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Introduction

Different techniques have been proposed in the literature to provide a deeper understanding of different optimization algorithms through the use of continuoustime differential equations. Indeed, the use of differential equations makes it possible to exploit the plethora of tools developed within dynamical systems analysis and control community in order to analyse stability and convergence properties. In this context, the authors in [START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: Theory and insights[END_REF] derived a continuous-time ver-sion of the Nesterov accelerated gradient and used a Lyapunov formulation to estimate the convergence rate. Finally, they transformed the continuous time Lyapunov function into a discrete-time version and provided a new proof of the convergence rate of the Nesterov accelerated gradient method. A similar Lyapunov-based approach has been used to provide proofs of the convergence rates for the Nesterov accelerated algorithm in [START_REF] Shi | Understanding the acceleration phenomenon via high-resolution differential equations[END_REF] and the accelerated mirror descent method in [START_REF] Krichene | Accelerated mirror descent in continuous and discrete time[END_REF]. However, all the aforementioned approaches fail to provide a general discretization procedure that generate a provably convergent optimization algorithm, except of the work in [START_REF] Zhang | Direct Runge-Kutta discretization achieves acceleration[END_REF], where the authors used a Runge-Kutta scheme for a particular case of an accelerated Nesterov algorithm. Indeed, the main difficulty comes from the fact that designing a Lyapunov function of a continuous-time ordinary differential equation (ODE) is the "art of the designer".

In this paper, we explore another strategy that does not require an a priori knowledge of a Lyapunov function, but rather relies on the contractivity properties of the continuous-time differential equation. More precisely, we give here conditions, as general as possible, on the flow of ODEs in order to guarantee the convergence to 0 of the error in Euler's method, making use of an analytic formula δptq bounding this error at time t [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF].

Related work.

Let us mention that the concept of contractivity has been previously used in the literature, where the authors in [START_REF] Cisneros-Velarde | A contraction theory approach to optimization algorithms from acceleration flows[END_REF] were able to generate a contractive continuous-time version of the accelerated Nesterov algorithm.

Let us also note that an important part of the literature studies the convergence of the discretization error as the step size h Ñ 0. In contrast here, the size h is constant while the number of steps k Ñ 8. Such a convergence at constant h was the subject of pioneering work by [START_REF] Dahlquist | Error analysis for a class of methods for stiff non-linear initial value problems[END_REF] who developed the notion of A-stability and studied the disk around the origin within which the error remains bounded. However, these studies concern a particular type of linear differential equation of the type 9

x " ´αx with α ą 0 (cf. [START_REF] Efimov | Realization and discretization of asymptotically stable homogeneous systems[END_REF] for extension to "homogeneous systems"), and not arbitrary differential equations as here. [START_REF] Viswanath | Global errors of numerical ode solvers and Lyapunov's theory of stability[END_REF] provides an, linear in time, upper bound on the discretization error under some stability-type conditions on the solutions to the differential equation, for general numerical methods, withoud showing the convergence of the discretization error to zero. The authors in [START_REF] Calvo | Global error estimation with adaptive explicit Runge-Kutta methods[END_REF] provides an upper bound on the discretization error while using an explicit Runge-Kutta method with an adaptive and variable step size. Similarly, [START_REF] Kraaijevanger | Contractivity of Runge-Kutta methods[END_REF] shows the convergence of the error dynamics while using Runge-Kutta method and for a fixed step size under the restrictive circle condition [START_REF] Dahlquist | Generalized disks of contractivity for explicit and implicit Runge-Kutta methods[END_REF]. In comparison with existing approaches in the literature, in this paper, we provide sufficient conditions in terms of strong monotonicity and co-coercivity to show the convergence of the discretization error to 0 for the explicit Euler's method, while using a constant step size.

Regarding the analysis of the gradient descent algorithm, it is well-known that the error (between the sequence generated by the algorithm and the optimal point) is non-decreasing when the step size satisfies h ă 2{L, where L is the Lipschitz constant of the gradient [START_REF] Dahlquist | Error analysis for a class of methods for stiff non-linear initial value problems[END_REF][START_REF] Sanz-Serna | Contractivity of Runge-Kutta methods for convex gradient systems[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF]. The same constraint is used here for the gradient descent (see Corollary 1), but, when coupled with an assumption of strong monotonicity, we show that the error tends to 0. We also make use of the property of co-coercivity (Theorem 3) whose role has already been observed by Zhu and Marcotte [START_REF] Zhu | Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities[END_REF] in the different context of iterative schemes for solving variational inequalities.

