
HAL Id: hal-03817432
https://hal.science/hal-03817432v1

Submitted on 10 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wave turbulence in inertial electron
magnetohydrodynamics
Vincent David, Sébastien Galtier

To cite this version:
Vincent David, Sébastien Galtier. Wave turbulence in inertial electron magnetohydrodynamics. Jour-
nal of Plasma Physics, 2022, 88 (5), pp.905880509. �10.1017/S0022377822000976�. �hal-03817432�

https://hal.science/hal-03817432v1
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Plasma Phys. 1

Wave Turbulence in Inertial Electron
Magnetohydrodynamics

Vincent David 1,2† and Sébastien Galtier 1,2,3

1Laboratoire de Physique des Plasmas, École polytechnique, F-91128 Palaiseau Cedex, France
2Université Paris-Saclay, IPP, CNRS, Observatoire Paris-Meudon, France

3Institut universitaire de France

(Received xx; revised xx; accepted xx)

A wave turbulence theory is developed for inertial electron magnetohydrodynamics
(IEMHD) in the presence of a relatively strong and uniform external magnetic field
B0 = B0ê‖. This regime is relevant for scales smaller than the electron inertial length
de. We derive the kinetic equations that describe the three-wave interactions between
inertial whistler or kinetic Alfvén waves. We show that for both invariants, energy and
momentum, the transfer is anisotropic (axisymmetric) with a direct cascade mainly in the
direction perpendicular (⊥) toB0. The exact stationary solutions (Kolmogorov-Zakharov
spectra) are obtained for which we prove the locality. We also found the Kolmogorov
constant CK ' 8.474. In the simplest case, the study reveals an energy spectrum in
k
−5/2
⊥ k

−1/2
‖ and a momentum spectrum enslaved to the energy dynamics in k−3/2⊥ k

−1/2
‖ .

These solutions correspond to a magnetic energy spectrum ∼ k−9/2⊥ , which is steeper than
the EMHD prediction made for scales larger than de. We conclude with a discussion on
the application of the theory to space plasmas.

1. Introduction
There are many ways to investigate the problem of energy transfer through the different

scales in a turbulent plasma, but one of the most rigorous is the theory of wave turbulence.
This theory is limited to systems composed of a sea of weakly interacting waves. Since
the nonlinearities are weak, it is possible to describe how the dynamics of the system
develops in a time asymptotically long compared to the period of the waves considered
(Nazarenko 2011). The importance of the wave turbulence theory is, first, the fact that
a natural closure can be achieved with a uniformity of the asymptotic development
(Benney & Saffman 1966; Benney & Newell 1969) and, second, the possibility to derive
exact solutions (Kolmogorov-Zakharov spectra) of the wave kinetic equations (Zakharov
et al. 1992). The wave turbulence regime is a highly studied subject in physics, both
theoretically and experimentally. Examples are provided e.g. in hydrodynamics with
surface waves (Zakharov & Filonenko 1967; Falcon & Mordant 2022), internal gravity
waves (Caillol & Zeitlin 2000; Dematteis & Lvov 2021) and inertial waves (Galtier 2003;
Yarom & Sharon 2014; Monsalve et al. 2020); in plasma physics with MHD (Galtier
et al. 2000; Kuznetsov 2001; Meyrand et al. 2015), Hall-MHD (Galtier 2006; Meyrand
et al. 2018) and rotating MHD (Galtier 2014); in acoustic waves (Zakharov & Sagdeev
1970; Newell & Aucoin 1971; L’vov et al. 1997), optical waves (Dyachenko et al. 1992),
elastic waves (Düring et al. 2006; Hassaini et al. 2019), Kelvin waves (Laurie et al. 2010),
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in Bose-Einstein condensates (Nazarenko & Onorato 2006) and even with gravitational
waves (Galtier & Nazarenko 2017; Galtier & Nazarenko 2021).

Here, we are interested in the plasma dynamics at scales where the electron inertia plays
a non-negligible role. In our approach, the mass difference between ions and electrons is
such that the ions will be considered static to form a neutralizing background. Therefore,
at the time scale of interest, only the electron dynamics is relevant. This is the domain
of EMHD and IEMHD which describe, respectively, the scales `� de and de � `� re,
where re is the electron Larmor radius. Our study will focus on the latter case. Although
it is difficult for current spacecraft to measure the plasma dynamics corresponding to the
electron inertia scales, it is interesting to see what the theoretical description can predict.
The EMHD and IEMHD approximations are widely used models to study, for example,
magnetic reconnection or space plasma turbulence (Bulanov et al. 1992; Biskamp et al.
1996, 1999; Dastgeer et al. 2000a,b; Cho & Lazarian 2004; Cho 2011; Kim & Cho 2015).
More information is given in Milanese et al. (2020) where an exhaustive list of plasmas
driven by the IEMHD model is given with the parameter regimes. In this paper, we
present the theory of wave turbulence for IEMHD in the presence of a relatively strong
and uniform external magnetic field B0. The equivalent theory for EMHD has already
been published (Galtier & Bhattacharjee 2003) but not yet for IEMHD. Strong IEMHD
turbulence has recently received new attention with the study of the weakly compressible
case (Chen & Boldyrev 2017; Roytershteyn et al. 2019). The objective was to study
the nature of plasma turbulence in the Earth’s magnetosheath. The main prediction,
phenomenological in nature, is a magnetic spectrum in k

−11/3
⊥ (see also Meyrand &

Galtier (2010)) which is less steep than the prediction we will derive in this paper. In
the meantime, a rigorous derivation (using systematic asymptotic expansions) based on
a more general model including electron inertia and finite Larmor radius corrections has
been proposed (Passot et al. 2017; Passot & Sulem 2019). This more general approach
allows the study of several different limits, and to recover in particular the model
discussed previously (Chen & Boldyrev 2017). In fact, this weakly compressible IEMHD
equations have the same mathematical structure as the incompressible case when the ion
βi (the ratio between ion thermal pressure and magnetic pressure) is moderately small.
Therefore, the physics of wave turbulence that we will describe in this paper has a broader
impact than strictly speaking the incompressible case and can be applied for both inertial
whistler waves (IWW) and inertial kinetic Alfvén waves (IKAW). A similar situation
exists for scales larger than de: in the presence of a strong B0, the equations describing
the nonlinear dynamics of kinetic Alfvén waves and whistler waves have exactly the same
mathematical form, which means that the physics of wave turbulence is similar for both
problems (Galtier & Meyrand 2015). Although a fully kinetic approach is a priori required
to describe plasma dynamics at electron inertial scales, all of these reduced fluid models
can provide interesting insight when considering small fluctuations around a Maxwellian
equilibrium state. In this paper, we follow this precept and apply the powerful tool of
wave turbulence to extract new properties useful for a better understanding of space
plasmas.

The structure of the article is as follows. In Section 2, we propose a quick (and therefore
simplified) derivation of the system of equations that we will use for the theory of wave
turbulence. In Section 3, we introduce the canonical variables and derive the dynamical
equation describing the wave amplitude variation. In Section 4, a phenomenology of
wave turbulence is developed to get a simple heuristic explanation to the solutions
(Kolmogorov-Zakharov spectra) derived later. In Section 5, we derive the wave kinetic
equations from which we show the detailed conservation of invariants. In section 6, we
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obtain the exact stationary solutions in the anisotropic limit k‖ � k⊥ and the locality of
these solutions is proved. In Section 7, we consider the limit of super-local interactions
and derive the associated nonlinear diffusion equation for the energy. In Section 8, we
compute the sign of the energy flux which gives the direction of the cascade, and find the
Kolmogorov constant. We conclude in Section 9 with a discussion of possible applications
of our results, and ways in which these results can be extended.

2. Inertial electron magnetohydrodynamics
The goal of this section is to quickly derive in a simplified way the set of equations

describing the dynamics of non-relativistic electrons at inertial scales in a fully ionized
plasma. For this reason, the assumption of incompressibility will be used. A complete
derivation is found in Chen & Boldyrev (2017) and in Passot et al. (2017).

2.1. Governing equations
The basic fluid equations governing the electron dynamics in an incompressible (dissi-

pationless) plasma are

∂tue + (ue ·∇)ue = −
1

ρe
∇Pe −

qe
me

(ue ×B +E) , (2.1)

∂tB = −∇×E, (2.2)
∇×B = µ0J , (2.3)
∇ · ue = 0, (2.4)
∇ ·B = 0, (2.5)

where ue(x, t) is the electron velocity, ρe(x, t) = men0 the constant electron mass density
with me the electron mass and n0 the density, Pe(x, t) the electron pressure, qe > 0 the
modulus of the electron charge, B(x, t) the magnetic field, E(x, t) the electric field,
J(x, t) = n0qe (ui − ue) the electric current and ui(x, t) the ion velocity (assumed to be
zero). Normalizing the magnetic field to the (electron) Alfvén velocity and then taking the
rotational of equation (2.1) combined with the Maxwell-Faraday law (2.2), one obtains

∂t
(
d2e∇2 − 1

)
b+ (ue ·∇) (d2e∇2 − 1)b =

(
d2e∇2 − 1

)
b ·∇ue, (2.6)

where de =
√
me/(n0q2eµ0) is the electron inertial length. Now, we introduce a relatively

strong and uniform (normalized) magnetic field b0 = b0ê‖ that defines the parallel
direction. In the limit of IEMHD, the spatial variations of b are done on a characteristic
length L � de and mainly in the plane perpendicular to ê‖. Thus at the leading order,
we have

(∂t + ue⊥ ·∇⊥) d2e∇2
⊥b = d2e(∇2

⊥b⊥ ·∇⊥)ue − (b0 ·∇)ue, (2.7)
and also J = −n0qeue, which can be written dej = −ue with the normalized electric
current j ≡ ∇ × b. The magnetic field having a zero divergence, we define b ≡ b0 −
∇ × (gex + ψez) where êz is a unit vector (hereafter, we will assume êz = ê‖ which is
valid at leading order for a relatively strong uniform magnetic field b0), ψ(x, t) a stream
function and g(x, t) a function satisfying the relation ∂yg ≡ b‖. We obtain the relation

∇2
⊥b =

(
ê‖ ×∇⊥

)
(∇2
⊥ψ) +∇2

⊥b‖ê‖, (2.8)

where, hereafter, the z-derivative is assumed to be negligible compared to the perpen-
dicular derivative. Replacing b by its expression, the electron velocity can be expressed
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as a function of the magnetic field components

ue = de
(
ê‖ ×∇⊥b‖ −∇2

⊥ψê‖
)
. (2.9)

Projecting equation (2.7) in the perpendicular plane to ê‖, we find(
ê‖ ×∇⊥

) [
∂t
(
d2e∇2

⊥ψ
)]

+ d2e (ue⊥ ·∇⊥)
[(
ê‖ ×∇⊥

)
∇2
⊥ψ
]

= d3e
(
∇2
⊥b ·∇⊥

) (
ê‖ ×∇⊥b‖

)
− deb0∂‖

(
ê‖ ×∇⊥

)
b‖.

