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Abstract
Key message Climate-warming related replacement of beech by oak forests in the course of natural forest succession 
or silvicultural decisions may considerably reduce ecosystem carbon storage of central European woodlands.
Context Climate warming may change the carbon (C) storage in forest biomass and soil through future shifts in tree species 
composition. With a projected warming by 2–3 K over the twenty-first century, silvicultural adaptation measures and natural 
succession might lead to the replacement of European beech forests by thermophilic oak forests in drought- and heat-affected 
regions of central and south-eastern Europe, but the consequences for ecosystem C storage of this species shift are not clear.
Aims To quantify the change in C storage in biomass and soil with a shift from beech (Fagus sylvatica) to oak forest (Quercus 
petraea, Q. frainetto, Q. cerris), we measured the aboveground biomass (AGC) and soil C pools (SOC).
Methods AGC pools and SOC stocks to − 100 cm depth were calculated from forest inventory and volume-related SOC con-
tent data for beech, mixed beech-oak and oak forests in three transects in the natural beech-oak ecotone of western Romania, 
where beech occurs at its heat- and drought-induced distribution limit.
Results From the cooler, more humid beech forests to the warmer, more xeric oak forests, which are 1–2 K warmer, AGC and 
SOC pools decreased by about 22% (40 Mg C  ha−1) and 20% (17 Mg C  ha−1), respectively. The likely main drivers are indirect 
temperature effects acting through tree species and management in the case of AGC, but direct temperature effects for SOC.
Conclusion If drought- and heat-affected beech forests in Central Europe are replaced by thermophilic oak forests in future, 
this will lead to carbon losses of ~ 50–60 Mg  ha−1, thus reducing ecosystem carbon storage substantially.

Keywords Beech-oak ecotone · Climate turning point · Fagus sylvatica · Quercus petraea · Above ground carbon · Soil 
carbon · Soil nutrient pools

1 Introduction

Climate warming-related heat waves and droughts have the 
potential to destabilise temperate forests, as became visible 
in the extraordinary heat and drought of the summers 2018 
and 2019 in Central Europe. European beech (Fagus syl-
vatica L.), the dominant tree species of Central Europe’s 
natural forest vegetation (Leuschner and Ellenberg, 2017), 
showed pre-senescent leaf fall and subsequent crown dam-
age in many regions especially on shallow soil, locally caus-
ing tree and forest dieback (Schuldt et al., 2020; Walthert 
et al., 2020). Compared to other native broadleaf tree species 
of the genera Quercus, Fraxinus, Carpinus, Tilia and Acer, 
F. sylvatica is relatively sensitive to drought and heat, and 
also to elevated atmospheric water vapour pressure deficits 
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(VPD) (Geßler et al., 2007; Hohnwald et al., 2020; Lendzion 
and Leuschner, 2008; Leuschner, 2020). At its southern and 
south-eastern distribution limits, European beech most likely 
is limited by summer droughts and heat (Czúcz et al., 2011; 
Fang and Lechowicz, 2006), and its occurrence is restricted 
to the humid montane belt of the mountains (Coldea et al., 
2015; Horvat et al. 1974), avoiding the drier and hotter low-
land regions. Here, beech forests are replaced by oak-rich 
sub-Mediterranean forest communities of the Quercetalia 
pubescenti-petraeae (thermophilic mixed oak forests) and 
Carpinetalia betuli (oak-hornbeam forests) orders (Czúcz 
et al., 2011; Novák et al., 2020). With the recent increase 
in summer temperatures, VPD and the frequency of heat 
waves (Barriopedro et al., 2011; Schär et al., 2004), and 
regionally decreasing summer precipitation (Caloiero et al., 
2018; Schönwiese and Janoschitz, 2008), it is predicted that 
the climate will become less favourable for beech not only 
in southern and south-eastern Europe but also in parts of 
its Central European distribution range (Dolos et al., 2016; 
Garamszegi et al., 2020; Mette et al., 2013; Walthert et al., 
2020). For western Central Europe, an increase in annual 
mean temperature (MAT) of 1.6–3.8 °C until 2080 has been 
projected (Zebisch et al., 2005), which should shift the natu-
ral border between beech-dominated mesic forests and oak-
dominated thermophilic forests toward higher elevations 
and to regions with higher precipitation, as VPD rises with 
the temperature increase. Modelling results based on tree 
species’ climate envelopes and additional information on 
the species’ site requirements indeed predict for the warmer 
and drier lowlands and lower montane elevations of Central 
Europe a shift from beech forest to more drought-tolerant, 
thermophilic forest communities with oak and hornbeam in 
the course of climate warming in the twenty-first century 
(Fischer et al., 2019).

Predictions of a future shift in tree species composi-
tion often assume a climate turning point, at which the 
drought and heat tolerance of a species is exhausted, and 
more drought-tolerant species gain competitive superiority 
(Hohnwald et al., 2020). For F. sylvatica, which often com-
petes with Q. petraea at its dry distribution limit, a turn-
ing point close to a MAT of 11–12 °C, a temperature of 
the warmest months > 18 °C and an annual precipitation of 
500–530 mm  year−1 has been assumed (Dolos et al., 2016). 
According to the aridity index EQ, which was introduced 
by Ellenberg (1963), the turning point is located at an EQ 
value of 30.

As the majority of European forests are managed and 
tree species are often selected by foresters, natural climate 
change-driven shifts in tree species composition will occur 
in future only in a few protected areas or forests with low 
management intensity. Such a change has been observed, 
for example, in England (Cavin et al., 2013) and northern 
Spain (Penuelas and Boada, 2003), yet in various regions of 

Europe, silviculture has adopted a more natural tree species 
selection in order to avoid the drawbacks related to coni-
fer plantations, increase forest stability against hazards and 
to meet the goals of biodiversity conservation (Bolte et al., 
2009; Borrass et al., 2017; Spathelf et al., 2018). Oak forests, 
which most likely would replace beech in many regions in 
a warmer and drier climate, may thus represent a suitable 
choice for foresters seeking to adapt production forests to 
climate warming. Much evidence from ecophysiological 
and dendroclimatological research shows that Q. petraea 
and other Quercus species of thermophilous oak forests, 
as well as Carpinus, Fraxinus, Tilia and Acer species, are 
more drought tolerant than F. sylvatica (Brinkmann et al., 
2016; Köcher et al., 2009; Kunz et al., 2018; Leuschner 
et al., 2019; Scharnweber et al., 2011; Scherrer et al., 2011; 
Thomas, 2000). Thus, it is important to understand the con-
sequences of a future transition from beech to oak-domi-
nated forests, which could take place on quite large areas in 
central, western, southern and south-eastern Europe, either 
naturally or aided by foresters. A key ecosystem function, 
which feeds back on climate warming, is carbon storage and 
sequestration, which may decrease or increase with a change 
in tree species composition.

Tree species influence ecosystem carbon storage through 
species-specific biomass and carbon accumulation trends 
over the trees’ lifetime (Burschel et al., 1993), which lead 
to different maximum biomass stores (Pretzsch, 2005), and 
species effects on soil carbon storage (Binkley and Giardina, 
1998; Brevik, 2012; Grüneberg et al., 2019; Jandl et al., 
2007). As forests are an important element of the global C 
cycle (Lal, 2005) and storage of C in forest ecosystems is 
discussed as a means of mitigating anthropogenic climate 
warming (Ashton et al., 2012), changes in forest C storage 
with tree species shifts are of considerable scientific and 
silvicultural interest.

The consequences for C storage of a replacement of 
mesic beech forests by thermophilic oak forests have not 
yet received much attention, even though it might influence 
the climate warming mitigation potential of European for-
ests in the future. One approach to study this question is to 
study beech and oak forests at their natural ecotone in a cli-
mate, which is analogous to that expected in 50 to 80 years 
in Central Europe. This approach employs a space-for-time 
substitution to simulate the warming and drying of the cli-
mate until the end of the twenty-first century.

The centre of the distribution range of European beech is 
located in central and southern Germany, where F. sylvatica 
naturally would cover more than 2/3 of the area, mostly in 
submontane and montane elevation. The climate in Western 
Romania is about 2.5 K warmer than in southern Germany, 
and beech forests occur here at their thermal and drought 
limits. The colline and submontane belt of the western 
Romanian Carpathians thus has a climate that may be found 
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in central and southern Germany in 50 to 80 years accord-
ing to the IPCC global warming projections (IPCC 2013, 
Walentowski et al. 2017; Hohnwald et al., 2020). The region 
may therefore be used as a natural laboratory for studying 
beech and oak forests in the natural transition zone between 
the two species under a warmer climate. Mesic beech forests 
occur in western Romania in a humid climate at elevations 
above 500/600 m a.s.l., and beech is gradually replaced by 
mesic mixed beech-hornbeam and hornbeam-oak forests and 
finally thermophilic oak forests with decreasing elevation 
towards the colline belt (< 300/400 m; Coldea et al., 2015; 
Doniță,  1992; Indreica et al., 2017). While the beech forest 
climate is similar to that in southern Germany today, the cli-
mate of the oak forest zone reflects the projected warmer and 
drier climate in central and southern Germany in 2070/2100 
according to the most probable climate change scenarios. 
This is clearly beyond the assumed beech/oak climatic turn-
ing point (Hampe and Petit, 2005; Mette et al., 2013; Mel-
lert et al., 2016), and beech forests are found at this eleva-
tion only extra-zonally on northern slopes or in valleys with 
higher humidity, representing ‘rear-edge’ populations, while 
slopes with southern exposition are covered by oak forests 
(Doniță, 1992; Lenoir et al., 2013; Maclean et al., 2015).