The remainder of this paper is organized as follows. Section 2 recalls some classical results on convexity, strong monotonicity and co-coercivity. Section 3

gives some sufficient conditions on the flow of the differential equation and the discretization time-step to make the error in Euler's method converge to 0. We give some final remarks in Section 4.

Preliminaries

Notation. The symbols N, N ą0 , and R and R ą0 denote the set of positive integers, non-negative integers, real and non-negative real numbers, respectively.

The Euclidean norm is denoted by }.}. For a differentiable map x Þ Ñ f pxq P R, ∇f denotes the gradient of f with respect to x. For an invertable matrix A P R mxˆmx , A J denotes its transpose. For x P R n and r ą 0, Bpx, rq " tz P R n : }x ´z} ď ru.

We recall some definitions and classical results on convexity, monotonicity and co-coercivity (see, e.g., [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF][START_REF] Boyd | Convex Optimization[END_REF][START_REF] Ryu | A primer on monotone operator methods[END_REF]) that will be used through the paper.

Definition 1. Consider a continuously differentiable function f : R n Ñ R. The function f is convex if, for all x, y P R n :

f pyq ´f pxq ě p∇f pxqq J py ´xq.

If f is convex and bounded from below, then a minimum of f exists in some

x ˚P R n , and ∇f px ˚q " 0.

Definition 2. A function g : R n Ñ R n is • L-Lipschitz continuous if for all x, y P R n :
}gpxq ´gpyq} ď L}x ´y}.

• strongly monotone if there exists m ą 0 such that, for all x, y P R n : pgpxq ´gpyqq J px ´yq ě m}x ´y} 2 .

(1)

• co-coercive if there exists a positive constant a such that for all x, y P R n : pgpyq ´gpxqq J py ´xq ě a}gpyq ´gpxq} 2 .

Remark 1. Property (1) of strong monotonicity is equivalent to saying that g has a negative one-sided Lipschitz constant (OSL) λ (see [START_REF] Dahlquist | Error analysis for a class of methods for stiff non-linear initial value problems[END_REF][START_REF] Hairer | Solving Ordinary Differential Equations II[END_REF]; cf Definition 3 below), equal to ´m.

We consider a differential system of the form

9 xptq " gpxptqq (2) 
with initial condition x 0 P R n , where g : R n Ñ R n is a differentiable Lipschitzian function of constant L ą 0. Without loss of understanding, we will denote by xpt; x 0 q, or more simply by xptq, the solution of this system at time t.

We denote by y k the (explicit) Euler discretization of 9

xptq " gpxptqq at time t " kh, for k P N, where h ą 0 is a constant step size. Given an initial point y 0 P R n , y k is defined, for k ě 1, by:

y k " y k´1 `hgpy k´1 q (3)
Proposition 1. On a domain where ´g is strongly monotone (i.e., g has an OSL constant λ ă 0), any two solutions xpt; x 0 q and xpt; y 0 q of (2) with initial conditions x 0 and y 0 respectively, converge to each other exponentially in time:

}xpt; x 0 q ´xpt; y 0 q} ď }x 0 ´y0 }e λt .

It follows that there is at most one stationary point x ˚(with gpx ˚q " 0).

This result states that strong monotonicity leads to a form of contraction (as studied in [START_REF] Cisneros-Velarde | A contraction theory approach to optimization algorithms from acceleration flows[END_REF][START_REF] Wensing | Cooperative adaptive control for cloud-based robotics[END_REF]).

The following result can be found in [START_REF] Chambolle | Continuous optimization, an introduction[END_REF] and allows to relate the concepts of convexity, Lipschitzness and co-coercivity.

Proposition 2. Consider a continuously differentiable function f : R n Ñ R.

If f is convex and ∇f L-Lipschitz, then ∇f is co-coercive of constant 1{L.

Proposition 3. Consider a function g : R n Ñ R n . If the following conditions are satisfied:

1. ´g is co-coercitive,
2. the step size h ă 2{L, 3. gpx ˚q " 0 for some x ˚P R n (existence of a stationary point).