(2.10)

The non-trivial relation

(ue⊥ ·∇⊥)
[(
ê‖ ×∇⊥

)
∇2
⊥ψ
]
=(

ê‖ ×∇⊥
) [

(ue⊥ ·∇⊥)∇2
⊥ψ
]
+ de

(
∇2
⊥b ·∇⊥

) (
ê‖ ×∇⊥b‖

)
,

(2.11)

allows to simplify the previous equation and, by expressing ue as a function of ψ, we
obtain after some algebraic manipulations

∂t
(
∇2
⊥ψ
)
+ de

[(
ê‖ ×∇⊥b‖

)
·∇⊥

]
∇2
⊥ψ = −Ωe∂‖b‖, (2.12)

with Ωe ≡ b0/de the cyclotron frequency of electrons (note that here, Ωe is constant due
to the assumption of incompressibility).

Now, a projection of (2.7) in the ê‖ direction gives directly

∂t
(
d2e∇2

⊥b‖
)
+ d2e (ue⊥ ·∇⊥)∇2

⊥b‖ = −d3e
(
∇2
⊥b ·∇⊥

)
∇2
⊥ψ + deb0∂‖

(
∇2
⊥ψ
)
. (2.13)

It is straightforward to show that the first term of the right-hand side is exactly zero.
Then, by expressing b and ue as functions of ψ and b‖, we obtain

∂t
(
∇2
⊥b‖
)
+ de

[(
ê‖ ×∇⊥b‖

)
·∇⊥

]
∇2
⊥b‖ = Ωe∂‖

(
∇2
⊥ψ
)
. (2.14)

Equations (2.12) and (2.14) describe the dynamics of electrons at inertial scales. They
have been derived in a more general framework and using kinetic arguments by Chen
& Boldyrev (2017) and Passot et al. (2017). Here, we have used the incompressibility
condition to propose a (less accurate but more) fast derivation of a system that a priori
describes only IWW. However, it is interesting to note that at inertial electron scales: (i)
IKAW and IWW can have the same dispersion relation and the only difference is that the
transition to the inertial regime occurs at k2⊥d

2
e ' 1 for IWW rather than k2⊥d

2
e ' 1+2/βi

for IKAW; (ii) the nonlinear equations governing the dynamics of IKAW and IWW are
mathematically similar (up to a change of variable from bz to ρe (Chen & Boldyrev 2017;
Passot et al. 2017)), which means that the physics of wave turbulence developed in this
paper applies to both waves. A similar situation is found at scales larger than de: in
the presence of a strong B0, the equations describing the nonlinear dynamics of kinetic
Alfvén waves and whistler waves have exactly the same mathematical form, which means
that the physics of wave turbulence is similar for both problems (Galtier & Meyrand
2015).

2.2. Three-dimensional quadratic invariants
In the absence of forcing and dissipation, the system (2.12)–(2.14) has two quadratic

invariants. The first invariant is the energy which is written at the leading order

E = d2e
〈
j2
〉
= E⊥ + E‖ = d2e

〈(
∇⊥b‖

)2
+
(
∇2
⊥ψ
)2〉

, (2.15)

where 〈〉 is a spatial average or, equivalently by ergodicity, an ensemble average. E can
also be interpreted as the kinetic energy of electrons. As shown in Appendix A, both
E⊥ and E‖ are separately conserved at the nonlinear level, however, energy is exchanged
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between the two at the linear level, thanks to the presence of waves. This definition of
energy is valid for both IWW and for IKAW in the limit of small βi.

The second quadratic invariant is the momentum that can be written at the leading
order

H = d2e
〈
(∇2
⊥ψ)(∇2

⊥b‖)
〉
. (2.16)

H can be interpreted as the kinetic helicity of electrons. Unlike energy, the momentum is
not positive defined. As we will see later, the wave kinetic equations conserve these two
invariants on the resonant manifold.

2.3. Dispersion relation
In the linear regime, the Fourier transform of equations (2.12) and (2.14) gives

∂tψk = iΩek‖k
−2
⊥ bk, (2.17)

∂tbk = iΩek‖ψk, (2.18)

where the Fourier transform used is

ψ(k, t) ≡ ψk =

∫
R3

ψ(x, t)e−ik·xdx. (2.19)

Hereafter, we use the notation bk ≡ b‖k. If the wavevector k is decomposed as k =
k⊥ê⊥ + k‖ê‖, then the linear dispersion relation reads(

ωk
Ωe

)2

=

(
k‖

k⊥

)2

. (2.20)

One can find the following solutions to the linear IEMHD equations in Fourier space

ψk(k⊥, t) = f (k⊥) cos (ωkt) + ig (k⊥) k
−1
⊥ sin (ωkt) , (2.21)

bk(k⊥, t) = g (k⊥) cos (ωkt) + if (k⊥) k⊥ sin (ωkt) , (2.22)

with f and g two arbitrary functions.

3. Wave amplitude equation
In Fourier space, IEMHD equations (2.12) and (2.14) become

k2⊥∂tψk − iΩek‖bk = de

∫
R6

ê‖ · (p⊥ × q⊥) q2⊥bpψqδkpqdpdq, (3.1)

k2⊥∂tbk − iΩek‖k2⊥ψk = de

∫
R6

ê‖ · (p⊥ × q⊥) q2⊥bpbqδkpqdpdq, (3.2)

with δkpq ≡ δ (k − p− q) the Dirac distribution coming from the Fourier transform of the
nonlinear terms. We introduce the canonical variables as follow

ψk ≡ −
1

2dek2⊥

∑
sk

skA
sk
k , bk ≡

1

2dek⊥

∑
sk

Askk , (3.3)

where sk = ± is the directional polarization that defines the direction of the wave
propagation with skk‖ > 0. After a little calculation, we find

(∂t + iskωk)A
sk
k =

1

4

∑
spsq

∫
R6

ê‖ · (p⊥ × q⊥)
k⊥p⊥q⊥

(
q2⊥ + sksqk⊥q⊥

)
A
sp
p A

sq
q δ

k
pqdpdq. (3.4)
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By making the following change of variable Askk = εaskk e
−iskωkt, where ε � 1 is a

small positive parameter, the linear part of this equation vanishes and we obtain the
fundamental equation describing the slow temporal evolution – thanks to ε – of the wave
amplitude

∂ta
sk
k =

ε

4

∑
spsq

∫
R6

Hskspsqkpq a
sp
p a

sq
q eiΩ

k
pqtδkpqdpdq, (3.5)

with Ωkpq ≡ skωk−spωp−sqωq and H
skspsq
kpq ≡ ê‖ ·(p⊥ × q⊥)

(
q2⊥ + sksqk⊥q⊥

)
/ (k⊥p⊥q⊥)

the nonlinear interaction coefficient which depends on the nonlinearities of the system.
The presence of the complex exponential is fundamental for the asymptotic closure: as we
are interested in the long time behavior with respect to the linear time scale (1/ω), the
contribution of the exponential is mostly zero. Only (secular) terms for which Ωkpq = 0 will
survive (Benney & Saffman 1966; Newell et al. 2001). Adding to this the relation imposed
by the Dirac distribution, we can obtain the following resonance condition (symmetries
in p and q are used)

k + p+ q = 0, (3.6)
skωk + spωp + sqωq = 0. (3.7)

After a few manipulations, we find the (anisotropic) relationships

sqq⊥ − spp⊥
skωk

=
skk⊥ − sqq⊥

spωp
=
spp⊥ − skk⊥

sqωq
, (3.8)

which will be useful to prove the conservation of the quadratic invariants. This is also
useful to highlight the anisotropic character of the system. Indeed, let us consider the
particular case of super-local interactions which give, in general, a dominant contribution
to the turbulent dynamics. In this case, we have k⊥ ' p⊥ ' q⊥ and the resonance
condition simplifies into

sq − sp
skk‖

' sk − sq
spp‖

' sp − sk
sqq‖

. (3.9)

If k‖ is non-zero, the left-hand term will only give a non-negligible contribution when
sp = −sq. We do not consider the case sp = sq which is not relevant to first order in the
case of local interactions as can be seen in expression (3.5) which then becomes negligible
(it is easier to see that in equations (3.11)–(3.12) after using the symmetry in p and q).
The immediate consequence is that either the middle or the right term has its numerator
canceling (to first order), which implies that the associated denominator must also cancel
(to first order) to satisfy the equality: for example, if sk = sp then q‖ ' 0. This condition
means that the transfer in the parallel direction is negligible because the integration in
the parallel direction of equation (3.5) is then reduced to a few modes (since p‖ ' k‖)
which strongly limits the transfer between the parallel modes. The cascade in the parallel
direction is thus possible but relatively weak compared to the one in the perpendicular
direction.

Before applying the spectral formalism of wave turbulence, it is necessary to sym-
metrize the fundamental equation (3.5) under the exchange of p and q. To to this, we
take advantage of the summation over the sp and sq polarizations and introduce

L
skspsq
kpq =

1

2

(
Hskspsqkpq +Hsksqspkqp

)
, (3.10)
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to finally obtain after a little calculation

∂ta
sk
k = ε

∑
spsq

∫
R6

L
skspsq
kpq a

sp
p a

sq
q eiΩ

k
pqtδkpqdpdq, (3.11)

where

L
skspsq
kpq ≡

ê‖ · (p⊥ × q⊥)
8k⊥p⊥q⊥

(sqq⊥ − spp⊥) (skk⊥ + spp⊥ + sqq⊥) . (3.12)

This operator has, among others, the following symmetries

L
skspsq
kpq = L

−sk−sp−sq
kpq = L

skspsq
−k−p−q = L

skspsq
−kpq = L

skspsq
k−p−q, (3.13)

L
skspsq
kpq = L

sksqsp
kqp , (3.14)

L
sk−sp−sq
kpq = L

−skspsq
kpq , (3.15)

L
skspsq
0pq = 0. (3.16)

Equation (3.11) is our fundamental equation, the starting point to derive the wave kinetic
equations. Note that the nonlinear coupling associated with the wavevectors p and q
vanishes when they are collinear (k = 0 is a particular case). Additionally, the nonlinear
coupling vanishes whenever the wavenumbers p⊥ and q⊥ are equal if their associated
polarities sp and sq are also equal. This was also observed in EMHD (for scales larger
than de) and seems to be a general property of helical waves (Kraichnan 1973; Waleffe
1992; Turner 2000; Galtier 2003; Galtier & Bhattacharjee 2003).

