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On the representation theory of
partition (easy) quantum groups

By Amaury Freslon at Paris and Moritz Weber at Saarbrücken

Abstract. Compact matrix quantum groups are strongly determined by their intertwiner
spaces, due to a result by S. L. Woronowicz. In the case of easy quantum groups (also called
partition quantum groups), the intertwiner spaces are given by the combinatorics of partitions,
see the initial work of T. Banica and R. Speicher. The philosophy is that all quantum algebraic
properties of these objects should be visible in their combinatorial data. We show that this is
the case for their fusion rules (i.e. for their representation theory). As a byproduct, we obtain
a unified approach to the fusion rules of the quantum permutation group SCN , the free orthogonal
quantum group OCN as well as the hyperoctahedral quantum group HCN . We then extend our
work to unitary easy quantum groups and link it with a “freeness conjecture” of T. Banica
and R. Vergnioux.

1. Introduction

In 1937, R. Brauer developed in [10] a combinatorial tool, called Brauer diagrams, to
study the representation theory of the orthogonal group ON . A Brauer diagram is a partition
in pairs of a set of 2k points and the basic idea is to associate to each of these partitions an
endomorphism of the vector space .CN /˝k . This construction produces intertwiners between
tensor powers of the fundamental representation of ON and one of the main results of [10]
is that any intertwiner can be recovered as a linear combination of the “combinatorial ones”.
This means that Brauer diagrams encode in some sense the whole representation theory ofON .
Easy quantum groups can be seen as a wide generalization of the correspondence between the
compact group ON and the set of Brauer diagrams.

Brauer algebras (algebras generated by Brauer diagrams) can be defined over any field
and have extensively been studied from the algebraic point of view. When the field is C, some
refinements of the construction yield the Fuss–Catalan algebras introduced by D. Bisch and
V. Jones in [9] to describe the combinatorics of intermediate subfactors. This is where the
link with compact quantum groups began to manifest itself. This link was made clear by the
founding works of T. Banica [1–4]. In those papers, he used various versions of the Temperley–
Lieb algebra to compute the representation theory of the free quantum groups of S. Wang
and A. van Daele [21, 22]. Another example is the paper [8] by T. Banica and R. Vergnioux
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where the fusion rules of the quantum reflexion groups are computed using operators associated
with colored partitions.

Building on this background, T. Banica and R. Speicher gave in [7] a very general setting
for the study of “partition quantum groups”. The procedure is as follows: First choose a set of
partitions of k C l points for any pair of integers k and l , then build vector spaces Hom.k; l/
by taking the linear span of the operators associated to the partitions of k C l . If now the set of
partitions satisfies some stability properties (if it is a category of partitions), the Tannaka–Krein
Duality Theorem of S. L. Woronowicz [25] asserts the existence of a unique compact quantum
group G together with a fundamental representation u such that for any k and l ,

Hom.k; l/ D Hom.u˝k; u˝l/:

Such quantum groups G are said to be easy quantum groups. Note that they are also called
partition quantum groups, even though the name “easy” has now become standard in the field.

The aforementioned procedure can be recast in a purely categorical framework: The data
of the sets Hom.k; l/ yield a unique concrete complete monoidal W �-category. Our aim is to
understand the simple objects of this category and determine their fusion rules. Consequently,
our work only uses some elementary combinatorics and linear algebra. We should emphasize
that no technical knowledge on compact quantum groups is needed in the sequel.

Among easy quantum groups are some classical groups which have been classified in [7]:
We have of course the orthogonal group ON , furthermore the symmetric group SN , the
hyperoctahedral group HN , the bistochastic group BN and some symmetrized versions of
them. The other easy quantum groups can be divided into several classes, the most important
one being that of free quantum groups, which have been classified in [7, 24]. It consists of
“liberated versions” of the classical easy groups: OCN , SCN , HCN and BCN and some (possibly
freely) symmetrized versions. The classification of the remaining easy quantum groups has
been done in [6, 15–17, 24].

We will endeavor in this paper a comprehensive study of the representation theory of
easy quantum groups. The main result is the collection of Theorems 4.18, 4.24 and 4.27. They
describe a family of unitary “combinatorial” representations of an arbitrary easy quantum
group G with remarkable properties:
� Their definition is very simple and directly based on the partitions given by the “easy”

structure: To every projective partition (i.e. a partition which is symmetric in an appro-
priate sense) we assign a representation of G. Its most important datum is the number of
through-blocks of the associated partition.

� They form a decomposition of all tensor powers of the fundamental representation of G.
This implies that any irreducible representation appears as a summand of at least one
of them.

� There is a very simple combinatorial characterization of unitary equivalence.
� They are “stable under tensor products”: Tensor products of these representations again

decompose using only combinatorial ones.

In some sense, these representations form a “combinatorial subgroup” of the discrete quantum
dual of G.

The question of irreducibility for these combinatorial representations is addressed but not
solved explicitly. This leads directly into the core of the “group issue”: Easy groups are very
complicated to describe from the combinatorial point of view. For example, it is well known
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that representations of the symmetric group SN are indexed by Young diagrams, but it is quite
unclear how Young diagrams can be used to decompose our combinatorial representations.
This “group issue” will not be addressed here, but we will try to suggest some links between
our work and classical representation theory enlightening the problem.

Nevertheless, the quantum world offers various objects with quite different behaviors.
The whole strength of Theorems 4.18, 4.24 and 4.27 appears in the context of free easy quan-
tum groups. Giving a unified and rather simple treatment of their representation theory is the
first application of our work.

Orthogonal easy quantum groups are interesting objects which have widely been studied
and are completely classified as already mentioned. The world of unitary easy quantum groups
is, on the contrary, still mysterious (see a forthcoming paper [19]). However, extending our
results to this context (where one has to deal with colored partitions) is straightforward. This
gives a systematic and efficient way to study the representation theory of unitary easy quantum
groups and in particular of unitary free easy quantum groups. This leads us to an interesting
open problem stated by T. Banica and R. Vergnioux in [8], which we named the freeness
conjecture. This conjecture asserts that there is a very strong link between the structure of
the category of partitions defining an easy quantum group and the algebraic structure of its
fusion semiring. The way we recover the representation theory of free quantum groups in
this paper not only gives evidence for this conjecture, but even enables us to make it more
precise by giving a candidate for the generators of the “free” structure of the fusion semiring.
We believe that this is an important step towards a proof of the freeness conjecture.

Let us now outline the organization of the paper. Section 2 deals with the combinatorial
machinery behind our approach. In particular, we give a canonical way to decompose partitions
and show the usefulness of it in the study of the so-called projective partitions which will prove
crucial in the sequel. After this, we give in Section 3 some basic definitions and facts concerning
the theory of compact quantum groups as introduced by S. L. Woronowicz. We also introduce
easy quantum groups, our main object of study. In Section 4 we turn to the main results of this
paper. We build a family of representations of an arbitrary easy quantum group G out of the
projective partitions of its category of partitions. We give some criteria for irreducibility and
unitary equivalence and explain how to compute their tensor products – the fusion rules with
respect to partitions. The short Section 5 details two extreme cases: classical groups and free
quantum groups. In the first case, we try to show the difficulty of the problem by linking it
with purely algebraic issues. In the second case, our method gives a unified and simple way to
recover the known fusion rules for SCN ; O

C

N and HCN . The exposition there is written in such
a way that a reader mainly interested in this aspect may jump directly to this point and explore
the article from there. Eventually, we address the issue of unitary quantum groups in Section 6.
We explain how to extend our results to this setting and discuss the “freeness conjecture”
of T. Banica and R. Vergnioux, trying to decide when the fusion semiring of a free unitary
quantum group is free.
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University of Saarbrücken. He wishes to thank R. Speicher and his team for their kind
hospitality, as well as U. Franz and Campus France (Egide) for making this stay possible. The
second author thanks University Paris VII for a stay he made there in the Operator Algebras
team where this article was completed. Both authors also wish to the referee for interesting
comments and suggestions on this work.
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2. Partitions and associated linear maps

2.1. Partitions and some basic notions. We first introduce the main combinatorial tool
of this paper. A partition p is a combinatorial object given by k 2 N0 upper and l 2 N0 lower
points which may be connected by some strings. This gives rise to a partition of the ordered set
on k C l points, with an additional information: which points are upper and which are lower.
When useful, we label the upper points by ¹1; : : : ; kº from left to right and likewise ¹10; : : : ; l 0º
for the lower points. As an example, we consider the following partitions p1 and p2.

p1 D

1 2 3

10 20 30 40

p2 D

1 2

10 20
�
�
�
��B
B
B
BB

A set V of points connected by a string in p is called a block and we write

p D ¹V1; : : : ; Vrº

if p consists of the blocks V1; : : : ; Vr . The number of blocks in a partition p is denoted by b.p/.
A block which consists only of a single point is a singleton. Blocks containing upper points
as well as lower points are called through-blocks and their number is denoted by t .p/. For
convenience, we set

ˇ.p/ D b.p/ � t .p/;

the number of non-through-blocks. For example, the partition p1 in the above example
consists of a through-block connecting the points 1, 2 and 10, a non-through-block on the
points 20, 30 and 40, and finally a singleton (which is always a non-through-block) on the point 3.
Thus, b.p1/ D 3, t .p1/ D 1 and ˇ.p1/ D 2.

The set of all partitions is denoted by P.k; l/, for k; l 2 N0. If k D l D 0, then P.0; 0/
consists only of the empty partition ;. The collection of all sets P.k; l/ is denoted by P .
If all blocks of a partition p consist of exactly two points, the partition is called a pair
partition. The set of all pair partitions on k upper and l lower points is denoted by P2.k; l/,
and likewise the collection of all pair partitions is denoted by P2. If the connecting strings
of a partition p 2 P.k; l/ do not cross, the partition is called noncrossing, and we denote
by NC.k; l/ (resp. NC2.k; l/) the set of all noncrossing partitions (resp. all noncrossing pair
partitions); likewise NC and NC2. The above partition p1 2 NC.3; 4/ is noncrossing whereas
p2 2 P.2; 2/ is crossing (it consists of the block connecting 1 and 20 and a second block on 2
and 10). Furthermore, p2 is a pair partition while p1 is not.

In the sequel, we will decompose partitions in a certain way. For this, we need two
subclasses of partitions.

Definition 2.1. A partition p 2 P.k; l/ is a building partition if the following hold:

(1) All lower points of p are in different blocks.

(2) For any lower point 10 6 x0 6 l 0 of p, there exists at least one upper point which is
connected to it and we define minup.x

0/ to be the smallest upper point 1 6 y 6 k that is
connected to x0.
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(3) For any two lower points 10 6 a0 < b0 6 l 0 of p, we have minup.a
0/ < minup.b

0/.

We denote by Pbp.k; l/ the set of all building partitions in P.k; l/.

Remark 2.2. If p 2 Pbp.k; l/ is a building partition, then its number t .p/ of through-
blocks is equal to l .

The following partition p3 is an example of a building partition (note that the points 3
and 5 are not connected to 4, 6 and 20; likewise 11, 13, 15 and 40 form one block and 12, 14
and 50 another).

p3 D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 20 30 40 50

Definition 2.3. A partition p 2 P2.k; k/ is a through-partition if all blocks of p are
through-blocks. The partition p hence consists of pairs that connect exactly one upper point to
exactly one lower point.

Remark 2.4. Note the following two facts:

(1) If p 2 P2.k; k/ is a through-partition, then t .p/ D b.p/ D k.

(2) Through-partitions in P2.k; k/ correspond in a natural way to permutations in Sk .

2.2. Operations on partitions. There are several operations on the set P of partitions:
The tensor product of two partitions p 2 P.k; l/ and q 2 P.k0; l 0/ is the partition

p ˝ q 2 P.k C k0; l C l 0/

obtained by horizontal concatenation, i.e. the first k of the k C k0 upper points are connected
by p to the first l of the l C l 0 lower points, whereas q connects the remaining k0 upper points
with the remaining l 0 lower points.

The composition of two partitions p 2 P.k; l/ and q 2 P.l;m/ is the partition

qp 2 P.k;m/

obtained by vertical concatenation. Connect k upper points by p to l middle points and then
continue the lines by q to m lower points. This yields a partition, connecting k upper points
with m lower points. By the composition procedure, certain loops might appear resulting from
blocks around the middle points. More precisely, consider the set L of elements in ¹1; : : : ; lº
which are not connected to an upper point of p nor to a lower point of q. The lower row of p
and the upper row of q both induce partitions of the set L. The maximum (with respect to
inclusion) of these two partitions is the loop partition of L, its blocks are called loops and their
number is denoted rl.q; p/. To finish the operation, we remove all the middle points (and in
particular all the loops) in order to produce a partition in P.k;m/.
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The involution of a partition p 2 P.k; l/ is the partition

p� 2 P.l; k/

obtained by turning p upside down.
We also have a rotation on partitions. Let p 2 P.k; l/ be a partition connecting k upper

points with l lower points. Shifting the very left upper point to the left of the lower points (or
the converse) – without changing the strings connecting the points – gives rise to a partition
in P.k � 1; l C 1/ (or in P.k C 1; l � 1/), called a rotated version of p. This procedure may
also be performed on the right-hand side of the k upper and l lower points. In particular, for
a partition p 2 P.0; l/, we might rotate the very left point to the very right and vice-versa.

These operations (tensor product, composition, involution and rotation) are called the
category operations. By j 2 P.1; 1/ we denote the identity partition, connecting the upper
point to the lower point.