We used the space-for-time substitution approach (Pick-
ett, 1989) in three elevation transects across the beech-oak 
ecotone in western Romania to study the carbon storage in 
aboveground tree biomass and the soil under climatic condi-
tions that likely will be effective in the centre of the beech 
distribution range at the end of the century. The transects 
were chosen for sufficient comparability in terms of thermal 
and hygric conditions, exposition, bedrock type, tree spe-
cies composition and management history. With a systematic 
sampling scheme, we measured C stocks in aboveground 
biomass through forest inventories and soil organic carbon 
(SOC) stocks in soil pits along plots located continuously 
along the gradient from pure beech to oak-dominated forests. 
F. sylvatica typically functions as an ecosystem engineer 
that modifies stand climate, soil chemistry and hydrology 
through pronounced effects on radiation transmission to the 
forest floor and influences on C and nutrient fluxes via a rela-
tively high recalcitrance of its litter (Berg & McClaugherty, 
2014; Guckland et al., 2009). This has the consequence that 
the beech-oak ecotone is determined not only by elevation-
dependent temperature and precipitation gradients but also 
by strong tree species effects, which have to be taken into 
account when interpreting the results.

The following hypotheses guided our research: (i) tree 
species diversity increases with the transition from beech 
to oak dominance, as beech dominance suppresses light- 
and warmth-loving species. (ii) The aboveground biomass 
C storage decreases from beech to oak dominance, as 
drought-affected forests accumulate less biomass. (iii) Soil 
organic carbon (SOC) storage decreases from beech to oak 

dominance, as higher temperatures favour mineralization. 
(iv) The C stock decrease in biomass is primarily a tree spe-
cies effect, while the decrease in SOC is mainly a climatic 
(elevation) effect.

2  Methods

2.1  Study area and transect selection

Three transects were established along elevation gradients 
in the western Romanian Banat and Crişana regions on 
the foothills of the south-western Carpathians, extending 
from the ridge crests in the outermost Carpathian chains 
at submontane/montane elevation across the natural beech-
oak ecotone down to the Western Romanian Plain at col-
line elevation (Fig. 1a). They were located (A) in the Bihar 
Mountain range (Zarand Mountains) and (B) in the west-
ern foothills of the main Carpathian Mountain chain, both 
in westernmost Romania, and (C) at the foot of the south-
ern Banat Mountains (Almăj Mountains) in south-western 
Romania (Fig. 1b). The transects Milova (A; 46.1° N/21.8° 
E) and Maciova (B; 45.5° N/22.2° E) are located north-east 
and south-east of Timisoara, the transect Eșelnița (C; 44.7° 
N/22.3° E) west of Orşova close to river Danube (Fig. 1b). 
Transects of 500 m width were demarcated covering a spa-
tial sequence from humid beech-dominated forests at sub-
montane/montane elevation over a humid-subhumid ecotone 
of mixed beech-hornbeam-oak forests (submontane/colline) 
to the basal subhumid oak-dominated forest at colline eleva-
tion (Fig. 1c) (Indreica et al., 2019). As the transects were 
chosen to serve as replicates on the landscape level, they 
were selected for sufficient comparability in terms of tree 
species composition, forest management, stand structure, 
exposition, soil types and overall climatic conditions.

All forest stands were mature (> 60 years old) and of 
25–35 m in height with closed canopy. Before the 1960s, 
occasional wood-cutting and coppicing have been conducted 
at low intensities in all stands. Since then, the forests were 
transferred to state-ownership and supervised by local for-
est authorities according to management plans, and previ-
ously coppiced stands were allowed to grow into high for-
ests (Öder et al., 2021). The legacy of former coppicing in 
form of the presence of multi-stemmed trees is still visible 
in all stands. They were managed according to common 
Romanian silvicultural schemes, in which stands are lightly 
to moderately thinned (5–15% of stand volume) from the 
pole-wood stage up to an age three quarters of the harvest 
age (Nicolescu, 2018). Salvage and sanitary loggings were 
also irregularly conducted at low intensity (< 5% of stand 
volume). Records of the local forest authorities demonstrate 
that no major harvest operations have occurred in the last 
20 years at all sites (Öder et al., 2021).
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In the beech and oak forests, beech and three oak spe-
cies (Q. petraea, Q. cerris, Q. frainetto), respectively, each 
contributed with at least 85% to total stem number, while 
remaining stems belonged to accompanying species such as 
Carpinus betulus L., Acer campestre L. and Tilia tomentosa 
Moench. In the ecotone, the oak species and beech each 
contributed with about 30% to the basal area, while the 
remainder belonged mostly to Carpinus and Tilia species. 
All three transects were placed on predominantly south-
west- to south-east-facing slopes.

The climate of the study region is temperate sub-con-
tinental with warm summers and relatively cold win-
ters (Table 4, in the Appendix). The lapse rate of annual 

precipitation was assumed to be + 45 mm  year−1/100 m, the 
temperature lapse rate about − 0.5 K/100 m (Maruşca, 2017). 
For focusing on the most limiting summer period (Bréda 
et al., 2006; Hohnwald et al., 2020) and comparing our sites 
with reference sites of beech distribution in Central Europe, 
we calculated the modified Ellenberg Quotient (EQm) (Mel-
lert et al., 2018) for our study sites, i.e. the ratio of mean 
temperature during the warmest quarter (BIO10) to precipi-
tation during the warmest quarter (BIO18).
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Fig. 1  a Location of Romania in Europe, b location of the three 
transects A–C in western Romania from the R package rworldmap 
(South, 2011) and c maps of the three transects with coordinates, con-
tour lines (100-m elevation distance), the inventoried forest area and 
location of inventory and soil sampling plots. The colour of the dots 

indicates the mean temperature of the warmest quarter (BIO10, upper 
panels) and the mean precipitation of the warmest quarter (BIO18, 
lower panels) of the inventory and soil plots according to interpola-
tion from the CHELSA climate data base (Karger et al., 2017)
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All forests stock on acidic bedrock, which at many places 
is covered by a loess layer of up to − 100 cm depth. Soil types 
are predominantly moderately acidic (eutric) Cambisols.

2.2  Climate data

High-resolution gridded climate data with a grain of 
30 arcsec (~ 1   km2) was retrieved from the CHELSA 
(v1.2) climate database (Karger et al., 2017) for monthly 
temperature and precipitation data sets averaged over the  
years 1979–2013. For the subsequent statistical analysis,  
we selected mean temperature of the warmest quarter  
(BIO10), minimum and maximum temperatures (Tmin 
and Tmax, average temperatures of the coldest and hottest  
month, respectively), mean precipitation of the warmest  
quarter (BIO18), minimum and maximum monthly pre-
cipitation (Pmin and Pmax, mean precipitation of the  
wettest and driest month, respectively), mean monthly 
temperature (TG) and mean monthly precipitation (PG)  
data. We extracted the variables BIO10 and BIO18 for the  
study region to characterise the three gradients with respect 
to thermal and hygric conditions (Fig. 1c). This was done  
for average elevations of the beech forest, mixed forest  
(beech-oak ecotone) and the oak forest. The climate data of  
these 9 locations (3 forest types, 3 transects) were placed in  
the temperature-precipitation envelope of German climate  
stations to illustrate the position of the Romanian sites 
relative to the climate range in the centre of the beech 
distribution range (Fig. 2).

2.3  Forest inventories and dominant tree species

We obtained forest structure data through systematic  
sampling in a squared grid of 200 m × 200 m along the  
studied 500 m-wide north–south oriented transects (Fig. 1c).  
Sample sizes were 90, 90 and 100 plots for transects A, B  
and C, respectively, with a sample intensity for all sites of  
approx. 0.8% of the stand area (Table 5, in the Appendix).  
For each grid point, the starting point was accessed in the  
field with a GPS (Garming GPSmap 64), and a fixed-area  
plot with 10 m radius was demarcated (314  m2). Within 
these plots, all trees with a diameter at breast height 
(DBH) ≥ 7 cm were determined to species level, and height  
and diameter measured (DBH with a diameter band covering  
all individuals; height with a VERTEX IV height meter for 
max. 3 individuals per species and plot). The mean slope  
of the plot was determined with the height meter and used  
to apply a slope correction factor to the measured plot 
area for plots with slope angle α > 9° (correction factor 1/ 
√

cos(�) ). Tree height was calculated for all sample trees 
using DBH-dependent log-height curves fitted for each  
species and transect, with measured heights being pooled 
over the transects in case of very infrequent species (Kasper 

et  al. 2021). We used average allometric equations to  
estimate biomass adopting the DBH- and height-dependent 
volume models developed by the Romanian National Forest 
Inventory described in Vidal et al. (2016) after Giurgiu et al.  
(2004):

with DBH being diameter at breast height (cm), h the mod-
eled tree height (m) and a0, a1, a2, a3, a4 species-specific 
volume coefficients (tree trunk including branches).