4. Phenomenology of wave turbulence
Before going into the deep analysis of the wave turbulence regime, it is important

to have a simple (phenomenological) picture in mind of the physical process that we
are going to describe. According to the properties given in section 3, if we assume that
the nonlinear transfer is mainly driven by super-local interactions (k ∼ p ∼ q), which
is a classical assumption in the turbulence phenomenology, then we can consider only
stochastic collisions between counter propagating waves (sp = −sq) to derive the form of
the spectra. Note that non-local interactions (which include copropagating waves) also
provide a contribution to the nonlinear dynamics but, as will be shown in section 6.4
with the convergence study, their contributions are not dominant for the formation of a
stationary spectrum.

To find the transfer time and then the energy spectrum, we first need to evaluate the
modification of a wave produced by one collision. Starting from the momentum equation
(for simplicity we write the wave amplitude as a` and assume anisotropy with k ∼ k⊥),
we have

a`(t+ τ1) ∼ a`(t) + τ1
∂a

∂t
∼ a`(t) + τ1

a2`
`⊥
, (4.1)

where τ1 is the duration of one collision; in other words, after a collision, the distortion
of a wave is ∆1a` ' a2`/`⊥. This distortion is going to increase with time in such a way
that after N stochastic collisions, the cumulative effect may be evaluated like a random
walk (Galtier 2016)

N∑
i=1

∆ia` ∼ τ1
a2`
`⊥

√
t

τ1
. (4.2)

The transfer time, τtr, that we are looking for is the time for which the cumulative
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distortion is of order one, i.e. of the order of the wave itself:

a` ∼ τ1
a2`
`⊥

√
τtr
τ1
. (4.3)

Then, we obtain

τtr ∼
1

τ1

`2⊥
a2`
∼ τ2NL

τ1
, (4.4)

where τNL ≡ `⊥/a`. This is basically the formula that we are going to use to evaluate the
energy spectra. Let us consider IWW/IKAW for which τ1 ∼ 1/ωk ∼ k⊥/k‖. A classical
calculation with a constant energy flux ε ∼ E`/τtr, leads finally to the bi-dimensionnal
axisymmetric energy spectrum

E
(
k⊥, k‖

)
∼
√
εΩek

−5/2
⊥ k

−1/2
‖ . (4.5)

As we will see in § 6.3, this corresponds to the exact solution of the wave turbulence
theory. The same calculation could be done for the momentum but, as we will see, it
presents a more subtle behavior that the phenomenology cannot describe.

5. Kinetic equations
5.1. Definition of the energy density tensor

We now move on to a statistical description. We use the ensemble average 〈〉 and define
the following spectral correlators (cumulants) for homogeneous turbulence (we assume
〈askk 〉 = 0) 〈

askk a
s′k
k′

〉
= e

s′k
k′ δkk′δ

sk
s′k
, (5.1)

with es
′
k (k′) = e

s′k
k′ . We observe the presence of the delta function δsks′k meaning that two-

point correlations of opposite polarities have no long-time influence in the wave turbu-
lence regime. The other delta function is the consequence of the statistical homogeneity
assumption. The objective of the wave turbulence theory is to derive a self-consistent
equation for the time evolution of this spectral correlator; this is the kinetic equation. In
this development, we have to face the classical closure problem: a hierarchy of statistical
equations of increasingly higher order emerges. In contrast to strong turbulence, in the
weak wave turbulence regime we can use the time scale separation to achieve a natural
closure of the system (Benney & Saffman 1966; Newell et al. 2001). After a lengthy (but
classical) algebra, we obtain the time evolution equation of the energy density tensor (we
leave the details of the derivation to Appendix B)

∂te
sk
k =

πε2

16

∑
spsq

∫
R6

skωk

∣∣∣L̃skspsqkpq

∣∣∣2 (skωkespp esqq + spωpe
sk
k e

sq
q + sqωqe

sk
k e

sp
p

)
× δ (Ωkpq) δkpqdpdq,

(5.2)

where

L̃
skspsq
kpq ≡

L
skspsq
kpq

skωk
, (5.3)

Ωkpq ≡ skωk + spωp + sqωq and δkpq = δ (k + p+ q). This equation is the main result of
the wave turbulence formalism. It describes the statistical properties of IWW or IKAW
turbulence at the leading order, i.e. for three-wave interactions.
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5.2. Detailed conservation of quadratic invariants
In § 2.2 we introduced the three-dimensional invariants of IEMHD. The first test that

the wave turbulence equations must pass is the detailed conservation – i.e. for each triad
(k,p, q) – of these invariants. Starting from the definitions (2.15) and (2.16), we define
the energy and momentum spectra

E(k) ≡
∑
sk=±

eskk = e+k + e−k , (5.4)

H(k) ≡
∑
sk=±

skk⊥e
sk
k = k⊥

(
e+k − e

−
k

)
. (5.5)

Before checking the energy conservation, it is interesting to note that when one of the
polarized energy density tensors e±k is zero, the other invariant is extremal and verifies
the relation H(k) = ±k⊥E(k), which is in agreement with the realizability condition
(Schwarz inequality) |H(k)| 6 k⊥E(k). From equation (5.2), we obtain the equation for
the (total) energy

∂tE(t) ≡ ∂t
∫
R3

∑
sk

eskk dk

=
πε2

16

∑
skspsq

∫
R9

skωk

∣∣∣L̃skspsqkpq

∣∣∣2 (skωkespp esqq + spωpe
sk
k e

sq
q + sqωqe

sk
k e

sp
p

)
× δ (Ωkpq) δkpqdkdpdq.

(5.6)

Without forcing and dissipation, energy must be conserved and this conservation is done
at the level of triadic interactions (detailed energy conservation). The demonstration is
straightforward. By applying a cyclic permutation of wavevectors and polarizations, we
find

∂tE(t) =
πε2

48

∑
skspsq

∫
R9

Ωkpqskωk

∣∣∣L̃skspsqkpq

∣∣∣2 (skωkespp esqq + spωpe
sk
k e

sq
q + sqωqe

sk
k e

sp
p

)
× δ (Ωkpq) δkpqdkdpdq = 0,

(5.7)

which proves the conservation of (kinetic) energy on the resonant manifold for each triadic
interaction.

For the second invariant H(t), one has

∂tH(t) ≡ ∂t
∫
R3

∑
sk

skk⊥e
sk
k dk

=
πε2Ωe
16

∑
skspsq

∫
R9

k‖

∣∣∣L̃skspsqkpq

∣∣∣2 (skωkespp esqq + spωpe
sk
k e

sq
q + sqωqe

sk
k e

sp
p

)
× δ (Ωkpq) δkpqdkdpdq.

(5.8)

The same manipulations as before leads immediately to

∂tH(t) =
πε2Ωe
48

∑
skspsq

∫
R9

∣∣∣L̃skspsqkpq

∣∣∣2 (skωkespp esqq + spωpe
sk
k e

sq
q + sqωqe

sk
k e

sp
p

)
×
(
k‖ + p‖ + q‖

)
δ (Ωkpq) δkpqdkdpdq = 0.

(5.9)
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This proves the conservation of momentum (kinetic helicity) on the resonant manifold
for each triadic interaction.

5.3. Helical turbulence

From the wave turbulence equation (5.2), we can deduce several general properties.
First, we observe that there is no coupling between the waves associated with the p
and q wavevectors when these wavevectors are collinear. Second, the nonlinear coupling
disappears whenever the wavenumbers p⊥ and q⊥ are equal if their associated polarities
sp and sq are also equal. These properties are also observed in EMHD (for scales larger
than de) and more generally for other helical waves (Kraichnan 1973; Waleffe 1992;
Turner 2000; Galtier 2003; Galtier & Bhattacharjee 2003). Note that they can already be
deduced directly from the fundamental equation (3.5). Third, the wave modes (k‖ > 0)
are decoupled from the slow mode (k‖ = 0) which is not described by these wave kinetic
equations. This situation is thus different from wave turbulence in incompressible MHD
where the slow mode has a profound influence on the nonlinear dynamics.

6. Turbulent spectra as exact solutions

6.1. Wave kinetic equations for the invariants

The objective of this section is to derive, in the stationary case, the exact power law
solutions of the kinetic equations for the two invariants, energy and momentum. To
do so, it is necessary to simplify the equations, written for E(k) and H(k), using the
axisymmetric assumption. First of all, we have

∂t

(
E(k)
H(k)

)
=
πε2

16

∑
skspsq

∫
R6

skωk

∣∣∣L̃skspsqkpq

∣∣∣2 (skωkespp esqq + spωpe
sk
k e

sq
q + sqωqe

sk
k e

sp
p

)
×
(

1
skk⊥

)
δ (Ωkpq) δkpqdpdq.

(6.1)

We now develop the energy density tensors inside the integral in terms of energy and
momentum spectra. We note that only terms containing the products of two E(k) or
two H(k) will survive for energy, whereas only the products of E(k)H(k) will survive
for helicity. After some algebra, we find for the energy

∂tE(k) =
πε2

64

∑
skspsq

∫
R6

skωk

∣∣∣L̃skspsqkpq

∣∣∣2
× [skωkE(p)E(q) + spωpE(k)E(q) + sqωqE(k)E(p)

+skspsq

(
ωk
H(p)H(q)

p⊥q⊥
+ ωp

H(k)H(q)

k⊥q⊥
+ ωq

H(k)H(p)

k⊥p⊥

)]
× δ (Ωkpq) δkpqdpdq,

(6.2)
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and for the momentum

∂tH(k) =
πε2

64

∑
skspsq

∫
R6

ωkk⊥

∣∣∣L̃skspsqkpq

∣∣∣2(skωk [E(p)
H(q)

sqq⊥
+ E(q)

H(p)

spp⊥

]

+spωp

[
E(k)

H(q)

sqq⊥
+ E(q)

H(k)

skk⊥

]
+sqωq

[
E(k)

H(p)

spp⊥
+ E(p)

H(k)

skk⊥

])
δ (Ωkpq) δkpqdpdq.