Definition 2.5. A collection C of subsets C.k; l/ � P.k; l/ (for every k; l 2 N0) is
a category of partitions if it is invariant under the category operations and if the identity
partition j 2 P.1; 1/ is in C.1; 1/.

Examples of categories of partitions include P , P2, NC and NC2.

Remark 2.6. The relations between the category operations and the number of blocks
(resp. through-blocks) are the following:

(1) For p 2 P.k; l/ and q 2 P.k0; l 0/ we have the formulæ

b.p ˝ q/ D b.p/C b.q/ and t .p ˝ q/ D t .p/C t .q/

for the blocks (resp. the through-blocks) and likewise

ˇ.p ˝ q/ D ˇ.p/C ˇ.q/

for the non-through-blocks (recall that ˇ.p/ D b.p/ � t .p/).

(2) The composition is associative and for any three partitions p; q; r 2 P we have the
formula (as soon as it makes sense)

rl.p; q/C rl.pq; r/ D rl.p; qr/C rl.q; r/

corresponding to .pq/r D p.qr/. Furthermore, we have t .pq/ 6 min.t.p/; t.q//.

(3) Note that in general, there is no way to compute b.pq/ from the numbers b.p/, b.q/,
t .p/, t .q/ and rl.p; q/. For instance, the four partitions

p1 D ¹¹1; 2º; ¹3; 4; 3
0; 40º; ¹10; 20ºº; q1 D ¹¹1; 2º; ¹3; 4; 1

0; 40º; ¹20; 30ºº;

p2 D ¹¹1; 2; 3
0; 40º; ¹3; 4º; ¹10; 20ºº; q2 D ¹¹1; 2º; ¹3; 4; 3

0; 40º; ¹10; 20ºº

satisfy b.p1q1/ ¤ b.p2q2/ but have all other numbers in common.

(4) For any two partitions p; q 2 P , we have .pq/� D q�p� and

rl.p; q/ D rl.q�; p�/:

Furthermore b.p�/ D b.p/, t .p�/ D t .p/ and ˇ.p�/ D ˇ.p/.
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2.3. Decomposition of partitions. The following notion of a projective partition will
be essential in the sequel.

Definition 2.7. A partition p 2 P.k; k/ is said to be

(1) symmetric if p� D p.

(2) idempotent if pp D p.

(3) projective if p is symmetric and idempotent.

The following partitions p4 and p5 are projective partitions, whereas p2 of the above
example is not (it is not idempotent).

p4 D p5 D

Any projective partition p can in particular be written as p D r�r . The non-trivial fact which
will prove crucial is that the converse also holds: Any partition r 2 P.k; l/ gives rise to a pro-
jective partition r�r 2 P.k; k/. This will be one of the outcomes of a special decomposition
of partitions that we call the through-block decomposition. Before proving it, we gather some
computations in a lemma.

Lemma 2.8. The following hold:

(1) If p 2 P2.k; k/ is a through-partition, then

p�p D pp� D j˝k and rl.p; p�/ D rl.p�; p/ D 0:

(2) If p 2 Pbp.k; l/ is a building partition, then

pp� D j˝l and rl.p; p�/ D b.p/ � t .p/ D ˇ.p/:

(3) If p 2 Pbp.k; l/ is a building partition, then p�p is a projective partition with

t .p�p/ D l and rl.p�; p/ D 0:

Proof. To prove (1), just notice that, seen as permutations, the partition p� is the inverse
of the partition p.

By point (2) of Definition 2.1, each of the upper points of p� is connected to a middle
point in the procedure of the composition pp�, which in turn is connected to exactly one lower
point by p. Point (1) of Definition 2.1 thus yields pp� D j˝l . The number b.p/ � t .p/ counts
the number of blocks in p consisting only of upper points of p, i.e. blocks giving rise to loops
which are removed in pp�. This concludes the proof of (2).

The proof of (3) uses the same ideas. The partition p�p is symmetric, and we have
p�pp�p D p�p by part (2). Moreover, no loop arises in the composition p�p since all middle
points are connected both to upper and lower points.
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Proposition 2.9. Let p 2 P.k; l/ be a partition with t .p/ through-blocks. Then, there
is a unique triple of partitions .q; r; s/, called the through-block decomposition of p, such that

� p D q�rs,

� r 2 P2.t.p/; t.p// is a through-partition,

� s 2 Pbp.k; t.p// and q 2 Pbp.l; t.p// are building partitions.

Furthermore, we have the following equalities:

� rl.r; s/ D rl.q�; rs/ D 0,

� b.p/ D b.q/C b.s/ � t .p/,

� ˇ.p/ D ˇ.q/C ˇ.s/.

We will often use the notations p D p�
l
pmpu for the elements of the through-block

decomposition of p.

Proof. Definition 2.1 yields a recipe for defining the partition s 2 P.k; t.p//: we restrict
the partition p to its k upper points and connect each of its through-blocks to exactly one
of the t .p/ lower points. Here, we respect the order as in point (3) of Definition 2.1. Thus,
we obtain a building partition s 2 Pbp.k; t.p//. An analogous procedure yields the partition
q 2 Pbp.l; t.p//. Now, there is a unique way to connect the t .p/ lower points of s to the t .p/
upper points of q� such that the composition yields p. By this, we obtain the through-partition
r 2 P2.t.p/; t.p// such that p D q�rs.

Let p D .q0/�r 0s0 be another decomposition into building partitions s0 2 Pbp.k;m/

and q0 2 Pbp.l; m/ and a through-partition r 0 2 P2.m;m/. Then, m D t ..q0/�r 0s0/ D t .p/.
Furthermore, two upper points a and b of s0 are in the same block if and only if they are
so in p. Indeed, if they are not connected by s0, they are not connected in r 0s0 since r 0 is
a through-partition. Now, all of the upper points of .q0/� are in different blocks by definition,
thus a and b are not connected in .q0/�.r 0s0/. Conversely, if two upper points a and b of s0 are
in the same block, they are in the same block in .q0/�r 0s0 as well. We infer that the partitions p
and s0 coincide on their upper points. Furthermore, the partition s0 connects exactly those upper
points to lower points which belong to through-blocks in p. By Definition 2.1, this can only
be done in a unique way, which yields s D s0. Likewise, we deduce q D q0. Using point (2) of
Lemma 2.8, we obtain

r 0 D q0.q0/�r 0s0.s0/� D q0p.s0/� D qps� D qq�rss� D r:

The partition s consists of t .s/ D t .p/ through-blocks and ˇ.s/ D b.s/ � t .p/ upper blocks
(i.e. blocks which contain only upper points). Since p and s coincide on their upper points,
p has exactly ˇ.s/ upper blocks. In the same way, we deduce that p has ˇ.q/ D b.q�/ � t .p/
lower blocks. Summing up, p has

b.p/ D ˇ.s/C ˇ.q/C t .p/

D .b.s/ � t .p//C .b.q/ � t .p//C t .p/

D b.s/C b.q/ � t .p/

blocks.
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Remark 2.10. If C is a category of partitions and p 2 C , then q, r and s need not
belong to C in general.

Let us now give some elementary properties of this through-block decomposition.

Lemma 2.11. Let p 2 P.k; l/ be a partition and let p D q�rs be its through-block
decomposition according to Proposition 2.9. Then:

(1) We have p�p D s�s and rl.p�; p/ D rl.q; q�/ D ˇ.q/.

(2) We have pp� D q�q and rl.p; p�/ D rl.s; s�/ D ˇ.s/.

(3) The partitions p�p and pp� are projective and t .p�p/ D t .pp�/ D t .p/.

Furthermore, pp�p D p and ˇ.p/ D rl.p�; p/C rl.p; p�/.

Proof. To prove (1), we compute (using Lemma 2.8)

p�p D s�r�qq�rs D s�r�rs D s�s:

The number rl.p�; p/ of removed loops when composing p� and p is given by the number
of non-through-blocks in the lower points of p. This number equals ˇ.q/, the number of
non-through-blocks of q. Since furthermore rl.r�; r/ D 0 and rl.s�; s/ D 0 by Lemma 2.8,
we get rl.p�; p/ D rl.q; q�/.

The proof of (2) follows from the fact that, by uniqueness, s�r�q is the through-block
decomposition of p�.

Eventually, the partition s�s is projective and t .s�s/ D t .p/ by Lemma 2.8. This and (1)
prove (3). Moreover,

pp�p D .q�rs/.s�r�q/.q�rs/ D q�rs D p

by Lemma 2.8.

As a direct consequence, we have the announced criterion to build projective partitions.

Proposition 2.12. A partition p 2 P.k; k/ is projective if and only if there exists a par-
tition q 2 P.k; l/ such that p D q�q.

Let us now detail the through-block decomposition in the particular case of a symmetric
partition.

� If a partition p 2 P.k; k/ is symmetric, then its through-block decomposition is of the
form p D s�rs with r D r�. This follows from the uniqueness of the decomposition
p D q�rs and the equality p D p� D s�r�q.

� If a partition p 2 P.k; k/ is symmetric, then it is projective if and only if r D j˝t.p/.
Indeed, pp D s�rss�rs D s�s, by Lemma 2.8, and p D s�rs. The result follows from
the uniqueness of the through-block decomposition.

� The only noncrossing through-partition r 2 NC2.m;m/ is r D j˝m, thus the through-
block decomposition of any noncrossing partition p 2 NC.k; l/ is of the form p D q�s,
where q; s 2 NC. Hence, if p 2 NC.k; k/ is a noncrossing partition, then p is projective
if and only if it is symmetric.
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2.4. Linear maps associated to partitions. We can relate partitions to linear maps
on tensor powers of CN for any integer N 2 N0 if we fix a basis e1; : : : ; eN of CN . For
a partition p 2 P.k; l/ we define the linear map

VTp W .C
N /˝k 7! .CN /˝l

by the following formula from [7, Definition 1.6]:

VTp.ei1 ˝ � � � ˝ eik / D

nX
j1;:::;jlD1

ıp.i; j /ej1 ˝ � � � ˝ ejl ;

where ıp.i; j / D 1 if and only if all strings of the partition p connect equal indices of the multi-
index i D .i1; : : : ; ik/ in the upper row with equal indices of the multi-index j D .j1; : : : ; jl/
in the lower row. Otherwise, ıp.i; j / D 0.

Remark 2.13. Note that VTp D VTq implies p D q as soon as N > 2.

The interplay between the category operations on partitions and the assignment p 7! VTp
was studied by T. Banica and R. Speicher in [7, Proposition 1.9]. It can be summarized
as follows.

Proposition 2.14. The assignment p 7! VTp satisfies

(1) VTp� D VT �p ,

(2) VTp˝q D VTp ˝ VTq ,

(3) VTpq D N� rl.p;q/ VTp VTq .

It will prove convenient in the sequel to normalize the operators VTp.

Definition 2.15. Let p 2 P.k; l/ be a partition. We set

Tp D N
� 1
2
ˇ.p/ VTp:

Let us first give the relation between the rank of these operators and the properties of
the partitions.

Proposition 2.16. The rank of Tp is N t.p/, for any partition p 2 P.k; l/.

Proof. Upper non-through-blocks in p yield equations defining the kernel of Tp and
have consequently no influence on the rank. If p 2 P.k; l/, the image of Tp is a subspace
of .CN /˝l . Each lower non-through-block implies that some tensor factors reduce to a one-
dimensional subspace and each through-block collapses all the tensor factors which are in it to
one copy of CN . Hence, the image is the tensor product of one copy of C for each lower non-
through-block and one copy of CN for each through-block, i.e. the rank of Tp is N t.p/.

Before explaining the advantages of this normalization, let us gather some computations
in the following lemma.
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Lemma 2.17. Let q 2 P.k; l/ and p 2 P.l;m/ be two partitions and set


.p; q/ D
1

2
.ˇ.p/C ˇ.q/ � ˇ.pq// � rl.p; q/:

Then, 
.p; q/ vanishes in the two following cases:

(1) For every partition p, one has 
.p; p�/ D 
.p; p�p/ D 0. In particular, if p is a pro-
jective partition, then 
.p; p/ D 0.

(2) If p and q are two projective partitions such that pq D q, then 
.q; p/ D 0.

Proof. To prove (1), first note that


.p�; pp�/ D
1

2
ˇ.pp�/ � rl.p�; pp�/

using p�pp� D p�. By Lemma 2.11, we know that ˇ.p/ D rl.p�; p/C rl.p; p�/, hence

ˇ.pp�/ D 2 rl.pp�; pp�/:

Using the associativity rules of Remark 2.6, we infer

rl.pp�; pp�/ D rl.p; p�pp�/C rl.p�; pp�/ � rl.p; p�/ D rl.p�; pp�/:

This yields 
.p�; pp�/ D 0. Furthermore, we have

rl.p�; pp�/ D rl.p�; p/

by the following computation, where we use the through-block decomposition p D p�upmpl
and again Remark 2.6:

rl.p�; pp�/ D rl.p�l p
�
mpu; p

�
upu/

D rl.p�l p
�
m; pup

�
upu/C rl.pu; p�upu/ � rl.p�l p

�
m; pu/

D rl.pu; p�upu/

D rl.pup�u; pu/C rl.pu; p�u/ � rl.p�u; pu/:

Now, rl.p�u; pu/ D 0 by Lemma 2.8 and pup�u D j
˝t.p/, which yields rl.pup�u; pu/ D 0, and

hence
1

2
ˇ.pp�/ D rl.pp�; pp�/ D rl.p�; pp�/ D rl.pu; p�u/ D rl.p�; p/:

by Lemma 2.11. Thus,


.p; p�/ D ˇ.p/ �
1

2
ˇ.pp�/ � rl.p; p�/ D ˇ.p/ � rl.p�; p/ � rl.p; p�/ D 0:

To prove (2), we use the formula of point (2) of Remark 2.6 to get

rl.p; p/C rl.p; q/ D rl.p; pq/C rl.p; q/:

Using the equality pq D q, we obtain rl.p; q/ D rl.p; p/ and thus


.p; q/ D
1

2
ˇ.p/ � rl.p; p/ D 0

by Lemma 2.11.
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The following proposition is a restatement of Proposition 2.14. It shows the advantage of
the renormalization from the point of view of operator theory.