Then }gpy k q} Ñ 0 with rate Op1{kq for the averaged iterates, where ty k u kPN is defined as in [START_REF] Krichene | Accelerated mirror descent in continuous and discrete time[END_REF].

A proof (adapted) from [START_REF] Gower | Convergence theorems for gradient descent[END_REF] is given in Appendix in order to be self-contained.

In the following, we show how the result of Proposition 3 applies to the case of the gradient descent algorithm. We first recall the link between the gradient flow and gradient descent algorithm.

Consider a function f : R n Ñ R, the gradient descent algorithm generates a sequence tx k u kPN described as:

x k`1 " x k ´h∇f px k q (4)
where h ą 0 is a constant step size. This algorithm is generally used to resolve optimization problems of the form min xPR n f pxq for a function f . The algorithm in (4) can be seen as the (explicit) Euler discretization of the gradient flow differential equation described by: 9

x " ´∇f pxq

for a continuously differentiable function f : R n Ñ R.

From Proposition 2 and Proposition 3, it follows:

Proposition 4. Consider a continuously differentiable function f : R n Ñ R.

If the following conditions are satisfied

1. f convex of minimizer x ˚,
2. ∇f L-Lipschitzian, 3. the step size satisfies h ă 2{L.

Then }∇f px k q} Ñ 0 as k Ñ 8, with rate Op1{kq for the averaged iterates, where tx k u kPN is defined as in (4).

Asymptotic Error in Euler's Method

Error bound in Euler's method

Our objective is to analyze the error between the solutions of the differential equation ( 2) and their Euler approximations in [START_REF] Krichene | Accelerated mirror descent in continuous and discrete time[END_REF]. For this reason, we define a function δ : R Ñ R in order to upperbound }y k ´xptq} for t " kh (see [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF] and Theorem 1 below).

Definition 3. Given a sequence tµ k u kě0 of nonnegative reals, we define δ µ k : r0, hs Ñ R ě0 as follows: for all t P r0, hs, if λ ă 0 :

δ µ k ptq " ˆµ2 k e λt `C2 k λ 2 ˆt2 `2t λ `2 λ 2 `1 ´eλt ˘˙˙1 2 if λ " 0 : δ µ k ptq " ´µ2 k e t `C2 k `´t 2 ´2t `2pe t ´1q ˘¯1 2 if λ ą 0 : δ µ k ptq " ˆµ2 k e 3λt `C2 k 3λ 2 ˆ´t 2 ´2t 3λ `2 9λ 2 `e3λt ´1˘˙˙1 2
where

• L denotes the Lipschitz constant for g,

• C k :" L}gpy k q},
• λ is the "one-sided Lipschitz constant (OSL)" (or "logarithmic Lipschitz constant" [START_REF] Aminzare | Contraction methods for nonlinear systems: A brief introduction and some open problems[END_REF]) associated to g, i. e., the minimal constant such that, for all x 1 , x 2 P R n :

pgpx 1 q ´gpx 2 qq J px 1 ´x2 q ď λ}x 1 ´x2 } 2 , (6) 
Note that the constant C k depends on the value of yptq at time t " kh4 .

The constant λ can also be calculated "locally" for the zone occupied by xptq at time t P rkh, pk `1qhs, using a nonlinear optimization solver (see, e.g., [START_REF] Jerray | Robust optimal periodic control using guaranteed Euler's method[END_REF] for details).

Let us now consider the sequence tµ k u kě0 where µ k is defined recursively, for k ě 1 as

µ k " δ µ k´1 phq.
We can now define δ µ0 p2hq as δ µ1 phq with µ 1 " δ µ0 phq, and more generally, we can extend the definition of δ µ0 p¨q on r0, 8q as follows: for all k ě 0 and t P r0, hs, δ µ0 pkh `tq " δ µ k ptq.

In particular, it is easy to see that: δ µ0 pkhq " δ µ k p0q " µ k and δ µ0 ppk `1qhq "

δ µ k phq " µ k`1 .
Theorem 1.

[5] Consider the system 9 xptq " gpxptqq, with g : R n Ñ R n . Let xptq and py k q be defined as in (2) and (3) respectively, and µ 0 :" }y 0 ´x0 }.

