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Abstract—This paper introduces a generalized optimization 
algorithm for the design of EE-core based transformers using 
geometric programming. The objective functions, loss and 
volume, and the constraints must be either posynomials 
(positive polynomials) or monomials (products of variables with 
exponents) to conform to the requirements of geometric 
programs. We can optimize transformers and generate a set of 
optimal solutions to construct a Pareto front based on inputs 
from a user. The algorithm, modelling and constraints are 
described. The output of the optimization has been compared 
to an experimental prototype to characterize the validity of the 
models. 

 Index Terms—Transformers, Convex Optimization, 
Modelling, Magnetics 

I. INTRODUCTION 

Magnetics are an integral component of power 

electronics but they are challenging to design in general 

as they are highly dependent on material parameters, 

geometry, and cost [1]. Some aspects, including 

proximity effects, effective air gap length, and fringing 

fields, have no closed form equations. As a result losses 

are difficult to predict without the use of numerical 

analysis and computational methods [2], [3]. Convex 

optimization techniques (geometric programming (GP) 

[4]) have been used in [5] and [6] to design inductors, but 

have not yet been applied to transformers. The results 

for inductor design indicate we can improve the 

transformer design process. GPs guarantee a globally 

optimum solution in a convex design space and 

significantly reduces solution times compared to other 

optimization techniques [5] but require objectives and 

constraints to be either posynomial or monomial 

functions. A multi-objective optimization can be 

achieved by varying the relative importance of losses and 

volume over several optimization cycles, generating a 

family of Pareto optimal solutions. This gives a geometric 

program of the form 

 minimize , (1) 

 subject to fi ≤ ai, for i from 1 to n 

where Ptotal is the total loss of the magnetic device, Pmax 

is the maximum loss solution given the design 

constraints, V oltotal the total volume of the magnetic 

device, V olmax is the maximum volume solution given the 

design constraints, γ the relative weighting factor of 

these two optimization goals, and the fis are the 

constraint functions of the design problem. 

The method of [5] has been modified and extended to 

create a convex GP model of EE-core transformers. The 

optimization algorithm is designed to account for 

different winding arrangements through an iterative 

process. This algorithm improves upon [5] by using the 

iterated optimizations to generate constraints using non-

posynomial functions. CVX, a convex optimization tool, is 

used to solve these problems [7], [8]. 

II. PRINCIPLE OF OPERATION 

The optimization algorithm developed here focuses on 

EE-core transformers. Several equations in transformer 

design are already in monomial or posynomial form. The 

correction factors Fr and Gr for conduction and proximity 

loss respectively derived in [9] are not posynomial and 

must be approximated using fits. A max-monomial fit 

algorithm described in [5] was used. An arctangent 

model was used to account for core saturation [10]. 

Reluctance, magnetic permeability, and core loss are 

generated through curve fitting from data sets created 

from simulation in the SIMPLIS Magnetic Design Module 

(MDM) [11] for ferrite core materials 3C81 and N87. 

Constraints are developed based on core geometry, 

temperature, magnetic field and magnetic flux density, 

and current density requirements. The required inputs 

are shown in Table I and the variables of optimization are 

given in Table II. The number of turns per winding is 

optimized as a continuous variable 
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Fig. 1: a) Overall structure of the optimization algorithm and b) an 
example output of a single pass of the algorithm. 

then rounded. To create a Pareto front we use a factor γ 

to vary the relative weight between loss and volume. At 

each value of γ the optimization is run and the solutions 

are connected. A diagram of this process and the 

expected output for a single choice of core material and 

winding arrangement can be seen in Fig. 1. 

The value γ should only be considered an internal 

variable used to construct the Pareto front. The fact that 

this is a multi-objective problem implies that there is a 

trade-off between these two objectives. Allowing more 

loss in the final design may allow a smaller 

implementation and vice versa. However, when 

constructing a transformer, the design may have a 

Table I: Inputs 

 
Table II: Optimization Variables 

maximum allowable volume/footprint or loss. This places 

a limit on the set of designs and may result in a single 

reasonable optimal solution. We can imagine these 

additional constraints as a vertical or horizontal lines in 

the solution space seen in Fig. 1b and the optimal 

solutions are intersections of these lines with the Pareto 

front. 