Proposition 2.18. The assignment p 7! Tp satisfies:

(1) Tp� D T �p ,

(2) Tp˝q D Tp ˝ Tq ,

(3) Tpq D N 
.p;q/TpTq ,

(4) if p 2 P.k; k/ is projective, then Tp is a projection,

(5) for any p 2 P.k; l/, the map Tp is a partial isometry with

TpT
�
p D Tpp� and T �p Tp D Tp�p:

Proof. Parts (1) and (2) come from the equalities

ˇ.p�/ D ˇ.p/ and ˇ.p ˝ q/ D ˇ.p/C ˇ.q/

(see Remark 2.6) and (3) follows directly from the definition of Tp and Proposition 2.14.
Lemma 2.17 together with (1) and (3) yield (4) and (5).

Remark 2.19. Let us make two points.
(i) This normalization of the maps VTp is the best possible with respect to points (1), (4)

and (5) of the last proposition. In fact, if

T 0p D N
�˛.p/ VTp

is any normalization of Tp (with ˛.p/ 2 R) such that the analogues of (1), (4) and (5) hold, let
us prove that

˛.p/ D
1

2
ˇ.p/:

We have
T 0pT

0
q D N

�.˛.p/C˛.q//Crl.p;q/C˛.pq/T 0pq:

Thus, if (4) holds, then
˛.p/ D rl.p; p/

for any projective partition p. Furthermore, if (5) holds, then

˛.p/C ˛.p�/ D rl.p; p�/C ˛.pp�/

for any partition p 2 P.k; l/. Since pp� is projective, we deduce that

˛.pp�/ D rl.pp�; pp�/ D rl.p�; p/:

Using (1) (as well as Lemma 2.11), we obtain

˛.p/ D
1

2
.rl.p; p�/C rl.p�; p// D

1

2
ˇ.p/:

(ii) Although we may have 
.p; q/ D 0 in some cases (e.g. in Lemma 2.17), this correc-
tion term from the composition of maps Tp and Tq does not always vanish (see for instance the
partitions p1 and q1 from Remark 2.6).
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2.5. The lattice of projective partitions. By ProjC .k/, we denote the set of all
projective partitions p 2 C.k; k/, where k 2 N and C is a category of partitions. If C D P ,
we simply write Proj.k/. There is a natural order structure on this set, pulled back from the
order structure on the associated projections Tp.

Definition 2.20. Let k 2 N and let p; q 2 Proj.k/ be two projective partitions. We say
that q is dominated by p (or that p dominates q) and we write q � p if pq D q – or equiva-
lently if qp D q.

Lemma 2.21. Let p; q 2 Proj.k/. Then q � p if and only if Tq 6 Tp as projections
(i.e. TpTq D TqTp D Tq) for some N > 2.

Proof. By Lemma 2.17, we know that q � p implies that 
.p; q/ D 0. Hence,

TpTq D Tpq D Tq

in that case. Conversely, assume Tq 6 Tp. Then,

N�
.p;q/Tpq D TpTq D Tq D TqTp D N
�
.q;p/Tqp:

Since, by Remark 2.6, 
.s; t/ D 
.t�; s�/ for any two partitions s and t , we infer Tpq D Tqp
and hence pq D qp. Thus, pq is a projective partition and we get

N�
.p;q/Tpq D Tq D T
2
q D N

�2
.p;q/TpqTpq D N
�2
.p;q/Tpq:

This yields 
.p; q/ D 0, hence Tq D Tpq and pq D q.

Remark 2.22. The partial order � on Proj.k/ � P.k; k/ is not to be confused with the
usual partial order 6 on P.k; k/. Recall that for two partitions p; q 2 P.k; l/, we write q 6 p
if each block of q is contained in a block of p. Thus, in the partial order6, a partition is smaller
if it is given by refinement of the block structure. For instance, the partitions

p D j j and q D

u

Í
u

in P.2; 2/ satisfy p 6 q. For k 2 N, the minimum with respect to 6 is the partition in P.k; k/
where all blocks are singletons (no points are connected), whereas the maximum is the partition
consisting of a single block (all points are connected to each other).

The partial order � does not coincide with 6. In fact, it even behaves quite differently.
For instance, for the above partitions p; q 2 P.2; 2/, we have q � p but q > p. As another,
example consider the partitions

r D

u

u
and s D ÍÍ

Í
Í

in P.2; 2/. Then, r > s, but r and s are not comparable with respect to �. For k 2 N, the
maximum with respect to � is the partition j˝k , but there is no minimum.

We can describe the order� in the following way: A projective partition q is smaller than
a projective partition p if it is given by reducing the through-block structure – either by cutting
or by combining through-block strings. Let us make this more precise.
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Lemma 2.23. Let p; q 2 Proj.k/ be two projective partitions. Then q � p if and only
if q is obtained from p by

� keeping the non-through-block structure, i.e. every non-through-block of p is a non-
through-block of q of exactly the same form,

� leaving through-blocks of p either invariant,

� or unifying some of them to larger through-blocks,

� and/or turning them into non-through-blocks.

Proof. We first study how a partition t 2 P.l;m/ can operate (by composition) on
a building partition r 2 Pbp.k; l/ such that the resulting partition t r is a building partition
again. First note that t cannot change the non-through-block structure of r . Now, let x be an
upper point of t (which is hence at the same time a lower point of r) and denote by Vx the
through-block of r connected to x.

A
A
A

�
�
�

�
x t

r




Vx

Case 1. If x is a singleton in t (i.e. x is not connected to any other point of t ), then t turns
the through-block Vx of r into a non-through-block.

Case 2. Now let x not be a singleton in t . First, note that it can be connected to at most one
lower point of t – otherwise t r would not be a building partition. Hence, if x is not connected
to any other upper point of t , it is connected to exactly one lower point, which effects that t
leaves the through-block Vx of r invariant. On the other hand, if x is connected to some other
upper points of t , the corresponding through-blocks of r are connected to a single block by t .
Depending on whether x is also connected to a lower point of t or not, the resulting block either
is a through-block or not.

We conclude that t operates on r by composition in the following way:

� Every non-through-block of r remains of the same form (in t r).

� Through-blocks of r are either left invariant,

� or are unified with other through-blocks to larger through-blocks,

� and/or they are turned into non-through-blocks.

Conversely, if a building partition s results from another building partition r by the above
operations, this can be modelled by a partition t and the composition t r D s.

Now, write q D s�s and p D r�r in the through-block decomposition (Proposition 2.9),
where s and r are building partitions. Then,

qp D s�sr�r D s�t r

where t D sr� is a partition in P.t.p/; t.q//. Hence, qp D q if and only if t r D s (note that
qp D q implies sqp D sq and we have ss� D j˝t.q/ by Lemma 2.8). Thus, if qp D q, then s
results from r by the above operations. On the other hand, if s results from r by the above
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operations, then this can be modelled by a partition t 0 such that t 0r D s. Since rr� D j˝t.p/,
we have t 0 D sr� D t and hence qp D q.

The proof is finished by translating the above operations on r to p.

Later on, we will need to know precisely which projective partitions are dominated by
a tensor product p ˝ q of two projective partitions. In that context, the previous result can be
restated in a more elegant way. Let us first introduce some notations.

Definition 2.24. Let C be a category of partitions and let p 2 ProjC .a/, q 2 ProjC .b/
be two projective partitions. By XC .p; q/ we denote the set of all partitionsm 2 ProjC .aC b/
such that:

� m � p ˝ q,
� m 6� l ˝ q for all l � p with l ¤ p and l 2 C ,
� m 6� p ˝ r for all r � q with r ¤ q and r 2 C .

Recall that we label the upper points of a projective partition p 2 Proj.k/ by numbers
1 6 a 6 k from left to right, whereas the lower points are labelled by 10 6 a0 6 k0.

Definition 2.25. Let k; l 2 N0. A .k; l/-mixing partition is defined to be a projective
partition h 2 Proj.k C l/ such that:

� all blocks of h have size 2 or 4,
� blocks of size 2 are either of the form .a; a0/ or .a; b/ with a 6 k and b > k, or likewise
.a0; b0/ with a0 6 k0 and b0 > k0,

� blocks of size 4 are of the form .a; a0; b; b0/ with a 6 k and b > k.

blocks of size 2

c0 a0

k0

b0 d 0

l 0

c a

k

b d

l

blocks of size 4

a0

k0

b0

l 0

a

k

b

l

Definition 2.26. If p and q are projective partitions and if h is a .t.p/; t.q//-mixing
partition, we set

p �h q D .p
�
u ˝ q

�
u/h.pu ˝ qu/:

Intuitively, the operation �h mixes the through-block structures of p and q, hence the
name. Before describing the projective partitions dominated by a tensor product, let us give
some elementary properties of the mixing operation.
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Lemma 2.27. Let l; l 0 2 Proj.a/ and r; r 0 2 Proj.b/ be projective partitions. Then, for
every .t.l/; t.r//-mixing partition h and every .t.l 0/; t.r 0//-mixing partition h0, the following
hold:

(1) Let C be a category of partitions. If l �h r 2 C , then l; r 2 C .

(2) If l �h r D l 0 �h0 r 0, then l D l 0, r D r 0 and h D h0.

(3) One has l �h r � l ˝ r .

Proof. Let l D l�u lu and r D r�u ru be the through-block decompositions. To prove (1),
consider the following composition.

: : : : : : : : :

: : : : : : : : :

: : :

lu ru

l�u r�u

h

The pair partitions outside of l �h r effect a rotation of ru below r�u , so that it in fact composes
to rur�u D j

˝b . Hence, if a point a 6 k is connected by h to a point b > k, it is also connected
to b0 > k0, since rur�u D j

˝b . As h is symmetric, the points a0 and b0 are also connected by h,
thus we obtain a pair .a; a0/ between lu and l�u . Therefore, the whole procedure yields the
partition l in the end, and l 2 C whenever l �h r 2 C (note that j; u;u 2 C ). Likewise, r 2 C .

The above computation also proves that l D l 0 and r D r 0. Since

.lu ˝ ru/.lu �h ru/.l
�
u ˝ r

�
u / D h;

we also deduce h D h0. Hence, (2) is proved.
To prove (3), we compute

.l �h r/.l ˝ r/ D .l
�
u ˝ r

�
u /h.lu ˝ ru/.l ˝ r/:

Using .l ˝ r/ D .l�u ˝ r
�
u /.lu ˝ ru/ and .lu ˝ ru/.l�u ˝ r

�
u / D j

˝.aCb/, we get

.l �h r/.l ˝ r/ D l �h r:

Proposition 2.28. Let C be a category of partitions, let p 2 ProjC .a/ and q 2 ProjC .b/
and let m 2 XC .p; q/. Then, m D p �h q for some .t.p/; t.q//-mixing partition h.
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Proof. We decompose m as

m D .l�u ˝ r
�
u /h.lu ˝ ru/

where lu 2 Pbp.a; ˛/ and ru 2 Pbp.b; ˇ/ are building partitions. We obtain lu in the following
way. First, restrict m to its first a upper points. Denote this partition byblu 2 P.a; 0/. Now, for
each block inblu, insert a lower point and connect it to the block, if the corresponding block
in m is a through-block or if it is connected to some of the b right upper points of m (if both
is the case, we only insert one point, not two). We can order the lower points of lu such that
it is a building partition. Likewise we obtain ru. The partition h 2 P.˛ C ˇ; ˛ C ˇ/ is now
uniquely determined by the equation m D .l�u ˝ r

�
u /h.lu ˝ ru/.

We now show that h is a .t.l/; t.r//-mixing partition. Using lul�u D j
˝˛ and rur�u D j

˝ˇ ,
we infer that h D .lu ˝ ru/m.l�u ˝ r

�
u /. Thus, h is projective because m is. The partition h

cannot connect two points a1; a2 6 t .l/ by definition of lu. Otherwise, let Va1 and Va2 be the
blocks in lu connected to a1 (resp. a2). Their restrictions bV a1 and bV a2 to upper points of lu
would hence be connected in m and thus also inblu. But since lu is a building partition, there
is at most one lower point in lu connected to the block containing Va1 and Va2 . We infer that h
cannot connect two points a1; a2 6 t .l/ and likewise for points b1; b2 > t.l/ (and their primed
versions on the lower line of h). Thus, every block of h has size at most four. Furthermore, by
construction of lu and ru, h cannot contain singletons as blocks. Indeed, lower points appear
in lu only if the corresponding blocks in lu are connected to some other blocks in ru or l�u . If h
cuts these lines, they are also cut inm, which is a contradiction to the construction of lu and ru.

Finally, if h connects a point a 6 t .l/ to a point b0 on the lower line, then also a0 and b
are connected, because h is symmetric. Since h is also idempotent, we infer that a and a0

are connected, thus we obtain the block .a; a0; b; b0/. Therefore, if a block of h has size
strictly greater than two, it must be of size four. By symmetry, blocks of size two are either
of the form .a; a0/, .b; b0/, .a; b/ or .a0; b0/ with a 6 t .l/ and b > t.l/. We conclude that h is
a .t.l/; t.r//-mixing partition.

