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Abstract—This paper tackles the problem of designing and
programming a real-time system with multiple modes of ex-
ecution, where each mode executes a different set of periodic
tasks. The main problem to tackle is that the period of Mode
Change Requests (MCR) and the period of tasks are not all the
same. Thus, not all tasks perceive MCRs in the same way. When
programming such a system with traditional languages without
mechanisms dedicated to mode changes (e.g. C), it is difficult to
ensure a system is sound and deterministic.

We propose an extension to synchronous dataflow languages to
support mode changes. The semantics of the resulting language
is defined formally, which prevents ambiguous programs. The
language is flexible enough to support different types of mode
changes. The compiler of the language includes a static analysis
that rejects programs whose semantics is ill-defined.

The extension consists in transposing Synchronous State Ma-
chines to the PRELUDE language. This requires to extend the
semantics of PRELUDE, and to define a new clock calculus, based
on refinement typing.

I. INTRODUCTION

In this paper, we are interested in the programming of criti-
cal real-time applications that exhibit a multi-mode behaviour.
Real-time systems are typically programmed as a set of tasks
executing periodically. In a multi-periodic system, tasks may
have different periods. In a multi-mode system, each mode
implements a different behaviour, characterised by a different
set of tasks to execute. An aircraft control system is a typical
example of multi-mode system with modes such as take-off,
cruise, and landing.

Our goal is to propose a language to program this kind of
multi-periodic multi-mode system. The language has sound
formal semantics, it is sufficiently flexible to express different
mode change protocols, and it abstracts from the underlying
platform (OS scheduler and hardware platform).

A. Motivation

To motivate our work, let us detail the challenges that
arise when programming a multi-periodic multi-mode real-
time system.

First, since we consider multi-periodic systems, the period
of Mode Change Requests (MCR) and the period of the
different tasks are not all the same. Thus, not all tasks perceive
MCRs in the same way. When using general-purpose lan-
guages, such as C, that do not contain constructs dedicated to
the specification of mode changes, it is difficult to ensure that

the behaviour of the system is unambiguous and deterministic.
This leads us to the requirement:

Requirement 1: The language shall provide a sound formal
semantics for multi-periodic mode change protocols.

In the real-time literature, different mode change protocols
have been studied, each offering different advantages and
disadvantages. For instance, a protocol might feature better
reaction promptness to MCRs, but require a more complex
schedulability analysis and vice-versa. However, no protocol
clearly dominates the others. Thus, the choice of the protocol
depends on the specificities of the system under design. This
leads us to the following requirement:

Requirement 2: The language shall allow the system de-
signer to choose their mode change protocols.

Because real-time systems are often critical, it is preferable
to provide automated analyses that reject programs whose
semantics is ill-defined. This avoids manual testing or, even
worse, run-time errors. This leads us to the last requirement:

Requirement 3: The language compiler must reject pro-
grams whose soundness cannot be guaranteed.

B. Contribution

Our work consists in extending a synchronous language
to support multi-mode multi-periodic systems. Synchronous
languages [1] are well-adapted to the programming of critical
real-time systems thanks to their clean formal semantics and
to their formally defined compilation process. Synchronous
State Machines have been proposed in [6] for LUSTRE [11]
and LUCID SYNCHRONE [4], as a way to program multi-
mode systems (each state corresponds to a mode). However,
these languages do not support the specification of explicit
real-time constraints (eg. periodicity). On the other hand, the
language PRELUDE [16] provides constructs dedicated to the
specification of such constraints, but does not support state
machines.

With the state machines of [6], all flows within a state
must have the same period, i.e. only mono-periodic states
are allowed. Our objective in this paper is to transpose state
machines to PRELUDE, and in doing so to extend them to
support programs with multi-periodic states.

This extension relies on the notion of clock views, which
allow us to decouple the period of a task from the period
at which it perceives mode change requests. We provide a



formal semantics for this extended language, which allows us
to satisfy Requirement 1. The resulting multi-mode support
is generic and allows programmers to choose the kind of
protocol they need for their application, satisfying Require-
ment 2. Periods and clock views are inferred and checked
for consistency by the compiler during the clock calculus.
The modified semantics requires us to completely change the
type system and base it on refinement typing [10], [20]. The
clock calculus rejects programs whose semantics is ill-defined,
which satisfies Requirement 3. Overall, we believe that our
approach prevents misinterpretations and ambiguities about
when and how mode changes actually occur. To summarize,
the contributions are:
o A formal semantics for an extension of PRELUDE with
state machines (Section III);
e A clock calculus supporting these extensions (Sec-
tion IV);
o An illustration of the capabilities of the extended lan-
guage, showing the implementation of different Mode
Change Protocols (Section V).

II. RELATED WORKS

Mode change protocols have been studied extensively by
the real-time scheduling community (see [19] for a survey).
However, these works focus on the timing analysis of the
system, and do not consider the semantics of the corresponding
program. A Mode Change Protocol defines how the transition
from one mode to another is handled. A Mode Change Request
(MCR) is an event that triggers a mode change. Mode change
protocols surveyed in [19] can be classified according to three
criteria:

e Overlapping': when do the new-mode tasks start execut-

ing?

e Periodicity: are unchanged tasks impacted by mode

changes?

o Retirement: what happens to old-mode tasks during a

mode change?

