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Abstract: In this paper, the study of the fully developed flow of a self-similar (fractal) power-law
fluid is presented. The rheological way of behaving of the fluid is modeled utilizing the Ostwald–de
Waele relationship (covering shear-thinning, Newtonian and shear-thickening fluids). A self-similar
(fractal) fluid is depicted as a continuum in a noninteger dimensional space. Involving vector calculus
for the instance of a noninteger dimensional space, we determine an analytical solution of the Cauchy
equation for the instance of a non-Newtonian self-similar fluid flow in a cylindrical pipe. The plot
of the velocity profile obtained shows that the rheological behavior of a non-Newtonian power-law
fluid is essentially impacted by its self-similar structure. A self-similar shear thinning fluid and a
self-similar Newtonian fluid take on a shear-thickening way of behaving, and a self-similar shear-
thickening fluid becomes more shear thickening. This approach has many useful applications in
industry, for the investigation of blood flow and fractal fluid hydrology.

Keywords: fractal dimensions; power-law fluid; non-Newtonian fluid; self-similar fluid; noninteger
dimensional space

1. Introduction

Non-Newtonian fluids appear in a variety of practical applications [1–3]. Their un-
usual flow patterns are frequently more complicated than those of Newtonian fluids.
Numerous studies and observations have shown that for non-Newtonian fluids such as
blood, paints, whipped cream and polymeric solutions, the relationship between viscous
shear stress and velocity gradient is nonlinear [4–6]. There are a number of empirical or
semiempirical formulas that have been developed to accurately measure non-Newtonian
viscosity behaviors seen in a variety of disciplines [4–10], namely the well-known power-
law model, the Bingham model and the Casson model. In general, both Newtonian and
non-Newtonian fluids are thought of as integer-dimensional homogeneous continuums.
However, the interior structures of many complex fluids have scale-invariant characteris-
tics that are described by noninteger fractal dimensions [11–14]. An object that possesses
scale-invariant features is called a self-similar or fractal object (including fluids), whose
fundamental characteristic is that they appear similar under different levels of magnifica-
tion [11,15]. The mass of a self-similar fluid obeys the power law M ∝ RD, where M is
the mass of a spherical region of the fluid with radius R, and D is the fractal mass dimen-
sion. Fractal fluids include solutions containing a fractal distribution of a solute dissolved
in a nonfractal solvent [16], emulsions in which one phase is fractally dispersed in the
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other [17], suspensions in which solid particles are fractally distributed in a liquid [18,19]
and classical fluids confined in a fractal configuration space [20]. To explain fractal fluids,
there exist four basic ways [21,22]: (a) using the methods of “Analysis on fractals” [23–25];
(b) using fractional-differential continuum models [26–30] and also [31–33]; (c) applying
fractional-integral continuum models [34,35]; and (d) using the theory of integration and
differentiation for a noninteger dimensional space [36–38].

In this paper, we consider the noninteger dimensional space (NIDS) model developed
in [39], where the integrations and differentiations are defined for the spaces with noninte-
ger dimensions. Newtonian fractal fluids have been studied by several scientists, including
Tarasov [21,40] and Balankin et al. [41]. The study of a fractal non-Newtonian fluid using
the noninteger dimensional space model has not yet been considered. In this regard, this
study presents a theoretical investigation of the effects of the self-similarity property on the
flow of a non-Newtonian fluid through a cylindrical tube. For simplification, the surface of
the tube is considered to be smooth. However, for the case of a rough surface, the fractal
approach can be used to quantify the irregularities of the tube’s inner wall. For instance,
a recently published study [42] deals with the influence of the surface roughness on the
behavior of a non-Newtonian fluid. However, this is not within the scope of our study.
This paper focuses mainly on how the self-similarity property of the fluid affects the flow
of a non-Newtonian fluid. The behavior of the non-Newtonian fluid is described using
the Ostwald–de Waele model, better known as the power-law model [43]. This approach
has a wide range of possible applications in any field that involves a non-Newtonian fluid
flow that presents a self-similar structure. For instance, blood is a non-Newtonian fluid
that is considered to be self-similar because it contains particles such as proteins, hormones,
glucose, etc. Thus, this approach can be used to study blood flow [44,45].