Setting l D l�u lu 2 Proj.a/ and r D r�u ru 2 Proj.b/, we infer that m is of the form

m D l �h r:

From Lemma 2.27, we deduce l; r 2 C . Furthermore, l � p and r � q. To prove this, note
that lup is a part of the composition procedure in m.p ˝ q/ which yields m. Thus, if two
upper points x and y are connected to each other in lup, they are also connected in m, and
hence in lu, too. On the other hand, if x and y are connected in lu, then they are either connected
in pu, too, or the blocks Vx and Vy connected to x resp. to y in pu are through-blocks of pu
(since m.p ˝ q/ D m). In both cases, x and y are connected in lup and we conclude that lu
and lup coincide when restricted to their upper points. Let us now prove that also their through-
block structure is the same. Consider a block of upper points in lup. If it is not connected to
some lower points of lup – in other words, if it is a non-through-block in lup – it yields
a non-through-block inm, and hence in lu. Conversely, assume that V is a (upper) non-through-
block in lu and let ¹x1; : : : ; xnº be the corresponding upper points in p, and ¹x01; : : : ; x

0
nº the

corresponding lower points. Then, if a point xi gets connected by p to a lower point z0, then
z0 D x0j for some j (since p is projective). But no point x0j is connected by lu to a lower
point, since V is a non-through-block of lu. Thus, V is also a non-through-block in lup.
Thus, lu D lup, which yields l � p.
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We conclude the proof by noticing that l ¤ p or r ¤ q would contradict m 2 XC .p; q/,
since m � l ˝ r by Lemma 2.27.

We can deduce a few useful lemmata on the order structure of ProjC .k/ from what has
been done so far.

Lemma 2.29. Let C be a category of partitions and let p 2 ProjC .k/ be a projective
partition. If there is a partition q 2 C such that t .q/ < t.p/, then there exists a projective
partition q0 2 C with t .q0/ < t.p/ and q0 � p.

Proof. Set q0 D pq�qp 2 C.k; k/. Then q0 is projective by Proposition 2.12 and q0 � p.
Furthermore, using Lemma 2.11, we have

t .q0/ D t ..pq�/.pq�/�/ D t .pq�/ 6 min.t.p/; t.q�// 6 t .q�/ D t .q/ < t.p/:

Lemma 2.30. Let p; q 2 Proj.k/ be two projective partitions such that q � p. Then
one has t .q/ 6 t .p/ with equality if and only if p D q.

Proof. By Remark 2.6, we have

t .q/ D t .pq/ 6 min.t.p/; t.q// 6 t .p/:

If t .p/ D t .q/, then the projections Tp and Tq have the same rank, by Proposition 2.16. Using
Lemma 2.21, we infer Tp D Tq , and hence p D q.

Lemma 2.31. Let p; q 2 P.k; k/ be two partitions such that

� p is projective,

� pq D q D qp,

� t .q/ D t .p/.

Then, there is a through-partition r 2 P2.t.p/; t.p// such that q D p�urpu, where p D p�upu
is the through-block decomposition of p.

Proof. The partition q�q is projective and satisfies q�q � p. Further, by Lemma 2.11,
we have t .q�q/ D t .q/. Thus, p D q�q by Lemma 2.30. Analogously we have p D qq�. Now,
if q D q�

l
rqu is the through-block decomposition from Proposition 2.9, we have

q�uqu D q
�q D qq� D q�l ql

by Lemma 2.11. By the uniqueness of the through-block decomposition of q�q, we infer
that ql D qu. Furthermore, q�uqu D q

�q D p D p�upu. Again by uniqueness of the through-
block decomposition, we see that qu D pu.

3. Easy quantum groups

This short section is devoted to some preliminaries. It contains definitions and basic facts
in the theory of compact quantum groups as well as an introduction to easy quantum groups.
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3.1. Compact quantum groups. We briefly recall some definitions and results of the
theory of compact quantum groups in order to fix notations. The reader is referred to [26]
or [13] for details and proofs.

Definition 3.1. A compact quantum group is a pair G D .C.G/;�/ where C.G/ is
a unital C*-algebra and � W C.G/! C.G/˝ C.G/ is a unital �-homomorphism such that
.�˝{/ı� D .{˝�/ı� and the linear spans of�.C.G//.1˝C.G// and�.C.G//.C.G/˝1/
are dense in C.G/˝ C.G/.

Here, { denotes the identity map of the C*-algebra C.G/ and � is called the coproduct.

Definition 3.2. Let G be a compact quantum group. A representation of G of dimen-
sion n is a matrix .ui;j / 2Mn.C.G// ' C.G/˝Mn.C/ such that�.ui;j / D

P
k ui;k˝uk;j

for every 1 6 i; j 6 n.

All the compact quantum groups considered in this paper will be compact matrix quan-
tum groups. This means that we are given a distinguished representation u of G, the coefficients
of which generate a dense subalgebra of C.G/. This gives a more algebraic description of G:
Consider a Hopf �-algebra A generated by N 2 elements .ui;j /16i;j6N , where the structure
maps are given by

�.ui;j / D
X
k

ui;k ˝ uk;j ; ".ui;j / D ıi;j ; S.ui;j / D u
�
j;i :

Furthermore, the matrices u D .ui;j / and ut are invertible. Then,� extends to a bounded map
on the enveloping C*-algebra C.G/ of A, yielding a compact quantum group .C.G/;�/.

An intertwiner between two representations u and v of dimension respectively n andm is
a linear map T W Cn ! Cm such that .{˝T /u D v.{˝T /. The set of intertwiners between u
and v is denoted by Hom.u; v/. If there exists a unitary intertwiner between u and v, they are
said to be unitarily equivalent. A representation is said to be irreducible if its only self-inter-
twiners are the scalar multiples of the identity. The tensor product of the two representations u
and v is the representation

u˝ v D u12v13 2 C.G/˝Mn.C/˝Mm.C/ ' C.G/˝Mnm.C/:

Remark 3.3. Here we used the leg-numbering notations: For an operator X acting on
a tensor product, we set X12 D X ˝ 1, X23 D 1˝X and X13 D .†˝ 1/.1˝X/.†˝ 1/.

The advantage of the notion of compact quantum group is that the classical Peter–Weyl
theory extends to this setting.

Theorem 3.4 (Woronowicz). Every unitary representation of a compact quantum group
is unitarily equivalent to a direct sum of irreducible unitary representations. Moreover, any
irreducible representation is finite-dimensional.

To describe the representation theory of a compact quantum group, one needs to be able to
split any tensor product of irreducible representations into a sum of irreducible representations.
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The explicit formulæ for such splittings are called fusion rules. From the point of view of
Pontryagin duality, the fusion rules can be thought of as the “group law” of the dual discrete
quantum group.

Compact quantum group also satisfy a version of Tannaka–Krein duality, proved by
S. L. Woronowicz in [25]. Let us give a non-standard version of this result, which is fundamen-
tal in the definition of easy quantum groups. For a compact matrix quantum group .G; u/, let
us denote by HomG.k; l/ the space of intertwiners between u˝k and u˝l . The “Tannakanian
philosophy” can be expressed in the following way :

Tannakanian philosophy. There is a one-to-one correspondence between compact
matrix quantum groups .G; u/ such that u ' u and families ¹HomG.k; l/ºk;l2N0 of inter-
twiner spaces.

3.2. Easy quantum groups. In 1995 and 1998, S. Wang introduced ([22,23]) two very
important examples of compact matrix quantum groups. ForN 2 N, the universal C*-algebras

Ao.N / D C
�

 
ui;j ; 1 6 i; j 6 N

ˇ̌̌̌
ˇ u�i;j D ui;j ;X

k

ui;kuj;k D

NX
kD1

uk;iuk;j D ıi;j

!
;

As.N / D C
�

 
ui;j ; 1 6 i; j 6 N

ˇ̌̌̌
ˇ u�i;j D ui;j D u2i;j ; ui;kuj;k D uk;iuk;j D 0; i ¤ j;
NX
kD1

ui;k D

NX
kD1

uk;j D 1

!

can be endowed with the comultiplications�.ui;j / D
P
ui;k˝uk;j turning them into compact

quantum groups in the sense of Definition 3.1. They are denoted by OCN and SCN respectively.
Note that if we add the relations ui;juk;l D uk;lui;j to Ao.N / (resp. As.N /), we obtain
the C*-algebra C.ON / (resp. C.SN /) of continuous functions on the orthogonal group ON
(resp. on the symmetric group SN ). Hence, OCN is called the free orthogonal quantum group,
whereas SCN is called the free symmetric quantum group.

Using the linear maps Tp from Section 2 indexed by partitions p 2 P , a basis of the
intertwiner spaces of OCN and SNC can be given very explicitly:

Hom
O
C

N

.k; l/ D Span¹Tp W p 2 NC2.k; l/º;

Hom
S
C

N

.k; l/ D Span¹Tp W p 2 NC.k; l/º:

Likewise, the groupsON and SN can be seen as quantum groups, i.e. we can equip the function
algebras C.ON / and C.SN /with comultiplications such that they are compact matrix quantum
groups in the sense of Section 3.1. Their intertwiner spaces are given by

HomON .k; l/ D Span¹Tp W p 2 P2.k; l/º;

HomSN .k; l/ D Span¹Tp W p 2 P.k; l/º:

By functoriality of the intertwiner spaces, we know that for any compact matrix quantum
group SN � G � OCN , its intertwiner space fulfills

Span¹Tp W p 2 P.k; l/º � HomG.k; l/ � Span¹Tp W p 2 NC2.k; l/º:
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In 2009, T. Banica and R. Speicher came up with the following natural definition.

Definition 3.5 ([7, Definition 6.1]). A compact matrix quantum group SN � G � OCN
is called easy if its intertwiner spaces are of the form

HomG.k; l/ D Span¹Tp W p 2 C.k; l/º; k; l 2 N0:

The collection of sets C.k; l/ � P.k; l/ is denoted by C .

Since intertwiner spaces of compact quantum groups form tensor categories, the above
collection of sets C � P is a category of partitions in the sense of Definition 2.5. Examples
of easy quantum groups include SN ; ON ; SCN and OCN . By the “Tannakanian philosophy”,
categories of partitions and intermediate easy quantum groups in between SN and OCN are
in one-to-one correspondence. Hence, easy quantum groups carry a lot of combinatorial data.
In this sense, they could also be called partition quantum groups. We refer to [7], [6] and [24]
for details concerning easy quantum groups.

4. From projective partitions to representations

We now start our study of the representation theory of a general easy quantum group G
from the point of view of its category of partitions C . This section consists in a comprehensive
study of a particular family of representations of G, built out of projective partitions. We make
no particular assumption on the category of partitions C . In general, we will not be able to give
a full description of all irreducible representations and their fusion rules, but we will see that
the coarser structure of the set of combinatorial representations we build is quite well behaved
and already yields a lot of information on the quantum group. In special cases (see Section 5),
it is enough for deducing the complete fusion rules.

4.1. Subrepresentations associated to partitions. The first step is to understand the
decomposition of u˝k into a sum of “small” subrepresentations. Here, “small” means being
a sum of a small number of irreducible representations. We know that the space of intertwiners
Hom.u˝k; u˝k/ is spanned by the operators Tp for p 2 C and that subrepresentations of u˝k

exactly correspond to orthogonal projections in this space. Thus, we can first look at parti-
tions p such that the associated operator Tp is a projection, i.e. we look at projective partitions.
We first want to investigate the following natural question: How far can we split the k-th tensor
product of the fundamental representation using these partitions?

We begin with assigning subrepresentations of u˝k to projective partitions p 2 ProjC .k/.
A naive idea would be to take the subrepresentation .{˝Tp/.u˝k/ for p 2 ProjC .k/. However,
this representation would be far from being irreducible since for example the identity parti-
tion j˝k would yield the representation u˝k . We can nevertheless take advantage of the order
structure on projective partitions to refine these projections.

Definition 4.1. Let p 2 ProjC .k/ be a projective partition. Write q � p if q � p and
q ¤ p and set

Rp D
_

q2ProjC .k/; q�p

Tq;
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where the supremum is taken among all projections of Hom.u˝k; u˝k/. We define a projection

Pp D Tp �Rp 2 Hom.u˝k; u˝k/

and denote by up the subrepresentation .{ ˝ Pp/.u˝k/ of u˝k .

Remark 4.2. There is an ambiguity in the previous description. In fact, the projec-
tionPp may collapse to 0 if the linear maps associated to partitions are not linearly independent.
More precisely, the projection Rp can be written as a linear combination of operators Tr for
partitions r 2 C.k; k/ and this linear combination can yield the whole projection Tp. In that
case, we are not producing any interesting subrepresentation. This is the first appearance of
a problem with which we will have to deal all along this work.

Remark 4.3. Note that by a straightforward induction, Rp is the supremum of the
projections Pq , where q ranges over the set of projective partitions strictly dominated by p.

The existence of the supremum projection Rp inside Hom.u˝k; u˝k/ is ensured by
a general von Neumann algebra argument (see for instance [18, Chapter V, Proposition 1.1]).
Hence, we know thatRp is a linear combination of maps Tr for partitions r 2 C.k; k/. Since Tp
dominates Rp by definition, we can multiply by Tp on the left and on the right to see that Rp is
a linear combination of maps Tprp. Otherwise said,Rp can be written as

P
i �riTri where r�i ri

and rir�i are dominated by p. However, later on we will need to know that the partitions ri can
be chosen to satisfy t .ri / < t.p/. This is not completely obvious and relies on the following
linear algebraic lemma.