In a non-overlapping protocol, the new-mode tasks are only
released at the end of the mode transition phase. In an
overlapping protocol, new-mode tasks and old-mode tasks
can both execute during the transition phase. Overlapping
protocols tend to have shorter transition times at the expense of
requiring a more complicated schedulability analysis. Periodic
protocols allow unchanged tasks, i.e. tasks which are present
both in the old-mode and in the new-mode, to continue their
execution uninterrupted. In aperiodic protocols, unchanged
tasks are interrupted for the duration of the transition phase.
Late-retirement protocols allow old-mode tasks to continue
their execution for a given amount of time (for instance
until they complete their current activation). Early-retirement
protocols abort them as soon as the MCR is triggered.

Synchronous state machines [6] enable to specify multi-
mode systems in a synchronous data-flow language. The orig-
inal publication requires tasks within the same mode to have

In [19], this property is called synchronicity. We renamed it to avoid
confusion.

the same clock and implements a non-overlapping, periodic
protocol with late retirement (tasks finish the current execution
when a MCR occurs). The restriction on clocks was later lifted
in [21]. However, the language does not support the spec-
ification of explicit real-time constraints such as periodicity
constraints. PRELUDE [9] introduces mechanisms to explicitly
specify real-time constraints in a synchronous program. Other
languages require the programmer to express such constraints
using boolean conditions, which do not allow to automatise
real-time scheduling and schedulability analysis [3]. However,
PRELUDE does not tackle the problem of combining real-time
constraints with state machines.

Outside the synchronous languages community, several
other languages dedicated to real-time systems have addressed
the implementation of multi-mode systems. The mode change
protocol available in AADL [2] allows tasks of different
periods in the same mode, but suffers from long transition
delays between modes. First, the system must wait for a
duration equal to the least common multiple of the periods (the
hyperperiod) of the old-mode task. Then, the mode transition
begins and takes up to one hyperperiod of the new-mode tasks
to complete. This is thus a non-overlapping, periodic protocol
with late retirement (tasks execute until the synchronisation
point). The mode change protocol of GIOTTO [12] requires
MCRs to occur at multiples of the hyperperiod of the tasks
affected by the mode change. This mode change protocol is
also non-overlapping, periodic with late-retirement (tasks fin-
ish the current execution). Multi-mode systems are also at the
core of the Statechart model. However, they suffer from poor
formalisation, which leads to many different interpretations
of program semantics [23]. All these languages opt for one
specific mode change protocol. Instead, our model is more
generic and allows to control the kind of protocol to use in a
program.

The clock calculus of the present paper relies on refinement
typing [10], [20], a typing discipline which extends classic
Hindley-Milner type inference with type predicates. Predicates
refine types allowing to more precisely specify which values
an expression may contain. Refinement typing has been ap-
plied to the clock calculus of the SIGNAL language in [22].
However, the clock types used in this context do not enable
the specification of real-time constraints.

III. LANGUAGE DEFINITION

In this section, we present an overview of our extension of
the PRELUDE language. In particular, we detail how to extend
the existing when and merge operators to support multi-
periodic states. First, we present clocks, which define task
rates, in Section III-A. Section III-B presents the surface lan-
guage the programmer interacts with. Programs of the surface
language are transpiled into the core language, presented in
Section III-C. The semantics and the clock calculus of the core
language are presented in Sections III-D and IV respectively.



A. Clocks

1) Reminder: In the PRELUDE language, time is repre-
sented as a sequence of instants. Clocks specify the instants
at which flows produce values. Clocks are modelled using
the tagged-signal model [15], and tags represent the dates
associated to instants. The operator . denotes concatenation on
sequences. The ]| operator extends the . operator over ranges,

2
for instance 4.7.10.13 = 13.

(H (44 3% z))
A flow s is an inﬁnitezggquence of tagged values. The
sequence of tagged values produced by s is denoted s# =
(v,t).s'*. Its head (v, t) is composed of the value v produced
at tag t and tail is s, Intuitively, the value v is the value
carried by the flow until its next tag. Let s denote the clock of
flow s, i.e. its sequence of tags. Because tags provide a total
ordering over value-tag pairs, we can use the (unordered) set-
theoretic notation of a flow s = {(v,t) | (v,t) € s#}. We
denote (vy,t,) the n-th value (according to the tag ordering
relation) v,, of a flow produced at its n-th tag ¢,,.
Timing constraints are specified using a specific class of
clocks called strictly periodic clocks, defined below.
Definition 1 (Strictly Periodic Clock): A strictly periodic
clock is denoted as a pair (n,p), with n, p in N, and:
« The infinite sequence of tags generated by (n, p), denoted
(n,p)#, is defined as follows: (n,p)* = {i*xn+p|ic
IN}.

e m((n,p)) = n is the period and ©((n,p)) = p is the
offset of (n,p).

The acceleration (x.), deceleration (/.), and delay (— .)
operators are defined below. These clock definitions are il-
lustrated in Figure la (see end of Section III-A for a more
detailed description).