(6.3)

If we exchange in the integrand the dummy variables, p and q, as well as sp and sq , we
can simplify further the previous expressions to obtain

∂t

(
E(k)

H(k)

)
=
πε2

32

∑
skspsq

∫
R6

∣∣∣L̃skspsqkpq

∣∣∣2 skωkspωp(XE

XH

)
δ (Ωkpq) δkpqdpdq, (6.4)

with (
XE

XH

)
=

 E(q) [E(k)− E(p)] + H(q)
sqq⊥

(
H(k)
skk⊥

− H(p)
spp⊥

)
skk⊥

[
E(q)

(
H(k)
skk⊥

− H(p)
spp⊥

)
+ H(q)

sqq⊥
[E(k)− E(p)]

]
 . (6.5)

6.2. The axisymmetric wave turbulence equations
To simplify the problem, we will consider an axial symmetry with respect to the

external magnetic field and introduce the two-dimensional anisotropic spectra

Ek = E
(
k⊥, k‖

)
= 2πk⊥E

(
k⊥, k‖

)
, (6.6)

Hk = H
(
k⊥, k‖

)
= 2πk⊥H

(
k⊥, k‖

)
, (6.7)

which result from an integration over the angles in the plane perpendicular to the mean
magnetic field (see Figure 1). In polar coordinates dpdq = p⊥dαqdp⊥dp‖dq‖ and, thanks
to the Al-Kashi formula: q2⊥ = k2⊥ + p2⊥ − 2k⊥p⊥ cosαq, we find at fixed k⊥ and p⊥,
q⊥dq⊥ = k⊥p⊥ sinαqdαq. Using expression (5.3), we then obtain the kinetic equations

∂t

(
Ek
Hk

)
=
ε2Ω2

e

212

∑
skspsq

∫
∆⊥

skspk‖p‖

k2⊥p
2
⊥q

2
⊥

(
sqq⊥ − spp⊥

skωk

)2

(skk⊥ + spp⊥ + sqq⊥)
2
sinαq

×
(
X̃E

X̃H

)
δ (Ωkpq) δk‖p‖q‖dp⊥dq⊥dp‖dq‖,

(6.8)

where ∆⊥ the integration domain verifies the resonance condition k⊥+p⊥+q⊥ = 0 and(
X̃E

X̃H

)
=

 Eq (p⊥Ek − k⊥Ep) + Hq

sqq⊥

(
p⊥
skk⊥

Hk − k⊥
spp⊥

Hp

)
skk⊥

[
Eq

(
p⊥
skk⊥

Hk − k⊥
spp⊥

Hp

)
+

Hq

sqq⊥
(p⊥Ek − k⊥Ep)

] , (6.9)

with αq the angle between k⊥ and p⊥ in the triangle defined by the triadic interaction
(k⊥,p⊥, q⊥) (see Figure 1). Equations (6.8) will be used to derive exact solutions also
called Kolmogorov-Zakharov spectra.

6.3. Kolmogorov-Zakharov spectra
Equations (6.8) have sufficient symmetry to apply the bi-homogeneous conformal

Kuznetsov–Zakharov transformation (Zakharov et al. 1992). This transformation has
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k⊥

p⊥q⊥

αk

αp
αq

Figure 1. Triadic relation k⊥ + p⊥ + q⊥ = 0.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

I

II

IIIIV

p⊥/k⊥

q⊥/k⊥

Figure 2. Illustration of the Kuznetsov-Zakharov transformation. It consists in swapping
regions I and III with regions II and IV, respectively. We specify that the gray band is defined
up to infinity and corresponds to the domain ∆⊥. The same manipulation is done on the parallel
wavenumbers.

been applied to several problems involving anisotropy (Kuznetsov 2001; Galtier 2003,
2006). It is a generalization of the Zakharov transformation applied for isotropic turbu-
lence (in the context of strong 2D HD turbulence, see also Kraichnan (1967)). With such
an operation, we are able to find the exact stationary solutions of the kinetic equations
in power law form. The bihomogeneity of the integrals in the wavenumbers k⊥ and k‖
allows us to use the transformations (see Figure 2)

p⊥ → k2⊥/p⊥, (6.10)
q⊥ → k⊥q⊥/p⊥, (6.11)
p‖ → k2‖/p‖, (6.12)
q‖ → k‖q‖/p‖. (6.13)

We apply this transformation first on the energy equation (6.8) which means that we
are looking for constant energy flux solutions. We seek stationary solutions in the power
law form,

E
(
k⊥, k‖

)
= CEk

−x
⊥
∣∣k‖∣∣−y and H

(
k⊥, k‖

)
= CHk

−x̃
⊥
∣∣k‖∣∣−ỹ , (6.14)

where CE and CH are two constants with CE > 0. (We consider only positive parallel
wavenumber since it is symmetric in k‖.) The new form of the integral, resulting from
the summation of the integrand in its primary form and after the Kuznetsov–Zakharov
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transformation, can be written as

∂tEk =
ε2Ω2

e

213

∑
skspsq

∫
∆⊥

skspk‖p‖

k2⊥p⊥q
2
⊥

(
sqq⊥ − spp⊥

skωk

)2

(skk⊥ + spp⊥ + sqq⊥)
2
sinαq

×
(
C2
EΞE + sksqC

2
HΞH

)
δ (Ωkpq) δk‖p‖q‖dp⊥dq⊥dp‖dq‖,

(6.15)

with the pure energy contribution

ΞE = k−x⊥
∣∣k‖∣∣−yq−x⊥ ∣∣q‖∣∣−y

[
1−

(
p⊥
k⊥

)−1−x ∣∣∣∣p‖k‖
∣∣∣∣−y
][

1−
(
p⊥
k⊥

)−5+2x ∣∣∣∣p‖k‖
∣∣∣∣−1+2y

]
,

(6.16)
and the pure helicity contribution

ΞH = k−1−x̃⊥
∣∣k‖∣∣−ỹq−1−x̃⊥

∣∣q‖∣∣−ỹ
[
1− sksp

(
p⊥
k⊥

)−x̃−2 ∣∣∣∣p‖k‖
∣∣∣∣−ỹ
][

1−
(
p⊥
k⊥

)2x̃−3 ∣∣∣∣p‖k‖
∣∣∣∣2ỹ−1

]
.

(6.17)
We can distinguish two different types of solutions. First, there are the thermodynamic
equilibrium solutions, which correspond to the equipartition state for which the energy
flux is zero. The power laws which verify this condition are

E
(
k⊥, k‖

)
= CEk⊥, (6.18)

H
(
k⊥, k‖

)
= CHk

2
⊥. (6.19)

These results can be easily verified by a direct substitution in the original kinetic
equations. In general, this stationary state cannot be reached in the presence of helicity
because the value sksp = −1 prevents the cancellation of the integral. There is, however,
a particular case where the solutions exist: it is the state of maximal helicity for which
either e+k = 0 or e−k = 0. Then, we have the relation Hk = ±k⊥Ek. But this state is not
viable as we can see on equation (5.2): for example, if e−k = 0 at time t = 0, it will not
remain zero at time t > 0. This means that this solution is only possible if there is an
external mechanism that forces the system to remain in the maximal helicity state.

The most interesting solutions are those for which the energy flux is constant, non-
zero and finite. These exact solutions are called Kolmogorov-Zakharov (KZ) spectra
and correspond to the values which make the integral cancels in a non-trivial way and
independently of the polarizations. These spectra are

E
(
k⊥, k‖

)
= CEk

−5/2
⊥

∣∣k‖∣∣−1/2, (6.20)

H
(
k⊥, k‖

)
= CHk

−3/2
⊥

∣∣k‖∣∣−1/2. (6.21)

There are not constrained by the polarization and can therefore be reached by the system
even in the presence of helicity.
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For the helicity equation, using the same manipulations as before, we obtain

∂tHk =
ε2Ω2

e

213
CECH

∑
skspsq

∫
∆⊥

skspk‖p‖

k2⊥p⊥q
2
⊥

(
sqq⊥ − spp⊥

skωk

)2

(skk⊥ + spp⊥ + sqq⊥)
2
sinαq

× k−x−x̃⊥
∣∣k‖∣∣−y−ỹ

[
1− sksp

(
p⊥
k⊥

)x+x̃−4 ∣∣∣∣p‖k‖
∣∣∣∣y+ỹ−1

]

×

[(
q⊥
k⊥

)−x ∣∣∣∣ q‖k‖
∣∣∣∣−y

(
1− sksp

(
p⊥
k⊥

)−x̃−2 ∣∣∣∣p‖k‖
∣∣∣∣−ỹ
)

+sksq

(
q⊥
k⊥

)−x̃−1 ∣∣∣∣ q‖k‖
∣∣∣∣−ỹ

(
1−

(
p⊥
k⊥

)−x−1 ∣∣∣∣p‖k‖
∣∣∣∣−y
)]

δ (Ωkpq) δk‖p‖q‖dp⊥dq⊥dp‖dq‖.

(6.22)

The zero helicity flux solutions satisfy

E
(
k⊥, k‖

)
= CEk⊥, (6.23)

H
(
k⊥, k‖

)
= CHk

2
⊥, (6.24)

which correspond to the thermodynamic spectra found for energy (this can be seen
directly from equation (6.9)). For the KZ spectra, we have a family of solutions that
meet the following criteria

x+ x̃ = 4, (6.25)
y + ỹ = 1. (6.26)

The situation is worse than for energy because none of the constant helicity flux solutions
(thermodynamic or KZ) can be reached in general because of the presence of the product
sksp which, let us recall, prevents the cancellation of the term in the right-hand side of
expression (6.22). Only the maximal helicity state allows the existence of these stationary
spectra but, as said above, it is not a naturally viable state. (Note that this property
found in weak wave turbulence may not be true in strong turbulence.)

In conclusion, the most relevant solutions are the KZ spectra at constant energy flux.
In section 8 we will further investigate the corresponding exact solution for H = 0 in
order to find the direction of the energy cascade and the expression of the Kolmogorov
constant. In space plasma physics, we often compare theoretical predictions with the
magnetic spectrum EBk which is well measured by spacecraft (with the Taylor hypothesis,
the frequency is used as a proxy for the wavenumber). In our case, a simple dimensional
analysis based on the definition of energy (2.15), leads to the relation Ek ∼ k2⊥E

B
k .