Lemma 4.4. LetM be a finite-dimensional von Neumann algebra, let .Pi /i be a family
of orthogonal projections and let

R D
_
Pi

be their supremum. Then, there is a family of minimal non-orthogonal projections .Qk/k inM
such that R D

P
kQk and for every k there is an index i such that Im.Qk/ � Im.Pi /.

Proof. We first deal with the case M DMn.C/. We know that R is the orthogonal
projection onto the linear span of the images of the projections Pi . Thus, there is a basis
.el/16l6s of Im.R/ such that for every l , there is an index i such that el 2 Im.Pi /. Let .ft /
be an orthogonal basis of the orthogonal complement of Im.R/, so that .el ; fk/l;k is a basis
of Cn and let B be the change-of-basis matrix from this basis to the canonical basis of Cn.
This means that

R D B�1
� X
16k6s

Ek

�
B;

where the .k; k/-th coefficient of Ek is 1 and all the others are 0. Setting Qk D B�1EkB for
1 6 k 6 s, we get minimal projections summing up toR. Moreover, Im.Qk/ D Cek � Im.Pi /
for some i .

Any finite-dimensional von Neumann algebra is isomorphic to a direct sum of matrix
algebras, so let us write M D

L
t Mnt .C/. Let P ti be the t -th component of Pi , which is

again an orthogonal projection. Let Rt be the supremum of the family of projections .P ti / for
a fixed t . Then, R is the supremum of the family of projections Rt . But these projections are
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pairwise orthogonal since the belong to different summands. Thus, R D
L
Rt . Now, by the

first part of the proof we know that each Rt can be written as a sum of minimal projectionsQt
k

such that for every k there is an index i such that Im.Qt
k
/ � Im.P ti / � Im.Pi /. But now, R is

the sum of all the projections Qt
k

and the proof is complete.

Proposition 4.5. Let p be a projective partition and assume thatRp ¤ 0. Then,Rp can
be written as a linear combination of operators Tr with t .r/ < t.p/.

Proof. Let Rp D
P
Qk be the decomposition given by Lemma 4.4. This means that

for every k, there is a projective partition q strictly dominated by p such that TqQk D Qk .
Now, each Qk can be written as a linear combination of operators Tr , and multiplying by the
appropriate Tq shows that we can replace r by qr . Since t .qr/ 6 t .q/ < t.p/, the proof is
complete.

We end this subsection with a lemma which will be used repeatedly in the sequel.

Lemma 4.6. Let p 2 ProjC .k/ and let q 2 C.k; k/ be such that t .pqp/ < t.p/. Then,
one has PpTqPp D 0.

Proof. Set
V D TpTqTp 2 CTpqp:

Using the fact that RpTp D Rp D TpRp, we see that

(4.1) PpTqPp D V �RpV � VRp CRpVRp:

If t .pqp/ < t.p/, then Tpqp is a partial isometry associated to two strict subprojections
of Tp, i.e. it is dominated by Rp by Lemma 2.30. Hence, RpV D VRp D V , implying that
the right-hand side of equation (4.1) is 0.

4.2. Irreducibility. The next step is to determine whether the representations up are
irreducible or not. This question can be answered affirmatively in the case of categories of
noncrossing partitions in Section 5, but the general case is quite complicated. We solve it by
giving an indirect description of the space Aut.up/ D Hom.up; up/, i.e. we relate it to the
irreducible representations of certain groups. To do so, we first introduce a useful tool. Recall
that to any permutation � 2 Sk a pair partition r� 2 P2.k; k/ is associated where the i -th point
in the upper row is connected to the �.i/-th point in the lower row.

Definition 4.7. Let p 2 C be a projective partition, such that t .p/ > 0, with through-
block decomposition p D p�upu. For � 2 St.p/, set p� D p�ur�pu. Then, its symmetry group
(relative to C ) is the set

SymC .p/ D ¹� 2 St.p/ W p� 2 C.k; k/º:

Remark 4.8. If t .p/ D 0, then up is one-dimensional, hence irreducible and there is
nothing to do.

Remark 4.9. The only noncrossing through-partition r 2 P2.k; k/ is r D j˝k . Thus,
the set SymC .p/ is trivial whenever C is a category of noncrossing partitions.
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Example 4.10. As an example, let us compute the symmetry group of pD j˝k for k > 2
(the computation for k D 1 being trivial). If C contains =n 2 P.2; 2/ (i.e. if G is a classical
group), then SymC .p/ contains all transpositions, hence is equal to Sk . If C contains the
half-liberating partition �ÍÍ 2 P.3; 3/ but not the crossing =n (i.e. if G is half-liberated), then
SymC .p/ contains two commuting subgroups which are the permutation groups respectively of
odd and even indices. Thus, if k D 2k0 is even, then SymC .p/ D Sk � Sk0 , and if k D 2k0 C 1,
then SymC .p/ D Sk0C1 � Sk0 .

As the name indicates, this set is in fact a subgroup of St.p/. Let us prove this.

Proposition 4.11. The set SymC .p/ is a subgroup of St.p/ for every projective parti-
tion p.

Proof. Thanks to the equality pup�u D j
˝t.p/ from Lemma 2.8, we get

p�� 0 D p�p� 0 2 C and p��1 D p
�
� 2 C for �; � 0 2 SymC .p/.

Observing that pid D p concludes the proof.

Remark 4.12. The map � 7! ��1 gives a bijection between SymC .p/ and SymC .p
�/.

Note also that the natural inclusion SymC .p/ � SymC .q/! SymC .p ˝ q/ is not surjective in
general (consider e.g. p D q D j).

To decompose up into irreducible subrepresentations, we have to find minimal projec-
tions in the space Aut.up/. Note that by definition, PpTp�Pp 2 Aut.up/ for all � 2 SymC .p/.
Our statement is that these maps generate the whole space of self-intertwiners. Before proving
it, we need two lemmata.

Lemma 4.13. Let p 2 ProjC .k/ and let q 2 C.k; k/ be such that t .pqp/ D t .p/. Then,
there is a permutation � 2 SymC .p/ such that pqp D p� .

Proof. Set r D pqp. Applying Lemma 2.31, we get r D p�urmpu, i.e. r D p� for
some � 2 SymC .p/.

Lemma 4.14. Let p be a projective partition and let �; � 0 2 SymC .p/. Then,

.PpTp�Pp/.PpTp�0Pp/ D PpTp��0Pp:

Proof. Let V denote the left-hand side of the equation, we then have

V D PpTp�PpTp�0Pp

D PpTp�TpTp�0Pp � PpTp�RpTp�0Pp

D PpTp�p�0Pp � PpTp�RpTp�0Pp:

Here, we used that 
.p� ; p� 0/ D 
.p; p/ D 0 for all permutations �; � 0 2 SymC .p/ (note
that ˇ.p�/ D ˇ.p/ and rl.p� ; p� 0/ D rl.p; p/). Now, Tp�RpTp�0 is a linear combination of
operators Tpqp, where t .pqp/ 6 t .q/ < t.p/, hence PpTp�RpTp�0Pp D 0 by Lemma 4.6 and
the proof is complete.
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The next result will be stated in the language of group algebras: If � is a finite group, its
group algebra is the vector space CŒ�� generated by elements ı
 for 
 2 � with the algebra
structure induced by the group law.

Proposition 4.15. For every projective partition p, the map

‰ W CŒSymC .p/�! Aut.up/; ı� 7! PpTp�Pp;

extends to a surjective �-homomorphism. If moreover the maps Tq are linearly independent
for q 2 C.t.p/; t.p// and if Pp ¤ 0, then ‰ is an isomorphism.

Proof. First note that ‰ is multiplicative by Lemma 4.14. By definition, Aut.up/ is the
linear span of operators PpTqPp for q 2 C.k; k/. According to Lemma 4.6, such operators are
zero if t .pqp/ < t.p/. Assume that t .pqp/ D t .p/. By Lemma 4.13, pqp D p� for some �
in SymC .p/. Moreover,

PpTqPp D PpTpTqTpPp 2 CPpTpqpPp D C‰.ı� /:

This proves the surjectivity of the map ‰.
To prove injectivity, let �i be scalars and let �i be permutations in SymC .p/ such that

(4.2)
X
i

�i‰.ı�i / D 0:

We know that
‰.ı�i / D Tp�i �RpTp�i � Tp�iRp CRpTp�iRp:

Noticing that the coefficient of Tp�i in equation (4.2) is �i , we get �i D 0 for every i by linear
independence.

We take the occasion of settling the question of linear independence. The following result
is well known but we include an argument since we could not find a proof in the literature.

Lemma 4.16. Let N be an integer and let C be a category of noncrossing partitions.
Then, the maps .Tp/p2C.k;l/ are linearly independent for every k and l if and only if N > 4.

Proof. It is enough to prove it for C D NC and, up to rotating the partitions, for the
maps .Tp/p2NC.0;k/ and even for the maps . VTp/p2NC.0;k/. In that case, consider

VTp D C ! .CN /˝k

as a vector (identifying it with VTp.1/) and form the Gram matrix M.k;N / 2MjNC.0;k/j.C/ of
this family. Since

h VTp; VTqi D VT
�
p
VTq D N

rl.p;q/;

the matrix M.k;N / is exactly the matrix of chromatic joins introduced by W. T. Tutte in [20],
where he also computed its determinant. According to [11, equation (16)], this determinant can
be written as

det.M.k;N // D NCk

kY
iD2

�
Ui .
p
N/

Ui�2.
p
N/

�b.k;i/
;

where Ck and b.k; i/ are integers and Ui is the i -th dilated Chebyshev polynomial of the
second kind satisfying U0 D 1, U1 D X and XUk D UkC1 C Uk�1. The above equation tells
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us that the vectors . VTp/p2NC.0;k/ are linearly independent if and only if N is not the square of
a root of a Chebyshev polynomial Ui . Since roots of Ui all have absolute value strictly smaller
than 2, the result follows (it is also easy to see that 1,

p
2 and

p
3 are roots of U2, U3 and U5

respectively).

Note that in contrast to the noncrossing case, even for P2 the maps .Tp/p2P2.0;k/
cannot be linearly independent for all k. In fact, the cardinality of P2.0; k/ grows much faster
than k �N , which is the dimension of .CN /˝k .

Even if ‰ is not an isomorphism, we can determine its kernel. Let us recall some facts
about the representation theory of finite groups. If � is a finite group, the group algebra CŒ��
admits a direct sum decomposition

CŒ�� D
M

˛2Irr.�/

Mdim.˛/.C/:

The map‰ being a �-homomorphism, its kernel is an ideal in the finite-dimensional C*-algebra
CŒ��, hence it is equal to

L
˛2J.p/Mdim.˛/.C/ for some subset J.p/ of Irr.�/. Thus, if I.p/

denotes the (set-theoretic) complement of J.p/, then ‰ yields an isomorphism from the sum
of matrix algebras indexed by I.p/ onto Aut.up/.

4.3. Unitary equivalence. Before dealing with the decomposition of u˝k , let us
decide whether two given projective partitions yield unitarily equivalent representations. Let us
first restate the problem. Let p 2 ProjC .k/ and q 2 ProjC .l/ be two projective partitions.
A morphismW between the representations up and uq can always be extended by 0 to give an
element V 2 Hom.u˝k; u˝l/ satisfying VPp D V D PqV . Reciprocally, if V is such a mor-
phism, then W D PqVPp can be seen as an element in Hom.up; uq/. Moreover, W is unitary
in Hom.up; uq/ if and only if V is a partial isometry with range and support projections
respectively Pq and Pp, i.e. V V � D Pq and V �V D Pp. There is an obvious way to build such
a partial isometry if the projective partitions p and q are equivalent in the following sense.

Definition 4.17. Let C be a category of partitions. Let p 2 ProjC .k/ and q 2 ProjC .l/
be two projective partitions. Then p and q are equivalent in C (we write p � q) if there is
a partition r 2 C.k; l/ such that r�r D p and rr� D q.

The equivalence of projective partitions translates exactly to the equivalence of the
associated representations.

Theorem 4.18. Let C be a category of partitions, let N be an integer and let G be the
associated compact quantum group. Let p 2 ProjC .k/ and q 2 ProjC .l/. Then, the represen-
tations up and uq are unitarily equivalent if and only if either p � q in C or up D uq D 0.

Proof. Assume that p � q, i.e. there is a partition r 2 C.l; k/ such that r�r D p
and rr� D q. First note that Tr�RqTr is a linear combination of maps of the form Tr�lr
for l � q. Thus,

t .r�lr/ 6 t .l/ < t.q/ D t .p/

and by Lemma 4.6,
PpTr�RqTrPp D 0:



Freslon and Weber, On the representation theory of partition (easy) quantum groups 181

From this, we get, setting V D PqTrPp,

V �V D PpTr�PqTrPp

D PpTr�TqTrPp � PpTr�RqTrPp

D PpTr�qrPp

D PpTpPp

D Pp:

Note that we used here the fact that 
.q; r/ D 
.r�; qr/ D 0, which comes from the equality
rr� D q and Lemma 2.17. By the same computations, we get V V � D Pq , thus up and uq are
unitarily equivalent.