Definition 2 (Periodic Clock Operators):

w(ck*. k) = w(ck)/k o(ck*. k) = o(ck)
m(ck /. k) = m(ck) x k o(ck /. k) = o(ck)
w(ck— . k) = n(ck) o(ck— . k) = o(ck) + k

In existing synchronous languages, and also in PRELUDE
without our proposed extension, a clock ck on C(c) denotes
a clock ck that is sub-sampled on condition dataflow c. It
produces a tag t, iff ck produces that tag ¢ and dataflow c
produces at ¢ the value C. It is defined as follows:

Definition 3 (Mono-periodic conditional sub-sampling):

(ck on C(c))# = {t|t e ck? A(C,t) € )}

Throughout this paper, we will denote divisibility con-
straints using the relation z div y < y mod x = 0, which
reads “z divides y”.

2) Our extension: Clock views: In a multi-periodic context
such as the present paper, we want to extend the definition of
ck on C(c) to allow ck and c to have different periods. To
this intent, we introduce the concept of clock views. The clock
ck on C(c,w) denotes the clock ck sub-sampled on condition
¢, such that it produces tags only if ¢, perceived according to
view w, produces a value C. A view is a clock that specifies

the rate at which the condition is observed. The semantics of
the on operator with views is defined as follows.

Definition 4 (Sub-sampling with clock views): A multi-
periodic conditional clock is denoted ck on C(c,w) where
ck is a clock, C is a constant, ¢ is a condition dataflow, and
w 1is a strictly periodic clock called view.

« The infinite sequence of tags generated by ck on C(c, w),
denoted (ck on C(c,w)), is defined as follows:

(ck on C(c, (n,p)))* ={t|t € k™ AC,t") € .t € (n,p)*
A <t<t +ant’ =t 4+ 9@ —p}

o A view is valid iff 7w(ck) div w(w) A 7(¢) div 7(w)

o Extending the previous notation, we  have
m(ck on C(c,w)) = w(ck) and p(ck on C(c,w)) =
©(ck). A conditionally sub-sampled clock has the same
period and offset as its base clock (ck), but in addition
filters tags according to a condition.

Intuitively, the view w delimits intervals where only a single
value produced by c is responsible for all tags produced by ck
within that interval. If that value equals C, then ck on C(c, w)
produces all tags within that interval. Otherwise, it produces
no tag within that interval. The requirement on the view
period is needed so that applying a rate-transition operator
(Section III-D) always results in a dataflow with a view that
is a strictly periodic clock.

Figure 1a illustrates the clocks described in this section. The
first 4 timelines represent the instants at which different clocks
produce tags. Below, we have the timeline for a condition
dataflow ¢ with clock (3,0). The two timelines below show
different sub-samplings of (2,0) by condition c. They differ
only in their views. The first one observes ¢ according to view
(6,0) and the second one according to view (12,0). Note that
the first one produces tags at instants 6, 8 and 10 because c
is true at instant 6. The fact that c is false at instant 9 is
ignored because the view (6,0) considers c only at tags that
are multiples of 6. For the same reason, the true value of
c at instant 3 is ignored. The figure shows that changing the
view ((2,0) on true(c, (12,0))) produces a different set of
tags.

B. The surface language

As in [6], we distinguish between the surface language the
programmer uses and the core language for which a formal
semantics is defined. During the compilation process, the
compiler transpiles the program in the surface language to an
equivalent program in the core language. Being smaller than
the surface language, formalizing the core language is simpler.

Figure 2 details the extended PRELUDE syntax considered in
this paper. Figure 4a illustrates a program written according
to this syntax and we briefly summarize those rules below.
A program is structured in nodes, the synchronous languages
equivalent to functions. An imported node lifts a function
over scalar values from the target language (e.g. C) to flows
by performing a point-wise application of the function. User-
specified nodes define via definitions how local and output
variables are computed from input variables. A definition is
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(b) Dataflows

Fig. 1: Clocks and dataflows

either an equation or an automaton (composed of further
definitions). An equation of the form x = e; defines variable
x as equal to expression e. Note that equations are unordered.
An expression can be a variable (x), a constant (42), a node
application (£ (a, b)) or the result of the application of one
of the following built-in operators (assuming i has clock ck):

e 1/7k keeps one out of k successive values of i and has
clock ck /. k;

e i*"k repeats each value of i, k times, and has clock
ck*. k;

e 17>k delays each value of i by k and has clock ck — . k;

e k fby i produces value k followed by the values of
i and has clock ck, effectively delaying values of i by
m(ck)

e 1 when true(c) sub-samples i such that it pro-
duces values only if ¢ produces true. It has clock
ck on true(c,w). Note that the view is not specified
by the program, but instead inferred by the compiler;

e merge (c, true—>i_true, false—->j_false)
combines the complementary flows i_true and
i_false with respective clocks ck on true(c,w) and
ck on false(c,w) and has clock ck.

We assume that all node inputs have rate annotations (e.g.
rate (10,0)), i.e. their periods and offsets are always
specified in the program. We believe that this restriction has
little impact on the ability to express realistic real-time sys-
tems, even though it prevents users from defining intermediate
polymorphic nodes. Lifting this restriction is left for future
work.

