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Asymptotic Error in Euler’s Method
with a Constant Step Size

Jawher Jerray1, Adnane Saoud2, Laurent Fribourg3

Abstract

In the gradient descent method, one often focus on the convergence of the se-

quence generated by the algorithm, but less often on the deviation of these

points from the solutions of the original continuous-time differential equation

(gradient flow). This also happens when discretizing other ordinary differential

equations. In the case of a discretization by explicit Euler’s method with a

constant step h, we provide here sufficient conditions, in terms of strong mono-

tonicity and co-coercivity, for the deviation between discrete and continuous

solutions to tend asymptotically towards zero. This analysis could shed new

light on some applications of the gradient descent algorithm.

Keywords: Euler’s method, optimization

1. Introduction

Different techniques have been proposed in the literature to provide a deeper

understanding of different optimization algorithms through the use of continuous-

time differential equations. Indeed, the use of differential equations makes it

possible to exploit the plethora of tools developed within dynamical systems

analysis and control community in order to analyse stability and convergence

properties. In this context, the authors in [1] derived a continuous-time ver-
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sion of the Nesterov accelerated gradient and used a Lyapunov formulation to

estimate the convergence rate. Finally, they transformed the continuous time

Lyapunov function into a discrete-time version and provided a new proof of

the convergence rate of the Nesterov accelerated gradient method. A similar

Lyapunov-based approach has been used to provide proofs of the convergence

rates for the Nesterov accelerated algorithm in [2] and the accelerated mir-

ror descent method in [3]. However, all the aforementioned approaches fail to

provide a general discretization procedure that generate a provably convergent

optimization algorithm, except of the work in [4], where the authors used a

Runge-Kutta scheme for a particular case of an accelerated Nesterov algorithm.

Indeed, the main difficulty comes from the fact that designing a Lyapunov func-

tion of a continuous-time ordinary differential equation (ODE) is the “art of the

designer”.

In this paper, we explore another strategy that does not require an a priori

knowledge of a Lyapunov function, but rather relies on the contractivity prop-

erties of the continuous-time differential equation. More precisely, we give here

conditions, as general as possible, on the flow of ODEs in order to guarantee

the convergence to 0 of the error in Euler’s method, making use of an analytic

formula δptq bounding this error at time t [5].

Related work. Let us mention that the concept of contractivity has been pre-

viously used in the literature, where the authors in [6] were able to generate a

contractive continuous-time version of the accelerated Nesterov algorithm.

Let us also note that an important part of the literature studies the conver-

gence of the discretization error as the step size h Ñ 0. In contrast here, the

size h is constant while the number of steps k Ñ 8. Such a convergence at

constant h was the subject of pioneering work by [7] who developed the notion

of A-stability and studied the disk around the origin within which the error

remains bounded. However, these studies concern a particular type of linear

differential equation of the type 9x “ ´αx with α ą 0 (cf. [8] for extension to

“homogeneous systems”), and not arbitrary differential equations as here. [9]
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provides an, linear in time, upper bound on the discretization error under some

stability-type conditions on the solutions to the differential equation, for gen-

eral numerical methods, withoud showing the convergence of the discretization

error to zero. The authors in [10] provides an upper bound on the discretiza-

tion error while using an explicit Runge-Kutta method with an adaptive and

variable step size. Similarly, [11] shows the convergence of the error dynamics

while using Runge-Kutta method and for a fixed step size under the restrictive

circle condition [12]. In comparison with existing approaches in the literature,

in this paper, we provide sufficient conditions in terms of strong monotonicity

and co-coercivity to show the convergence of the discretization error to 0 for the

explicit Euler’s method, while using a constant step size.