Transect-specific wood density data were obtained for 
the main tree species F. sylvatica, Q. petraea, Q. cerris, Q. 
frainetto, T. tomentosa and C. betulus by measuring wood 
cores with a volume of 1  cm3, which were weighed after 
drying for 48 h at 105 °C. For all other species, wood den-
sities were taken from values listed in Trendelenburg and 
Mayer-Wegelin (1955). Wood density was used to convert 
volume into biomass. With Bosshard (1984), we assumed a 
mean carbon content of 50% of the biomass. An overview 
of the inventory data is given in Table 6 (in the Appendix).

2.4  Soil sampling and laboratory methods

Soil samples were taken in soil pits dug to − 70 cm depth 
that were systematically placed along the transects at 50 m 
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elevation steps (13–15 pits per transect; black stars in 
Fig. 1c). Additionally, three pits per site were also dug in 
‘rear edge’ beech forests on northern slopes at low eleva-
tion; however, they were not included in the analysis. Sam-
ples of the organic layer were collected with a metal frame 
of 30 cm × 30 cm surface area, after larger debris (twigs 
and branches) had been removed. For the soil physical and 
chemical analyses, mineral soil samples were extracted in 
three depths (0–10 cm, 10–20 cm, 20–40 cm) with a metal 
cylinder of 100  cm3 volume. To reduce the influence of 
small-scale soil heterogeneity, three 100  cm3 samples were 
extracted per depth and soil pit and mixed. Prior to analysis, 
the samples were sieved through a 2-mm sieve to manu-
ally pick out roots and the coarse-grained soil particle frac-
tion > 2 mm from both mineral soil and organic layer. The 
bulk soil density was determined by drying mineral soil 
samples of 100  cm3 volume for 48 h at 70 °C and weighing 
them (Kasper et al. 2021).

Soil texture was analysed in every pit with a soil particle 
analyser (Pario, METER Group, Munich) for samples from 
the depth of 20–40 cm, separating clay, silt and sand frac-
tions. After suspending 40 g of soil in 500 mL  H2O, the 

organic fraction was dissolved with 30 mL  H2O2 (30%) and 
the soil particles were subsequently dispersed with a solution 
of 60 g  Na4P2O7 per 1.0 L  H2O (for details see www. meter 
group. com/ envir onment/ produ cts/ pario/). The potential stor-
age of plant-available water in the soil (pAWC, in %) was 
calculated with the RETC method after Van Genuchten et al. 
(1991) from the particle size distribution and bulk soil den-
sity, taking into account the coarse-grained particle fraction 
and subtracting the estimated water capacity at the wilting 
point (matric potential =  − 1.5 MPa) from field capacity 
(matric potential =  − 60 hPa).

pH  (H2O) was measured in a suspension of 10.0 g fresh 
sieved soil (2.5 g for the organic layer) in 25 mL deionised 
water. The total content of K, Mg and Ca in the organic 
layer was determined after nitric acid-pressure digestion by 
ICP-OES analysis (Perkin Elmer Optima 5300 DV). In the 
mineral soil, the concentration of salt-exchangeable cations 
 (K+,  Ca2+,  Mg2+,  Al3+,  Fe3+,  Mn2+ and  Na+) was deter-
mined by percolating 2.5 g of fresh soil with a 0.2 M  BaCl2 
solution and then determining cation concentrations in the 
solution by ICP-OES analysis (following Hendershot et al. 
(2007)). The concentration of exchangeable hydrogen ions 
 (H+) was calculated during the percolation process from the 
observed pH change. Since the exchangeable  Na+ concentra-
tions were very low or even below the detection limit at all 
sites, the  Na+ concentrations were not included in the cal-
culation of the cation exchange capacity (CEC i.e. the sum 
of all salt-exchangeable cations plus  H+) and base saturation 
(BS, % of CEC occupied by  Ca2+,  Mg2+ and  K+). For esti-
mating available base cation pools  (Ca+2

ex,  Mg+2
ex,  K+

ex) in 
the mineral soil, the concentration data (in µmolc  g−1) were 
converted to volumetric data  (molc  m−2 soil depth) using the 
bulk soil density data determined separately in all profiles 
for the studied depths. Total pools of exchangeable cations 
were then calculated by summing up over all three mineral 
soil depths investigated. For the organic layer, element con-
centration values were multiplied with organic layer mass 
per area to obtain element stocks per ground area (g  m−2).

The organic carbon and total nitrogen contents of ground 
and dried mineral soil and organic layer samples were ana-
lysed by gas chromatography with a vario EL III analyser 
(Elementar, Hanau, Germany) via detection of  CO2 and  N2 
(Skjemstad & Baldock (2007) and McGill et al. (2007)). Soil 
organic carbon (SOC) and soil total nitrogen (STN) concen-
trations (mg  g−1) were converted into element densities per 
area (Mg  ha−1) using the soil bulk density data. Total phos-
phorus (P) concentration was measured in the organic layer 
samples with ICP-OES, while in the mineral soil, resin-
extractable phosphorus  (Pav) was determined as an estimate 
of plant-available P (resin-bag method). To do so, 1.0 g of 
fresh soil was suspended in 30 mL of water and  Pav was 
extracted with the anion exchanger resin Dowex 1 × 8–50. 
 Pav was then re-exchanged from the resin with NaCl and 
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Fig. 3  Store of aboveground biomass carbon (in Mg C  ha−1) in the 
oak, mixed and beech forest plots (means and standard error (SE) 
of the three transects). Plots dominated by linden (basal area of T. 
tomentosa > 66.6%) are also shown. Beech forests: all plots with basal 
area of F. sylvatica > 66.6%, oak forests: all plots with basal area of 
Quercus species > 66.6%, mixed forests: all other forests (except for 
stands with T. tomentosa > 66.6%). Significant differences between 
forest types (p ≤ 0.05) are marked with different small letters (one-
way ANOVA with post hoc Tukey test)

http://www.metergroup.com/environment/products/pario/
http://www.metergroup.com/environment/products/pario/
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NaOH solutions, and the  Pav concentration determined in a 
photometer at 712 nm (biochrom Libra S22) against water 
using the colorimetric molybdate-ascorbic acid method (fol-
lowing Moir & Tiessen (2007)). The soil pools of SOC, STN 
and  Pav for profiles to a uniform depth of − 100 cm were 
extrapolated from the values measured in the three depths 
0–10 cm, 10–20 cm and 20–40 cm applying individual 
depth-dependent decay functions. For comparability of min-
eral soil element pools amongst the different forest types 
and sites, the information on the volume percent of coarse 
soil particles in the three soil depths (usually < 5%) was 
excluded from calculations. To obtain soil data for the stand 

inventory plots, the soil data from the 13–15 pits per transect 
were interpolated using weighted means i.e. the influence of 
neighboring pits weighted by the inversed squared distance 
of the soil pits to the inventory plots (for soil chemical raw 
data see Table 7 in the Appendix)

2.5  Data analysis

All data was analysed with R software version 3.5.1 (R 
Core Team, 2018) using the R-packages ggplot2 (Wickham, 
2009), psych (Revelle, 2015) and vegan (Oksanen et al., 
2019). We applied ordination techniques to identify the 
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Fig. 4  Means (and SE) of C, N, P and cation pools in organic layer 
and mineral soil of the beech, mixed (beech-oak) and oak stands 
(n = number of plots). In the case of SOC and N, total pools are given 
for organic layer and mineral soil.  Pav is resin-extractable P in the 
mineral soil and total P in the organic layer. For the basic cations (Ca, 
Mg, K), only  BaCl2-exchangeable pools of the mineral soil are given. 

Profile totals (MS total) of SOC, N and P were calculated for a depth 
of − 100 cm and for  Ca+2

ex,  Mg+2
ex and  K+

ex for a depth of − 40 cm. 
Significant differences for MS total and Org. layer (p ≤ 0.05) between 
forest types are indicated by different small letters (Kruskal–Wallis 
test with post hoc Pairwise Wilcoxon Rank Sum Test). No samples 
were taken in the linden forests
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main ecological gradients in the study region and to explore 
how soil and climate variables are related to the shift in 
tree species composition along the gradients. In detail, we 
applied detrended correspondence analysis (DCA, decorana 
in vegan), which is well suited for ecological gradient analy-
sis, because it suppresses typical ordination problems inher-
ent to gradient studies including complete species turnover, 
as in our study, by implementing iterative detrending (Hill 
and Gauch 1980; Leyer and Wesche 2007).

First, we used the relative basal area of a species per 
inventory plot as input for the ordination, as it accounts for  
the number of stems, whilst also representing the species  
dominance in the forest. To exclude non-forest plots 
(gaps), all plots with a cumulative basal area < 0.3  m2 were  
excluded from the analysis (n = 15). Second, we correlated  
the standardized values (mean = 0, standard deviation = 1) 
of individual environmental variables (climate, soil, forest  
structure and topography) with the ordination space and 
tested for significance (p < 0.05) of correlations in a 999-
fold permutation test (function envfit). Here, we accounted 
for multi-collinearity by calculating cross-correlations 
for all environmental variables in order to eliminate  
all pairwise correlations by pairwise variable reduction 
(always retaining the variable of higher correlation to 
the ordination axes). Furthermore, we accounted for the 
threefold replication at the transect level by including the 
transect ID as a spatial term in the tests for significance  
(permutation testing only within transects, strata argument  
in envfit function).