Consequently, we obtain EBk ∼ k
−9/2
⊥ , which is steeper than the predictions made at

scales larger than de.

6.4. Locality condition
We have seen that the most interesting exact solutions of the kinetic equations are the

KZ spectra at constant energy flux. However, these solutions are only fully relevant if
they satisfy the locality condition. Mathematically, this condition means that the integral
must be convergent. If it is not the case, it means physically that the inertial range is not
independent of the largest or smallest scales, where forcing and dissipation are expected.
The calculation of the locality condition is highly non-trivial in this anisotropic case. It
requires a careful treatment that we leave to Appendix C. Note that the study of locality
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Figure 3. Domain of convergence of the energy integral. The black dot at the center of the
domain corresponds to the KZ energy spectrum.

is still a subject of investigation (Dematteis et al. 2022). In the absence of helicity, we
find the following conditions

3 < x + 2y < 4, (6.27)
2 < x + y < 4. (6.28)

We obtain a classical result for wave turbulence in the sense that the power law indices
of the KZ spectra fall exactly in the middle of the convergence domain (see Figure 3).

7. Super-local interactions
In this section, we shall study the limit of local triadic interactions (in the perpendicular

direction) for which the wave kinetic equations simplify significantly. From to the results
found in the previous section, we know that it is mainly relevant to study the energy
only. In the strongly anisotropic limit k‖ � k⊥, equation (6.8) writes

∂tEk =
∑
skspsq

∫
T
skspsq
kpq dp⊥dp‖dq⊥dp‖. (7.1)

By definition (the small parameter ε is absorbed in the time variable)

T
skspsq
kpq =

Ω2
e

212
skspk‖p‖

k2⊥p
2
⊥q

2
⊥

(
sqq⊥ − spp⊥

skωk

)2

(skk⊥ + spp⊥ + sqq⊥)
2
sinαq

× Eq (p⊥Ek − k⊥Ep) δ (Ωkpq) δk‖p‖q‖ ,
(7.2)

is the nonlinear operator which describes the energy transfer between modes which verifies
the following symmetry

T
skspsq
kpq = −T spsksqpkq . (7.3)

In the limit of super-local interactions, we can write

p⊥ = k⊥(1 + εp) ; q⊥ = k⊥(1 + εq), (7.4)
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with 0 � εp � 1 and 0 � εq � 1. We can introduce an arbitrary function f
(
k⊥, k‖

)
and integrate the kinetic equation to find

∂t

∫
f
(
k⊥, k‖

)
Ekdk⊥dk‖ =

∑
skspsq

∫
f
(
k⊥, k‖

)
T
skspsq
kpq dk⊥dp⊥dq⊥dk‖dp‖dq‖

=
1

2

∑
skspsq

∫ [
f
(
k⊥, k‖

)
− f

(
p⊥, p‖

)]
T
skspsq
kpq dk⊥dk‖dp⊥dp‖dq⊥dp‖.

(7.5)

Neglecting the parallel wavenumber contribution (this assumption is fully compatible
with the weak cascade along the parallel direction – see arguments based on the resonance
condition), for local interactions we have

f
(
p⊥, p‖

)
=

+∞∑
n=0

(p⊥ − k⊥)n

n!
∂
(n)
k⊥
f
(
k⊥, k‖

)
=

+∞∑
n=0

εnp
kn⊥
n!
∂
(n)
k⊥
f
(
k⊥, k‖

)
. (7.6)

At the main order, we can write

∂t

∫
f
(
k⊥, k‖

)
Ekdk⊥dk‖ =

− 1

2
∂k⊥

 ∑
skspsq

∫
εpk⊥T

skspsq
kpq ∂k⊥f

(
k⊥, k‖

)
dk⊥dk‖dp⊥dp‖dq⊥dp‖

 .

(7.7)

Using an integration by part, we find the relation

∂tEk =
1

2
∂k⊥

 ∑
skspsq

∫
εpk⊥T

skspsq
kpq dp⊥dp‖dq⊥dp‖

 . (7.8)

The asymptotic form of T skspsqkpq can be found by using the locality in the perpendicular
direction. In particular, we find the relations

k2⊥p
2
⊥q

2
⊥ = k6⊥, (7.9)(

sqq⊥ − spp⊥
skωk

)2

=
k4⊥
Ω2
ek

2
‖
(sq − sp) , (7.10)

(skk⊥ + spp⊥ + sqq⊥)
2
= k2⊥ (sk + sp + sq)

2
, (7.11)

Eq (p⊥Ek − k⊥Ep) = −
εp
2
k4⊥∂k⊥ (Ek/k⊥)

2
, (7.12)

sinαq = sinπ/3 =
√
3/2, (7.13)

δΩkpq
=
k⊥
Ωe

δ
(
skk‖ + spp‖ + sqq‖

)
. (7.14)

After simplification, we arrive at

T
skspsq
kpq =− εp

√
3

214
1

Ωe

spp‖

skk‖
k5⊥ (sq − sp)2 (sk + sp + sq)

2
∂k⊥ (Ek/k⊥)

2

× δ
(
skk‖ + spp‖ + sqq‖

)
δ
(
k‖ + p‖ + q‖

)
.

(7.15)

With this form we see that the transfer will be significantly higher when sp = −sq,
therefore we will only consider this type of interaction. Then, the expression of the
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transfer reduces to

T
sksp−sp
kpq = −εp

√
3

212
1

Ωe

spp‖

skk‖
k5⊥∂k⊥ (Ek/k⊥)

2
δ
(
skk‖ + spp‖ − spq‖

)
δ
(
k‖ + p‖ + q‖

)
.

(7.16)
The resonance condition leads to two possible combinations for the parallel wavenumbers,

k‖ + p‖ − q‖ = 0 and k‖ + p‖ + q‖ = 0,

k‖ − p‖ + q‖ = 0 and k‖ + p‖ + q‖ = 0.
(7.17)

The solution corresponds either to q‖ = 0 or p‖ = 0, which means in particular that the
strong locality assumption is not allowed for the parallel direction. The second solution
cancels the transfer, therefore, we will only consider the first solution for which we have
(with p‖ = −k‖). We find

∂tEk =
1

2
∂k⊥

(∫
εpk⊥T

++−
kpq dp⊥dp‖dq⊥dp‖

)
=

√
3

213
1

Ωe
∂k⊥

[
k8⊥∂k⊥ (Ek/k⊥)

2
] ∫ +ε̃

−ε̃
ε2pdεp

∫ +ε̃

−ε̃
dεq.

. (7.18)

We finally obtain the nonlinear diffusion equation

∂Ek
∂t

= C
∂

∂k⊥

[
k8⊥

∂

∂k⊥

(
Ek
k⊥

)2
]
, (7.19)

where C = ε̃4/
(
211
√
3Ωe

)
. This equation has been derived analytically from the kinetic

equations in the limit of super-local (perpendicular) interactions and when H = 0.
It gives a first interesting description of wave turbulence in IEMHD. In particular,
the thermodynamic and KZ spectra are exact solutions. We can also prove that the
corresponding energy flux is positive, and thus that the cascade is direct.

It is interesting to note that a similar nonlinear diffusion equation has been obtained,
in the same approximation of wave turbulence, for EMHD (David & Galtier 2019; Passot
& Sulem 2019) and rotating hydrodynamics (Galtier & David 2020). The numerical
simulations of this equation reveal the existence of a k

−8/3
⊥ energy spectrum during

the non-stationary phase that is steeper than the KZ spectrum. This solution has been
understood as a self-similar solution of second kind (which means it cannot be predicted
analytically). It is also shown that once the energy spectrum reaches the dissipative
scales, a spectral bounce appears which affects the whole inertial range to finally form
the expected KZ spectrum in k−5/2⊥ .

8. Direction of the energy cascade and Kolmogorov constant
8.1. Direct energy cascade

In this section, we will study the sign of the energy flux from the kinetic equations
(6.15) and prove that the cascade in the perpendicular direction is direct. In cylindrical
coordinates (see figure 4), we have (Zakharov et al. 1992)

∂E(k)

∂t
= −∇ ·Π = − 1

k⊥

∂ (k⊥Π⊥(k))

∂k⊥
−
∂Π‖(k)

∂k‖
, (8.1)

where Π is the energy flux vector, Π⊥ and Π‖ its perpendicular and parallel compo-
nents (axisymmetric turbulence is assumed), respectively. Introducing the axisymmetric



18 V. David & S. Galtier
Π‖(k)

Π⊥(k)

Figure 4. Schematic representation of an axisymmetric flux in Fourier space. Each cylindrical
shell corresponds to a specific value of k⊥. In theory, they form a continuum but here their
discrete nature serves as an illustration.

spectra Ek ≡ 2πk⊥E(k), Π⊥ ≡ 2πk⊥Π⊥(k) and Π‖ ≡ 2πk⊥Π‖(k), we obtain

∂tEk = −∂Π⊥
∂k⊥

−
∂Π‖

∂k‖
. (8.2)

We now introduce the adimensional variables p̃⊥ ≡ p⊥/k⊥, q̃⊥ ≡ q⊥/k⊥, p̃‖ ≡ p‖/k‖
and q̃‖ ≡ q‖/k‖. We seek power law solutions of the form (6.14) and then obtain

∂tEk =
ε2

213Ωe

[
k4−2x⊥

∣∣k‖∣∣−2y C2
EIE(x, y) + k2−2x̃⊥

∣∣k‖∣∣−2ỹ C2
HIH(x̃, ỹ)

]
, (8.3)

where

IE(x, y) =
∑
skspsq

∫
∆⊥

sksp
p̃‖

p̃⊥q̃2⊥
(sq q̃⊥ − spp̃⊥)2 (sk + spp̃⊥ + sq q̃⊥)

2
sinαq q̃

−x
⊥
∣∣q̃‖∣∣−y

×
(
1− p̃−1−x⊥

∣∣p̃‖∣∣−y)(1− p̃−5+2x
⊥

∣∣p̃‖∣∣−1+2y
)

× δ
(
sk + sp

p̃‖

p̃⊥
+ sq

q̃‖

q̃⊥

)
δ
(
1 + p̃‖ + q̃‖

)
dp̃⊥dq̃⊥dp̃‖dq̃‖,

(8.4)

and

IH(x̃, ỹ) =
∑
skspsq

∫
∆⊥

spsq
p̃‖

p̃⊥q̃3⊥
(sq q̃⊥ − spp̃⊥)2 (sk + spp̃⊥ + sq q̃⊥)

2
sinαq q̃

−x̃
⊥
∣∣q̃‖∣∣−ỹ

×
(
1− skspp̃−x̃−2⊥

∣∣p̃‖∣∣−ỹ)(1− p̃2x̃−3⊥
∣∣p̃‖∣∣2ỹ−1)

× δ
(
sk + sp

p̃‖

p̃⊥
+ sq

q̃‖

q̃⊥

)
δ
(
1 + p̃‖ + q̃‖

)
dp̃⊥dq̃⊥dp̃‖dq̃‖.