Regarding the analysis of the gradient descent algorithm, it is well-known

that the error (between the sequence generated by the algorithm and the optimal

point) is non-decreasing when the step size satisfies h ă 2{L, where L is the

Lipschitz constant of the gradient [7, 13, 14]. The same constraint is used here

for the gradient descent (see Corollary 1), but, when coupled with an assumption

of strong monotonicity, we show that the error tends to 0. We also make use of

the property of co-coercivity (Theorem 3) whose role has already been observed

by Zhu and Marcotte [15] in the different context of iterative schemes for solving

variational inequalities.

The remainder of this paper is organized as follows. Section 2 recalls some

classical results on convexity, strong monotonicity and co-coercivity. Section 3

gives some sufficient conditions on the flow of the differential equation and the

discretization time-step to make the error in Euler’s method converge to 0. We

give some final remarks in Section 4.

2. Preliminaries

Notation. The symbols N, Ną0, and R and Rą0 denote the set of positive in-

tegers, non-negative integers, real and non-negative real numbers, respectively.

The Euclidean norm is denoted by }.}. For a differentiable map x ÞÑ fpxq P R,
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∇f denotes the gradient of f with respect to x. For an invertable matrix

A P Rmxˆmx , AJ denotes its transpose. For x P Rn and r ą 0, Bpx, rq “ tz P

Rn : }x ´ z} ď ru.

We recall some definitions and classical results on convexity, monotonicity

and co-coercivity (see, e.g., [14, 16, 17]) that will be used through the paper.

Definition 1. Consider a continuously differentiable function f : Rn Ñ R. The

function f is convex if, for all x, y P Rn:

fpyq ´ fpxq ě p∇fpxqqJpy ´ xq.

If f is convex and bounded from below, then a minimum of f exists in some

x˚ P Rn, and ∇fpx˚q “ 0.

Definition 2. A function g : Rn Ñ Rn is

• L-Lipschitz continuous if for all x, y P Rn:

}gpxq ´ gpyq} ď L}x ´ y}.

• strongly monotone if there exists m ą 0 such that, for all x, y P Rn:

pgpxq ´ gpyqqJpx ´ yq ě m}x ´ y}2. (1)

• co-coercive if there exists a positive constant a such that for all x, y P Rn:

pgpyq ´ gpxqqJpy ´ xq ě a}gpyq ´ gpxq}2.

Remark 1. Property (1) of strong monotonicity is equivalent to saying that g

has a negative one-sided Lipschitz constant (OSL) λ (see [7, 18]; cf Definition 3

below), equal to ´m.

We consider a differential system of the form

9xptq “ gpxptqq (2)

with initial condition x0 P Rn, where g : Rn Ñ Rn is a differentiable Lipschitzian

function of constant L ą 0. Without loss of understanding, we will denote by

xpt;x0q, or more simply by xptq, the solution of this system at time t.
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We denote by yk the (explicit) Euler discretization of 9xptq “ gpxptqq at time

t “ kh, for k P N, where h ą 0 is a constant step size. Given an initial point

y0 P Rn, yk is defined, for k ě 1, by:

yk “ yk´1 ` hgpyk´1q (3)

Proposition 1. On a domain where ´g is strongly monotone (i.e., g has an

OSL constant λ ă 0), any two solutions xpt;x0q and xpt; y0q of (2) with initial

conditions x0 and y0 respectively, converge to each other exponentially in time:

}xpt;x0q ´ xpt; y0q} ď }x0 ´ y0}eλt.

It follows that there is at most one stationary point x˚ (with gpx˚q “ 0).

This result states that strong monotonicity leads to a form of contraction

(as studied in [6, 19]).

The following result can be found in [20] and allows to relate the concepts

of convexity, Lipschitzness and co-coercivity.

Proposition 2. Consider a continuously differentiable function f : Rn Ñ R.

If f is convex and ∇f L-Lipschitz, then ∇f is co-coercive of constant 1{L.

Proposition 3. Consider a function g : Rn Ñ Rn. If the following conditions

are satisfied:

1. ´g is co-coercitive,

2. the step size h ă 2{L,

3. gpx˚q “ 0 for some x˚ P Rn (existence of a stationary point).