To overcome the limitation of non-convexity of 

magnetic permeability and core temperature, these 

variables are calculated directly between optimization 

steps in the calculation of the Pareto front.  

  



The full GP Is 

minimize  

subject to Tamb + (Pcond + Pprox)Rth,wind ≤ Twind′ , 

, 

This single transformer optimization is the kernel of a 

larger optimization which considers two additional 

factors: winding arrangements and core material. The 

algorithm generates Pareto fronts for several winding 

arrangements by dividing windings into layers and 

permuting the ordering of the layers. The winding with 

the highest current-turns is placed closest to the core 

first. The next optimization splits windings in two and 

reorders the windings based on largest current by 

number of windings. Pareto fronts for each desired core 

material are also constructed. The total optimization can 

be seen in Fig. 1a. 

Currently there are two configurations. The first orders 

the windings (3) based on the highest current so that the 

highest current turns are nearest to the core in an effort 

to reduce conduction loss. 

 Nturns,1I1 > Nturns,2I2 > ... > Nturns,iIi (3) 

The next optimization assumes some maximum 

threshold for the maximum turns ratio (not actual turns 

because N is determined after optimization). If the value 

in the turns ratio vector is greater than 5, that winding is 

split into two windings. If the division results in a fraction, 

the winding nearer to the core is rounded up and the 

other rounded down. These windings are connected in 

series. The optimizer can interleave primary and 

secondary windings by specifying the order in the turns 

ratio vector. In other words, different winding structures 

can be compared, but the optimizer does not decide 

what the optimal winding arrangement should be. The 

distribution of the turns of each winding around the core 

is not specified as the optimizer considers and average of 

each winding. Paralleling secondary side windings is 

possible by simply adding new windings to the turns ratio 

vector. The designer can then connect these windings in 

parallel when building the transformer. Paralleling of the 

primary windings is not implemented because the 

optimizer assumes all primary windings are connected in 

series. 

A. Extension to Other Core Geometries 

This method can be extended to different core 

geometries by adjusting the geometric and reluctance 

constraints. The underlying geometric model (seen in Fig. 

2) shows how the constraints were constructed for the 

EE core. Core dimensions for a different core geometry 

can be used to define core and gap reluctance, core area, 

window area. Equations for different wire geometries 

could also be included but new fits for AC conduction loss 

and proximity loss would be needed. 

III. MODELS AND CONSTRAINTS 

A. Volume 

There are two volumes of interest for transformers: 

the volume of the core material, which is used to 

calculate core losses, and the boxed volume, used to 

calculate how much volume the transformer occupies. 

The model of an E-core transformer used for 

optimization can be seen in Fig. 2. While general E-cores 

can have several dimensions, the core of interest is 

simplified so that it can be described by four variables, lc, 

wc, lw, and ww. The side legs and top/bottom bars of the 

transformer are assumed to have half the cross-sectional 

area of the centre leg so that flux divides evenly and so 

that all parts of the core reach a similar maximum flux 

density for a given set of operating conditions. The boxed 

volume of the core is simply the multiplication of length, 



width and depth and is shown in Eq. 4. The core volume 

is the boxed volume less the volume of the winding 

window. It is given in Eq. 5. 

 

 

Fig. 2: Transformer EE-core geometry. 

 V olcore,box = lc(wc + lw)(2wc + 2ww) (4) 

 V olcore = 2lcwc(lw + wc + ww) (5) 

where the variables are described in Table II. 

The total boxed volume (6) is calculated using this and 

the geometry of the transformer windings. The surface 

area of the front face of the transformer is multiplied by 

the total length the windings extended from the core and 

multiplied by 2 to account for the front and the back. 

 

B. Loss 

Total loss (7) is divided into three components: 

conduction loss (8), proximity loss (9), and core loss (10). 

There were no partitions for the skin and proximity loss 

coefficient Fr and Gr fits. 

 Ploss,total = Pconduction + Pproximity + Pcore (7) 

The conduction loss for a single winding takes the 

form: 

 
4 

XekFr,4i−3
f
swkFr,4i−2+0.5dkFr,4i−1−1σkFr,4i i=1         (8) 

where the first term represents the square of the 

current times the DC resistance of the winding. Nturns is 

the number of turns of that winding. The next term 

accounts for variation of resistance with temperature. 