C. The core language

The link between the surface and core language is done via
a translation semantics. Compared to the surface language, the
core language features two important distinctions:

o Automata are replaced by equations with the same se-
mantics;

)

) n=(nd) | (ind)

(ind) ::= imported node (id) ({var)+) returns ({(var)+)

) :=node (id) ((var) +) returns ({var)+)

(var (var)+;)? let (def)+tel

) = (id) = (ty) 7 (ck)?
) = 1int | real | bool
) rate ((int), (int)) | (ck) on (id) ((id))
) 2= {auto) | {eq)

(auto) ::= automaton (state)+
)
)
)
)
)

m= 1 (id) —> (var (var)+)? (st) {def)+ (wt)
:=unless (expr) then (id);

im=until (expr) then (id);

= (id)(, (id))* = (expr)

= (id) | (const) | (id) ((expr)(, (expr))*)

| (eapry /* (int) | {expr) + Gint) | {ezpr) ~> (int)
| (const) fby (expr) | (expr) when (id) ({id))

| merge ((id)(, (id)—>{expr))+)

Fig. 2: The surface language syntax

o Expressions are in Administrative Normal Form (ANF),
i.e. arguments of node and operator applications are either
variables or constants.

The automata flattening process is detailed in [6]. Our trans-
lation process remains the same because we simply extend
the semantics of the when operator. We provide an intuitive
overview of [6] below to make the paper more self-contained.

Within an automaton, we distinguish local from non-local
variables. A local variable is defined within a specific state,
while a non-local variable is available within all states of an
automaton. In Figure 4, variables pos and GP S are non-local,
while controls is local to state Actuate. The main steps
of the translation are:



o A new type is introduced, the variants of which are the
(potentially mangled) names of the automaton states. For
an automaton with states StateA and StateB, this
would introduce a type autoO_state with variants
StateA and StateB;

o We introduce state variables, which represent the current
automaton state. Transitions update these variables as
appropriate;

o For each state, we project equations into that automa-
ton state, i.e. we apply a when to non-local vari-
ables and mangle the left-hand side variables to state-
specific ones. For instance, an equation x = £(1i);
in state StateA becomes StateA _x = £ (i when
StateA (state)) where state is the current-state
variable;

« Non-local equations are merged. For instance, we would
find the following equation x = merge (state,
StateA—-> StateA_x, StateB—->StateB_x);

Once all automata are flattened, we transform equations into
ANF. This transformation is straightforward. If the argument
of a node or operator application is not an atom (a variable or
a constant), we introduce a new equation with that argument.
We substitute the original argument by the left-hand side of our
fresh equation. Then, we recursively call that procedure on the
right-hand side of our fresh equation. For instance, when tran-
spiling the equation x = (i when true(c))*"2/"3;
we obtain the following equations:
v0/"3; v0 = v1ix"2; vl =

Once the program has been transpiled to the core language
and all static analyses have been performed, the compiler
proceeds to translating the program into a low-level language
(e.g. C). This compilation step is out of the scope of this paper.
In [16], a complete compilation process for PRELUDE without
our extended when and merge is proposed. In future work
we will adapt the proposed node communication protocols to
take into account clock views.

X =

D. Synchronous Kahn semantics

In this section, we present the semantics of the core
language based on synchronous Kahn networks [13], [5].
The term o7 (sg, ..., s,) denotes the flow resulting from the
application of the operator ¢ on flows sq,...,s,. Operators
fall into three categories: imported operators, rate-transition
operators and conditional operators. The semantics for the first
two categories remains as previously defined in [9] and is
recalled in Figure 3. The figure also details the semantics of
our extended conditional operators (op; denotes an operator
over scalars from the compiler target language). The when?
operator is a direct transposition of the on operator on flows.
The merge? combines flows that have complementary clocks.
Examples are provided in Figure 1b.

Note that merge is deterministic iff the merged flows are
complementary, i.e. only one is present at any given instant.
Similarly, the imported node application requires arguments
that are synchronous, i.e. that have the same clock. Also,
*"\#(s,k) is defined iff k div 7(3). Finally, the semantics

op™ (50, .., 8n) = {(ops(vo, ..., vn), 1) |
(vo,t) € ¥, ..., (vn,t) € s}
" (s,k) = {(v,t +ixm(3 )/lc)\(v7 t) e s™,ie[0.k[}
/M (s,k) = {(v,) | (v,t) € s* At e (/. k)7}
~>F(s,k) = {(v,t +k) | (v,t) €57}
£by* (v, 5) = {(v, t0)} U {(vi, tit1) |

(Vs 1), (it tivr) € 57 }
when™ (s,¢,C,w) = {(v,t) | (v,t) € 5,t € (5 on C(c,w))*}

n
)=Usr
=0

merge# (¢, 80, -, Sn

Fig. 3: Kahn semantics of operators

for when” and merge® require clock views, which are not
specified by the program. Instead, they are inferred by the
compiler. The clock calculus, defined in the next section, is
responsible for checking clock constraints, and inferring the
clocks and views of the program. Thus, the semantics of a
program is well-defined only if the clock calculus succeeds.

E. llustrative example

In this section, we illustrate the presented language. Fig-
ure 4 presents an implementation of the control software of
a large sized Unmanned Aerial Vehicle (UAV) from [14],

i when true (Eh2]. Figure 4a shows the corresponding program written with

our extended version of PRELUDE using Synchronous State
Machines. The system perceives its environment via a GPS and
an Inertial Navigation System (INS). In addition, it receives
via a wireless communication an enabling signal specifying in
which mode it shall execute (isEnabled) and a destination
point (waypoint). The system actuates via servo motors.
We perform amplitude saturation on the computed instructions
for the servo motors. This ceils the difference between two
consecutive instructions, protecting the servo motors from
extreme variations.