Then }gpykq} Ñ 0 with rate Op1{kq for the averaged iterates, where tykukPN is

defined as in (3).

A proof (adapted) from [21] is given in Appendix in order to be self-contained.

In the following, we show how the result of Proposition 3 applies to the case

of the gradient descent algorithm. We first recall the link between the gradient

flow and gradient descent algorithm.
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Consider a function f : Rn Ñ R, the gradient descent algorithm generates a

sequence txkukPN described as:

xk`1 “ xk ´ h∇fpxkq (4)

where h ą 0 is a constant step size. This algorithm is generally used to resolve

optimization problems of the form minxPRn fpxq for a function f . The algorithm

in (4) can be seen as the (explicit) Euler discretization of the gradient flow

differential equation described by:

9x “ ´∇fpxq (5)

for a continuously differentiable function f : Rn Ñ R.

From Proposition 2 and Proposition 3, it follows:

Proposition 4. Consider a continuously differentiable function f : Rn Ñ R.

If the following conditions are satisfied

1. f convex of minimizer x˚,

2. ∇f L-Lipschitzian,

3. the step size satisfies h ă 2{L.

Then }∇fpxkq} Ñ 0 as k Ñ 8, with rate Op1{kq for the averaged iterates, where

txkukPN is defined as in (4).

3. Asymptotic Error in Euler’s Method

3.1. Error bound in Euler’s method

Our objective is to analyze the error between the solutions of the differential

equation (2) and their Euler approximations in (3). For this reason, we define

a function δ : R Ñ R in order to upperbound }yk ´ xptq} for t “ kh (see [5] and

Theorem 1 below).

Definition 3. Given a sequence tµkukě0 of nonnegative reals, we define δµk
:

r0, hs Ñ Rě0 as follows: for all t P r0, hs,

if λ ă 0 :

δµk
ptq “

ˆ

µ2
ke

λt `
C2

k

λ2

ˆ

t2 `
2t

λ
`

2

λ2

`

1 ´ eλt
˘

˙˙

1
2
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if λ “ 0 :

δµk
ptq “

´

µ2
ke

t ` C2
k

`

´ t2 ´ 2t ` 2pet ´ 1q
˘

¯
1
2

if λ ą 0 :

δµk
ptq “

ˆ

µ2
ke

3λt `
C2

k

3λ2

ˆ

´t2 ´
2t

3λ
`

2

9λ2

`

e3λt ´ 1
˘

˙˙

1
2

where

• L denotes the Lipschitz constant for g,

• Ck :“ L}gpykq},

• λ is the “one-sided Lipschitz constant (OSL)” (or “logarithmic Lipschitz

constant” [22]) associated to g, i. e., the minimal constant such that, for

all x1, x2 P Rn:

pgpx1q ´ gpx2qqJpx1 ´ x2q ď λ}x1 ´ x2}2, (6)

Note that the constant Ck depends on the value of yptq at time t “ kh4.

The constant λ can also be calculated “locally” for the zone occupied by xptq

at time t P rkh, pk ` 1qhs, using a nonlinear optimization solver (see, e.g., [23]

for details).

Let us now consider the sequence tµkukě0 where µk is defined recursively,

for k ě 1 as

µk “ δµk´1
phq.

We can now define δµ0
p2hq as δµ1

phq with µ1 “ δµ0
phq, and more generally,

we can extend the definition of δµ0
p¨q on r0,8q as follows: for all k ě 0 and

t P r0, hs,

δµ0pkh ` tq “ δµk
ptq.

In particular, it is easy to see that: δµ0
pkhq “ δµk

p0q “ µk and δµ0
ppk ` 1qhq “

δµk
phq “ µk`1.

4This slight modification of the definition of C, as originally given in [5], is justified by a

simple inspection of the proof of Theorem 1 in [5].
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Theorem 1. [5] Consider the system 9xptq “ gpxptqq, with g : Rn Ñ Rn. Let

xptq and pykq be defined as in (2) and (3) respectively, and µ0 :“ }y0 ´ x0}.