The radical accounts for skin effect, with the frequency 

term being placed into the posynomial fit. Charmonics is a 

coefficient derived from summing harmonics for 

different waveforms, and kFr,j are the posynomial fit 

coefficients for skin effect factor Fr found in [9]. 

Proximity loss for a single winding takes the form: 

 
(9) 

where the first term is the square of the current times 

the DC resistance of the winding. The next term accounts 

for changes in resistance due to temperature. 

NTurns is the number of turns and nl is the number of 

layers multiplied by the wire diameter. These terms arise 

from factoring and relaxing the equation from [9] to 

make it convex. The radical accounts for skin effect and 

Charmonics is a coefficient derived from summing harmonics 

for different waveforms. kGr,j are the posynomial fit 

coefficients for the factor Gr found in [9]. 

For the core loss (10), harmonics are also summed for 

each waveform. 

Pcore = V olcoreCharmonics·8 

Xekcore,5i−4∆Bkcore,5i−3
f
swkcore,5i−2

H
DCkcore,5i−1

T
corekcore,5i i=1 (10) 

where kcore,j are the posynomial fit coefficients. Currently 

there are only coefficients for 3C81 and N87 and they 

are fit with 6 terms. 

As the intention is that the total loss equation can 

account for any number of windings, a new loss function 

is automatically generated before the first optimization 

takes place. 

C. Inductance and Field Constraints 

The core permeance was used to calculate final 

magnetizing inductance in place of reluctance. 

Permeance was modelled by summing each straight 

core section as described in [9]. 

  (11) 

where αj are the monomial fit coefficients. The user 

can select between a gapped and non-gapped core, 

which changes the permeance model. We can see here 

directly that a monomial fit has an asymptote at zero gap 

w w 

l w 

w c 
l c 

gap 

w c 
2 w c 

2 



length for a gapped core. For this reason, minimum gap 

length requires a minimum greater than 2 µm. 

An arctangent model is used to describe the B-H curve 

[10]. The coefficients for this model are derived from 

collected simulation data. 

  (12) 

where µa is the amplitude permeability and kmag is a 

coefficient to fit the arctangent model to the desired 

magnetic material. This model does not describe 

hysteresis and is instead used to account for core 

saturation. At the beginning of the algorithm, a Bpeak 

function is generated based on integrating the applied 

voltage waveform. Two constraints are placed here, one 

for an explicit maximum flux density selected by the 

designer or by a saturation percentage. 

 Bpeak + µHDC < min(Bmax,Bsat) (13) 

HDC determines the DC operating point on the B-H 

curve, which determines what maximum AC flux density 

is possible before reaching the predetermined saturation 

limit, as well the relative permeability. 

  (14) 

The equation for relative permeability is the derivative 

of the arctangent model of the B-H curve, seen in (15). 

Unfortunately, this equation is neither convex nor 

concave and cannot be used as a lower bound in the 

constraints. The relative permeability is instead 

estimated from previous optimizations outside of the 

geometric programming framework. Here we use the 

iterative nature of the Pareto front to overcome the 

convexity requirements of GPs. 

  (15) 

D. Geometric Constraints 

The constraints here (16)-(23) are primarily maximums 

and minimums on core area, window area, wire 

thickness, tape thickness and insulation thickness. The 

other geometric constraint here is the relation of core 

area and window area. The core length and width and 

window length and width independently were defined 

independently. 

Ae = lcwc, (16) 

corecirc = 2(1 + coreasp)wc, (17) 

lc = coreaspwc, (18) 

Wa = lwww, (19) 

windowcirc = 2(1 + windowasp)ww, (20) 

lw = windowaspww, (21) 

leff = 2(1 + windowasp)wwlc,inc (22) 

The corecirc and windowcirc variables were defined to 

enable calculation of effective path length and MLT. 

  (23) 

where lcore,inc is the increase to the effective path length 

of the core. The factor of 2.5 comes from the assumed 

geometry of E cores, and the division by wwindow is done 

to cancel out with the multiplication by wwindow in the leff 

equation. This was done to ensure the equality constraint 

remains a monomial. 