The application has two modes. In the Est imate mode,
the UAV preserves its previous course and measurements
serve only to update the UAV position. In the Actuate
mode, the UAV computes orders for the servo motors so
as to reach the current waypoint. The automaton switches
from mode Estimate to mode Actuate when expression
isEnabledis true, and from Actuate to Est imate when
not (isEnabled) is true. As a consequence, Mode Change
Requests are emitted with clock (10,0).

Due to the dataflow nature of the language, the pe-
riod of nodes (e.g. h_f, control, servo_driver) is
determined by the period of their inputs. For instance
control has clock (10,0) on Actuate(state,(10,0)),
while servo_driver has clock (20,0) on Actuate
(state, (20,0)), even though both nodes are executed within
the mode Actuate. This difference in views means that task
control will respond to a change of state immediately,
while servo_driver can in some cases respond with a



delay of 10 time units. Thus, this automaton implements
an overlapping mode change protocol, i.e. nodes are not all
impacted simultaneously by a mode change.

Figure 4b shows an excerpt of the transpilation into the core
language. To improve readability, we renamed the identifiers
generated by the compiler. The automaton state is defined by
the variable state, which has clock (10,0). For a state S
(either Estimate or Actuate), MCRs are emitted by the
equation s_S which has clock (10,0) on S(state, (10,0)).
An MCR instantly updates the value of the variable state.
However this state change is observed by tasks depending on
their view as seen above.

Let us detail how the equations of
translated. For each state equation (e.g.
servos_driver (controls/"2); in state Actuate),
we replace it by a state-specific equation, (e.g. the
equation for Actuate_srvs). State-specific dataflows
(such as Actuate_srvs, Estimate_srvs) are
then merged together (e.g. merge (state,
Estimate=>Estimate_srvs, Actuate-=>
Actuate_srvs) ;), producing a flow with clock (20,0).
To respect the dataflow-nature of the language, state non-local
variables (e.g. GPS) are projected on the automaton state they
are used in (e.g. GPS when Actuate (state)).

SE€rvos  are
Srvs =

Srvs =

IV. CLocK CALCULUS

The previous implementation of the PRELUDE clock calcu-
lus proceeds by Hindley-Milner type inference extended with
subtyping [9]. In order to support our extended on clock
operator, we rely on a clock calculus based on refinement
typing [10], [20].

Let us first briefly illustrate a refinement typing system. In
such a type system, types may be ascribed with predicates. For
instance the expression 4 would have type {v:int | v = 4},
meaning “an int whose value is equal to 4”. The type int is
called the base type, the variable v represents the value of the
typed expression and “v = 4” is called the refinement. The
refined function (/) would have type a:int — b:{v:int |
v # 0} — {v:int | v = a/b}, meaning “a function taking an
argument a of type int and an argument b of type int whose
value is not equal to O, returning an int whose value is equal to
a/b”. In our clock calculus, we use linear integer arithmetic
predicates and rely on the Z3 SMT solver [7] to check the
satisfiability of these predicates.

Throughout this section, we will illustrate our clock calculus
via the running example in Figure 5. Node main has two
inputs, 1 and c with different periods. The local variable iwc
holds the dataflow of conditionally sub-sampling i to only
produce values when c produces true. The output o is the
result of delaying iwc by 50 time units.

A. Clock language

The goal of our clock language is to describe the clocks of
Section III-A using refinement types. A full definition can be
found in Figure 6. For instance, the clock (3,0) is described
by the clock type {v:pck | m(v) = 3 A p(v) = 0}. The base

type here is pck, i.e. a strictly periodic clock. The refinement
states that the clock period is 3 and the clock offset is 0. For
brevity’s sake, we will write such types as {v:pck | (3,0)}.

Definition 5: The clock type {v:cky | (n,p)} is a shorthand
for the clock type {v:cky | r, ATy} where

m=m(v)=n rp=p)=p

The clock (3,0) on true(c,(15,0)) is described by the
clock type {v:pck on true(c,{v:ipck | (15,0)}) | (3,0)}.
Again, the refinement ((3,0)) specifies the clock period
and offset. The condition is found inside the base type
(on true(c,...)). The view of the condition is itself specified
as a periodic (refined) clock ({v:pck | (15,0)}).

In a functional clock z:ck, — ck., x is the called the input
binder, ck, is the input type and ck. is the output type.

B. Overview

In this section, we provide on overview of the different
passes of the clock calculus, which are:

1) Structural Clock Calculus
2) Refinement Clock Calculus

a) Refinement Instantiation
b) Refinement Checking

3) View Closing

In the Structural Clock Calculus, only the structure of clocks is
inferred. This pass is very similar to Hindley-Milner typing,
except that clocks are annotated with refinement holes, i.e.
refinement placeholders. In the second pass, the Refinement
Clock Calculus, we verify the actual refinements. We divide
this pass into two steps: Refinement Instantiation and Re-
finement Inference. In the Refinement Instantiation step, we
bridge the gap between the structural clocks and the refinement
clocks. In the Refinement Inference step, the actual typing
decisions are performed. Finally, we delay view computations
until the last point, the View Closing pass. Before that, views
only collect constraints without checking them.