The rest of this paper is organized as follows. In Section 2, we introduce the well-
known Ostwald–de Waele model that describes the flow of a non-Newtonian fluid. In
Section 3, the noninteger dimensional space operators (gradient and divergence) are pre-
sented, and we derive an analytical solution using these operators to describe a self-similar
non-Newtonian fluid. A discussion of the results obtained is given in Section 4, and an
overall conclusion is presented in Section 5.

2. Laminar Flow of an Incompressible Non-Newtonian Fluid
2.1. The Rheological Behavior of Fluids

The classical Newton’s relationship between shear stress and velocity gradient can be
expressed as:

τ = µγ̇, (1)

where τ is the viscous shear stress tensor, µ is the fluid dynamic viscosity and γ̇ is the
strain rate tensor. The classical Newton’s expression of the shear stress can be applied to
a particular type of fluids called Newtonian fluids. However, in reality, most fluids do
not follow this classical relationship. In fact, different models have been developed to
describe the complex behavior of fluids (such as blood, rubber and slurry). Fluids that do
not follow the classical Newton’s relationship are called non-Newtonian fluids. Several
general variations of Equation (1) for various non-Newtonian fluids have been proposed in
previous studies. The following power-law model, often known as the Ostwald–de Waele
model, is one of the most commonly used formulas:

τ = K0(γ̇)
n, (2)

where n and K0 are the power-law index and the consistency index, respectively. For a
Newtonian fluid, n = 1 and K0 = µ.

2.2. Momentum Conservation Equation

Let us consider the flow of a non-Newtonian fluid through a cylindrical tube. To
model the hydrodynamics of the fluid, we need two equations, conservation of mass and
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conservation of momentum or better known as the Cauchy equations, which are written in
the following form:

∂ρ

∂t
+∇.(ρv) = 0, (3)

ρ
Dv
Dt

= ρf +∇.σ, (4)

where v is the velocity field, ρ is the density of the fluid, f is a vector representing body
forces and σ is the stress tensor characterizing the rheological behavior of the fluid.

The stress tensor can be expressed as follows:

σ = −pI + τ, (5)

where p and I are the pressure tensor and unit tensor, respectively. τ refers to the shear
stress tensor.

Considering the case of the fully developed flow of an incompressible non-Newtonian
fluid, the mass and momentum conservation Equations (3) and (4) take the following form:

∇.(ρv) = 0 (6)

−∇p +∇.τ = 0. (7)

For a unidirectional flow (along the x direction in Figure 1), the projection of Equation (7)
according to the radial coordinate r gives:

∇r(−τxrex) =
dp
dx

ex, (8)

where ∇r denotes the divergence operator in the radial direction.

Figure 1. Schematic of a cylindrical pipe.

The Poiseuille flow differs from flows with inertia in that the pressure field is indepen-
dent of the velocity field. Therefore, Equation (8) is written as follows:

1
r

d
dr

(rτxr) =
∆p
L

, (9)

where ∆p > 0 is the pressure difference along the pipe, and L is the pipe length.
The integration of Equation (9) between r = 0 and r = R, taking into account the

cylindrical symmetry of the pipe at r = 0, and using expression (2) for the shear stress
τxr, yields:

dvx

dr
= −

(
∆p

2K0L

) 1
n

r
1
n . (10)
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The solution of Equation (10), considering the no-slip condition at the wall, makes it
possible to obtain an analytical expression of the velocity field.

vx = vmax(n)

[
1−

( r
R

) 1+n
n

]
, (11)

where:

vmax(n) =
n

1 + n

(
∆p

2K0L

) 1
n

R
n+1

n . (12)

The rheological behavior of non-Newtonian fluids is described by Equation (11), a
well-known velocity distribution. The constant n is the power-law index, and the fluid is
shear thinning (pseudo-plastic) for 0 < n < 1, Newtonian for n = 1 and shear thickening
(dilatant) for n > 1. Figure 2 illustrates the behavior of these types of fluids.

r
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-1 -0.5 0 0.5 1

v
∗ x

0

0.2

0.4

0.6

0.8

1

n = 0.2

n = 0.7

n = 1

n = 1.5

n = 3

Figure 2. Plot of the velocity profile vx defined by Equation (11) normalized by Vmax and r∗ = r/R.