E. Winding and Window Constraints 

To accommodate for the variable number of windings 

and layers within windings, internal optimization 

variables describing the wire area, the insulation area 

and the number of layers were introduced (24)-(26). 

These are needed to ensure the window area is not 

overfilled, and that the windings fit the width of the 

window (27)-(29). This optimization is effectively 

restricted to considering shells of windings. 

(24) 

(25) 

(26) 

These variables enable other constraints to be simply 

affine or linear constraints. The number of layers is 

multiplied by the wire diameter for convenience. 

These constraints (27)-(29) guarantee that the windings 

fit into the window in terms of length, width and overall 

area. 

  (30) 

  (31) 

The MLT constraints (30)-(31) must be dynamically 

generated to account for the variable number of 

windings. 



Finally, (32) is related to the current density. We wish 

to ensure that no winding experiences a current density 

above some Jmax. As the number of windings is variable, 

the number of constraints is dynamically allocated. 

  (32) 

In (32), Ii is the AC component of the winding current, 

IDC,i is the DC component of the winding current, and Irefl,i 

is the current reflected to that winding (if there is any). 

This Irefl,i is calculated before the optimization takes 

place. This constraint determines the smallest allowable 

wire diameter. 

IV. FLYBACK TRANSFORMER OPTIMIZATION 

EXAMPLE 

An example transformer design for flyback operating 

in discontinuous conduction mode (DCM) is provided 

here to demonstrate the design process. A summary of 

the relevant design parameters is given in Table III. The 

final Pareto fronts can be seen in Fig. 3. Two separate 

optimization passes took place, one for the primary 

winding closest to the core (non-interleaved) and the 

other where the primary winding is split into two 

interleaved layers. The most notable thing about these 

Pareto fronts are the cusps. When the scaling factor or 

number of turns is rounded, subsets of the solutions are 

grouped by integer turns and the remaining variables are 

re-optimized. As the turns shift from one integer to 

another, the solutions on either side of the boundary 

may have significantly different constraints to meet, 

notably inductance and core saturation. This results in 

jumps in the Pareto front as the solution space changes 

from one subset to the next. Visualizations of three of the 

designs, created in SIMPLIS MDM, can be seen in Fig. 4. 

The details for these three designs are given in Table IV. 

V. EXPERIMENTAL RESULTS 

Three transformers were designed to test the 

optimization algorithm. All these transformers are 

ungapped. To ensure a realizable solution was 

generated, an optimization was performed and a 

solution with a core size close to a readily available core 

size was selected. Then the core size was fixed and the 

system was reoptimized. This was done for several 

operating conditions, which can be seen in Table V. The 

core for each operating condition was chosen to be the 

same, 

 
Fig. 3: Pareto front outputs of the DCM Flyback Transformer. UR - 
Unrounded, RT - Rounded Turns, RN - Rounded N. The first set of 
numbers is the turns ratio. The two passes that were done were for a 
52:3 transformer (the first three Pareto fronts) and a 26:26:3 
transformer, where the primary is split into two interleaved layers. 

 

Fig. 4: DCM Flyback transformer designs resulting from the 
optimization featuring a non-interleaved primary and a turns ratio of 
52:3: a) γ = 0.05 (optimized for volume) b) γ = 0.5 (half-way 
compromise between volume and losses) c) γ = 0.99 (optimized for 
losses). For dimensions see Table IV. 



 

 

Fig. 5: Circuit diagram of the experimental test setup. 

normalizing the core volume across the experiment. The 

optimizer produced a Pareto set of optimal results for 

each of the three input conditions. These Pareto fronts 

are plotted in Fig. 7. 

One solution from each set was selected for 

construction and experimental measurement, and each 

was approximated by a prototype using available sizes of 

wire. The dimensions of the prototypes as built for each 

operating condition are given in Table V. To evaluate 

these designs, the prototype parameters were used to 

calculate the losses at each operating condition using the 

GP model. The three prototype transformers were also 

modeled in SIMPLIS MDM and simulated at their 

respective operating conditions. Finally, losses in each of 

the prototype transformers were measured using a 

Yokogawa power analyzer with the circuit set up as in Fig. 