(8.5)

Taking the limits, corresponding to the KZ spectra, (x, y, x̃, ỹ) → (5/2, 1/2, 3/2, 1/2),
thanks to the Hospital rule, we can write(

ΠKZ
⊥

ΠKZ
‖

)
=

ε2

213Ωe

(
k−1‖

k−1⊥

)[
C2
E

(
I⊥
I‖

)
+ C2

H

(
J⊥
J‖

)]
, (8.6)
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Figure 5. Left: integrand of I⊥ as a function of p̃⊥ and q̃⊥; a positive value is always
observed. Right: integrand of I‖ which changes sign as a function of (small) p̃⊥ and q̃⊥.

where(
I⊥
I‖

)
≡
∑
skspsq

∫
∆⊥

sksp
p̃‖

p̃⊥q̃
9/2
⊥
∣∣q̃‖∣∣1/2 (sq q̃⊥ − spp̃⊥)2 (sk + spp̃⊥ + sq q̃⊥)

2
sinαq log

∣∣∣∣( p̃⊥p̃‖
)∣∣∣∣

×
(
1− p̃−7/2⊥

∣∣p̃‖∣∣−1/2) δ(sk + sp
p̃‖

p̃⊥
+ sq

q̃‖

q̃⊥

)
δ
(
1 + p̃‖ + q̃‖

)
dp̃⊥dq̃⊥dp̃‖dq̃‖,

(8.7)

and(
J⊥
J‖

)
≡
∑
skspsq

∫
∆⊥

spsq
p̃‖

p̃⊥q̃
9/2
⊥
∣∣q̃‖∣∣1/2 (sq q̃⊥ − spp̃⊥)2 (sk + spp̃⊥ + sq q̃⊥)

2
sinαq log

∣∣∣∣( p̃⊥p̃‖
)∣∣∣∣

×
(
sk − spp̃−7/2⊥

∣∣p̃‖∣∣−1/2) δ(sk + sp
p̃‖

p̃⊥
+ sq

q̃‖

q̃⊥

)
δ
(
1 + p̃‖ + q̃‖

)
dp̃⊥dq̃⊥dp̃‖dq̃‖.

(8.8)

Therefore, the ratio of the two fluxes is

ΠKZ
‖

ΠKZ
⊥

=
k‖

k⊥

C2
EI‖ + C2

HJ‖

C2
EI⊥ + C2

HJ⊥
. (8.9)

Since it is proportional to k‖/k⊥, we expect ΠKZ
‖ � ΠKZ

⊥ , which is in agreement with
the analysis based on the resonance condition to find the direction of the cascade. In the
absence of helicity, the ratio (8.9) only depends on k‖/k⊥ � 1 and I‖/I⊥; we numerically
find I‖/I⊥ ' 0.73, then the previous expectation is fulfilled.

We can also find the sign of the energy flux and thus prove the direction of the cascade.
Since the perpendicular flux is dominant, we will neglect the parallel flux and only look
for the sign of I⊥. A numerical evaluation reveals a positive value, which means that
Π⊥ > 0 and that the energy cascade is direct in the transverse direction.

In figure 5, we show the sign of the integrands of I⊥ and I‖ obtained from a numerical
evaluation of expressions (8.7). We see that for I⊥ the integrand is always positive, while
for I‖ the integrand can be either positive or negative depending on the perpendicular
wavenumbers (for large perpendicular wavenumbers it is always positive) but overall,
after integration, the positive sign dominates in the sense that the integral I‖ > 0.
Therefore, the parallel cascade is also direct but it is composed of different contributions,
with (a minority of) triadic interactions contributing to an inverse transfer.
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Figure 6. Convergence of CK as a function of ξ.

8.2. Kolmogorov constant
If we neglect the parallel flux and helicity, we can also obtain the expression of the

Kolmogorov constant CK for which we can numerically get an estimate. To do so, we take
advantage of the Dirac distributions to integrate the parallel wavenumbers. Then, since
I⊥ is only defined on the region ∆⊥, we introduce the change of variable q̃⊥ ≡ ξ − p̃⊥
where ξ ∈ [1,+∞[ and p̃⊥ ∈

[
ξ−1
2 , ξ+1

2

]
that confines the integration to this domain.

One finds at a given k‖,

Ek =
√
Π⊥ΩeCKk

−5/2
⊥ with CK = 64

√
2

I⊥
' 8.474. (8.10)

The numerical convergence of CK to this value in shown in Figure 6.

9. Discussion and conclusion
In this paper, we have developed a wave turbulence theory for inertial electron MHD

(i.e. for scales smaller than de) mediated by three-wave interactions between inertial
whistler waves or between inertial kinetic Alfvén waves. The asymptotic wave kinetic
equations are derived for the two quadratic invariants of the system, namely energy
and momentum. The theory is expected to be relevant mainly for ion-electron plasmas
such as the Earth’s magnetosheath, the solar corona or the solar wind (Milanese et al.
2020), but also for electron-positron plasmas (Loureiro & Boldyrev 2018). We show
that this turbulence is mainly characterized by a direct energy cascade in the direction
perpendicular to the strong applied magnetic field. The role of the second invariant,
the momentum or kinetic helicity, is less important because in general there is no exact
solution at constant helicity flux (except for the state of maximal helicity). By converting
the exact solution (Kolmogorov-Zakharov spectrum) into unit of magnetic field, which
is easier to measure in space plasma, we find a magnetic energy spectrum EB ∼ k

−9/2
⊥ .

It is interesting to note that this power law is steeper than that observed in the solar
wind at sub-MHD scales (satisfying kde < 1) with a power law index often close to −8/3
(Alexandrova et al. 2012; Podesta 2013; Sahraoui et al. 2020) whereas at kde > 1, power
law indices close to −11/3 are observed (Sahraoui et al. 2009; Sahraoui et al. 2020) as well
as −9/2 (Sahraoui et al. 2013) but in a narrow frequency range. The former matches the
strong turbulence prediction (Biskamp et al. 1999; Meyrand & Galtier 2010) while the
latter is in adequation with the wave turbulence one. In absence of helicity, we prove that
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the energy cascade is direct and numerically estimate the Kolmogorov constant using its
analytical expression. We also prove that the Kolmogorov-Zakharov spectrum is in the
domain of convergence, showing the relevance of the exact solution.

An interesting point concerns the dynamics of the two-dimensional state (i.e. the slow
modes for which k‖ = 0). We see from the kinetic equation (6.8) that the nonlinear
transfer for energy and helicity decreases linearly with k‖, and for the value k‖ = 0
the transfer is exactly null. This means that the dynamics of the slow modes decouples
from the three-dimensional state. Actually, the slow modes are not described by the
wave turbulence theory which is based on the time scales separation 1/ω � τNL (when
k‖ → 0 this inequality cannot be satisfied). The possibility that higher order processes,
such as four-wave interactions, could lead to a coupling between two-dimensional and
three-dimensional modes has been discussed in the past by Smith & Waleffe (1999) in
the context of inertial waves in rotating hydrodynamics. Since it is a similar problem,
this scenario could also be relevant here.

In the limit of super-local (perpendicular) interactions, we derive a nonlinear diffu-
sion equation that is similar to that found in electron MHD at scales larger than de.
Interestingly, this equation is also similar to the case of inertial wave turbulence (fast
rotating hydrodynamic turbulence). In fact, the link is deeper than that since the two
problems share the same kinetic equations (within a factor) with the same dispersion
relation (within a factor). This connection is due to a strong asymmetry imposed by
a mean magnetic field on the one hand, and by the axis rotation on the other hand.
It is also due to the helical nature of the waves. This reinforces the bridge between
plasma physics and fluid mechanics (see also Galtier & David (2020)) and suggests that
laboratory experiments (Yarom & Sharon 2014; Monsalve et al. 2020) can help to better
understand space plasma physics at a scale still difficult to detect by current spacecraft.

Appendix A. Detailed conservation of energy
We recall the relations u‖ = de∇2

⊥ψ and u⊥ = de(−∂yb‖êx + ∂xb‖êy) which allow
us, in Fourier space, to obtain the expressions of the energy density respectively in the
directions parallel and perpendicular to the mean magnetic field: |u‖,k|2 = d2ek

4
⊥|ψk|2

and |u⊥,k|2 = d2ek
2
⊥|bk|2 (with bk ≡ b‖k). From the equations describing the temporal

evolution of ψ and b‖ in Fourier space, we obtain the evolution of the energy density

∂t|u‖,k|2 − id2eΩek‖k2⊥bkψk + c.c. = d3e

∫
R6

sinαkk
2
⊥p⊥q⊥

(
q2⊥ψqbp − p2⊥ψpbq

)
× ψkδkpqdpdq + c.c.,

(A 1)

∂t|u⊥,k|2 + id2eΩek‖k
2
⊥bkψk + c.c. = d3e

∫
R6

sinαkp⊥q⊥
(
q2⊥ − p2⊥

)
bkbpbq

× δkpqdpdq + c.c.,

(A 2)

where we have used the relation ê‖ · (êp⊥ × êq⊥) = sinαk and c.c. denotes the complex
conjugate. Parallel Eu‖ and perpendicular Eu⊥ energies being the sum of these quantities
over the all wavenumbers, we find

∂tE
u
‖ − id

2
eΩe

∫
R3

k‖k
2
⊥bkψkdk + c.c. = d3e

∫
R9

Su‖ (k⊥, p⊥, q⊥) δkpqdkdpdq + c.c.,(A 3)

∂tE
u
⊥ + id2eΩe

∫
R3

k‖k
2
⊥bkψkdk + c.c. = d3e

∫
R9

Su⊥ (k⊥, p⊥, q⊥) δkpqdkdpdq + c.c.,(A 4)
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with Su‖ (k⊥, p⊥, q⊥) and S
u
⊥ (k⊥, p⊥, q⊥) the nonlinear interaction coefficient defined as

Su‖ (k⊥, p⊥, q⊥) ≡ sinαkk
2
⊥p⊥q⊥ψk

(
q2⊥ψqbp − p2⊥ψpbq

)
, (A 5)

Su⊥ (k⊥, p⊥, q⊥) ≡ sinαkp⊥q⊥
(
q2⊥ − p2⊥

)
bkbpbq. (A 6)

The remarkable property is that the nonlinear contributions are both conserved over time
since Su‖ (k⊥, p⊥, q⊥) and S

u
⊥ (k⊥, p⊥, q⊥) verify the following relations

Su‖ (k⊥, p⊥, q⊥) + Su‖ (q⊥, k⊥, q⊥) + Su‖ (p⊥, q⊥, k⊥) = 0, (A 7)
Su⊥ (k⊥, p⊥, q⊥) + Su⊥ (q⊥, k⊥, q⊥) + Su⊥ (p⊥, q⊥, k⊥) = 0. (A 8)

Then, the parallel and perpendicular components of the energy are conserved individually
at the nonlinear level. The exchanges between the two are only done at the linear level.