The non-Newtonian behavior of shear thinning fluids (0 < n < 1) is character-
ized by a decrease in the viscosity of the fluid under an applied shear strain. The terms
“pseudo-plastic behavior” and “shear-thinning behavior” are occasionally used interchange-
ably [46,47]. It is the most common type of non-Newtonian fluid behavior, and it can be
found in a variety of industrial and everyday applications [48]. Although the precise
mechanism of shear thinning is unknown, it is widely assumed to be the result of small
changes within the fluid, such as the rearrangement of microscale geometries to facilitate
shearing. For shear-thickening fluids (n > 1), when shear stress is applied, the viscosity
increases. This observable behavior is due to the system crystallizing under stress and
acting more like a solid than a solution [49].

3. Laminar Flow of an Incompressible Fractal Non-Newtonian Fluid

Viscous fluids are regarded as being integer-dimensional homogeneous continuums.
The internal structures of many complex fluids, on the other hand, have scale-invariant
properties, which are characterized by noninteger fractal dimensions. Consider a ball
region VD of radius R of a self-similar fluid; the mass of this ball region is related to its
radius by M ∝ RD. D is a fractal mass dimension that measures how well the fluid particles
fill the region VD. Generally, for a self-similar fluid, the dimension D takes values less than
3 and for a nonfractal viscous fluid D = 3 [40,41]. The boundary Sd of the ball region VD is
characterized by the dimension d, and the relation d = D− 1 does not hold in general [21].
Consequently, we define αr = D− d, which is a dimension in the radial direction r. For
the case of a noninteger dimensional space, Tarasov proposed a generalization of vector
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calculus [39]. The first- and second-order operators such as gradient, divergence, scalar
and vector Laplace operators in a noninteger dimensional space (NIDS) are defined. For
the sake of simplicity, the scalar and vector fields are assumed to be merely dependent on r
(see Refs. [21,39,40] for more details). The divergence and gradient operators in NIDS are
written as follows:

DivD,d
r u(r) =

π(1−αr)/2Γ((d + αr)/2)
Γ((d + 1)/2)

(
1

rαr−1
∂ur(r)

∂r
+

d
rαr

ur(r)
)

, (13)

GradD,d
r φ =

Γ(αr/2)
παr/2rαr−1

∂φ(r)
∂r

er, (14)

where u(r) is a vector field and φ(r) is a scalar field. The NIDS operators (13) and (14)
enable us to obtain an equation of motion that describes the flow of a fractal fluid.

Considering the flow of a non-Newtonian fluid with the property of self-similarity,
substituting Equations (13) and (14) into Equation (8) we get:

DivD,d
r (−τxrex) =

dp
dx

ex, (15)

where the shear stress τxr for a fractal fluid is:

τxr = K0

(
− Γ(αr/2)

παr/2rαr−1
∂vx(r)

∂r

)n
. (16)

Applying the divergence and gradient operators for Equation (15), we have the fol-
lowing differential equation:

An(dx, αr)

[
− n

r(n+1)(αr−1)
d2vx

dr2

(
−dvx

dr

)n−1
+

dx + n(1− αr)

r(n+1)αr−n

(
−dvx

dr

)n
]
=

1
K0

∆p
L

. (17)

where:

An =
Γ((dx + αr)/2)(Γ(αr/2))n

π(αr(n+1)−1)/2Γ((dx + 1)/2)
. (18)

The boundary conditions for Equation (17) are:

vx(0) = Vmax,

vx(R) = 0.

