on C1(c, w) | ⋆2} → {ν:α | ⋆3}

e *^ k : ∀α.e:{ν:α | ⋆0} → {ν:α | ⋆1}
e /^ k : ∀α.e:{ν:α | ⋆0} → {ν:α | ⋆1}
c fby e : ∀α.e:{ν:α | ⋆0} → {ν:α | ⋆1}
e ~> k : ∀α.e:{ν:α | ⋆0} → {ν:α | ⋆1}

B Refinement Inference Rules
Var

H;x:σ ⊢ x⇒σ
Cst

H ⊢ c⇒σ

Appl

H ⊢ f
S⇒ σ x:ckr → cke = inst(f, σ) H ⊢ a⇐ckr

H ⊢ f(a)⇒cke[x := a]

Chk-Syn
H ⊢ e⇒σ′ σ′ <: σ

H ⊢ e⇐σ

Sub-Ref
ckb <: ck′b ∀ν:t. r0 =⇒ r1

{ν:ckb | r0} <: {ν:ck′b | r1}

Sub-Pck

pck <: pck

Sub-Var

α <: α

Sub-On
ckb <: ck′b w <: w′

ckb on C(c, w) <: ck′b on C(c, w′)

inst(*^k, e:{ν:ckb | ⋆0} → {ν:ck′b | ⋆1}) =
e:{ν:ck′′b | k div π(ν)} → {ν:ck′′′b | ⟨π(e)/k, φ(e)⟩}

where ck′′b , ck
′′′
b = inst2b(ckb, ck

′
b, true, λx.⟨π(x), φ(x)⟩)

inst(/^k, e:{ν:ckb | ⋆0} → {ν:ck′b | ⋆1}) =
e:{ν:ck′′b | true} → {ν:ck′′′b | ⟨π(e) ∗ k, φ(e)⟩}

where ck′′b , ck
′′′
b = inst2b(ckb, ck

′
b, π(e) ∗ k div π(ν),

λx.π(x) div π(ν) ∧ π(e) ∗ k div π(ν) ∧ φ(ν) = φ(x))

inst(fby, e:{ν:ckb | ⋆0} → {ν:ck′b | ⋆1}) =
e:{ν:ck′′b | true} → {ν:ck′′′b | ⟨π(e), φ(e)⟩}

where ck′′b , ck
′′′
b = inst2b(ckb, ck

′
b, true, λx.⟨π(x), φ(x)⟩)

24

inst(~>k, e:{ν:ckb | ⋆0} → {ν:ck′b | ⋆1}) =
e:{ν:ck′′b | k div π(ν)} → {ν:ck′′′b | ⟨π(e), φ(e) + k⟩}

where ck′′b , ck
′′′
b = inst2b(ckb, ck

′
b, true, ⟨π(x), φ(x) + k⟩)

inst(when, e:{ν:ckb | ⋆0} → c:{ν:ckb | ⋆1} →
{ν:ckb on C(c, w) | ⋆2}) =

e:{ν:ck′b | true} → c:{ν:ck′b | ⟨n, φ(e)⟩} →
{ν:ck′b on C(c, w′) | ⟨π(e), φ(e)⟩}

where ck′b = instb(ckb, true)

w = {ν:pck | ⟨n, φ(e)⟩ ∧ π(e) div π(ν) ∧ π(c) div π(ν)}

inst(merge, c:{ν:ckb | ⋆0} → e0:{ν:ckb on C0(c, w) | ⋆1} →
e1:{ν:ckb on C1(c, w) | ⋆2} → {ν:ckb | ⋆3}) =

c:{ν:ck′b | true} → e0:{ν:ck′b on C0(c, w
′) | true} →

e1:{ν:ck′b on C1(c, w
′) | ⟨π(e0), φ(e0)⟩} → {ν:ck′b | ⟨π(e0), φ(e0)⟩}

where ck′b = instb(ckb, true)

w′ = {ν:pck | true}

instb(pck,) = pck

instb(α,) = α

instb(ckb on C(c, w), r) = instb(ckb, r) on C(c, {ν:pck | r})

inst2b(pck, pck, ,) = pck, pck

inst2b(α, α, ,) = α, α

inst2b(ckb on C(c, w), ck′b on C(c, w′), r, λx.r′) =

ck′′b on C(c, w′′), ck′′′b on C(c, w′′′)

where ck′′b , ck
′′′
b = instb(ckb, ck

′
b, r, λx.r

′)

w = {ν:pck | ⋆0}
w′ = {ν:pck | ⋆1}
w′′ = {ν:pck | r}

w′′′ = {ν:pck | (λx.r′)w′′}

25

	Introduction
	Motivation
	Contribution

	Related works
	Language definition
	Clocks
	Reminder
	Our extension: Clock views

	The surface language
	The core language
	Synchronous Kahn semantics
	Illustrative example

	Clock Calculus
	Clock language
	Overview
	Structural Clock Calculus
	Refinement Clock Calculus
	Refinement Instantiation
	Expression Refinement

	View Closing

	Evaluation
	Conclusion
	Structural Inference Rules
	Refinement Inference Rules