Conversely, let now W be a unitary in Hom.up; uq/ and extend it to a partial isometry
in V 2 Hom.u˝k; u˝l/ satisfying PqV D V D VPp. Now, V can be written as a finite sum

V D
X
i

�iTri

for some complex coefficients �i and some partitions ri 2 C.k; l/. Since also

TqV D V D V Tp;

we may assume that all ri fulfill ri D qrip.
As soon as Pp ¤ 0, we can assume that there is an index i such that

TriPp ¤ 0

since VPp D V . This implies that PpTr�
i
ri
Pp is non-zero. By Lemma 4.6, we then have

t .r�i ri / D t .pr
�
i rip/ D t .p/:

Thus, by Lemma 2.31, r�i ri D p
�
urpu for some through-partition r 2 P2.t.p/; t.p// and the

decomposition p D p�upu. But r�i ri is projective by Lemma 2.11, hence has trivial through-
partition. This means that r�i ri D p. The same argument proves that we can find an index i
such that also rir�i D q is fulfilled, which yields p � q.

Note in particular that if p � q, then t .p/ D t .q/. However, the invariant t does not
completely characterize the equivalence class of p in general.

Lemma 4.19. Let C be a category of partitions and let p 2 ProjC .k/; q 2 ProjC .l/.

(1) If p � q, then t .p/ D t .q/.

(2) If t .p/ D t .q/ D t .pq/, then p � q.

Proof. The first assertion follows directly from Lemma 2.11. For the second assertion,
consider q0 WD pqp and note that t .q0/ D t .pq/ (again by Lemma 2.11). From Lemma 2.30,
we deduce that

pqp D q0 D p:

Likewise we prove qpq D q, which yields p � q using r WD pq.
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Remark 4.20. In the previous lemma, none of the converse directions hold. If one con-
siders for instance the hyperoctahedral quantum group HCN , the projective partitions

p D

u

Í
u
j and q D j

u

Í
u

correspond to irreducible subrepresentations of u˝3 which are not unitarily equivalent,
labelled respectively by 01 and 10 using the notations of [8, Theorem 7.3]. Indeed, any partition
r D r�

l
rmru such that p D r�r and q D rr� fulfills ru D pu and rl D qu by the uniqueness

of the through-block decomposition of p and q respectively. Hence r D q�urmpu consists
either of two three blocks or contains a crossing, depending whether rm D =n or rm D j˝2.
Therefore r is not contained in the category huuui associated to HCN .

An example for p � q (again in huuui) but t .p/ ¤ t .pq/ is given by the partitions

p D

u

u

u

Í
u

and q D

u

Í
u

u

u
:

If p 2 ProjC .k/ and q 2 ProjC .l/ are two projective partitions such that t .p/ D t .q/, we
can give another characterization of the equivalence relation� for p and q. For any � 2 St.p/,
set

rpq .�/ D q
�
ur�pu 2 P.k; l/

and define
SymC .p; q/ D ¹� 2 St.p/ W r

p
q .�/ 2 C.k; k/º:

We can now give a criterion for unitary equivalence of the representations.

Proposition 4.21. Let C be a category of partitions and let p 2 ProjC .k/, q 2 ProjC .l/.
Then, p � q if and only if either SymC .p; q/ ¤ ; or up D uq D 0.

Proof. Obviously, for � 2 SymC .p; q/ we have

rpq .�/.r
p
q .�//

�
D q and .rpq .�//

�rpq .�/ D p:

Reciprocally, if r is a partition satisfying r�r D p and rr� D q, then ru D pu and rl D qu by
uniqueness of the through-block decomposition, i.e. r is of the form r

p
q .�/.

4.4. Decomposition of the fundamental representation. We are now ready for the
decomposition of u˝k . Our first result is that the representations up give a complete decompo-
sition of u˝k .

Proposition 4.22. Let C be a category of partitions, let N be an integer and let G
be the associated easy quantum group. If v is a subrepresentation of u˝k containing all the
representations up, p 2 ProjC .k/, then it is equal to u˝k . In this sense we write

u˝k D
X

p2ProjC .k/

up:

Proof. Let Pv be the orthogonal projection associated to v, which hence dominates all
projections Pp. We claim that Pv in fact dominates Tp for every p 2 ProjC .k/. The proof will
be done by induction on t .p/. Let k1 < � � � < kn be the possible values of t on ProjC .k/.
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If t .p/ D k1, then any projective partition q strictly dominated by p satisfies t .q/ < t.p/,
which is impossible. Thus, Tp D Pp, which is dominated by Pv.

If t .p/ D ki for i > 1, then Rp is the supremum of some operators which are all dom-
inated by Pv since they are associated to partitions q with t .q/ < t.p/ D ki by Lemma 4.6.
Hence Tp D Pp CRp is dominated by Pv.

Taking, p to be the identity partition j˝k (which is obviously projective), we get Pv D Id,
i.e. v D u˝k .

Proposition 4.22 ensures that we do not “miss” a subrepresentation of u˝k when con-
sidering the collection of up; p 2 ProjC .k/. The drawback is that the representations up do
not give a direct sum decomposition of u˝k . The reason is that Pp and Pq are not orthogonal
in general. For example, if t .p/ D t .q/ D 0, then Pp D Tp and Pq D Tq but PpPq D �Tpq
cannot be 0.

This can be solved by passing to equivalence classes of projective partitions. To a projec-
tive partition p 2 ProjC .k/, we assign

PŒp� WD
_

q2ProjC .k/
q�p

Pq

and we define the subrepresentation uŒp� WD .{ ˝ PŒp�/.u˝k/ of u˝k .

Proposition 4.23. Let C be a category of partitions, let N be an integer and let G be
the associated easy quantum group. Then, we have the decomposition

u˝k D
M

Œp�2ProjC .k/=�

uŒp�:

Proof. Let p; q 2 ProjC .k/ be non-equivalent projective partitions. By Lemma 4.19,
we know that either t .p/ ¤ t .q/ or t .p/ ¤ t .pq/. In both cases, we obtain that the projec-
tions Pp and Pq are orthogonal. Indeed, assume first t .pq/ < t.p/ D t .q/. By Lemma 4.6,
we infer that PpTqPp D 0 and likewise PpTrPp D 0 for all projective partitions r � q. Hence
PpRqPp D 0 and thus PpPqPp D 0. Similarly, if t .q/ < t.p/, then also t .pq/ < t.p/ and
thus PpPqPp D 0. We conclude that PŒp� and PŒq� are orthogonal. We finish the proof using
Proposition 4.22.

This result has yet another drawback: The subrepresentations uŒp� might be much larger
than the representations up, and hence even further away from being irreducible. However,
a combination of Proposition 4.22 together with the symmetry groups of Definition 4.7 finally
yields a decomposition of u˝k into irreducible subrepresentations related to partitions.

Theorem 4.24. Let C be a category of partitions, let N be an integer and let G be the
associated easy quantum group. Then, the irreducible representations of G can be labelled
as up.˛/ where p is a projective partition and ˛ is an irreducible representation of SymC .p/.
Furthermore, there are integers 0 6 �p.˛/ 6 dim.˛/ for every pair .p; ˛/ such that

u˝k D
M

p2ProjCk.C/

M
˛2Irr.SymC .p//

�p.˛/up.˛/:



184 Freslon and Weber, On the representation theory of partition (easy) quantum groups

Proof. Starting from Proposition 4.22, we know that Id 2 Hom.u˝k; u˝k/ is the supre-
mum of the projections Pp. These in turn may be written as a direct sum of projections P 
p .˛/
for ˛ 2 I.p/ � Irr.SymC .p// and 0 6 
 6 dim.˛/, by Proposition 4.15. By Lemma 4.4, we
see that Id can therefore be decomposed as a sum of minimal projections, each dominated by –
and hence equal to – some P 
p .˛/. Each of these projections gives rise to a copy of up.˛/.

Remark 4.25. If p � q and � 2 SymC .p; q/, then conjugating by � yields an isomor-
phism between SymC .p/ and SymC .q/. If the map ‰ of Proposition 4.15 is injective, two
representations up.˛/; uq.ˇ/ are then unitarily equivalent if and only if ˛ D ˇ. However, this
fails in the general case since the images of nonequivalent minimal projections in CŒSymC .p/�

may collapse to 0 in Aut.up/. This makes the problem of equivalence of irreducible represen-
tations much more complicated, since it depends on the kernel of the map p 7! Tp.

4.5. Fusion rules. The last part of this section is devoted to the study of some “partial
fusion rules”. More precisely, we address the following question: Given two projective par-
titions p and q, is it possible to write explicitly up ˝ uq as a direct sum of representations
associated to projective partitions?

Let p 2 ProjC .k/ and q 2 ProjC .l/ be projective partitions and let us consider the projec-
tion Pp ˝ Pq 2 Hom.u˝.kCl/; u˝.kCl//. This is precisely the projection onto up ˝ uq . From
the definition, we see that it decomposes as

.Tp �Rp/˝ .Tq �Rq/ D Tp ˝ Tq � .Tp ˝Rq CRp ˝ Tq �Rp ˝Rq/:

We are going to express this using the partitions Pm. To do so, first recall that Rp is the
supremum of the projections Pm form � p and that Tp is the supremum of the projections Pm
for m � p.

Lemma 4.26. The operator Tp ˝Rq CRp ˝ Tq �Rp ˝Rq is the supremum of the
projections Pm for all projective partitionsm such that there exists l � p satisfyingm � l ˝ q
or there exists r � q satisfying m � p ˝ r .

Proof. Set A D Tp ˝Rq , B D Rp ˝ Tq and C D Rp ˝Rq . Then, AB D BA D C ,
i.e.C is the minimum of the commuting projectionsA andB . This implies thatACB�C is the
supremum of the projections A and B . Now, Tp˝Rq is the supremum of the projections Tp˝r
for r � q andRp˝Tq is the supremum of the projections Tl˝q for l � p, hence the result.

Recall that XC .p; q/ denotes the set of partitions dominated by p ˝ q which are not
dominated by l ˝ q for l � p or by p ˝ r for r � q. Lemma 4.26 implies that Pp ˝ Pq is
the supremum of the projections Pm for m 2 XC .p; q/. We can give an explicit description
of the set XC .p; q/ using the mixing partitions introduced in Definition 2.25. Let us denote
by Y.p; q/ the set of partitions p �h q for all .t.p/; t.q//-mixing partitions h.

Theorem 4.27. Let C be a category of partitions. Then,

up ˝ uq D
X

m2XC .p;q/

um;

where the sum means that the smallest representation of the quantum group G containing um
for every m 2 XC .p; q/ is up ˝ uq . Moreover, XC .p; q/ D Y.p; q/ \ C .
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Proof. The sum decomposition is immediate since, by Lemma 4.26, XC .p; q/ is pre-
cisely the set of projective partitions m � p ˝ q such that the projection Pm is not dominated
by Tp ˝Rq CRp ˝ Tq �Rp ˝Rq .

In view of Proposition 2.28, we only have to prove that

XC .p; q/ � .Y.p; q/ \ C/:

To this end, letm D p �h q 2 C for some .t.p/; t.q//-mixing partition h. Then,m is projective
and m � p ˝ q by Lemma 2.27. Now, let p0 � p be a projective partition in C such that
m � p0 ˝ q but m 6� l ˝ q for any l � p0, l ¤ p0, l 2 C . Similarly, let q0 � q be a projective
partition in C such thatm � p0 ˝ q0 butm 6� p0 ˝ r for any r � q0 with r ¤ q0, r 2 C . Then,
m 2 XC .p

0; q0/ and hence m D p0 �h0 q
0 for some mixing partition h0 by Proposition 2.28.

Lemma 2.27 then yields p D p0, q D q0 and h D h0, hence m 2 XC .p; q/.

Note that the sum in the above theorem is not a decomposition into orthogonal summands.

5. Special cases

In this section, we study the two extreme cases of easy quantum groups: classical groups
and free quantum groups. In the first case, the linear independence problem is in some sense not
tractable. We try to formalize this problem and link it to some algebraic notions from classical
representation theory. In the second case, all the non-injectivity issues of the previous section
vanish and we can give a complete unified description of the representation theory.

5.1. Classical groups. The list of easy (classical) groups include ON and SN . For the
complete list see [7]. Their corresponding categories of partitions contain the crossing partition
=n 2 P.2; 2/. Recall from [7] that ON corresponds to the category of all pair partitions P2
whereas SN corresponds to all partitions P .

To formalize the issue of linear independence for the maps Tp, we introduce an algebra
inspired from the classical representation theory of orthogonal groups. These algebras may
be introduced for general categories C of partitions (not only those containing the crossing
partition =n).

Definition 5.1. Let C be a category of partitions and let k be an integer. The generalized
Brauer algebra of C of order k with parameterN is the vector space generated by all partitions
p 2 C.k; k/ together with the algebra structure induced by

q : p D N� rl.q;p/qp

and the involution p 7! p�. We will denote it Bk.C ; N /.

Remark 5.2. The classical representation theory of orthogonal groups involves com-
binatorial tools called Brauer diagrams introduced by R. Brauer in [10, Section 5]. These
are in fact exactly pair partitions in P2.k; k/. From this remark we see that if C D P2 is the
category of all pair partitions, the algebras Bk.P2; N / are the so-called Brauer algebras with
parameter N .
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The easiness assumption then implies that the �-homomorphism

„ W Bk.C ; N /! Hom.u˝k; u˝k/

is surjective. According to [10, Section 5], this fact is also a consequence of the first fundamen-
tal theorem of invariant theory for ON .

Controlling linear independence now amounts to understanding the kernel Kk.C ; N / of
the map „. Let us give two basic results concerning this problem:

� By a simple dimension-counting argument, we see that Kk.C ; N / D ¹0º if 2k 6 N .
If moreover C contains =n (i.e. if G is a classical group), thenKk.C ; N / ¤ ¹0º if 2k > N .

� The second fundamental theorem of invariant theory for ON gives an explicit set of
generators of the ideal Kk.P2; N / (see e.g. [12] for a recent statement of this result).