Inference rules use bi-directional typing [18], [8]. Synthesis
judgements H = e = { signify that in environment H, the
type t is associated to expression e. Checking judgements H -
e < t' signify that in environment H, the type ¢’ is valid for
expression e (even though e might be associated to a different
type ). The link between these two judgements is provided in
Definition 6 below. To check an expression e against a type t,
first a type ¢’ has to be synthesised and ¢’ has to be a subtype
of t. The subtyping relation ¢ <: ¢ is defined for refinement
types as follows: a type t’ is a subtype of type ¢, iff the base
type of ¢’ is a subtype of the base type of ¢ and the refinement
of ¢ implies the refinement of ¢. For instance, if we want to
check that {v:int | v = 4} <: {v:int | v # 0}, we have to
prove Vv:int. (v =4) = (v #0).

Definition 6 (Core refinement typing rules):

CHK-SYN SUB-REF
HF et V<t t<t Yvit. rg = 11
HtEest {vit | ro} <: {v:t’' | 1}
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INSMessage rate(10,0);
real[4] rate(10,0))

node main(GPS: GPSMessage rate(10,0);
bool rate(10,0);

ServoMessage)

led: nt:

1

2

3 returns (
4 var pos,
5 let

6 servos = saturate(srvs, 0 fby servos);
7

8

1

automaton 2

| Estimate -> 3

9 unless isEnabled then Actuate; 4
10 var GPS_f, INS_f, pos_f; 5
11 GPS_f, INS_f,pos_f = h_£(GPS, INS, init_pos fby* pos); 6
12 pos = filter (GPS_f, INS_f, pos_f); 7
13 sr init_servos fby srvs; 8
14 9
15 | Actuate -> 10
16 unless not (isEnabled) then Estimate; 1

INS_c, pos_c,

19 GP INS_c, po nt_c =

20 h_c(GPS, INS, init_pos fbyx pos, waypoint); 15
21 e ntrols = control (GPS_c, INS_c, pos_c, waypoint_c); 16
22 sr servo_driver (controls/"2); 17
23 end 18
24 tel 19

(a) The case-study in the surface language

: INSMessage rate(10,0);
real[4] rate(10,0))

5: GPSMessage rate(10,0); INS
bled: bool rate(10,0); wa
ServoMessage)

s_Estimate, s_Act

node main (G

boint:

returns

var s ious_state, late, ...

ate = Estimate fby state;

merge (previous_state, Estimate->s_Estimate, Actuate->s_Actuate);

stimate = if Estimate_isEnabled then Actuate else Estimate;
ctuate = if Actuate_not_isEnabled then Estimate else Actuate;

Estimate->Estimate_srvs, A ate->Actuate_srvs) ;

= merge (state,

d = isEnabled when Estimate (previous_next_state);
1abled not (Actuate_isEnabled) ;
1abled = isEnabled when Actuate (previous_next_state);

vs = srvs_fby when Estimate (state);

hen A

/ = waypoint_fby when Actuate (state);
nit_pos fby waypoint;
1trols = control (GPS_c, INS_c, pos_c, waypoint_c);

= controls/"2;
servo_driver (controls_div2);

(b) The case-study in the core language (excerpt)

Fig. 4: A multi-mode multi-rate synchronous program

node main(i: rate(100,0); c: rate(200,0)) returns (o)

var iwc;

let
iwc = i when true(c);
o = iwc 7>50;
tel
Fig. 5: The running example
o u= VYa.o|cke
cke = xick, — cke | cke X cke | ck,
ckr u= A{vicky | r}
cky == pck|a|ck, on Cl(c,cky)
r = rAr|p=aladivp|p>altrue
p = 7m(v)|e)
a = k|n(x)| e |atala—alaxk]|a/k
H := 0|H;x0o
x : Variable & : Constant

Fig. 6: Clock system

C. Structural Clock Calculus

The goal of this pass is to infer the structure of clocks,
that is to say clock types where refinements are left unknown
and represented by variables. This means in particular that
clock conditions are inferred during this pass, while periods
and offsets are inferred during the following pass, i.e. the
refinement clock calculus. To differentiate between judgements
of both clock calculi, we denote judgements of the Structural
Clock Calculus with an S, e.g. H F e = ck and H F e < ck.
We detail the main principles of the structural clock calculus
on our running example:

o Concerning node variables, clock annotations dictate

clock structures and refinements are represented by
fresh refinement holes. So for instance, i has clock
{v:pck | x0}, ¢ has clock {v:pck | *;} (both variables
are declared with strictly periodic clocks), while iwc has
clock {v:a | *2};

o When typing an operator or a node application, first we
instantiate its type with fresh refinement holes. So for
instance, for operator when we get clock e:{v:e | x4} —
c{vie | x5} — {v:e on true(c,w”) | x¢} where w”’ =
{v:pck | x7}. Note that since all refinements are different,
this implies that the operands of a when can have
different periodic clocks;

o The second step of the application consists in checking
arguments against input types. In our example, this im-
plies that € is substituted by pck, so expression i when
true (c) gets clock {v:pck on true(c,w) | xs};

¢ Concerning equations, left and right-hand sides must
synthesise to the same clock, so iwc and i when
true (c) both get clock {v:pck on true(c,w) | *2};

The complete results for our running example are detailed
in Table I. A full definition of structural inference rules can
be found in Appendix A.