Then, for all t " kh with k ě 0:

}y k ´xptq} ď δ µ0 ptq.
In the following, we give sufficient conditions on g and h ensuring that δ µ0 pkhq (hence }y k ´xpkhq}) converge to 0 as k Ñ 8. In the rest of the paper, we will always assume that g is Lipschitz continuous with constant L ą 0.

Strong monotonicity

Lemma 1. Consider the system 9 xptq " gpxptqq, with g : R n Ñ R n . Let xptq and py k q be defined as in (2) and (3) respectively, and µ 0 :" }y 0 ´x0 }. If the following conditions are satisfied:

1. }gpy k q} Ñ 0 as k Ñ 8 with a convergence rate r k , 2. g of OSL constant λ ă 0 (i.e., ´g strongly monotone).

Then δ µ0 pkhq Ñ 0 as k Ñ 8 with a convergence rate r k .

Proof. By Taylor-Lagrange's theorem, we find:

δ 2 µ0 ppk `1qhq ď δ 2 µ0 pkhqe λh `C2 k h 3 {p3|λ|q. ( 7 
)
Since C k " L}gpy k q} Ñ 0 as k Ñ 8 with rate r k , and e λh ă 1, it follows that there exists ℓ P N such that: δ 2 µ0 ppk `1qhq ă δ 2 µ0 pkhq for all k ě ℓ. Hence, the sequence tδ µ0 pkhqu kěℓ is decreasing, and converges to a limit δ ˚ě 0 with rate r k . This limit δ ˚must satisfy (7), i.e.:

pδ ˚q2 ď pδ ˚q2 e λh `C2 k h 3 {p3|λ|q.
Since C k " L}gpy k q} Ñ 0 as k Ñ 8 and e λh ă 1, one must have δ ˚" 0.

Therefore δ µ0 pkhq Ñ 0 with rate r k .

Remark 2. Let us mention that the result in Lemma 1 can be relaxed to show that the sequence δ µ0 pkhq, k P N, is bounded if the sequence }gpy k q}, k P N is bounded.

From Lemma 1 and Theorem 1, it follows:

Theorem 2. Consider the system 9 xptq " gpxptqq, with g : R n Ñ R n L-Lipschitz continuous. Let xptq and py k q as defined in (2) and (3) respectively. Suppose:

1. }gpy k q} Ñ 0 with a convergence rate r k , 2. g of OSL constant λ ă 0 (i.e., ´g strongly monotone).

Then δ µ0 pkhq Ñ 0 and }y k ´xpkhq} Ñ 0 with a convergence rate r k as k Ñ 8.

Note that Theorem 2 applies even if }y k } Ñ 8, as shown in Example 1.

Remark 3. For the sake of simplicity of the statement, we assume in Theorem 2 (as well as Theorem 3 and Corollary 3 below), that the property of Lipschitz continuity and strong monotonicity (as well as, later on, co-coercivity and existence of stationary point) hold over all R n . In fact, it is enough that these properties hold on a subdomain D Ă R n only, provided that D be "invariant" in the following sense:

Dℓ P N @k ě ℓ : Bpy k , δ µ0 pkhqq Ď D 5 .
Example 1. Let gpxq " 1 2 ?

x , y 0 " 1, h " 0.5, µ 0 " 0.5, and let D " r1, `8q. We have y k`1 " y k `h 1 2 ? y k ą y k , therefore ty k u is an increasing sequence which converges to `8, and gpy k q " 1 2 ? y k converges to 0. Using the software ORBITADOR [START_REF] Jerray | Orbitador: A tool to analyze the stability of periodical dynamical systems[END_REF], one calculates that L ď 0.5 and λ ă 0 on D (see Figure 1). Since }gpy k q} Ñ 0 (Figure 2), it follows by Theorem 2: δ µ0 pkhq Ñ 0 and |y k ´xpkhq| Ñ 0 as k Ñ 8 (see Figures 3 and4).

Application to gradient descent

An immediate consequence of Theorem 2, using Lemma 1 and Proposition 4 with g " ´∇f , is the following result (which avoids mentioning }gpy k q} Ñ 0 as an explicit assumption).

Corollary 1. Consider a continuously differentiable function f : R n Ñ R.