Remark 5.3. G. Lehrer and R. Zhang improved in [12] the second fundamental theo-
rem of invariant theory for ON by giving an explicit idempotent E generating the whole
idealKk.P2; N /. This means in particular that the two-sided ideal generated byE inBk.C ; N /
is contained in Kk.C ; N / for any category of partitions C containing the simple crossing.
It would be interesting to know whether this ideal is always the whole kernel or not.

The study of the generalized Brauer algebras is a problem which is beyond the scope of
this paper. It is, however, a necessary step towards the understanding of fusion rules not only
for easy classical groups but also for easy quantum groups whose categories involve partitions
with some crossings. We should also point out that it is even quite unclear how to link our work
with the classical theory of, say, SN . Let us give an example. Two projective partitions in P
are obviously equivalent if and only if they have the same number of through-blocks. Thus,
our general theory gives us a family of representations uk indexed by N which are either 0
or non-equivalent to any other. The natural question, to which we have no answer at the
moment, is:

Question. How do these representations decompose into irreducible ones?

For the moment, this “group issue” suggests that the representation theory of easy
classical groups should rather be used as a building block to study general easy quantum
groups. Giving precise statements concerning the way these building blocks enter the picture
is difficult for the moment. However, a work of S. Raum and the second author [16] provides
strong evidence for this, by giving many new explicit examples.

5.2. Free quantum groups. All along this section, we make the assumption N > 4.
By Lemma 4.16, this implies that the maps Tp for p 2 C.k; k/ are linearly independent for
any category of noncrossing partitions C . This is precisely what makes free quantum groups
very tractable from the point of view of representation theory, as will appear. Let us first define
this notion.

Definition 5.4. An easy quantum group G is said to be free if its associated category of
partitions C is noncrossing.
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Free easy quantum groups have been completely classified in [7,24]. Their representation
theory was studied in [1,3,8] – nevertheless, our approach gives a unified treatment of all these
results. It also enlightens the fact that free quantum groups are in some sense much easier to
handle than classical groups. This comes right from the linear independence of the maps Tp.

Theorem 5.5. Let C be a category of noncrossing partitions, let N > 4 and let G be
the associated easy quantum group. Then, the representation up is non-zero and irreducible
for every projective partition p 2 C . In other words, there is a bijection

Irr.G/ '
�[
k

ProjC .k/
�
=�:

Proof. Linear independence ensures that up ¤ 0 and that the map‰ of Proposition 4.15
is an isomorphism. Since the symmetry group of a noncrossing projective partition is trivial
(see Remark 4.9), we deduce that up is irreducible.

If C is a category of noncrossing partitions, SymC .p; q/ contains at most one element for
every p and q. Thus, according to Proposition 4.21, two representations up and uq are unitarily
equivalent if and only if rpq D r

p
q .id/ 2 C . Using this, we can recover some well-known facts

about the representation theory of free easy quantum groups.
Up to now, our labelling of the equivalence classes of irreducible representations only

tells us that there are countably many of them, which is not very interesting. The whole strength
of this labelling is that it behaves nicely with respect to the tensor product and Theorem 4.27
allows us to recover the fusion rules of free easy quantum groups. To do this, we have to
determine the sets XC .p; q/ for noncrossing categories of partitions C . It turns out that the
only noncrossing mixing partitions (see Definition 2.25) are of the following form.

We denote by hk � the projective partition in NC.2k; 2k/ where the i -th point in each
row is connected to the .2k � i C 1/-th point in the same row (i.e. an increasing inclusion of k
blocks of size 2). If moreover we connect the points 1, k, 10 and k0, we obtain another projective
partition in NC.2k; 2k/ denoted hk ˇ.

hk � D

: : : : : :

: : : : : :

hk ˇ D

: : : : : :

: : : : : :

As a technical tool, we define the following versions of hk � and hk ˇ, where we fill up with
identity partitions to the left and right. If ˛; ˇ 2 N0 and k 6 min.˛; ˇ/, we set

Qhk � WD j
˝.˛�k/

˝ hk � ˝ j
˝.ˇ�k/;

Qhk ˇ WD j
˝.˛�k/

˝ hk ˇ ˝ j
˝.ˇ�k/:
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Definition 5.6. Let p and q be projective partitions. For 0 6 k 6 min.t.p/; t.q//, we
set (referring to Definition 2.26)

p �k q WD p � Qhk �

q D .p�u ˝ q
�
u/
Qhk �.pu ˝ qu/;

p ˇk q WD p � Qhk ˇ

q D .p�u ˝ q
�
u/
Qhk ˇ.pu ˝ qu/:

In other words, the partition p �k q is constructed by inserting the partition hk � (filled up
with identity partitions) as a pattern of connecting the through-blocks of p and q; likewise the
partition p ˇk q.

We then have the following statement.

Lemma 5.7. The only noncrossing mixing partitions are the partitions Qhk � and Qhk ˇ .
Thus, for any noncrossing category C we have the equality

XC .p; q/ D ¹p �a q; p ˇb q W 0 6 a 6 min.t.p/; t.q// and 1 6 b 6 min.t.p/; t.q//º \ C :

Moreover, if p and q are projective partitions and if a 6 min.t.p/; t.q//, then

t .p ˇa q/C 2a D t .p/C t .q/C 1 and t .p �a q/C 2a D t .p/C t .q/:

Proof. The first part is obvious. The number of through-blocks of p can be written
as t .p/ D x C a, whereas t .q/ D y C a, for some numbers x and y. Furthermore,

t .p ˇa q/ D x C y C 1:

This yields the first part of the equation, and likewise for the case of p �a q.

Remark 5.8. Note that in particular, any two subrepresentation of up ˝ uq have differ-
ent number of through-blocks, hence they are orthogonal (see the proof of Proposition 4.23 in
combination with Lemma 4.19). Thus, the sums in the formula of Theorem 4.27 become true
orthogonal sums of representations.

With this simpler formulation we can recover straightforwardly the representation theory
of free easy quantum groups. For the convenience of the reader, we write it in such a way that
it could be used as a starting point to read this article.

Example 5.9. The free symmetric quantum group SCN was introduced by S. Wang
in [22] and its representation theory was studied by T. Banica in [3]. Since the intertwiner
spaces Hom.u˝k; u˝l/ of SCN are spanned by the maps Tp, where p 2 NC.k; l/, the quantum
group SCN is easy, with corresponding category NC (all noncrossing partitions). (See [7, 24]
for details.) We can now give a new way of computing the fusion rules for SCN .

To any projective partition p 2 NC.k; k/, we associate the projection

Pp D Tp �Rp 2 Hom.u˝k; u˝k/

and the representation
up D .�˝ Pp/.u

˝k/

according to Definition 4.1. By Theorem 5.5, we infer that up is non-zero and irreducible
if N > 4. By Theorem 4.18, we know that for two projective partitions p; q 2 NC, the rep-
resentations up and uq are unitarily equivalent if and only if there exists a partition r 2 NC
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such that r�r D p and rr� D q. If this is the case, we have t .p/ D t .r�r/ D t .rr�/ D t .q/
for the number of through-blocks (see Lemma 2.11). Conversely, if t .p/ D t .q/, we consider
the through-block decompositions p D p�upu and q D q�uqu of p and q according to Propo-
sition 2.9. The partition r WD q�upu is in NC and we infer that r�r D p and rr� D q, using
Lemma 2.8.

Therefore, two representations up; uq are unitarily equivalent if and only if t .p/ D t .q/.
Hence, we can label the irreducible partitions of SCN by positive integers N0. Note that to
any k > 1, the partition p D j˝k 2 NC fulfills t .p/ D k and hence we can choose it as a rep-
resentative for uk . For k D 0, the partition p0 D ¹1º¹10º 2 NC.1; 1/ given by a singleton on
the upper point and a singleton on the lower point is a representative for u0, since t .p0/ D 0.
From Theorem 4.27, we now obtain the fusion rules

uk ˝ ul D
X

m2XNC.p;q/

um:

Here, p and q are the canonical representatives for k; l 2 N0. By Lemma 5.7, the setXNC.p; q/

is given by

XNC.p; q/ D ¹p �a q; p ˇb q W 0 6 a 6 min.k; l/; 1 6 b 6 min.k; l/º:

Furthermore,
t .p �a q/ D t .p/C t .q/ � 2a D k C l � 2a

and
t .p ˇb q/ D k C l � 2b C 1;

thus the values of t .m/ for m 2 XNC.p; q/ are all numbers jk � l j 6 x 6 k C l . This yields
the following fusion rules for SCN :

uk ˝ ul D ujk�lj ˚ ujk�ljC1 ˚ � � � ˚ ukCl :

Example 5.10. Another, and in fact older, example of a free easy quantum group is
the free orthogonal quantum group introduced by S. Wang in [23]. Its associated category of
partitions is the set NC2 of all noncrossing pair partitions and its representation theory was first
computed by T. Banica in [1].

As in the case of SCN , two projective partitions p and q in NC2 yield equivalent rep-
resentations if and only if t .p/ D t .q/. (Note that pu is a noncrossing pair partition if p is
a noncrossing pair partition.) Thus, we can label the irreducible representations up, p 2 NC2
by positive integers k 2 N0, choosing representatives p 2 NC2 with t .p/ D k.

Since p ˇb q … NC2, the set XNC2.p; q/ is only given by

XNC2.p; q/ D ¹p �a q W 0 6 a 6 min.k; l/º

and the values of t .p �a q/ are all numbers jk � l j; jk � l j C 2; : : : ; k C l . Theorem 4.27 then
yields

uk ˝ ul D ujk�lj ˚ ujk�ljC2 ˚ � � � ˚ ukCl :

Example 5.11. The modified symmetric quantum group S 0CN , the modified bistochastic
quantum group B 0CN and the freely modified bistochastic quantum group B#C

N (see [7] and [24])
are not closed under the parts of the through-block decomposition. For instance, the par-
tition p0 D ¹1º¹10º 2 NC.1; 1/ is in all categories C corresponding to the quantum groups
S 0CN , B 0CN and B#C

N respectively, but its through-block decomposition p0 D p�upu yields the
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singleton pu D ", which is not in C in all three cases. Therefore, the classes of irreducible
representations are not given only by the number of through-blocks – a circumstance which
also appears in the next example.

Let us now turn to a more difficult example, the hyperoctahedral quantum group HCN
introduced by Banica, Bichon and Collins in [5]. The computation of the fusion rules of this
easy quantum group is a bit more tricky than for SCN andOCN . The reason is exactly the same as
in the previous example: The category huuui of all noncrossing partitions with blocks of even
size – corresponding to HCN – is not closed under the through-block decomposition. Consider
for instance the partition

p D

u

Í
u
2 NC.2; 2/

whose through-block decomposition yields the partition pu 2 NC.2; 1/ consisting of a single
three block – which is not in huuui.

Thus, we have irreducible representations up and uq which are not isomorphic, but
fulfill t .p/ D t .q/. As an example, take the projective partitions

p D

u

Í
u
j and q D j

u

Í
u

from Remark 4.20.
We hence have to assign more data to a partition p 2 huuui in order to determine the

equivalence classes of the irreducible representations up. If p is such a partition, we associate
to each of its through-blocks the number 0 if the block has size 4k for some integer k 2 N
and 1 otherwise. Looking at through-blocks of p from left to right, we get a word w.p/
in the free monoid over Z2. For instance, the above partition p would yield w.p/ D 01,
whereas w.q/ D 10.

Lemma 5.12. If C D huuui, then p � q if and only w.p/ D w.q/. In other words,
if A denotes the free monoid over Z2, then two irreducible representations ofHCN are unitarily
equivalent if and only the associated partitions yield the same word in A.

Proof. Let p and q be two projective partitions in C and consider the partition rpq .
Assume that w.p/ ¤ w.q/ and let i be the number of the first letter which differs in the two
words (starting from the left). Combining the i -th through-block of pu with the i -th through-
block of q�u then yields a block with odd size, and rpq … C . Assume now that w.p/ D w.q/.
Then, rpq is noncrossing and every through-block is of even size. Since non-through-blocks
of rpq come from non-through-blocks of p and q which are all noncrossing and of even size,
we obtain that rpq 2 C and p � q.

Thus, the irreducible representations of HCN can naturally be indexed by A and the
labelling coincides with that of [8, Theorem 7.3].

Now, let p and q be projective partitions and assume that p �k q 2 huuui. This implies
in particular that the through-blocks have even size, hence the i -th through-block of p, starting
from the right, has the same parity as the i -th through-block of q, starting from the left, for
every 1 6 i 6 k. This is easier to describe at the level of A.

Definition 5.13. We denote by w 7! w be the involution on A consisting in reversing
the words.
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Then, p �k q 2 huuui if and only ifw.p/ D az andw.q/ D zb for a word z of length k.
Moreover, all through-blocks belonging to z being turned into non-through-blocks under this
operation, we have w.p �k q/ D ab.

Assume now that p ˇkq 2 huuui. Using the argument above, we see that there is a word z
of length k � 1 such that w.p/ D az and w.q/ D zb. Moreover, the k-th through-block of p,
starting from the right, is combined with the k-th through-block of q, starting from the left.
Again, this translates to A.

Definition 5.14. We denote by

.w;w0/ 7! w � w0

the operation consisting in adding the last letter of w to the first letter of w0 (in Z2) and then
concatenating the remainder of the words.