D. Refinement Clock Calculus

In the Refinement Clock Calculus pass, clock refinements
are inferred in place of refinement holes. Types structures
are considered fixed, only refinements may change. A full
definition of inference rules can be found in Appendix A.

1) Refinement Instantiation: In this step, we bridge the
gap between structural clocks and refinement clocks. Some
refinements are initially known: refinements corresponding to
clock annotations, refinements of nodes typed previously, and
refinements of predefined operators. Refinement Instantiation



Item After
i v:pck | xo}
c v:pck | x1}

iwc
i when true(c)
o
“>50
w {v:pck | *9}

w’ {v:pck [ *x10}

{v:pck on true(c,w) | x2}

{v:pck on true(c,w’) | x3}

iwc

TABLE I: The typing environment after the structural clock
calculus

consists in injecting these refinements into structural types. We
detail the main principles of this step on our running example:

o Concerning variables, we inject refinements related to
clock annotations declared in the program (if any). For
instance, for i and c we instantiate their refinements to
{vipck | (100,0)} and {v:pck | (200,0)};

« Concerning operator or node applications, in our example

the structural clock of the when is e:{v:pck | x4} —
c{v:pck | x5} — {vipck on true(c,w”) | ¢} where
w’ = {vipck |7} After instantiation, we ob-
tain the following refinements: e:{v:pck | true} —
e:{vipck | (n,p(e))} —
{v:pck on true(c,w”) | (n(e),p(e))} where w” =
{vipck | (n,p(e)) A w(e) div n(v) A w(c) div n(v)}.
These refinements impose that: 1) inputs and outputs all
have the same offset (¢(e)); 2) e and c can have different
periods; 3) the output has the same period as e; 4) the
period of the view must be divisible both by the periods
of e and c.

2) Expression Refinement: With our operators refined, we
can proceed to type expressions and equations. The objective
of this pass is to check the consistency of the refinements of all
expressions inside a node. The calculus infers the constraints
that the refinements must satisfy. The set of constraints is then
submitted to the SMT solver for resolution. We detail the main
principles of this pass on the when application in our running
example:

o First, arguments are type checked against input types.
Type checking for i succeeds trivially and substitutes i
for e in the clock of when;

o Type checking for ¢ must then check the following
judgement: H F c<{v:pck | (n,»(i))}. This is verified
trivially by the solver because both variables have offset
0;

o Finally, the type of the result of the application is the
output type where input binders are substituted by the
actuals:

{v:pck on true(c,w) | (100,0)} where

w = {wipck | (n,0(i)) A w(i) div 7(v) A w(c) div
m(v)}. Note that the period and offset of the view are
still unknown at this point.

E. View Closing

The final pass, the view closing pass, computes the period
and offset of views. Constraints of the form (i) div 7(v)

are nonlinear, i.e. they belong to an undecidable fragment of
integer arithmetic. However, since we postponed view resolu-
tion, the periods and offsets of flows are all solved (constants).
Furthermore, we perform a constant propagation step before
sending constraints to the solver. This yields a system of
constraints with few variables, which can rather easily be
solved by the solver heuristics (despite the undecidability of
the theoretical problem). For instance, on our running example:

« Before closing, the views are

w = {vipck | (n, (1)) Aw(i) div 7(v) A 7(c) div w(v)}
w' = {vpck | (m(w), p(w) + 50)}

o Performing constant propagation yields:

w = {v:pck | (n,0) A 100 div 7(v) A 200 div 7 (v)}
w' = {vipck | (m(w), p(w) + 50)}

o This results in the following request to the SMT solver:

100 div wperioa A 200 div Wperiod A Wof fset = OA

! /
wperiod = Wperiod A woffset = Wof fset + 50

o /
MANIMize(Wperiods Wperiod)
o The solution returned by the solver is:

w = {v:pck | (200,0)}
w’ = {v:pck | (200, 50)}

V. EVALUATION

Comparing our implementation of the clock calculus with
the implementation of [9], our clock calculus requires around
800 additional lines of OCAML code. In addition, we observe
a noticeable but still reasonable overhead in compilation
time. For instance, the compilation time of the ROSACE
case study [17] increases from 10ms to 50ms (including the
constraints resolution time of Z3).

In the rest of this section, we illustrate the capabilities of the
extended language through examples showing the implemen-
tation of different mode change protocols. Recall the criteria
of [19] by which a mode change protocol can be classified:

e Overlapping: when do the new-mode tasks start execut-

ing?

e Periodicity: are unchanged tasks impacted by mode

changes?

e Retirement: what happens to old-mode tasks during a

mode change?

a) Unchanged tasks: In our work, unchanged tasks cor-

respond to dataflows computed outside the automaton. For

instance, in Figure 4, saturate is an unchanged task.

b) Retirement: In our work, old-mode tasks continue
their execution until their views perceive the state change.
Since the period of the view cannot be shorter that the

period of the task, this implies that we cannot implement

early-retirement protocols. Supporting early-retirement would

require to interrupt a task during its execution, which raises

serious semantics concerns in a dataflow context.