Then, for all t “ kh with k ě 0:

}yk ´ xptq} ď δµ0ptq.

In the following, we give sufficient conditions on g and h ensuring that

δµ0
pkhq (hence }yk ´ xpkhq}) converge to 0 as k Ñ 8. In the rest of the paper,

we will always assume that g is Lipschitz continuous with constant L ą 0.

3.2. Strong monotonicity

Lemma 1. Consider the system 9xptq “ gpxptqq, with g : Rn Ñ Rn. Let xptq

and pykq be defined as in (2) and (3) respectively, and µ0 :“ }y0 ´ x0}. If the

following conditions are satisfied:

1. }gpykq} Ñ 0 as k Ñ 8 with a convergence rate rk,

2. g of OSL constant λ ă 0 (i.e., ´g strongly monotone).

Then δµ0
pkhq Ñ 0 as k Ñ 8 with a convergence rate rk.

Proof. By Taylor-Lagrange’s theorem, we find:

δ2µ0
ppk ` 1qhq ď δ2µ0

pkhqeλh ` C2
kh

3{p3|λ|q. (7)

Since Ck “ L}gpykq} Ñ 0 as k Ñ 8 with rate rk, and eλh ă 1, it follows that

there exists ℓ P N such that: δ2µ0
ppk ` 1qhq ă δ2µ0

pkhq for all k ě ℓ. Hence, the

sequence tδµ0pkhqukěℓ is decreasing, and converges to a limit δ˚ ě 0 with rate

rk. This limit δ˚ must satisfy (7), i.e.:

pδ˚q2 ď pδ˚q2eλh ` C2
kh

3{p3|λ|q.

Since Ck “ L}gpykq} Ñ 0 as k Ñ 8 and eλh ă 1, one must have δ˚ “ 0.

Therefore δµ0
pkhq Ñ 0 with rate rk.

Remark 2. Let us mention that the result in Lemma 1 can be relaxed to show

that the sequence δµ0
pkhq, k P N, is bounded if the sequence }gpykq}, k P N is

bounded.
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From Lemma 1 and Theorem 1, it follows:

Theorem 2. Consider the system 9xptq “ gpxptqq, with g : Rn Ñ Rn L-Lipschitz

continuous. Let xptq and pykq as defined in (2) and (3) respectively. Suppose:

1. }gpykq} Ñ 0 with a convergence rate rk,

2. g of OSL constant λ ă 0 (i.e., ´g strongly monotone).

Then δµ0
pkhq Ñ 0 and }yk ´ xpkhq} Ñ 0 with a convergence rate rk as k Ñ 8.

Note that Theorem 2 applies even if }yk} Ñ 8, as shown in Example 1.

Remark 3. For the sake of simplicity of the statement, we assume in Theorem

2 (as well as Theorem 3 and Corollary 3 below), that the property of Lipschitz

continuity and strong monotonicity (as well as, later on, co-coercivity and ex-

istence of stationary point) hold over all Rn. In fact, it is enough that these

properties hold on a subdomain D Ă Rn only, provided that D be “invariant” in

the following sense:

Dℓ P N @k ě ℓ : Bpyk, δµ0pkhqq Ď D5.

Example 1. Let gpxq “ 1
2

?
x
, y0 “ 1, h “ 0.5, µ0 “ 0.5, and let D “ r1,`8q.

We have yk`1 “ yk ` h 1
2

?
yk

ą yk, therefore tyku is an increasing sequence

which converges to `8, and gpykq “ 1
2

?
yk

converges to 0. Using the software

ORBITADOR [24], one calculates that L ď 0.5 and λ ă 0 on D (see Figure

1). Since }gpykq} Ñ 0 (Figure 2), it follows by Theorem 2: δµ0
pkhq Ñ 0 and

|yk ´ xpkhq| Ñ 0 as k Ñ 8 (see Figures 3 and 4).