5. The comparison of the optimizer’s GP model loss 

calculation, the MDM simulation, and the experimental 

measurement is shown in Table V with a more detailed 

breakdown given in Fig. 6. 

There is a large deviation between the optimizer’s loss 

calculation and the experimental results - 38.7%, 67%, 

and 38.7% for the three operating conditions, 

respectively. However, SIMPLIS MDM simulations match 

the experimental results very well, with errors of 13.6%, 

13.4%, and 12.6%. We use MDM to determine sources of 

error in the optimizer’s GP model. 

Fig. 6: The detailed loss breakdown and comparison of the calculated, 
simulated, and measured losses for the three experimental 
prototypes described in Table V. 

As seen in Fig. 6, conduction loss is overestimated in all 

three cases and core loss is underestimated. The error in 

conduction loss is most likely caused by the posynomial 

approximation of the skin effect factor Fr. Similarly there 

is an error in proximity loss as the proximity loss factor Gr 

has the most relaxed model due to it being highly non-

convex. Several differences between the physical 

implementation and the optimizer model also exist. For 

this particular core, the core dimensions deviate from the 

assumed core dimensions as the side legs are smaller 

than half the core width. This results in a variation in core 

volume and boxed volume along with a difference in 

expected magnetizing inductance. Exact locations of 

each turn within the winding window are beyond the 

scope of the optimizer but have an impact on final loss. 

Conduction and proximity losses are calculated on a 

winding level, not per turn, which further introduces 

inaccuracy. 

For a more comprehensive comparison, the Pareto 

sets resulting for each operating condition were 

simulated in MDM, and are compared to the optimizer 

results in Fig. 7. The simulated Pareto fronts are shifted 

compared to the optimization results. However the 

general shape of the simulated transformers is similar to 

the GP-calculated Pareto fronts for each of the operating 

conditions. Although there is an error in the absolute 

numbers, the similarity in shape demonstrates that a 

relationship between design variables and the optimizer 

goal has been identified. Therefore the relative positions 

of the generated optimal designs on the Pareto front are 

correct, but real-world measured losses and volumes will 

be shifted compared to those predicted by the optimizer. 

V in R load 

+ 

- 

+ 

- 

V pri V sec 

DUT 



Table V: 
Experimental Setup and Results 

Scope Teledyne Lecroy HDO4024-MS 
Power Analyzer Yokogawa WT3000 

Rload 1Ω, 5Ω 
fsw 1kHz 25kHz 50kHz 

Turns Ratio [-22:11] [-16:2] [-48:10] 
Lmag 7.5mH 7.5mH 50mH 

Lmag,MDM 12.116mH 6.409mH 57.678mH 
Vin 10V 48V 24V 
Iout 5A 6A 1A 

Core E55/28/25 E55/28/25 E55/28/25 
Wire Diameters 1 mm, 1.2 mm 1 mm, 1.4 mm 0.5 mm, 0.85 mm 
Opt Loss Total 0.939 W 0.17 W 0.06034 W 

MDM Loss Total 0.585 W 0.446 W 0.049 W 
Exp Loss 0.677 W 0.515 W 0.0435 W 

 

 

Fig. 7: Comparison between the output from the optimizer and MDM 
simulation for the 1 kHz, 25 kHz, and 50 kHz designs. 

VI. CONCLUSION 

This paper has developed a multi-objective convex 

optimization problem using geometric programming to 

aid in the design of EE-core transformers. Models for 

volume, loss, magnetic fields and geometric constraints 

have been developed to enable solutions to general 

transformer design problems. The benefit of the overall 

optimization framework is that it can be continually 

improved as the posynomial models of the transformer 

are improved. A novel method of including non-

posynomial functions into the GP optimization 

framework has been implemented using the iterative 

nature of Pareto front generation. Since many non-

convex models of transformer losses were approximated 

by posynomial functions, there are significant differences 

between the losses predicted by the optimizer and 

experimentally measured losses. While further work 

needs to be done to refine the posynomial models for 

skin and proximity effect, a combination of experimental 

measurements and simulations in SIMPLIS MDM 

confirms that the optimizer can be used as a tool which 

points the designer to the proper part of the design space 

in accordance with the optimization goal, therefore likely 

reducing the time needed to arrive at a truly optimal 

design. 
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