Furthermore, we assessed how the variables aboveground 
biomass carbon (AGC), soil organic carbon (SOC, only min-
eral soil) and organic layer carbon (OLC), as well as all soil 
variables that were significantly correlated to the DCA ordi-
nation axes, were related to the complete species turnover 
from pure oak to pure beech forest along our transects. To 
do so, we regressed the beech–oak turnover against the vari-
ables in the analysis of co-variance (ANCOVA with F test, 
p < 0.05) by including the factor ‘transect’ as a spatial term 

in the models. We calculated the beech-oak index (basal area 
beech coverage in % − basal area oak coverage in %), rang-
ing from + 100% beech (F. sylvatica) to − 100% oak (sum of 
all Quercus spp.). In order to use the exact results from the 
soil analyses (in comparison to interpolated values for the 
ordination), we calculated the beech-oak index of each soil 
pit from the four closest forest inventory plots (distance-
weighted average). We tested first for a possible interaction 
between the two explanatory variables (y ~ transect × index). 
If the interaction was non-significant, the interaction was 
removed to simplify the model (y ~ transect + species). All 
model residuals were checked for normal distribution (Q–Q 
plot, Shapiro–Wilk test) and, if required, the response vari-
able was log- or square-root transformed to attain a normal 
distribution of residuals.

3  Results

3.1  Aboveground carbon, soil organic carbon 
and nutrient pools in the different forest types

The aboveground carbon pool (AGC) was about 40 Mg C 
 ha−1 larger in the beech forests than in the oak forests and 
the mixed oak-beech forests (difference significant; Fig. 3 
and Appendix Table 8). Correspondingly, the mineral soil 
to − 100 cm depth contained about 17 Mg C  ha−1 more SOC 
in the beech than the oak and mixed oak-beech stands (sig-
nificant differences only to mixed forests) (Fig. 4 and Appen-
dix Table 9). A similar trend between the forest types existed 
also for the organic layer C pool, but the differences were 
smaller and also only significant to the mixed forests (Fig. 4 
and Appendix Table 9). The difference in AGC between 
beech forests and oak-, mixed oak-beech- and linden-dom-
inated forests was found in all three transects (Fig. 7, in the 
Appendix), whereas the trend to higher SOC contents in the 
beech forests was only observed in transects B and C (Fig. 8, 
in the Appendix).

Table 1  Correlation between the tree species’ relative basal area (in 
%) in the plots and the ordination (DCA) axes 1 to 4. a Characteris-
tics of the first four axes in the analysis with all tree species. b Asso-
ciation of the most dominant tree species (according to their relative 
basal area in %) to the DCA axes 1 and 2 (expressed as direction 

cosines) and correlation of the species to the ordination space (given 
are the R2 and p values). While the data set with all tree species was 
used to establish the ordination in a, all oak species were pooled to 
Quercus spp. in analysis (b) and this species group was only corre-
lated post hoc to the ordination space

a) Characteristics of axes 1 to 4 b) Correlation of main tree species to axis 1 and 2
Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 R2 p value

Eigenvalue 0.723 0.558 0.489 0.484 F. sylvatica 0.294  − 0.956 0.879  < 0.001
Decorana value 0.730 0.521 0.376 0.306 Q. frainetto  − 0.847  − 0.532 0.217  < 0.001
Axis length 5.488 3.446 3.763 3.442 T. tomentosa 0.305 0.952 0.315  < 0.001

Q. cerris  − 0.816  − 0.578 0.146  < 0.001
Q. petraea  − 0.933  − 0.360 0.410  < 0.001
C. betulus 0.366 0.931 0.160  < 0.001
Quercus spp.  − 0.898  − 0.440 0.815  < 0.001
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The nitrogen pool in the organic layer of the mixed stands 
and the oak forests was smaller than in the beech forests 
(Fig. 4; difference significant only to beech forests), while 
the differences in the mineral soil N pools were not sig-
nificant (Fig. 4 and Appendix Fig. 8). The significant trends 
between forest types were more pronounced in the transects 
B and C than in A (Fig. 8 in Appendix). Soil C/N ratio and 
base saturation did not differ between the three forest types 
(Table 9 in Appendix). We found no significant differences 
in the mineral soil pool of available P and organic layer total 
P pool between the beech forests and the other forest types, 
yet transect C exhibited elevated levels of available P in the 
soil of the beech forests (Fig. 4 and Appendix Fig. 8). The 
Ca pool in the organic layer was significantly larger in the 

beech than the mixed forests (but not the oak forests). In con-
trast, the mineral soil  Caex pool was not significantly larger 
in the beech and mixed forests than in the oak forests (Fig. 4 
and Appendix Table 9). For the Mg and K pools, no clear 
patterns across the three forest types were found.

3.2  Tree species change along the gradients 
and relationships between forest type 
and climatic, soil and forest structural factors

Table 1a shows the Eigen- and Decorana values of the DCA 
ordination axes 1–4 for the inventory plots. The abundance 
of the four most dominant species in the three transects (F. 
sylvatica, Q. petraea, T. tomentosa and C. betulus, Table 6, 

Table 2  Association of the investigated climatic and stand structural 
(a), organic layer (b) and mineral soil variables (c) with the DCA 
axes 1 and 2 (given are the direction cosines, and the correspond-
ing R2 and p values). The variables are ordered by decreasing R2; 

variables with significant association are printed in bold. For the soil 
chemical variables, either concentrations for mineral soil horizons 
(0–10  cm, 10–20  cm and 20–40  cm) or total pools (0–100  cm for 
mineral soil and total for organic layer) are given

(a) Climatic and stand structural variables (c) Mineral soil variables
Variables Axis 1 Axis 2 R2 p value Variables Axis 1 Axis 2 R2 p value
Tmin [°C] 0.93 0.37 0.38  < 0.01 STN 10–20 cm [mg  g−1]  − 0.98  − 0.20 0.16  < 0.01
MWT [°C] 0.95 0.32 0.37  < 0.01 SOC 10–20 cm [mg  g−1]  − 0.76  − 0.65 0.16  < 0.01
Pmin [mm]  − 0.94  − 0.35 0.35  < 0.01 STN 0–10 cm [mg  g−1]  − 0.98  − 0.20 0.15  < 0.01
Tmax [°C] 0.98 0.22 0.34  < 0.01 SOC 0–10 cm [mg  g−1]  − 0.72  − 0.69 0.11  < 0.01
MST (BIO10) [°C] 0.97 0.23 0.34  < 0.01 CEC  [molc  kg−1]  − 0.91  − 0.42 0.10  < 0.01
Elev. [m a.s.l.]  − 0.92  − 0.40 0.33  < 0.01 Ca+2

ex pool  [kmolc  ha−1]  − 0.89 0.46 0.10  < 0.01
MWP [mm]  − 1.00 0.03 0.22  < 0.01 SOC 20–40 cm [mg  g−1]  − 0.57  − 0.82 0.09  < 0.01
MSP (BIO18) [mm]  − 0.99  − 0.14 0.22  < 0.01 STN 20–40 cm [mg  g−1]  − 0.80  − 0.61 0.08  < 0.01
Pmax [mm]  − 1.00  − 0.07 0.21  < 0.01 SOC pool [Mg  ha−1]  − 0.99  − 0.13 0.07  < 0.01
Stem  [ha−1]  − 0.08 1.00 0.17  < 0.01 STN pool [Mg  ha−1]  − 0.88 0.47 0.07  < 0.01
AGC [Mg  ha−1]  − 0.32  − 0.95 0.14  < 0.01 Base saturation [%]  − 0.80 0.60 0.05  < 0.01
Tree vol.  [m3  ha−1]  − 0.94  − 0.34 0.12  < 0.01 Pav10–20 cm [mg  kg−1]  − 0.48  − 0.88 0.04  < 0.05
Basal area  [m2  ha−1]  − 0.90 0.43 0.06  < 0.01 C/P 0–10 cm [g  g−1]  − 0.85  − 0.53 0.04 0.09
Slope [°]  − 0.22 0.98 0.01 0.21 N/P 0–10 cm [g  g−1]  − 0.82  − 0.57 0.03 0.17
Exposition [°] 0.26 0.96 0.01 0.34 Pav 0–10 cm [mg  kg−1]  − 0.26  − 0.97 0.03 0.05