Considering the new function:

Y(r) =
(
−dvx(r)

dr

)n
, (19)

whose derivative is:

Y′(r) = −n
d2vx

dr2

(
−dvx

dr

)n−1
, (20)

we can see that Y(r) satisfies the first-order differential equation:

rY′(r) + [dx + n(1− αr)]Y(r) = Wr(n+1)αr−n, (21)

where:
W =

1
An(dx, αr)K0

∆p
L

. (22)

The solution of Equation (21) is:

Y(r) =
W

αr + dx
r(n+1)αr−n + k1rn(αr−1)−dx , (23)
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where k1 is a constant. We know that vx(0) = Vmax, meaning that vx(r) reaches its maxi-
mum value at r = 0. Consequently, the derivative of vx(r) is zero at this value:

dvx

dr
(r = 0) = 0. (24)

Considering Equations (19) and (24), then Y(r = 0) = 0. Notice that the power
n(αr − 1)− dx in Equation (23) is negative, which leads to an indefined velocity gradient at
r = 0, implying that k1 = 0. Equation (23) then becomes:

Y(r) =
W

αr + dx
r(n+1)αr−n. (25)

Notice that for Y(r = 0) = 0, the power (n + 1)αr − n in expression (25) must be a positive
number. Thus, this gives limits to the values permitted for αr and n. Consequently, we get

n
n+1 < αr ≤ 1.

Considering Equations (19) and (25), we get the following expression for the velocity
gradient:

dvx(r)
dr

= −(Y(r))
1
n = −

(
W

αr + dx

) 1
n

rαr(1+ 1
n )−1. (26)

After integration, we obtain the following expression for vx(r):

vx(r) = −
(

W
αr + dx

) 1
n rαr(1+ 1

n )

αr(1 + 1
n )

+ k2, (27)

where k2 is a constant of integration obtained by the means of the second boundary
condition vx(R) = 0:

k2 =

(
W

αr + dx

) 1
n Rαr(1+ 1

n )

αr(1 + 1
n )

. (28)

The velocity profile vx(r) is then given by:

vx(r) =
(

W
αr + dx

) 1
n Rαr(1+ 1

n )

αr(1 + 1
n )

[
1−

( r
R

)αr(1+ 1
n )
]

. (29)

Using the effective consistency index Ke f f :

Ke f f =
1
2
(αr + dx)α

n
r An(dx, αr)K0, (30)

Equation (29) then becomes:

vx(r) = Vmax

[
1−

( r
R

)αr(
n+1

n )
]

, (31)

where:

Vmax =
n

n + 1

(
1

2Ke f f

∆p
L

) 1
n

Rαr(
n+1

n ). (32)

Notice that for dx = αr = 1, we get the usual velocity distribution of a power-law fluid
with Ke f f = K0 and Equation (31) becomes Equation (11).



Fractal Fract. 2022, 6, 582 7 of 11

4. Discussion

The velocity distribution (31) is proportional to the power αr(
n+1

n ), meaning that the
rheological behavior of a non-Newtonian fluid is heavily dependent on the fractal aspect
of the fluid. The fractal dimensions αr and dx are a measure of the self-similarity present
in the fluid, and the fluid is fractal when αr < 1 and dx < 1. Moreover, Equation (31)
shows that, in order to have zero viscous shear effects in the center of the tube, the velocity
gradient should equal zero at r = 0, which gives a limit to the values permitted for the
radial dimension αr, thus, we get n

n+1 < αr ≤ 1.
The link between the rheological behavior of a non-Newtonian fluid and its fractal

nature can be seen in Figure 3, which plots the effective consistency index Ke f f defined by
Equation (30) normalized by K0 for different values of n. From Figure 3a, we can see that
for a fractal fluid (αr < 1), Ke f f increases, the rate of increase, however, being higher for
shear-thickening fluids (n > 1). Figure 3b illustrates that for a fractal fluid with dx < 1,
Ke f f decreases in a linear fashion, and the rate of decrease is the same for shear-thinning,
Newtonian and shear-thickening fluids. Another interesting result is that the fractal nature
of the fluid seems to play a major role in the dynamics of the flow, as it changes completely
the rheological behavior of the fluid. Large differences in velocity distributions can be
found when different values of fractal dimensions are used. These effects are depicted in
Figures 4–6. The behavior of fluids with the property of self-similarity is the same as that
of shear-thickening fluids. For a particular value of αr, shear-thinning fluids (n < 1) and
Newtonian fluids (n = 1) behave like shear-thickening fluids (see Figure 4).