Appendix B. Derivation of the wave kinetic equations
We start from (3.11) and write successively equations for the second- and third-order

moments,

∂t

〈
askk a

s′k
k′

〉
=ε
∑
spsq

∫
R6

L
skspsq
kpq

〈
a
s′k
k′a

sp
p a

sq
q

〉
eiΩ

k
pqtδkpqdpdq

+ ε
∑
spsq

∫
R6

L
s′kspsq
k′pq

〈
askk a

sp
p a

sq
q

〉
eiΩ

k′
pqtδk

′

pqdpdq,

(B 1)

and

∂t

〈
askk a

s′k
k′a

s′′k
k′′

〉
=ε
∑
spsq

∫
R6

L
skspsq
kpq

〈
a
s′k
k′a

s′′k
k′′a

sp
p a

sq
q

〉
eiΩ

k
pqtδkpqdpdq

+ ε
∑
spsq

∫
R6

L
s′kspsq
k′pq

〈
askk a

s′′k
k′′a

sp
p a

sq
q

〉
eiΩ

k′
pqtδk

′

pqdpdq

+ ε
∑
spsq

∫
R6

L
s′′kspsq
k′′pq

〈
askk a

s′k
k′a

sp
p a

sq
q

〉
eiΩ

k′′
pq tδk

′′

pq dpdq.

(B 2)

A natural closure arises for times asymptotically large compare to the linear wave time
scale (see e.g. Newell et al. (2001); Nazarenko (2011); Newell & Rumpf (2011)). An
important aspect is the uniformity of the development which was discussed first by
Benney & Saffman (1966). In this case, the fourth-order moment does not contribute
at large time and, therefore, the nonlinear regeneration of third-order moments depends
essentially on products of second-order moments〈
a
s′k
k′a

s′′k
k′′a

sp
p a

sq
q

〉
=
〈
a
sp
p a

sq
q

〉 〈
a
s′k
k′a

s′′k
k′′

〉
+
〈
a
sp
p a

s′k
k′

〉〈
a
sq
q a

s′′k
k′′

〉
+
〈
a
sp
p a

s′′k
k′′

〉〈
a
sq
q a

s′k
k′

〉
. (B 3)

Thanks to the integration on the dummy variables p and q, to their symmetry and the
symmetry between the polarizations sp and sq, we make the following simplification in
advance 〈

a
s′k
k′a

s′′k
k′′a

sp
p a

sq
q

〉
=
〈
a
sp
p a

sq
q

〉 〈
a
s′k
k′a

s′′k
k′′

〉
+ 2

〈
a
sp
p a

s′k
k′

〉〈
a
sq
q a

s′′k
k′′

〉
, (B 4)

and also introduce the spectral energy density es
′
k (k′) = e

s′k
k′ such as〈

askk a
s′k
k′

〉
= e

s′k
k′ δkk′δ

sk
s′k
, (B 5)
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where δkk′ = δ (k + k′) and δsks′k = δ (sk − s′k). The last delta condition ensures that the
contribution is non-negligible over long times. We then write〈

a
s′k
k′a

s′′k
k′′a

sp
p a

sq
q

〉
= e

sp
p δpqδ

sp
sq e

s′k
k′ δk′k′′δ

s′k
s′′k

+ 2e
sp
p δpk′δ

sp
s′k
e
sq
q δqk′′δ

sq
s′′k
, (B 6)〈
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q
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= e
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sq e

sk
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s′′k

+ 2e
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p δpkδ
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sk
e
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, (B 7)〈
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p δpqδ
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sq e

sk
k δkk′δ

sk
s′k

+ 2e
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p δpkδ
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sk
e
sq
q δqk′δ

sq
s′k
. (B 8)

We note that, on the one hand, the δpq imposes p = −q and, on the other hand, the δkpq
imposes k = p+ q. Thus, these two conditions lead to k = 0. Since Lskspsq0pq = 0, the first
term on the right side hand side is zero and we get

∂t
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s′k
k′a

s′′k
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∫
R6

L
skspsq
−kpq e

sp
p e

sq
q eiΩ

k
pqtδ

sp
s′k
δ
sq
s′′k
δpk′δqk′′δ

k
pqdpdq

+ 2ε
∑
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∫
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∫
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(B 9)

After integration and summation over the polarizations, we obtain

∂t
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(B 10)

where Ωkk′k′′ = skωk + s′kω
′
k + s′′kω

′′
k . Further simplifications can be made. Firstly, the

energy density tensor describes an homogeneous turbulence then esk−k = eskk . Secondly,

the interaction coefficient has the following symmetry Lsks
′
ks

′′
k

−k−k′−k′′ = L
sks

′
ks

′′
k

kk′k′′ . Thirdly,
we introduce Lskspsqkpq ≡ (sqq⊥ − spp⊥)M

skspsq
kpq which is convenient for the calculations.

We obtain
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(B 11)

We observe that Msks
′
ks

′′
k

kk′k′′ = M
s′′ksks

′
k

k′′kk′ = −Ms′ksks
′′
k

k′kk′′ thus the previous expression can be
simplified
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sks
′
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′′
k

kk′k′′

[
(s′′kk

′′
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k′′

− (s′′kk
′′
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k e

s′′k
k′′

+(s′kk
′
⊥ − skk⊥) e

sk
k e

s′k
k′

]
.

(B 12)
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We note that s′′kk
′′ − s′kk′ = s′′kk

′′ − skk + skk − s′kk′, and thus

∂t

〈
askk a

s′k
k′a

s′′k
k′′

〉
= 2εeiΩkk′k′′ tδkk′k′′M

sks
′
ks

′′
k

kk′k′′

[
(s′′kk

′′
⊥ − skk⊥)

(
e
s′k
k′e

s′′k
k′′ − eskk e

s′′k
k′′

)
+(s′kk

′
⊥ − skk⊥)

(
eskk e

s′k
k′ − es

′
k

k′e
s′′k
k′′

)]
.

(B 13)

After integration over time, one has〈
askk a

s′k
k′a

s′′k
k′′

〉
= 2ε∆ (Ωkk′k′′) δkk′k′′M

sks
′
ks

′′
k

kk′k′′

[
(skk⊥ − s′′kk′′⊥) e

s′′k
k′′

(
eskk − e

s′k
k′

)
+(s′kk

′
⊥ − skk⊥) e

s′k
k′

(
eskk − e

s′′k
k′′

)]
,
(B 14)

with

∆ (x) =

∫ t�1/ω

0

eixτdτ =
eixt − 1

ix
. (B 15)

Now, we can introduce expression (B 14) for the third-order moment into equation (B 1)

∂t

〈
askk a

s′k
k′

〉
= ∂te

sk
k δkk′δ

sk
s′k

= ε
∑
spsq

∫
R6

(
L
skspsq
−kpq

〈
a
s′k
k′a

sp
p a

sq
q

〉
eiΩ

k
pqtδkpq

+L
s′kspsq
−k′pq

〈
askk a

sp
p a

sq
q

〉
eiΩ

k′
pqtδk

′

pq

)
δsks′k

δkk′dpdq

= I1 + I2,

(B 16)

where I1 and I2 are the two integrals involving the interaction coefficients Lskspsq−kpq and

L
s′kspsq
−k′pq, respectively. Expressing L

skspsq
kpq as a function of Mskspsq

kpq , the first integral
becomes

I1 = 2ε2
∑
spsq

∫
R6

(sqq⊥ − spp⊥)
∣∣∣Mskspsq

−kpq

∣∣∣2∆ (Ω−kpq) e
iΩk

pqtδkpq

×
[
(skk⊥ − sqq⊥) e

sq
q

(
eskk − e

sp
p

)
+ (spp⊥ − skk⊥) e

sp
p

(
eskk − e

sq
q

)]
dpdq.

(B 17)

We note that ∆ (Ω−kpq) e
iΩk

pqt = ∆
(
Ωkpq

)
. The long time behavior is given by the

Riemann-Lebesgue lemma

∆(x)
t→∞−−−→ πδ(x) + iP

(
1

x

)
. (B 18)

After a last change of variable, we find (p, q)→ (−p,−q)

I1 =2ε2
∑
spsq

∫
R6

[
(skk⊥ − sqq⊥) e

sq
q

(
eskk − e

sp
p

)
+ (spp⊥ − skk⊥) e

sp
p

(
eskk − e

sq
q

)]
× (sqq⊥ − spp⊥)

∣∣∣Mskspsq
kpq

∣∣∣2 [πδ (Ωkpq) + iP
(

1

Ωkpq

)]
δkpqdpdq.

