come    

Notice that the Leibniz formula for π states that

π 4 = β(1) = ∞ n=0 (-1) n 2n + 1 = 1 1 - 1 3 + 1 5 - 1 7 + 1 9 -• • • .
Moreover, it is easy to see that

∞ n=0 (-1) n
2n+1 is conditionally convergent. On the another hand,

∞ n=0 (-1) n (2n+1) 2
is absolutely convergent and we are able to rearrange the terms as we want.

Let's assume the contrary: G is a rational number s 2 k t , where t is odd. Hence, we have

stG = st ∞ n=0, (2n+1) t (-1) n (2n + 1) 2 + st ∞ m=0 (-1) mt+ t/2 t 2 (2m + 1) 2 = st ∞ n=0, (2n+1) t (-1) n (2n + 1) 2 + ((-1) t/2 2 k G ∞ m=0 ((-1) t ) m (2m + 1) 2 ) = st ∞ n=0, (2n+1) t (-1) n (2n + 1) 2 + ((-1) t/2 2 k G 2 ).
In other words, we obtain the following quadratic equation for G:

G 2 -(-1) t/2 st 2 k G + (-1) t/2 st 2 k ∞ n=0, (2n+1) t (-1) n (2n + 1) 2 .
The last is equal to

G 2 -(-1) t/2 st 2 k G + (-1) t/2 t 2 G ∞ n=0, (2n+1) t (-1) n (2n + 1) 2 .
Since G = 0, we have the next equation

G = (-1) t/2 st 2 k -(-1) t/2 t 2 ∞ n=0, (2n+1) t (-1) n (2n + 1) 2 .
Indeed, we have

G = (-1) t/2 st 2 k -(-1) t/2 t 2 (G + ), G = (-1) t/2 t 2 G -(-1) t/2 t 2 (G + ), G = -(-1) t/2 t 2 , where = - ∞ m=0 (-1) mt+ t/2 t 2 (2m + 1) 2 = -(-1) t/2 G t 2 .
According to the above, we consider the following quadratic equation for t: (2n+1) 2 and, for example, we can apply the above idea for s, which can be only odd in this case; note that G is definitely not 1 2 k ), we get

G = (-1) t/2 st 2 k -(-1) t/2 t 2 (G + ), t 2 - s 2 k (G + ) t + (-1) t/2 G (G + ) = 0.
t = s 2 k+1 (G + ) (1 ± 1 - 4(-1) t/2 G(G + ) 2 2 2k (G + )s 2 ) = = s 2 k+1 (G + ) (1 ± 1 - (-1) t/2 G(G + )2 2k+2 s 2 ).
Using the Taylor series of

√ 1 + x ( G(G+ )2 2k+2 s 2 = 4 t 2 (1 -(-1) t/2 1 t 2 ) ≤ 8 t 2 ≤ 8 3 2 < 1)
, we come to

t + ∼ = s 2 k (G + ) - (-1) t/2 G2 k s - G 2 (G + )2 3k s 3 , t -∼ = (-1) t/2 G2 k s + G 2 (G + )2 3k s 3 ,
where t -is impossible as G = s 2 k t and t ≥ 3. Substituting G = s 2 k t+ , we derive

t + ∼ = s 2 k (G + ) - (-1) t+/2 G2 k s - G 2 (G + )2 3k s 3 = t + (1 -(-1) t+/2 1 t 2 + ) - (-1) t+/2 t + - (1 -(-1) t+/2 1 t 2 + ) t 3 + = = t + (1 -(-1) t+/2 1 t 2 + ) - (-1) t+/2 t + - 1 t 3 + + (-1) t+/2 t 5 + . 1 (1 -(-1) t+/2 1 t 2 + ) - (-1) t+/2 t 2 + - 1 t 4 + + (-1) t+/2 t 6 + ∼ = 1.
Despite the correct mien of the above expression, note that 1/(1 -x) and √ 1 -x are different as series. Indeed, for √ 1 -x we have

1 -x/2 -x 2 /8 -x 3 /16 -(5x 4 )/128 -(7x 5 )/256 + O(x 6 ).
Hence, the acquired identity for t + can not be fulfilled. Q.E.D.

Remark 1. There exists the following integration

∞ 0 1 1 + x 2 cos(kx)dx = π 2 e -k .
One way to see it is via the Fourier inversion theorem: we know that the Fourier transform of a function has a unique inverse. This carries over to the cosine transform as well. Moreover, the unique continuous function on the positive real axis with Fourier transform 1 1+x 2 is e -k . Notice that if

I n = x n 1 + x 2 dx, then I n+2 + I n = x n n + 1 + C.
Remark 2. Are all {1, n π | n ∈ N} linearly independent over Q, where n x is tetration? Meaning none of exponents is an integer (we have not known that π π π π (56 digits) is not an integer). Moreover, at least one of e e and e e 2 must be transcendental due to W. D. Brownawell. Remark 3. Is e + π irrational?

Note that (x -e)(x -π) = x 2 -(e + π)x + eπ. So, at least one of the coefficients e + π, eπ must be irrational.

Remark 4. Is ln(π) irrational?

There exists such representation sin

(x) x = ∞ n=1 (1 - x 2 n 2 π 2 ).
Let x = π 2 and then we have the Wallis product formulae for π 2 :

π 2 = ∞ n=1 2n 2n -1 2n 2n + 1 .
Taking logarithms of this, we come to

ln(π) = ln(2) + ∞ n=1
(2 ln(2n) -ln(2n -1) -ln(2n + 1)). Remark 6. Is the Khinchin's constan K 0 irrational?

K 0 = ∞ n=1 (1 + 1 n(n + 2)
) log 2 n .

Since s 2

 2 k (G+ ) > 0 due to t > 1 (G can not be s 2 k for natural s, k: it goes around with the representation ∞ n=0 (-1) n

Remark 5 .

 5 Is the Euler-Mascheroni constant γ irrational?