pH  [H2O]  − 0.66 0.75 0.03  < 0.05
(b) Organic layer variables C/N 0–10 cm [g  g−1] 0.73  − 0.68 0.03 0.19
Variables Axis 1 Axis 2 R2 p value Pav pool [kg  ha−1]  − 0.44  − 0.90 0.03 0.06
OL N [mg  g−1]  − 0.72  − 0.70 0.06  < 0.01 Pav 20–40 cm [mg  kg−1]  − 0.33  − 0.94 0.03 0.05
OL Ca pool [kg  ha−1]  − 0.81  − 0.59 0.05  < 0.05 Silt [%]  − 0.98  − 0.18 0.02 0.18
OL N/P [g  g−1]  − 0.98 0.19 0.04 0.14 Sand [%] 1.00 0.08 0.02 0.53
OL Mg pool [kg  ha−1]  − 0.74  − 0.67 0.03 0.06 C/P 10–20 cm [g  g−1]  − 0.17 0.98 0.02 0.67
OL C [mg  g−1]  − 0.13  − 0.99 0.03 0.09 N/P 10–20 cm [g  g−1]  − 0.18 0.98 0.01 0.73
OL pH  [H2O]  − 0.66 0.75 0.03 0.05 C/N 10–20 cm [g  g−1] 0.53  − 0.85 0.01 0.83
OL C/P [g  g−1]  − 0.92  − 0.38 0.02 0.52 K+ ex pool  [kmolc  ha−1]  − 0.30 0.95 0.01 0.54
OL C/N [g  g−1] 0.41  − 0.91 0.01 0.88 Mg+2

ex pool  [kmolc  ha−1]  − 0.42 0.91 0.01 0.83
OL C pool [Mg  ha−1]  − 0.74  − 0.68 0.01 0.77 C/N 20–40 cm [g  g−1] 0.12  − 0.99 0.01 0.99
OL P pool [kg  ha−1]  − 0.45  − 0.89 0.01 0.93 Clay [%] 0.69 0.72 0.00 0.89
OL N pool [kg  ha−1]  − 1.00  − 0.08 0.00 0.87 pAWC [%]  − 0.63  − 0.78 0.00 0.95
Org. matter [kg  m−2]  − 0.99  − 0.13 0.00 0.99 N/P 20–40 cm [g  g−1] 0.38  − 0.93 0.00 1.00
OL K pool [kg  ha−1] 0.66  − 0.75 0.00 1.00 C/P 20–40 cm [g  g−1] 0.72 0.69 0.00 1.00
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in the Appendix) and of the two less abundant thermo-
philic oak species (Q. cerris and Q. frainetto, Table 6, in 
the Appendix) was closely related to the axes 1 and 2 in 
the ordination. F. sylvatica showed the strongest correlation, 
followed by Q. petraea and, at third position, T. tomentosa 
(Table 1b). However, when the three oak species are pooled 
(Quercus spp.) in the ordination, the relationship of the oaks 
to the axes 1 and 2 became more prominent (Table 1b). Spe-
cies turnover is in all transects dominated by the shift from 
Quercus species to F. sylvatica, despite the frequent occur-
rence of T. tomentosa in the plots (Table 1). The species 
distribution along the gradients was similar amongst the 
three transects, as visible from the equal distribution of the 
species and transects in the ordination space and the clear 
separation of the beech- and oak-dominated plots (Fig. 10, 
in the Appendix).

The turnover from beech to oak along the first ordina-
tion axis as the dominant floristic gradient in the data set 
correlates with the temperature increase along the gradient, 
whereas the second axis was related to a shift in precipita-
tion. Tree species turnover was the closest associated with 
temperature variation (elevation), followed by precipitation, 

and less with the soil and stand structural variables, which 
showed weaker association with the ordination axes 
(Table 2). Oak-dominated forests correlated with higher 
values of the temperature variables and lower values of the 
precipitation variables and elevation, whereas the opposite 
was true for the beech-dominated forests (Fig. 5a, Table 2a).

Amongst the soil variables, the association with 
the ordination axes was the strongest for mineral soil 
SOC and STN with the first ordination axis, revealing 
increasing C and N pools with decreasing temperature 
and increasing moisture; the same climatic shifts also 
explained an increasing proportion of beech in the stands 
(Fig. 5b, Table 2c). While the chemical properties of the 
organic layer generally were not related to the first two 
DCA axes, an exception were the stores of OLN and Ca, 
which tended to be closer associated with lower tempera-
tures and increasing moisture. This was also the case for 
the  Ca+2

ex pool and the base saturation in the mineral soil 
(Fig. 5b, Table 2b). None of the soil physical variables 
like soil texture (sand, silt and clay content) and the cal-
culated pAWC was related to the climatic shift or the tree 
species turnover along the transects (Table 2c).
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Fig. 5  Climatic, edaphic and stand structural variables significantly 
(p < 0.05) correlating with the axes 1 and 2 of the DCA ordination 
space calculated with the tree species’ relative basal area (B.A. in 
%) in the plots. The relationships are indicated by the direction of 
arrows, the strength of correlation (R2) by the arrow lengths. Sym-
bol position was slightly adjusted to avoid overplotting. For vari-
able units of climate, forest stand, organic layer and soil, see Table 2 
and for full names with explanations Table 11 in Appendix. Plot (a) 

shows the tested climatic and stand structural variables, plot (b) the 
organic layer and mineral soil variables. The plots in (a) are col-
oured according to the dominant tree species (grouped into four for-
est types according to dominant species (beech forest: F. sylvatica 
B.A. > 66.6%, oak forest: Quercus spp. B.A. > 66.6%, linden forest: 
T. tomentosa B.A. > 66.6%; mixed forests: all other species combina-
tions). The plots in (b) are coloured according to the percentage of 
F. sylvatica in the total basal area, indicating the linear shift towards 
beech dominance along ordination axis 1
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The relationship of stand structural variables with the 
ordination axes was also weaker than found for the climate 
variables. Higher values of tree volume and AGC correlated 
with axis 1 and increased towards the beech-dominated for-
ests, while stem density was more closely related to axis 2 
and increased towards the linden-dominated forests. Finally, 
basal area (BA) increased towards beech- and linden-domi-
nated forests (Fig. 5a, Table 2a).

3.3  Relatedness of the beech‑oak index 
to aboveground biomass carbon, soil carbon 
and nutrient stocks

The relationships of the significantly correlating mineral 
soil variables (SOC and STN pools,  Pav pool,  Ca+2

ex pool, 

CEC, BS and pH) and organic layer variables (OLC, OLN, 
P and Ca pools), as well as of AGC with the abundance of 
beech and oak, expressed through the Beech–Oak Index, 
were tested with an ANCOVA model of the form y ~ tran-
sect × index. None of the variables was related to the inter-
action between transect and beech-oak index, yet when a 
simplified ANCOVA model of the form y ~ transect + index 
was run, numerous soil and climate variables showed a 
significant transect effect, revealing regional differences 
between the three study sites (Table 10, in the Appendix). 
A significant relationship to the beech-oak index was found 
only for a minority of variables, notably AGC, the SOC pool 
in the mineral soil (Fig. 6, Table 3), and the organic layer 
Ca pool (results of the ANCOVA modeling in Table 10, in 
the Appendix).
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Fig. 6  Left panel: aboveground carbon (Mg C  ha−1) and right panel: 
soil organic carbon (Mg C  ha−1) in dependence of the beech-oak 
index (− 1 for 100% oak to 1 for 100% Beech relative basal area) for 
the three transects according to the model predictions. The adjusted 

R2 of the model fit is also given. The abundance of plots near an 
index value of 0 is caused by plots in which T. tomentosa forms pure 
stands

Table 3  ANCOVA table for models testing the influence of transect 
A–C and beech-oak index (index) on (a) aboveground biomass car-
bon (AGC in Mg C  ha−1) and (b) soil organic carbon (SOC in Mg C 

 ha−1) in the mineral soil (0–100 cm) in the plots of the three transects. 
The model was of the form: AGC or SOC ~ transect + index

(a) Aboveground biomass carbon (square-root transformed) (b) Soil organic carbon (log 10-transformed)
Df Sum Sq Mean Sq F value p value Df Sum Sq Mean Sq F value p value

Transect 2 195.39 97.70 19.96  < 0.001 2 0.11 0.05 4.72  < 0.05
Index 1 110.32 110.32 22.54  < 0.001 1 0.07 0.07 6.48  < 0.05
Residuals 261 1277.31 4.89 37 0.43 0.01

Adjusted R2: 0.1838 Adjusted R2: 0.2443
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The linear models show consistently for all three transects 
that AGC and SOC decrease from the beech-dominated to 
the oak-dominated forests, despite differences in the cli-
matic, edaphic and stand structural characteristics between 
the transects (Fig. 6). Despite this uniform trend, the abso-
lute size of carbon pools was significantly different between 
transects, with transect B having the largest AGC pool and 
transect A the highest SOC pool (Fig. 6).

4  Discussion

4.1  Climatic conditions across the beech‑oak 
ecotone

Our study of oak and beech forests in the relatively undis-
turbed contact zone between the two species allows defin-
ing the thermal and hygric limits of beech in central-eastern 
Europe to 18.4–21.8 °C mean temperature of the warm-
est quarter (BIO10) and 140–200 mm precipitation in the 
warmest quarter (BIO18). Since the shift from beech to 
oak occurs roughly in the middle of the three transects, 
the thermal beech/oak turning point must be in the range 
of 19.5–20.5 °C of the BIO10 quarter. Using the modified 
formula of the Ellenberg Aridity Index after Mellert et al. 
(2018), the turning point appears at EQm = 97.5. This agrees 
quite well with the hot and dry limit of the 95% inter-percen-
tile range of temperature and precipitation data from German 
climate stations that enclose most of the beech distribution 
range in Central Europe. In fact, the three oak forests of the 
Romanian study region lie well beyond the climate envelope 
of beech forests in Germany, and two of the three mixed 
oak-beech forests are located exactly on the 95% demarca-
tion line, confirming that most of Germany currently has a 
climate still supporting beech growth. However, an increase 
of the BIO10 by at least 2.3 °K, as projected for 2061–2080 
in southern Germany for the intermediate climate warming 
scenarios (RCP 4.5, RCP 6.0), will shift part of the current 
beech forest area into the oak forest domain.