3.3. Application to gradient descent

An immediate consequence of Theorem 2, using Lemma 1 and Proposition 4

with g “ ´∇f , is the following result (which avoids mentioning }gpykq} Ñ 0 as

an explicit assumption).

Corollary 1. Consider a continuously differentiable function f : Rn Ñ R.

Suppose:

5Bpx, rq denotes the ball of centre x P Rn and radius r ě 0.
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Figure 1: Evolution of λ

Figure 2: Evolution of Ck “ L}gpykqq}

1. f convex of minimizer x˚,

2. ∇f L-Lipschitzian,

3. ´∇f OSL λ ă 0 (i.e., ∇f strongly monotone),

4. h ă 2{L
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Figure 3: Evolution of δµ0

Figure 4: Evolution of yk

Then yk Ñ x˚ and xpkhq Ñ x˚ as k Ñ 8 with rate Op1{kq for the averaged

iterates.

Example 2. 6 Let us consider the following function f : R2 Ñ R defined for

6adapted from
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t ě 0, by:

fpwq “
1

2
Σ2

i“1pbi ´ pw1 ¨ ai ` w2qq2,

with w “ pw1, w2q, a1 “ 1, a2 “ 2, b1 “ 5 and b2 “ 7. Let us compute its

minimum w˚ “ pw˚
1 , w

˚
2 q by gradient descent, with initial point w0 “ pw0

1, w
0
2q “

p9, 10q. Using the software ORBITADOR [24], we find L ă 7 and λ ď ´0.187

(see Figure 5). For h “ 0.2 (which satisfies: h ă 2{L), it follows by Proposition 4

that }∇fpwpkhqq} Ñ 0 and C “ L}∇fpwpkhqq} Ñ 0 respectively, as k Ñ 8

(see Figures 6 and 7 respectively). Letting µ0 “ 0.1, it follows from Corollary 1

that δµ0
ptq Ñ 0 (see Figure 8 for t “ kh ď 95 and Figure 9, with a change of

scale, for 95 ď t “ kh ď 120), yk Ñ w˚ and xpkhq Ñ w˚, with w˚ “ p2, 3q

(which is the stationary point of ∇f and the minimizer of f).

Figure 5: Evolution of λ computed locally (λptq ď ´0.187)

3.4. Co-coercivity

The following result is a generalization of Corollary 1.

https://codingvision.net/gradient-descent-simply-explained-with-example

12



Figure 6: Evolution of }∇fpwptqq}

Figure 7: Evolution of Cptq “ L}∇fptq} varying from 918 (for t “ 0) to 0.0272 (for t “ 30)

Theorem 3. Consider the system 9xptq “ gpxptqq, with g : Rn Ñ Rn L-Lipschitz

continuous. Let xptq and pykq as defined in (2) and (3) respectively. Suppose

1. h ă 2{L,

2. ´g co-coercive with constant 1{L,

3. g of OSL constant λ ă 0 (i.e., ´g strongly monotone),
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Figure 8: Evolution of δptq for t P r0, 95s

Figure 9: Evolution of δptq for t P r95, 120s

4. gpx˚q “ 0 for some x˚ P Rn (existence of a stationary point).

Then we have:

• x˚ is the unique stationary point of Rn,

• yk Ñ x˚ and xpkhq Ñ x˚ as k Ñ 8 with rate Op1{kq for the averaged

14



Figure 10: Evolution of w1ptq (which converges to w˚
1 “ 2)

Figure 11: Evolution of w2ptq (which converges to w˚
3 “ 3)

iterates.

Proof. By Proposition 1, Lemma 1, Proposition 3 and Theorem 1.