Suppose:

5 Bpx, rq denotes the ball of centre x P R n and radius r ě 0. Example 2. 6 Let us consider the following function f : R 2 Ñ R defined for 6 adapted from t ě 0, by:

f pwq " 1 2 Σ 2 i"1 pb i ´pw 1 ¨ai `w2 qq 2 ,
with w " pw 1 , w 2 q, a 1 " 1, a 2 " 2, b 1 " 5 and b 2 " 7. Let us compute its minimum w ˚" pw 1 , w 2 q by gradient descent, with initial point w 0 " pw 0 1 , w 0 2 q " p9, 10q. Using the software ORBITADOR [START_REF] Jerray | Orbitador: A tool to analyze the stability of periodical dynamical systems[END_REF], we find L ă 7 and λ ď ´0.187 (see Figure 5). For h " 0.2 (which satisfies: h ă 2{L), it follows by Proposition 4 that }∇f pwpkhqq} Ñ 0 and C " L}∇f pwpkhqq} Ñ 0 respectively, as k Ñ 8

(see Figures 6 and7 respectively). Letting µ 0 " 0.1, it follows from Corollary 1 that δ µ0 ptq Ñ 0 (see Figure 8 for t " kh ď 95 and Figure 9, with a change of scale, for 95 ď t " kh ď 120), y k Ñ w ˚and xpkhq Ñ w ˚, with w ˚" p2, 3q (which is the stationary point of ∇f and the minimizer of f ). 

Co-coercivity

The following result is a generalization of Corollary 1.

https://codingvision.net/gradient-descent-simply-explained-with-example 4. gpx ˚q " 0 for some x ˚P R n (existence of a stationary point).

Then we have:

• x ˚is the unique stationary point of R n ,

• y k Ñ x ˚and xpkhq Ñ x ˚as k Ñ 8 with rate Op1{kq for the averaged Example 3. Consider the differential equation 9

x " gpxq with gpxq " ´4x 3 6x BITADOR, one calculates L ď 12, where L is the Lipschitz constant of g. Let D " r1.25, 1.75s. For µ 0 " 0.1 and h " 0.12 ă 2{L, one can show, using ORBITADOR:

• λ ă 0 on D (see Figure 12),

• Bpy k , δ µ0 pkhqq Ď D for all k ě 12, and

• ´g co-coercive of constant 1{L on D.

Besides, x ˚" 1.5 P D is a stationary point (gpy ˚q " 0). From Theorem 3, it follows: δ µ0 pkhq Ñ 0, (see Figure 13), x ˚is the unique stationary point of D, y k Ñ x ˚and xpkhq Ñ x ˚as k Ñ 8 (see Figure 14). We can also check C " L}gpy k q} Ñ 0 (see Figure 15). Note that x ˚is here the minimizer of the non-convex function f pxq " x 4 ´2x 3 `2 (with ´∇f pxq " gpxq). See Figure 16. 

Conclusion

In this paper, we have focused on the following problem: given an ODE 9

x " gpxq and the sequence py k q generated by its discretization with explicit Euler's method, what are the sufficient conditions on g to ensure that the discretization error }xpkhq ´yk } converges to 0 as k Ñ 8. In particular, under certain properties of g called "strong monotonicity" and "co-coercivity", we have shown the convergence of the discretization error to 0 (Theorem 3). This can shed new light on the relationship between the convergence of continuous differential according to a Gaussian distribution, then the gradient descent converges to a globally optimal solution. In future work, we will use the approach developed in this paper to show the convergence of the gradient descent algorithm for the class of neural networks considered in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF].
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This slight modification of the definition of C, as originally given in[START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF], is justified by a simple inspection of the proof of Theorem 1 in[START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF].

, and its Euler discretization with y 0 " 0.25 and h " 0.12. Using OR-

Appendix: Proof of Proposition 3

Proof. This proof Let α :" Lh ą 0. We have:

Now, from the co-coercivity of ´g and gpx ˚q " 0, we have:

Therefore, from (8), we derive:

Therefore, by dividing by αp2 ´αq (which is positive since 2 ´α " 2 ´hL ą 0):

with β " αp2 ´αq ą 0.

Summing up from k " 1, . . . , K and dividing by K gives

It follows that }gpy k q} Ñ 0 as k Ñ 8 with rate Op1{kq for the averaged iterates.