Earlier studies of forest structure and community  
composition in the western Romanian study region have 
shown that the beech forests are in many structural aspects 
very similar to Central European beech forests of the Galio-
Fagion, and the oak-rich forests resemble Central European  
communities of the Quercetalia pubescenti-petraeae  
(thermophilic mixed oak forests) and Carpinetalia betuli 
(oak-hornbeam forests), despite the admixture of additional 
tree species with sub-Mediterranean and southeast European 
origin (Heinrichs et al., 2016; Indreica et al., 2017, 2019; 
Walentowski et al., 2015). The forest inventory and soil 
chemical data show that the three transects are located on 
mesic to eutric soils, and they are more or less comparable  
amongst the transects. Similar soil conditions are quite  

widespread in the beech forest region of central and south-
ern Germany (Bohn et al., 2000; Fleck et al., 2019; Well-
brock et al., 2019).

4.2  The beech‑oak forest ecotone is associated 
with a shift from mesic to thermophilic tree 
species

While F. sylvatica, Q. petraea and T. tomentosa were the 
most abundant tree species in the studied beech-oak forest 
ecotone of western Romania, C. betulus occurred as another 
relatively abundant co-dominant species in the mixed for-
ests. The next most frequent species were Q. cerris and Q. 
frainetto, which are characteristic for thermophilic forests of 
the Balkans. T. tomentosa, Q. cerris and Q. frainetto do not 
occur in the thermophilic forests of Central Europe, which 
are rich in oak, hornbeam and linden and replace beech for-
ests in the hottest and driest regions (Bohn et al., 2000). The 
three species are elements of the (eastern) sub-Mediterra-
nean thermophilous oak forests (Coldea et al., 2015; Horvat 
et al. 1974) and presumably are more drought- and heat-
tolerant not only than F. sylvatica but also than Q. petraea 
(Petritan et al., 2021).

As predicted, the average tree species richness increased 
from the species-poor beech forests to the mixed oak- 
beech and also to the oak forests, where usually several 
oak species coexisted with other light-demanding species.  
The ordination grouped Q. cerris and Q. frainetto together 
with the rarer accompanying species Fraxinus ornus, 
Carpinus orientalis, Sorbus torminalis and Acer tataricum,  
while F. sylvatica associated with the mesophilous species  
Betula pendula, Populus ssp., and to a lesser degree, A. 
pseudoplatanus and Alnus glutinosa. Species turnover  
in the ordination was in the DCA best represented by the 
first two ordination axes, which also display the variable 
presence of F. sylvatica and the Quercus species in the 
stands and therefore represent the elevation gradient in 
the three transects. C. betulus and T. tomentosa group 
somewhat in between beech and oak in the DCA; they 
characterise stands where neither beech nor oak species 
achieved dominance. Our vegetation gradient reflects 
the typical altitudinal zonation of forest communities  
in Romanian mountains, in which the thermophilic oak 
forest zone is replaced upslope by the mixed oak-hornbeam  
and beech-hornbeam zone, which finally gives way to the  
mesic beech forest zone (Coldea et  al., 2015; Doniță, 
1992; Indreica et al., 2017). T. tomentosa as a species of 
the south-east European flora plays an important role in 
the forests of the study region. It often forms stands with 
high linden dominance, which is thought to be a result of 
timber extraction in the distant past. T. tomentosa is able 
to rapidly colonise forest gaps and form nearly pure stands 
(Dinic et al., 1999; Radoglou et al., 2009).
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4.3  The shift from oak to beech forest is associated 
with pronounced change in climatic, 
but not edaphic, conditions

The elevation distance between the level of typical oak and 
typical beech forests varies between 205 and 315 m in the 
three transects, which is equivalent to a temperature differ-
ence of 1.0–1.6 °K. We assumed a precipitation increase of 
45 mm  year−1/100 m in the study region, which results in an 
estimated precipitation increase of 90–140 mm  year−1 from 
the oak to the beech forest level. Microclimatic measure-
ments inside the stands showed that the temperature dif-
ference in mid-summer is even greater (2 °K; Hohnwald 
et al., 2020). The somewhat cooler and moister climate in 
the beech forests may well be the main cause of the higher 
SOC pool in this forest type compared to the oak and mixed 
forests further downslope.

Our ordination which analysed the association of cli-
matic and edaphic factors with the beech-oak abundance 
gradient showed a dominant influence of climatic fac-
tors, while edaphic variables associated only weakly with 
the species turnover from beech to oak. Climate factors 
explained a maximum of 38% (in the case of Tmax) and 
a minimum of 21% (Pmin) of the species variation in the 
ordination, demonstrating the expected association of 
beech and oak forests with variation in temperature and 
moisture. This fits with range-wide dendroecological 
analyses, which typically show that beech is very sensi-
tive to high summer temperatures and low precipitation (Di 
Filippo et al., 2007; Jump et al., 2006; Muffler et al., 2020). 
In contrast, dendrochronological data show for Central 
European oak species a much smaller influence of drought 
and heat on radial growth (Härdtle et al., 2013; Harvey 
et  al., 2020; Scharnweber et  al., 2011), which largely 
explains the dominance of oak forests in the hotter and  
drier foot zone of the Romanian mountains.

Unlike the climatic factors, the association between soil 
chemical properties and the beech-oak abundance gradient 
was weaker and for many variables not significant. This is 
explained by the only minor change in soil properties across 
the beech-oak ecotone and the fact that both beech and the 
oak species show a broad tolerance for variation in soil acid-
ity and base saturation (Leuschner and Ellenberg, 2017). 
The observed soil chemical differences between beech and 
oak forests may in part be explained by elevation effects 
on pedogenesis, while tree species effects on soil chemistry 
likely are of minor importance. Variation in soil physical 
properties, notably clay content and storage capacity for 
plant-available water, was not related to the tree species 
turnover from beech to oak forest. This confirms that oak 
replaces beech because the climate becomes unfavourable at 
lower elevations, and not due to changes in soil texture that 
increases edaphic aridity in the foot zone of the mountains.

4.4  Aboveground biomass and soil carbon stocks 
are higher in beech than in oak forests

The studied beech forests stored on average about 28% more 
C (≈ 40 Mg  ha−1) in aboveground biomass and 25% more C 
(≈ 17 Mg  ha−1) in the soil than the oak forests, in total (AGC 
and SOC) about 55 Mg C  ha−1 in excess. While the difference 
in AGC between beech and oak forests was large in all three 
transects (A, B, C), the SOC pool differed between beech and 
oak forest only in Maciova (transect B) and Eșelnița (transect 
C), whereas no SOC difference was found in Milova (transect 
A). With about 180 Mg C  ha−1 in aboveground biomass, our 
beech forests stored somewhat more biomass C than 100-year-
old beech forests in Romania are containing on average accord-
ing to the national forest inventory (150 Mg C  ha−1, Bouriaud 
et al. (2019)). Our AGC figures are closer to mature managed 
age-class beech forests in central Germany (mean of 14 stands: 
180 Mg C  ha−1, Meier and Leuschner, 2008). Burschel et al. 
(1993) give an average C storage over all stages of a beech 
management cycle in Germany of 142 Mg C  ha−1, which is 
lower due to the inclusion of younger trees. Oak forests store 
in the temperate region of Europe in general less biomass than 
beech forests, which is often a consequence of lower stem den-
sities. For example, Burschel et al. (1993) give average bio-
mass C stores of < 120 Mg C  ha−1 for German oak forests up to 
160 years in age. Our figures of about 140 Mg C  ha−1 are rela-
tively high due to the high stem densities (on average 733  ha−1), 
likely as a consequence of low management intensity in these 
Romanian oak forests. This is in stark contrast to most Central 
European oak forests, which are intensively thinned at higher 
age to produce large-diameter stems of high value.

The higher carbon storage in aboveground biomass and dead-
wood in the beech compared to the oak forests coincides with a 
larger SOC pool: by about 40 Mg C  ha−1 greater biomass C store 
in the beech stands was associated with a by 20  m3  ha−1 larger 
deadwood volume (Öder et al., 2021), and the SOC pool was ca. 
15 Mg  ha−1 larger in the beech than the oak forests. It is unlikely 
that this represents a causality, as the higher SOC stock under 
beech is easily explained by the elevational distance between 
oak and beech forests. The greater elevation of the beech stands 
corresponds to a by 1.0–1.6 °K lower annual mean tempera-
ture, which reduces decomposition rate. Correspondingly, SOC 
stores under forest have been found to increase by about 12.4 Mg 
C  ha−1 per 100 m increase in elevation according to a global 
meta-analysis (Tashi et al., 2016), which can fully explain the 
difference. Thus, possible effects of tree species and the larger 
biomass in the beech forests likely are playing only minor roles.