Example 3. Consider the differential equation 9x “ gpxq with gpxq “ ´4x3 `

6x2, and its Euler discretization with y0 “ 0.25 and h “ 0.12. Using OR-
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BITADOR, one calculates L ď 12, where L is the Lipschitz constant of g. Let

D “ r1.25, 1.75s. For µ0 “ 0.1 and h “ 0.12 ă 2{L, one can show, using

ORBITADOR:

• λ ă 0 on D (see Figure 12),

• Bpyk, δµ0
pkhqq Ď D for all k ě 12, and

• ´g co-coercive of constant 1{L on D.

Besides, x˚ “ 1.5 P D is a stationary point (gpy˚q “ 0). From Theorem 3,

it follows: δµ0
pkhq Ñ 0, (see Figure 13), x˚ is the unique stationary point of

D, yk Ñ x˚ and xpkhq Ñ x˚ as k Ñ 8 (see Figure 14). We can also check

C “ L}gpykq} Ñ 0 (see Figure 15). Note that x˚ is here the minimizer of the

non-convex function fpxq “ x4 ´ 2x3 ` 2 (with ´∇fpxq “ gpxq). See Figure 16.

Figure 12: Evolution of λ

4. Conclusion

In this paper, we have focused on the following problem: given an ODE 9x “

gpxq and the sequence pykq generated by its discretization with explicit Euler’s

16



Figure 13: Evolution of δµ0 (which converges to 0)

Figure 14: Evolution of yk (which converges to x˚ “ 1.5)

method, what are the sufficient conditions on g to ensure that the discretization

error }xpkhq ´ yk} converges to 0 as k Ñ 8. In particular, under certain

properties of g called “strong monotonicity” and “co-coercivity”, we have shown

the convergence of the discretization error to 0 (Theorem 3). This can shed

new light on the relationship between the convergence of continuous differential

17



Figure 15: Evolution of C “ L}gpyqq}

Figure 16: Graph pyk, fpykqq

equations (such as the gradient flow) and their discretization (gradient descent

algorithm), especially in the context of the gradient descent algorithms for neural

networks. Indeed, in a recent work, [25] has shown that for a shallow fully

connected NN with ReLu activation functions, if the number m of hidden nodes

is sufficiently large and if the initial values of the weights of the NN are chosen

18



according to a Gaussian distribution, then the gradient descent converges to a

globally optimal solution. In future work, we will use the approach developed

in this paper to show the convergence of the gradient descent algorithm for the

class of neural networks considered in [25].
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Appendix: Proof of Proposition 3

Proof. This proof Let α :“ Lh ą 0. We have:

}yk`1 ´ x˚}2 “ }yk ´ x˚ ` α
Lgpykq}2

“ }yk ´ x˚}2 ´ 2
α

L
pyk ´ x˚qJp´gpykqq `

α2

L2
}gpykq}2 (8)

Now, from the co-coercivity of ´g and gpx˚q “ 0, we have:

pyk ´ x˚qJp´gpykqq ě
1

L
}gpykq}2.

Therefore, from (8), we derive:

}yk`1 ´ x˚}2 ď }yk ´ x˚}2 `
´2α ` α2

L2
}gpykq}2

Hence,
αp2 ´ αq

L2
}gpykq}2 ď }yk ´ x˚}2 ´ }yk`1 ´ x˚}2.

Therefore, by dividing by αp2´αq (which is positive since 2´α “ 2´hL ą 0):

}gpykq}2 ď
L2

β
}yk ´ x˚}2 ´

L2

β
}yk`1 ´ x˚}2

with β “ αp2 ´ αq ą 0.

Summing up from k “ 1, . . . ,K and dividing by K gives

1

K
ΣK

i“1}gpykq}2 ď
L2

βK
p}y1 ´ x˚}2 ´ }yK`1 ´ x˚}2q

ď
L2

βK
}y1 ´ x˚}2.

Consequently

min
k“1,...,K

}gpykq}2 ď
1

K
ΣK

k“1}gpykq}2 ď
L2

βK
}y1 ´ x˚}2.

It follows that }gpykq} Ñ 0 as k Ñ 8 with rate Op1{kq for the averaged iterates.
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