Then, w.p ˇk q/ D a � b. Summing up, we have the following formula:

uw ˝ uw 0 D
X

wDaz;w 0Dzb

uab ˚ ua�b:

Remark 5.15. The fusion rules for HCN were computed by T. Banica and R. Vergnioux
in [8] as a special case of the fusion rules for the quantum reflection groups H sC

N . Neverthe-
less, we believe that our proof above has the advantage of showing the similarity with other
free orthogonal quantum groups, whereas their proof rather uses techniques from unitary easy
quantum groups (see Section 6).

It appears in these examples that the operations �k and ˇk translate into a concatenation
and a fusion operation on the fusion semiring. These operations on the fusion semiring were
considered by T. Banica and R. Vergnioux in [8, Section 10] in order to formulate some general
conjectures on free quantum groups (see Section 6.4).

6. Unitary quantum groups and the freeness conjecture

In what precedes, the expression “easy quantum group” was used in a restrictive sense
since we only considered orthogonal easy quantum groups, i.e. easy quantum groups G satis-
fying

SN � G � OCN :

One can also consider unitary easy quantum groups by looking at quantum groups

SN � G � UCN

satisfying some proper generalization of the “easiness” property. The definition of these unitary
easy quantum groups has not appeared yet in the literature, but it is well known to experts in
the field. Our purpose is not to develop the general theory since a comprehensive study of these
objects is currently undergone by P. Tarrago and the second author [19]. We will only give
a quick description of the easiness condition in order to show how our results can be extended
to this setting.
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6.1. Colored diagrams. The difference between OCN and UCN is that in the latter, the
fundamental representation u is not equivalent to its contragredient representation u. Thus, we
cannot only look at the intertwiner spaces between u˝k and u˝l to recover the whole structure
of the quantum group. More precisely, we again denote by A the free monoid on the set Z2 and
consider two words w and w0 of length k and l respectively. We set

u0 D u; u1 D u and uw D uw1 ˝ � � � ˝ uwk :

We want the space Hom.uw ; uw
0

/ to be spanned by operators associated with partitions. In
order to include all these spaces in a single description, we will use colored partitions.

Definition 6.1. A (two-)colored partition is a partition with the additional data of a color
(black or white) for each point. The set of all colored partitions is denoted P ı;�.

The usual operations on partitions can be extended to the colored setting.

� To any colored partition p and any integer N , one associates the linear map Tp as in
Definition 2.15. Note in particular that Tp does not depend on the coloring of p.

� Two colored partitions q 2 P ı;�.k; l/ and p 2 P ı;�.l; m/ can be composed only if the
colors of the lower points of p coincide with the colors of the upper points of q.

� The tensor product of colored partitions is defined in the obvious way, as well as the
involution.

� There is, however, a subtlety concerning the rotation. If a point is rotated from a row
to another, then its color is changed. This reflects the passage from u to u in Frobenius
reciprocity (which is precisely the operation encoded by the rotation).

� There are four colored identity partitions, but only two of them will be important: the
white identity partition with both points colored in white and the black identity partition
with both points colored in black. Note that we can pass from one to the other using the
rotation operation.

Definition 6.2. A category of colored partitions is the data of a set Cı;�.k; l/ of colored
partitions for all integers k and l which is stable under the above category operations and
contains the white identity (hence also the black identity).

Throughout this section, we will use the obvious bijection between coloring on k points
and words of length k in A obtained by sending “white” to 0 and “black” to 1.

Definition 6.3. Let Cı;� be a category of colored partitions and let N be an integer.
The associated easy unitary quantum group is the unique compact quantum group G with
fundamental representation u such that for any w;w0 2 A of length respectively k and l , the
space Hom.uw ; uw

0

/ is spanned by the operators Tp for p 2 Cı;�.k; l/ such that the upper
coloring of p is w and the lower coloring of p is w0.

Before trying to extend our results to this setting, we first have to check that the tech-
niques of Section 2 still work. Everything relies on the through-block decomposition, thus we
only have to make sense of it in the colored context.
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Definition 6.4. A colored building partition is a building partition with any coloring on
the upper row and only white points on the lower row. A colored through-partition is a through-
partition with all points colored in white.

With these definitions, the existence and uniqueness of the “colored through-block
decomposition” is clear.

6.2. Representation theory. Adapting the results of Section 4 to colored diagrams is
in fact straightforward. The essential remark is that as soon as we fix a word w 2 A and
consider Hom.uw ; uw/, we have fixed the coloring of all partitions involved. Thus, everything
boils down to the non-colored case.

If p is a projective colored partition (i.e. pp D p D p�), we define a projection

Pp D Tp �
_
q�p

Tq

and a representation
up D .{ ˝ Pp/.u

˝k/:

If w 2 A, let us denote by ProjCı;�.w/ the set of projective partitions in Cı;� the upper (hence
also lower) coloring of which is w. With this notation, we get the decomposition result.

Proposition 6.5. Let Cı;� be a category of colored partitions, let N be an integer and
let G be the associated unitary easy quantum group. Then, for every w 2 A,

uw D
X

p2ProjCı;� .w/

up:

Again, this sum means that if a subrepresentation of uw contains up for every p 2 ProjCı;�.w/,
then it is equal to uw .

If p is any projective colored partition, we define its symmetry group SymCı;�.p/ to
be the set of all through-partitions one can add in the middle of p. Again, since the proof
of Proposition 4.15 only deals with partitions of the form pqp (which have the same coloring
as p), we get:

Proposition 6.6. Let p be a projective colored partition. Then, there is a surjective
�-homomorphism

‰ı;� W CŒSymCı;�.p/�! Aut.up/:

The proof of Theorem 4.18 clearly works in the colored case, giving:

Theorem 6.7. Let Cı;� be a category of colored partitions, let N be an integer and
let G be the associated unitary easy quantum group. Let p 2 ProjCı;�.k/ and q 2 ProjCı;�.l/.
Then, the representations up and uq are unitarily equivalent if and only if either there exists
a partition r 2 Cı;�.k; l/ such that r�r D p and rr� D q or up D uq D 0.

For the fusion rules, we again only have to deal with partitions dominated by p ˝ q,
hence the coloring is fixed. Thus, a straightforward generalization of Proposition 2.28 holds.
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We want to describe the set XCı;�.p; q/ of projective colored partitions such that

up ˝ uq D
X

m2XCı;� .p;q/

um:

Let Y ı;�.p; q/ be the set of all colored partitions of the formp�hq for some .t.p/; t.q//-mixing
partition h (with all points colored in white).

Theorem 6.8. Let Cı;� be a category of colored partitions, letN be an integer and let G
be the associated unitary easy quantum group. Then, for any projective colored partitions p
and q, we have

up ˝ uq D
X

m2XCı;� .p;q/

um

with
XCı;�.p; q/ D Y

ı;�.p; q/ \ Cı;�:

Proof. As before, the inclusion .Y ı;�.p; q// \ Cı;� � XCı;�.p; q/ is clear. To prove
the converse one, simply note that by symmetry of p ˝ q, one can use unicolored identity
partitions in the proof of Lemma 2.27. From this, we see that if l �h r 2 Cı;�, then l; r 2 Cı;�,
which is the only ingredient we need to finish the proof.

6.3. An example. As already mentioned in the beginning of this section, the study and
classification of unitary easy quantum groups is at its earliest stage. We will therefore only
illustrate our results with the most simple example: the free unitary quantum group.

Let Cı;� be a category of colored noncrossing partitions. Note that for a fixed wordw 2A,
the linear maps Tp such that the upper and lower coloring of p are given by w are linearly
independent as soon as N > 4 by Lemma 4.16. This means that our techniques completely
describe the representation theory of such quantum groups. This is interesting because there
are infinitely many non-isomorphic free unitary easy quantum groups (for a fixed N ), in sharp
contrast with the orthogonal case (see [19]). For the remainder of this section, we assume
that N > 4.

The simplest example is the quantum group UCN . The associated category of partitions
is Uı;� D h;i (i.e. it is generated by the white identity partition). In other words, it consists of
pair partitions where the through-blocks have the same color on each end and the non-through-
blocks have different colors on each end.

Let us first describe Irr.UCN /. If p is a projective colored partition in Uı;�, we can remove
any non-through-block in p without changing the unitary equivalence class. Removing all the
non-through-blocks yields a colored partition to which we can naturally associate an element
in the monoid N �N: Reading from left to right, if we have k1 white points, then k2 black
points, then k3 white points and so on, we get the element

w.p/ D k1 � k2 � k3 � � � � 2 N �N:

Reciprocally, any such element gives rise to a unique projective colored partition with no non-
through-blocks. Let us consider two elements w and w0 in N �N and the associated projective
colored partitions p and p0. If the representations up and up0 are unitarily equivalent, the
partition obtained by combining the upper part of p and the lower part of p0 must be in Uı;�.
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Since the only through-blocks in Uı;� are the white identity and the black identity, we infer the
equality w D w0. We thus have a bijection

Irr.UCN / ' N �N:

For the fusion rules, consider two elementsw andw0 in N �N and the associated colored
partitions p and p0. The colored partition p ˇk p0 can never belong to Uı;� since it contains
a block of size four. As for the partition p �k p0, it lies in Uı;� if and only if each of its
non-through-block has endpoints of different colors. This means that the i -th upper point of p,
starting from the right, has color opposite to that of the i -th upper point of p0, starting from the
left for any 1 6 i 6 k.

Definition 6.9. We denote by w 7! w the unique antimultiplicative map on N �N
exchanging the two generators.

Then, p �k p0 is in Uı;� if and only if there is a decomposition p D az and p0 D zb and
the resulting partition is obviously equivalent to ab. Thus, we recover the main result of [2]:

uw ˝ uw 0 D
X

wDaz;w 0Dzb

uab:

Remark 6.10. One could use the same ideas to study the quantum reflexion groupsH sC
N

of [8] and get an alternative proof of the fusion rules. Let us also mention the free complexifi-
cations of free orthogonal easy quantum groups studied by S. Raum in [14].

6.4. The freeness conjecture. Beyond these examples, our techniques can help making
the freeness conjecture of [8, Section 10] more precise. Let us introduce some notions to state
this conjecture. Let S be a set together with an involution x 7! x and a binary law

S � S ! S [ ;; .x; y/ 7! x � y;

called the fusion operation. If R.S/ is the free monoid on S , we can extend the previous oper-
ations in the following way: If w D w1 : : : wn and w0 D w01 : : : w

0
n0 are words in R.S/, then

w D wn : : : w1;

w � w0 D w1 : : : .wn � w
0
1/ : : : w

0
n0 :

By convention, w � w0 D ; if wn � w01 D ; or if one of the two words is empty. This structure
enables us to define a tensor product on R.S/ in the following way:

w ˝ w0 D
X

wDaz;w 0Dzb

ab C a � b:

The tensor product and the involution turn .RC.S/;�;˝/ into a free fusion semiring. In our
terminology, the conjecture can be stated as follows:

Conjecture (Banica–Vergnioux). Let G be a free unitary easy quantum group. Then,
there is a set S together with an involution and a binary law such that the fusion semiring
.RC.G/;�;˝/ of G is isomorphic to the free fusion semiring .RC.S/;�;˝/.
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Remark 6.11. In that form, the conjecture is false (consider for example the sym-
metrized quantum permutation group SCN � Z2). One should add extra assumptions in the
conjecture, but we do not know which ones. We will come back to this problem in the end.

That conjecture has up to now only been proven by explicitly computing the fusion rules
of certain free easy quantum groups. As already mentioned, our computations directly give the
set S with its full structure (for UCN , OCN , SCN and HCN ). Thus, there might be a unified proof
of this conjecture involving only general considerations on projective colored partitions.

Let Cı;� be a category of noncrossing colored partitions and let S.Cı;�/ be the set of
equivalence classes of projective partitions having only one block. The equivalence class of p
will be denoted by Œp�. Let p be the partition obtained by changing the colors of all points in p
and set

Œp� � Œq� D Œp ˇ q�:

Remark 6.12. The representation up is the contragredient of the representation up.
In fact, by Theorem 6.8 we know that up ˝ up contains a one-dimensional representation uq
with q D p � p. The upper part of this partition is a rotated version of p and therefore belongs
to Cı;�. This means that q is equivalent to the empty partition, i.e. uq is the trivial representa-
tion. Since up and up are irreducible, they are contragredient to each other.

An obvious obstruction to the validity of the freeness conjecture is the existence of a non-
trivial one-dimensional representation. In fact, such a representation u satisfies u˝ u D 1,
whereas any element a ¤ 1 in a free fusion semiring satisfies aa� ¤ 1 (this was already noticed
in [14, Remark 4.4]). With this in hand, we can state a more precise version of the freeness
conjecture:

Conjecture. Let G be a free unitary easy quantum group without any non-trivial
one-dimensional representation. Then, there is an isomorphism of fusion semirings

.RC.G/;�;˝/ ' .RC.S.Cı;�//;�;˝/:

This form has several advantages:

� It allows to test directly the conjecture by computing the representation theory.
� It may produce natural restrictions on the quantum group G leading to the right charac-

terization of free quantum groups satisfying the easiness conjecture.

The general strategy goes through the study of the natural map

ˆ W RC.S.Cı;�//! RC.G/

and proving that, under suitable assumptions, it is a bijection preserving the tensor product.
The tools to prove such statements are typically those used to classify categories of partitions.
Hence, progress in the classification of colored partitions will probably give further evidence
for the freeness conjecture. To conclude, let us mention a companion conjecture which shows
the interest of the free structure from the point of view of operator algebras.

Conjecture (Banica–Vergnioux). Let G be a compact quantum group satisfying the
freeness conjecture. Then, the reduced C*-algebra of G is simple with unique trace.
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