Soils under Central European oak and beech forests gen-
erally accumulate similar amounts of C and N, when bed-
rock and climate are comparable. This is evident from the 
national forest soil inventory of Germany, where more than 
hundred profiles each under beech and oak forest did not 
differ significantly with respect to SOC stores in the mineral 
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soil and the organic layer (Grüneberg et al., 2019). Similarly, 
beech and oak stands planted on similar soil contained after 
40 years similar amounts of SOC in the mineral soil (Gur-
mesa et al., 2013). In our transects, organic layers under 
beech and oak had very similar C/N ratios, which points 
at only minor species differences in litter decomposability. 
The finding that N pools both in the mineral soil and organic 
layer tend to be higher in beech-dominated forests is not 
surprising, as C and N accumulation in the soil are usually 
closely coupled and the differences thus likely relate to the 
species effect (Zaehle, 2013).

Less expected is the result that the pools of calcium in the 
organic layer (total pool) and in the mineral soil (exchange-
able pool) increased toward higher beech dominance and 
base saturation. Although the association of Ca content and 
base saturation with the turnover from beech to oak forests 
along the gradient was less close than for the soil C and 
N contents, there were significantly larger Ca pools in the 
organic layer of the beech forests, and a tendency for higher 
exchangeable stocks in the mineral soil. This cannot be 
explained by variation in bedrock types and rather suggests 
a physiological effect, with beech apparently being more 
efficient than oak in mobilizing cations, in particular  Ca2+, 
in the subsoil. The ions are transferred with plant uptake and 
litter fall to the organic layer, where this ‘base pump’ leads 
to a long-term enrichment of basic cations in the topsoil 
(Binkley and Valentine, 1991; Guckland et al., 2009). The 
significance of such an effect has to be verified by analyses 
of element fluxes with leaf litter in the beech and oak forests.

4.5  Implications for beech forests in the core 
of the species’ distribution range

Given that the current climate in the studied oak forest zone in 
western Romania is about 2.5 °K warmer than in the beech-
dominated submontane belt in southern Germany (Walentowski 
et al., 2017), we use our findings in a space-for-time substitution 
approach to predict that natural succession driven by a tem-
perature increase by 2–3 °K would transform large parts of the 
southern German beech forests in oak-dominated communities 
with higher drought and heat tolerance. This is in line with 
projections from climate-driven forest vegetation models for 
this region (e.g. Fischer et al., 2019). This would cause a sig-
nificant reduction in ecosystem carbon storage of roughly 20% 
or in the magnitude of 50–60 Mg C  ha−1. Widespread crown 
damage and dieback of beech, especially on shallow soils after 
the exceptional 2018/2019 drought episode, have demonstrated 
the vulnerability of beech forests in many regions of Central 
Europe (Schuldt et al., 2020), suggesting that the scenarios of 
community shifts are not unrealistic. Clearly, it must be kept in 
mind that a space-for-time substitution approach is a simplifica-
tion of a predicted reality, and factors such as different latitudes, 
the continentality of the climate (Bohn et al., 2000; Leuschner 

& Ellenberg, 2017) and species pools (Meusel and Jager 1992; 
Jäger and Welk 2003; Willner et al., 2009; Walentowski et al., 
2010; Walentowski et al., 2014) are all influencing forest com-
munity composition and may distinguish the two regions.

Additional important factors influencing forest structure 
are human influence and the browsing pressure of game, 
which might differ between Germany and western Roma-
nia (Müller et al., 2005; Schulze et al., 2014; Winter et al., 
2015). In all three transects, timber extraction has occurred 
in the past, but no major activities have occurred during the 
last 20 years (Öder et al., 2021). This is similar to produc-
tion forests in Central Europe that have been set aside more 
recently for conservation purposes. With respect to brows-
ing pressure, game densities appear to be lower in western 
Romania than in Central Europe, where the regeneration of 
broadleaf trees, in particular of oaks, is strongly suppressed 
in many forest regions (König and Baumann, 1990). Roe 
dear densities for the regions around Milova (Transect A), 
Maciova (Transect B) and Eșelnița (Transect C) have been 
estimated from the regional forest authorities at 1.30, 0.41 
and 0.80 animals 100  ha−1, respectively, and red deer densi-
ties at 1.0, 0.13 and 0.30 animals 100  ha−1, respectively (A. 
Petritan, pers. comm.). With this low browsing pressure in 
western Romania, oak forests might show more vital regen-
eration and be species-richer than under the higher game 
densities in many Central European forest regions.

5  Conclusions

Our study of stand structure and ecosystem carbon pools in 
three near-natural beech-oak forest ecotones demonstrates 
some possible consequences of climate change-driven forest 
transformation. The size of biomass and soil carbon pools 
was in our models clearly related to the beech-oak abun-
dance gradient, confirming that, despite a marked effect 
of region or transect location, the decrease in ecosystem C 
storage from beech to oak forests is significant, underpin-
ning the more general validity of our findings. While the 
biomass C difference is mainly caused by tree species and 
related management effects, it is likely that the SOC differ-
ence is largely a consequence of the elevation difference and 
thus temperature change. A warming by 2–3 K in the near 
future will generally increase both forest productivity and 
decomposition rate, as long as other factors such as drought 
or nutrient shortage are not limiting, but empirical evidence 
suggests that forest soils in the temperate zone are respond-
ing with a SOC pool decrease (Hopkins et al., 2012; Melillo 
et al., 2017). Our results demonstrate that carbon inventories 
across forest ecotones along temperature and/or precipita-
tion gradients are one option for scientists and foresters to 
explore putative changes in biomass and soil C stores that 
result from man-made or natural tree species shifts.
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Table 5  Transect length, inventoried forest area, number of inventory 
plots, sampling intensity (plot area per forest area in%) and total sam-
pled areas in the three transects. All plots had a size of 314.2  m2

Transects Length
[m]

Area
(ha)

No. of plots
(n)

Sampling 
intensity
(%)

Sampled area
(m2)

Transect A 6694 357.7 90 0.79 28278  m2

Transect B 6696 352.5 90 0.80 28278  m2

Transect C 7465 405.0 100 0.76 31416  m2
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Table 8  Stand structural characteristics of beech, mixed (beech-
oak), oak and linden forests (means (SD), averaged over the three 
transects, n = number of plots). Plots dominated by beech: all plots 
with basal area of F. sylvatica > 66.6%, oak: all plots with basal area 
of Quercus species > 66.6%, linden: all plots with basal area of T. 
tomentosa: > 66.6%, mixed: all other forests (except for stands with 

T. tomentosa > 66.6%) for the three transects (A, B, C). Stem  ha−1, 
DBH, height (h), basal area (BA), stem volume (Vol) and carbon in 
stem biomass (AGC). Significant differences (p ≤ 0.05) between for-
est types are indicated by different small letters (one-way ANOVA 
with post hoc Tukey test)

Beech (n = 69) Mixed (n = 106) Oak (n = 52) Linden (n = 38)

Stem  [ha−1] 636.3 (311.3) a 869.3 (469.8) b 733.4 (267.4) a b 1234.7 (486.4) a b
DBH [cm] 26.8 (14.4) a 21.3 (12.3) b 23.0 (11.4) b 20.1 (9.7) b
h [m] 26.5 (6.2) a 20.5 (7.2) c 17.7 (7.5) b 20.5 (6.7) c
BA  [m2  ha−1] 46.2 (3.2) a 41.3 (14.2) b 37.8 (9.5) b 48.5 (13.3) a
Vol  [m3  ha−1] 621.9 (211.5) a 499.2 (229.8) b c 446.1 (149.1) c 544.6 (191.8) a b
AGC [Mg C  ha−1] 180.9 (61.6) a 137.2 (60.3) b 141.3 (46.7) b 125.3 (41.6) b

Table 9  Pools of SOC, N, P and basic cations in soil profiles under 
beech, mixed and oak forests (means and SD of n plots in the three 
transects). In the case of SOC and N, total pools are given for organic 
layer (OLC and OLN) and mineral soil (SOC and STN). For P, total 
pools in the organic layer and resin-exchangeable pools  (Pav) in 
the mineral soil are given. For the basic cations (Ca, Mg, K), total 
pools of the organic layer and  BaCl2-exchangeable pools of the min-
eral soil are given. Pools of SOC, STN an  Pav were calculated to a 

depth − 100  cm, the pools for  Ca+2
ex,  Mg+2

ex and  K+
ex to a depth 

of − 40  cm. Base saturation (BS) and C/N ratios for the mineral 
soil were averaged over the three depths 0–10  cm, 10–20  cm and 
20–40 cm. No soil samples were taken in the linden forests. Signifi-
cant differences (p ≤ 0.05) between forest types are indicated by dif-
ferent small letters (Kruskal–Wallis test with post hoc Pairwise Wil-
coxon Rank Sum Test). Variables with significant differences are in 
bold

Organic layer Mineral soil

Beech Mixed Oak Beech Mixed Oak

(n = 11) (n = 19) (n = 11) (n = 11) (n = 19) (n = 11)

OLC pool [Mg C 
 ha−1]