In other words, changing the fractal dimension of a fractal non-Newtonian fluid results
in a non-Newtonian fluid with different properties. This is because the higher the degree
of similarity of the fluid, the thicker this fluid becomes near the walls, which results in a
narrower velocity distribution. Not only does the fractal aspect of the fluid affect the shape
of the velocity profile, it also has a significant effect on its amplitude (see Figures 5 and 6).
However, it is important to note that shear thinning fluids are the most affected by the
self-similarity present in the fluid. For values of αr < 1 and dx < 1, the amplitude of the
velocity profile increases significantly, especially for shear-thinning fluids.

αr
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K
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0
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n = 0.3
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0 0.2 0.4 0.6 0.8 1

K
ef

f
/K

0
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0.6

0.7

0.8

0.9

1
(b)

n = 0.3
n = 1
n = 1.5

Figure 3. Plot of the effective consistency index of a fractal fluid defined by Equation (30) normalized
by K0 with respect to (a) αr and (b) dx, for different values of n.
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Figure 4. Plot of the normalized velocity profile v∗x = vx/Vmax, where vx is defined by Equation (31),
r∗ = r/R and the permitted values of αr in (a) 0.2 < αr ≤ 1, (b) 0.375 < αr ≤ 1, (c) 0.46 < αr ≤ 1,
(d) 0.5 < αr ≤ 1, (e) 0.6 < αr ≤ 1 and (f) 0.66 < αr ≤ 1.

It is noteworthy that the radial dimension αr has the most significant effect on the
amplitude of the velocity profile. For αr < 1, the fluid becomes thick near the walls, and
because of the conservation of momentum, we see a significant increase in the amplitude
of the velocity profile in the center of the tube. By contrast, the dimension dx only affects
the amplitude and not the shape of the velocity profile.
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Figure 5. Plot of the profile defined by Equation (31), r∗ = r/R, ∆p/L = 10Pa/m, K0 = 10−3Pa.sn

and αr = 1.
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Figure 6. Plot of the profile defined by Equation (31), r∗ = r/R, ∆p/L = 10Pa/m, K0 = 10−3Pa.sn,
dx = 1 and the values permitted for αr in (a) 0.34 < αr ≤ 1, (b) 0.5 < αr ≤ 1 and (c) 0.6 < αr ≤ 1.
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5. Conclusions

We conducted a theoretical investigation of the fractal nature of a power-law fluid.
The fluid was modeled using gradient and divergence operators in NIDS. The equations of
motion for an incompressible Stokes flow of a non-Newtonian fractal fluid were derived.
Then, a radial velocity distribution describing the behavior of fractal non-Newtonian
fluids was obtained. The main parameters affecting the behavior of the flow were the
fractal dimensions (αr,dx) and the power-law index (n), as the fluid was considered to
be a nonfractal Newtonian fluid when αr = dx = n = 1. We found that for a particular
value of αr, the behavior of self-similar shear-thinning fluids and self-similar Newtonian
fluids was similar to that of shear-thickening fluids. The degree of self-similarity affected
shear-thinning fluids more significantly than Newtonian and shear-thickening fluids. The
approach presented in this paper is applicable to the flow of a power-law fluid exhibiting
a fractal structure, for instance, blood flow in the cardiovascular system. As a result, we
anticipate that our findings will spur further experimental and theoretical research on the
fractal and hydrodynamic aspects of fractal non-Newtonian fluids.
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