Item Refinement Clock Calculus [ View closing
i {v:pck | (100, 0)
c {v:pck | (200, 0)

iwc

i when true(c)

{v:pck on true(c,w) | (100,0)}

o
“>50

iwc

{v:pck on true(c,w’) | (100, 50)}

w {v:pck | (n, 0(1)) Ax(i) div 7(v) A 7(c) div n(v)}

{v:pck | (200,0)}

w’ {vipck | (m(w), p(w) + 50)}

{v:pck | (200, 50) }

TABLE II: The typing environment during the refinement clock calculus

@@ —-4,8 +4,9 @a@
—-var pos;

+var pos, isEnabled_slow;

let

servos = saturate(srvs, 0 fby servos)
+ 1sEnabled_slow = isEnabled/"2;

automaton

| Estimate —->
= unless isEnabled then
+ unless isEnabled_slow
@@ -14,15 +15,16 @@

| Actuate —>
= unless isEnabled then
+ unless isEnabled_slow

Actuate;
then Actuate;

Estimate;
then Actuate;

Fig. 7: Changes for a non-overlapping

¢) Periodicity: Our work only supports periodic proto-
cols. Indeed, the execution of a node is triggered by the arrival
of its inputs, it cannot be interrupted once it starts processing
its inputs. As for early-retirement, supporting aperiodicity is
antagonistic with dataflow semantics.

d) Overlapping: We can implement both overlapping
and non-overlapping protocols. For instance, Figure 4 im-
plements an overlapping protocol. Nodes filter and
control, which compute pos, have the same view, (10, 0).
Thus, during a transition from one state to another, there is no
overlap between nodes filter and control. However, in
case of a transition from state Actuate to state Estimate,
there can be an overlap, since filter (from the new mode)
and servo_driver (from the old mode) may co-exist
(because servo_driver has view (20,0)).

To change the automaton protocol into a non-overlapping
protocol, one must change the program such that all nodes
share the same view. One possibility is to slow down the
period of transitions. Figure 7 shows the changes required. We
define a new dataflow isEnabled_slow, a down-sampled
version of isEnabled, and replace it everywhere inside the
automaton. Now, state has clock (20,0) and the views of
all expressions inside the automaton become (20,0). Thus,
the automaton implements a non-overlapping mode change
protocol.

These examples illustrate the benefit of separating the
execution rate of a flow (its strictly periodic clock) from the
rate at which it perceives mode change requests (its state

transition view). This allows us to reason about mode change
protocols, and avoids misinterpretations and ambiguities (Re-
quirement 1). Examples also demonstrate the flexibility of the
language (Requirement 2).

VI. CONCLUSION

We defined an extension for synchronous dataflow lan-
guages to support applications with multiple modes of execu-
tion and tasks of different periods within the same mode. The
extension allows the programmer to implement custom mode
change protocols best adapted to the application. We defined
a formal semantics for these extensions and a clock calculus
based on refinement typing. In future works, we plan to extend
the clock calculus to support nodes with polymorphic clocks.
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where cky/, ck)’ = insti (cky, cky, true, \z.(m(z), p(z)))
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Hrz2 ck HreZ ck S S
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e{vicky | true} — {vicky’ | (m(e) x k,p(e))}
chy s ks w S where cky, cky’ = inst}(cky, cky, w(e) * k div 7(v),
Az.m(z) div w(v) Aw(e) x k div w(v) A p(v) = (x))

cky, on C(c,w) 2. cky, on C(c,w")
< inst(fby, e:{vicky | x0} — {vicky | *1}) =

cky <: cky, e{vicky | true} — {vicky’ | (m(e), p(e))}
{vicky | ) 2 {vickl | '} where cky/, ck)" = insti (cky, cky, true, \z.(m(z), p(z)))




inst(">k,e{vicky | %o} — {vick, | x1}) =
e{vicky | kdivn(v)} — {vicky | (w(e), ple) + k)}
where cky, cky’ = insti(cky, cki, true, (m(z), ¢(x) + k))

inst(when, e:{vicky | xo} — c:{vicky | 1} —
{vicky on C(c,w) | *2}) =
ex{vicky | true} — c:{vicky | (n,¢(e))
{vick} on C(e,w) | (m(e), ple))}
where cky, = insty(cky, true)
w = {v:pck | (n,p(e)) Am(e) div n(v) Am(c) div n(v)}

}—

inst(merge, c:{vicky | %o} — e0:{v:cky on Co(c,w) | *x1} —
el:{vicky on Cy(c,w) | xo} — {v:cky | x3}) =
c{vicky | true} — e0:{v:ck, on Cy(c,w’) | true} —
e1:{ucky on Cy(e,w') | {n(eo), pleo))} — {vick) | {n(eo), pleo))}
where ckj, = insty(cky, true)
w' = {v:pck | true}

insty(pck, ) = pck
nsty(, ) =«

insty(cky on C(c,w),r) = insty(cky, ) on C(c, {v:pck | r})

inst?(pck,pck, , ) = pck,pck
insti(o,a, , ) =a,«
inst?(cky, on C(c,w),ck; on C(c,w'),r,\x.r') =
ckyl on C(c,w”), ckj” on C(c,w")
where cky, ck)” = insty(cky, cky,r, Ax.r')
w = {vipck | %o}
w' = {v:pck | *1}
w'’ = {v:pck | r}
w" = {v:pck | Az.r)w'}