2.28 (0.89) a 1.69 (1.78) b 1.84 (0.76) a b SOC pool [Mg C  ha−1] 81.05 (12.47) a 64.78 (18.47) b 64.58 (22.01) a b

OLN pool [kg N  ha−1] 84.5 (46.3) a 59.9 (75.0) b 68.9 (36.3) a b STN pool [Mg N  ha−1] 6.58 (1.24) a 5.68 (1.85) a 5.83 (2.19) a
C/N ratio [g  g−1] 29.54 (6.46) a 33.19 (6.73) a 28.84 (5.16) a C/N ratio [g  g−1] 11.91 (2.61) a 10.97 (1.92) a 10.06 (1.68) a
P pool [kg P  ha−1] 6.22 (3.43) a 3.99 (4.32) a 4.77 (2.54) a Pav pool [kg  Pav  ha−1] 137.60 (156.55) a 84.60 (86.75) a 45.09 (51.04) a
Ca pool [kg Ca  ha−1] 117.98 (99.80) a 62.83 (54.30) b 77.45 (48.05) a b Ca expool  [kmolc  Ca+2  ha−1] 116.98 (73.63) a 121.89 (106.22) a 66.29 (57.21) a
Mg pool [kg Mg  ha−1] 25.30 (33.19) a 8.97 (7.72) a 17.29 (15.16) a Mg expool  [kmolc  Mg+2  ha−1] 23.15 (13.23) a 30.65 (27.99) a 29.42 (14.17) a
K pool [kg K  ha−1] 22.03 (14.82) a 14.59 (10.30) a 23.90 (20.34) a K expool  [kmolc  K+  ha−1] 4.76 (3.62) a 4.48 (2.17) a 4.95 (4.15) a

BS [%] 57.05 (26.98) a 54.46 (25.01) a 46.27 (19.31) a
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Table 10  Results of ANCOVA 
models on the effect of 
transect and beech-oak index 
on 13 variables related to 
soil chemical properties, and 
biomass and soil carbon pools 
in the three transects. The 
models had the form: response 
variable ~ transect + beech-oak 
index. Significant effects are 
printed in bold

Dependent variable Transect Beech-oak index

F value p value F value p value

Above ground biomass carbon (AGC) pool [Mg C  ha−1] 19.96  < 0.001 22.54  < 0.001
Soil organic carbon (SOC) pool [Mg C  ha−1] 4.72 0.015 6.48 0.015
Organic layer carbon (OLC) pool [Mg C  ha−1] 12.37  < 0.001 2.15 0.151
Soil total nitrogen (STN) pool [Mg N  ha−1] 5.74 0.007 2.08 0.158
Organic layer nitrogen (OLN) pool [kg N  ha−1] 17.92  < 0.001 2.59 0.116
Mineral soil  Pav pool [kg  Pav  ha−1] 4.66 0.016 0.29 0.595
Organic layer P pool [kg P  ha−1] 21.02  < 0.001 1.74 0.196
Mineral soil  Ca+2

ex pool  [kmolc  Ca+2  ha−1] 2.35 0.109 3.06 0.088
Organic layer Ca pool [kg Ca  ha−1] 21.44  < 0.001 9.91 0.003
Base saturation (BS) [%] 0.01 0.986 1.86 0.181
Cation exchange capacity (CEC)  [molc  kg−1] 10.39  < 0.001 2.49 0.123
pH  (H2O) 0.03 0.986 1.16 0.289
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Table 11  List of the abbreviations with explanations and units for (a) climate and stand structural variables, (b) organic layer variables and (c) 
mineral soil variables used in the detrended correspondence analysis (DCA)

(a) Climate and stand structural variables (c) Mineral soil variables
Abbreviation Explanation Unit Abbreviation Explanation Unit
Tmin Average temp. of coldest month °C Sand [%] Sand content in 20–40 cm %
Tmax Average temp. of hottest month °C Silt [%] Silt content in 20–40 cm %
Pmin Average prec. of driest month mm Clay [%] Clay content in 20–40 cm %
Pmax Average prec. of wettest month mm pAWC [%] Plant available water capacity 

in 20–40 cm
%

MST (BIO10) Mean summer (Jun, Jul, Aug) 
temp

°C pH Mean soil pH (in  H2O) from all 
3 depths

MWT Mean winter (Dec, Jan, Feb) 
temp

°C Ca+2
ex pool BaCl2-exchangeable  Ca+2 pool 

in 0–40 cm
kmolc  ha−1

MSP (BIO18) Mean summer (Jun, Jul, Aug) 
prec

mm Mg+2
ex pool Total  BaCl2-exchangeable 

 Mg+2 in 0–40 cm
kmolc  ha−1

MWP Mean winter (Dec, Jan, Feb) 
prec

mm K+
ex pool Total  BaCl2-exchangeable  K+ 

in 0–40 cm
kmolc  ha−1

Elev Elevation above sea level m CEC Cation exchange capacity molc  kg−1

Slope Plot slope angle ° BS Base saturation %
Exposition Plot exposition ° SOC 0–10 cm SOC concentration in 0–10 cm mg  g−1

Stem Mean number of stems ha−1 SOC 10–20 cm SOC concentration in 10–20 cm mg  g−1

BA Mean basal area of stems m2  ha−1 SOC 20–40 cm SOC concentration in 20–40 cm mg  g−1

Tree vol Mean tree volume m3  ha−1 SOC pool Total SOC pool in 0–100 cm Mg  ha−1

AGC Mean above ground carbon 
pool

Mg  ha−1 STN 0–10 cm STN concentration in 0–10 cm mg  g−1

STN 10–20 cm STN concentration in 10–20 cm mg  g−1

(b) Organic layer variables STN 20–40 cm STN concentration in 20–40 cm mg  g−1

Abbreviation Explanation Unit STN pool Total STN pool in 0–100 cm Mg  ha−1

Org. matter Weight of org. matter Mg  ha−1 Pav 0–10 cm Resin exchangeable P concen-
tration in 0–10 cm

mg  kg−1

OL pH pH (in  H2O) of org. layer Pav10–20 cm Resin exchangeable P concen-
tration in 10–20 cm

mg  kg−1

OL C C concentration in org. layer mg  g−1 Pav 20–40 cm Resin exchangeable P concen-
tration in 20–40 cm

mg  kg−1

OL C pool C pool in org. layer Mg  ha−1 Pav pool Resin exchangeable P pool in 
0–100 cm

kg  ha−1

OL N N concentration in org. layer mg  g−1 C/N 0–10 cm C/N ratio in 0–10 cm g  g−1

OL N pool N pool in org. layer kg  ha−1 C/N 10–20 cm C/N ratio in 10–20 cm g  g−1

OL P pool P pool in org. layer kg  ha−1 C/N 20–40 cm C/N ratio in 20–40 cm g  g−1

OL Ca pool Ca pool in org. layer kg  ha−1 C/P 10–20 cm C/P ratio in 10–20 cm g  g−1

OL Mg pool Mg pool in org. layer kg  ha−1 C/P 0–10 cm C/P ratio in 0–10 cm g  g−1

OL K pool K pool in org. layer kg  ha−1 C/P 20–40 cm C/P ratio in 20–40 cm g  g−1

OL C/N C/N ratio in org. layer g  g−1 N/P 0–10 cm N/P ratio in in 0–10 cm g  g−1

OL C/P C/P ratio in org. layer g  g−1 N/P 10–20 cm N/P ratio in 10–20 cm g  g−1

OL N/P N/P ratio in org. layer g  g−1 N/P 20–40 cm N/P ratio in 20–40 cm g  g−1
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Fig. 7  Store of aboveground carbon (AGC; in Mg C  ha−1) in the 
oak, mixed and beech forest plots (means and SE) of each transect 
A–C. Plots dominated by linden (basal area of T. tomentosa > 66.6%) 
are also shown. Beech forests: all plots with basal area of F. sylvat-
ica > 66.6%, oak forests: all plots with basal area of Quercus spe-
cies > 66.6%, mixed forests: all other forests (except for stands with T. 
tomentosa > 66.6%)
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Fig. 8  Means (and SE) of 
SOC, N and P in organic layer 
and mineral soil of the beech, 
mixed (beech-oak) and oak 
stands in the three transects 
A–C (n = number of plots). In 
the case of SOC and N, total 
pools are given for organic layer 
and mineral soil. P is resin-
extractable P in the mineral soil 
and total P in the organic layer. 
Profile totals (MS total) of SOC, 
N and P were calculated for a 
depth of − 100 cm by extrapola-
tion. No samples were taken in 
the linden forests
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Fig. 9  Means (and SE) of the 
pool of  BaCl2-exchangeable 
basic cations in the mineral soil 
of the beech, mixed (beech-
oak) and oak stands of the three 
transects A–C (n = number of 
plots). Profile totals (MS total) 
for  Ca+2

ex,  Mg+2
ex and  K+

ex are 
given for a depth of − 40 cm. 
No samples were taken in the 
linden forests
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Fig. 10  Detrended correspond-
ence analysis ordination (DCA) 
calculated with the species` 
relative basal area, conducted 
for all species and for the three 
transects A–C. The plots are 
marked with different colours 
for the three transects (n = num-
ber of plots). The main tree 
species are in bold, minor tree 
species in normal font
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