(B 19)
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The same manipulation with I2 without performing the change of variable leads to

I2 =2ε2
∑
spsq

∫
R6

[
(skk⊥ − sqq⊥) e

sq
q

(
eskk − e

sp
p

)
+ (spp⊥ − skk⊥) e

sp
p

(
eskk − e

sq
q

)]
× (sqq⊥ − spp⊥)

∣∣∣Mskspsq
kpq

∣∣∣2 [πδ (Ωkpq)− iP ( 1

Ωkpq

)]
δkpqdpdq,

(B 20)

and the sum of these two integrals gives

∂te
sk
k =4πε2

∑
spsq

∫
R6

[
(skk⊥ − sqq⊥) e

sq
q

(
eskk − e

sp
p

)
+ (spp⊥ + skk⊥) e
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p

(
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sq
q

)]
× (sqq⊥ − spp⊥)

∣∣∣Mskspsq
kpq

∣∣∣2 δ (Ωkpq) δkpqdpdq.
(B 21)

Using the symmetries of the resonant conditions, we have

∂te
sk
k =

πε2

16

∑
spsq

∫
R6

(sqq⊥ − spp⊥)2

skωk

sin2 αk
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(skk⊥ + spp⊥ + sqq⊥)
2
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spωpe
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(
eskk − e
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)
+ sqωqe
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(B 22)

The δ (Ωkpq) allows us to finally rewrite the term in the second line as follow

∂te
sk
k =

πε2

16

∑
spsq

∫
R6

1

skωk

∣∣∣Lskspsqkpq

∣∣∣2 (skωkespp esqq + spωpe
sk
k e

sq
q + sqωqe

sk
k e

sp
p

)
× δ (Ωkpq) δkpqdpdq.

(B 23)

These are the kinetic equations for IEMHD wave turbulence.

Appendix C. Locality criteria
The objective of this section is to find the locality domain of the power law solutions at

constant energy flux and (for simplicity) in absence of helicity. In other words, we want
to check if the contribution of non-local interactions are not dominant. There are three
areas (regions A, B and C in figure 7) for which the interactions are non-local. To do this,
it is convenient to introduce the adimensional wavenumbers p̃⊥ ≡ p⊥/k⊥, p̃‖ ≡ p‖/k‖,
q̃⊥ ≡ q⊥/k⊥ and q̃‖ ≡ q‖/k‖. We obtain (H = 0):

∂tEk =
ε2C2

E

212Ωe
k4−2x⊥ k−2y‖

∑
skspsq

∫
∆⊥

sksp
p̃‖

p̃⊥q̃2⊥
(sq q̃⊥ − spp̃⊥)2 (sk + spp̃⊥ + sq q̃⊥)

2
sinαq

× q̃−x⊥ q̃−y‖

(
1− p̃−1−x⊥ p̃−y‖

)
δ

(
sk + sp

p̃‖

p̃⊥
+ sq

q̃‖

q̃⊥

)
δ
(
1 + p̃‖ + q̃‖

)
dp̃⊥dq̃⊥dp̃‖dq̃‖.

(C 1)

This expression can be integrated in the parallel directions. We recall the following
property ∫

R
f(x)δ (g(x)) dx =

∑
i

f (xi)

|g′ (xi)|
, such as g (xi) = 0. (C 2)
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p̃⊥

q̃⊥

1

1

0

A

B

C

Figure 7. The kinetic equations are integrated on a domain verifying k+ p+ q = 0. The grey
strip corresponds to this domain for the adimensional perpendicular wavevectors. A, B and C
(at infinity) are the non-local regions where the convergence of the integrals must be checked.

Then, we have

δ
(
1 + p̃‖ + q̃‖

)
−→ q̃‖ = −1− p̃‖, (C 3)

δ

(
sk + sp

p̃‖

p̃⊥
+ sq

q̃‖

q̃⊥

)
−→ p̃‖ = p̃⊥

skq̃⊥ − sq
sqp̃⊥ − spq̃⊥

. (C 4)

We obtain

∂tEk =
ε2C2

E

212Ωe
k4−2x⊥

∣∣k‖∣∣−2y ∑
skspsq

∫
∆⊥

skspq̃
−x−y−2
⊥ (sq q̃⊥ − spp̃⊥)2 (sk + spp̃⊥ + sq q̃⊥)

2

× sinαq
skq̃⊥ − sq
sqp̃⊥ − spq̃⊥

∣∣∣∣ sp − skp̃⊥sqp̃⊥ − spq̃⊥

∣∣∣∣−y
(
1− p̃−x−y−1⊥

∣∣∣∣ skq̃⊥ − sq
sqp̃⊥ − spq̃⊥

∣∣∣∣−y
)

×
∣∣∣∣ p̃⊥q̃⊥
spq̃⊥ − sqp̃⊥

∣∣∣∣ dp̃⊥dq̃⊥,
(C 5)

where sinαq =

√
1− (1 + p̃2⊥ − q̃2⊥)

2
(2p̃⊥)

−2.

C.1. Zone A

We define p̃⊥ = 1 + r cosβ and q̃⊥ = r sinβ, with r � 1 and β ∈ [π/4, 3π/4]. Two
cases must be distinguished: when sk = sp and when sk = −sp. An evaluation (to
leading order) of the different terms of the integral (C 5) is given in Table 1. Note that
these evaluations take into account the possible cancellation of the integral due to β
symmetry.
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Table 1 sk = sp sk = −sp

sk q̃⊥−sq
sq p̃⊥−spq̃⊥ −1 −1∣∣∣ sp−skp̃⊥
sq p̃⊥−spq̃⊥

∣∣∣ r| cosβ| 2

(sq q̃⊥ − spp̃⊥)2 1 1
(sk + spp̃⊥ + sq q̃⊥)

2 4 r2

sin θ r
√
− cos 2β r

√
− cos 2β

1− p̃−x−y−1⊥

∣∣∣ sk q̃⊥−sq
sq p̃⊥−spq̃⊥

∣∣∣−y ∝ r2 cos2 β ∝ r2 cos2 β∣∣∣ p̃⊥q̃⊥
spq̃⊥−sq p̃⊥

∣∣∣ r |sinβ| r |sinβ|
dp̃⊥dq̃⊥ rdrdβ rdrdβ

When sk = sp, the criterion of convergence of the kinetic equation (C 5) will be given by
the following integral∫ R<1

0

r3−x−2ydr

∫ 3π/4

π/4

|cosβ|2−y
√
− cos 2β (sinβ)

−1−x−y
dβ. (C 6)

Therefore, there is convergence if x+ 2y < 4. When sk = −sp, we have∫ R<1

0

r5−x−ydr

∫ 3π/4

π/4

cos2 β
√
− cos 2β (sinβ)

−1−x−y
dβ (C 7)

and the convergence is obtained if x+ y < 6.

C.2. Zone B
We define p̃⊥ = r cosβ and q̃⊥ = 1 + r sinβ, with this time β ∈ [−π/4, π/4]. We have

two cases: sk = sq and sk = −sq. An evaluation (to leading order) of the different terms
of the integral (C 5) is given in Table 2. Note that these evaluations take into account
the possible cancellation of the integral due to β symmetry.

Table 2 sk = sq sk = −sq

sk q̃⊥−sq
sq p̃⊥−spq̃⊥ skspr

2 sin2 β −2sksp∣∣∣ sp−skp̃⊥
sq p̃⊥−spq̃⊥

∣∣∣ 1 1

(sq q̃⊥ − spp̃⊥)2 1 1
(sk + spp̃⊥ + sq q̃⊥)

2 4 r2

sin θ
√
1− tan2 β

√
1− tan2 β

1− p̃−x−y−1⊥

∣∣∣ sk q̃⊥−sq
sq p̃⊥−spq̃⊥

∣∣∣−y 1− (r cosβ)
−x−y−1 |r sinβ|−y 1− 2−y (r cosβ)

−x−y−1∣∣∣ p̃⊥q̃⊥
spq̃⊥−sq p̃⊥

∣∣∣ r |cosβ| r |cosβ|
dp̃⊥dq̃⊥ rdrdβ rdrdβ

When sk = sq, the criterion of convergence of the kinetic equation (C 5) will be given by
the following integral∫ R<1

0

r3−x−2ydr

∫ +π/4

−π/4
(cosβ)

−x−y |sinβ|2−y
√
1− tan2 βdβ. (C 8)
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Therefore, there is convergence if x+ 2y < 4. When sk = −sq, we have∫ R<1

0

r3−x−ydr

∫ +π/4

−π/4
(cosβ)

−x−y
√
1− tan2 βdβ (C 9)

and the convergence is obtained if x+ y < 4.

C.3. Zone C
We define p̃⊥ = (τ2 − τ1)/2 and q̃⊥ = (τ1 + τ2)/2, with −1 6 τ1 6 1 and 1 � τ2. We

have two cases: sp = sq and sp = −sq. An evaluation (to leading order) of the different
terms of the integral (C 5) is given in Table 3. Note that these evaluations take into
account the possible cancellation of the integral due to τ1 symmetry.

Table 3 sp = sq sp = −sq

sk q̃⊥−sq
sq p̃⊥−spq̃⊥ −sksp/2 −sksp/2∣∣∣ sp−skp̃⊥
sq p̃⊥−spq̃⊥

∣∣∣ ∣∣τ2τ−11

∣∣ /2 1/2

(sq q̃⊥ − spp̃⊥)2 τ21 τ22
(sk + spp̃⊥ + sq q̃⊥)

2
τ22 1 + τ21

sin θ
√
1− τ21

√
1− τ21

1− p̃−x−y−1⊥

∣∣∣ sk q̃⊥−sq
sq p̃⊥−spq̃⊥

∣∣∣−y 1− 2x+2y+1τ−x−2y−12 |τ1|y 1− 2x+y−1τ−x−y−12∣∣∣ p̃⊥q̃⊥
spq̃⊥−sq p̃⊥

∣∣∣ τ22
∣∣τ−11

∣∣ /4 τ2/4

dp̃⊥dq̃⊥ ∝ dτ1dτ2 ∝ dτ1dτ2

When sp = sq, the criterion of convergence of the kinetic equation (C 5) will be given by
the following integral ∫ +1

−1

√
1− τ21 |τ1|

y+1
dτ1

∫ +∞

τ>1

τ−x−2y+2
2 dτ2. (C 10)

Therefore, there is convergence if 3 < x+ 2y. When sp = −sq, we have∫ +1

−1

(
1 + τ21

)√
1− τ21dτ1

∫ +∞

τ>1

τ−x−y+1
2 dτ2, (C 11)

and the convergence is obtained if 2 < x+ y.
In conclusion, a solution is local if the following conditions are satisfied

3 < x + 2y < 4, (C 12)
2 < x + y < 4. (C 13)

We notice that the KZ spectrum for the energy corresponds to x+2y = 3.5 and x+y = 3.
These values are thus exactly in the middle of the convergence domain.
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