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Using Euler’s Method to Prove the Convergence of Neural Networks

Jawher Jerray1 Adnane Saoud2 Laurent Fribourg3

Abstract— It was shown in the literature that, for a fully
connected neural network (NN), the gradient descent algorithm
converges to zero. Motivated by that work, we provide here
general conditions under which we can derive the convergence
of the gradient descent algorithm from the convergence of
the gradient flow, in the case of NNs, in a systematic way.
Our approach is based on an analysis of the error in Euler’s
method in the case of NNs, and relies on the concept of local
strong convexity. Unlike existing approaches in the literature,
our approach allows to provide convergence guarantees without
making any assumptions on the number of hidden nodes of the
NN or the number of training data points. A numerical example
is proposed, showing the merits of our approach.

I. INTRODUCTION

Theoretical conditions to guarantee the convergence of
first order algorithms to train neural networks (NNs) have
attracted attention of researchers in the recent years, where
different tools have been explored to show the convergence,
ranging from landscape analysis in [1], to optimal transport
theory in [2] and dynamical analysis in [3], [4]1.

In a recent work, [3] has shown that for a shallow fully
connected NN with ReLU activation functions, if number
m of hidden nodes is sufficiently large and if the initial
values of the weights of the NN are chosen according to a
Gaussian distribution, then the gradient descent converges to
a globally optimal solution, with a given probability. Indeed,
showing the convergence of the gradient descent algorithm
to a globally optimal solution boils down to showing the
convergence of the error (i.e, the error between the outputs
of the real data, and the outputs generated by the NN) to
zero. The proof in [3] is based on the analysis of the error
dynamics and is made of two steps: first, the authors in [3]
start by writing the dynamics of the error in terms of the
gradient flow, i.e., gradient descent with an infinitesimal step
size, and have shown the convergence of the error dynamics
to zero. In a second step, they rely on the proof of the
convergence of the gradient flow, to generate a proof of
convergence of the gradient descent algorithm to zero, while
using a constant step size.

Motivated by the work of [3], in this paper, we provide
sufficient conditions allowing to show how to go, in a sys-

1Jawher Jerray is with the university Sorbonne Paris Nord,
LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France
jerray@lipn.univ-paris13.fr

2 Adnane Saoud is with Laboratoire des Signaux et Systèmes,
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1The current paper uses a dynamical analysis perspective to provide

convergence guarantees.

tematic way, from the convergence of the gradient flow to the
convergence of the gradient descent algorithm, while using a
constant step size. Interestingly, we also provide an explicit
bound on the convergence rate for the gradient descent
algorithm in the case of NNs. Our approach is inspired from
the works in [5] and [6, Theorem 1] by analyzing a function δ
bounding the mismatch between the solutions to the gradient
flow and the gradient descent algorithm.

Related work: In spirit, the closest work in the literature
is [3]. The authors in [3] make the following assumptions:
(H1) Dλ0 ą 0 such that λminpH8q ą λ0

2 , where the matrix
H82 is the Gram matrix induced by the activation
function and the random initialization of the weights
of the NN, and λminpAq is the minimal eigenvalue of
a matrix A.

(H2) The number of hidden nodes m satisfy m “

Ωp n6

pλ0q4ε3 q and the constant step size h “ Opλ0

n2 q,
where n is the number of training data points and ε ą 0
is a failure probability.

Under these conditions, the authors in [3] provide a linear
convergence rate for the gradient flow method, and then use it
to generate a linear convergence rate of the gradient descent
algorithm for the case of NNs.

Besides [3], we are inspired here by the works of [7]
and [8]. In [7] it is shown that, under some conditions,
gradient descent converges to a local minimizer, almost
surely with random initialization. In [8], it is shown that,
when the nonlinear activation function of a one-hidden layer
NN satisfies a property of “local strong convexity”, then
gradient descent converges at a linear rate under a resampling
rule.

We give here a general framework in order to generalize
these various results. Roughly speaking, we show here that,
if

‚ The gradient descent converges to a local minimizer of
the cost function L (see (C1) below),

‚ The cost function L is locally strongly convex around
the minimizers (see (C3) below), and

‚ All the eigenvalues of the matrix Hrwptqs, describing
the continuous dynamics of the gradient flow, are greater
than some positive value λ˚ (see (C2) below),3

then the gradient descent algorithm makes the training error
converge to 0 at a linear rate (see Theorem 2).

The advantages of our approach with respect to the one
of [3] are as follows:

2See [3, Assumption 3.1] for more details about the matrix H8.
3(C2) is proven in [3] as a consequence of Assumptions (H1)-(H2).



‚ Our approach is general and does not depend on the
algorithm giving the discrete evolution (and continuous
evolution) of the weights of the NN, nor on the used
activation functions.

‚ Our approach makes it possible to provide convergence
of the gradient descent algorithm without making any
assumptions on the number of data points n and number
of hidden nodes m.

‚ While the approach in [3] uses a constant step size
depending on the training data n. In this paper, we use
a constant step size that do not depend on the number
of training data.

Plan of the paper

Section II recalls the explicit Euler discretization approach.
Section III recalls the gradient descent approach for NNs.
Section IV gives the main result of the paper, by showing the
convergence of the gradient descent algorithm, for the case
of NNs. Finally, Section V provides a numerical example
illustrating the theoretical results of the paper.

A. Notation

We denote by R and N the set of real and natural numbers,
respectively. These symbols are annotated with subscripts to
restrict them in the usual way, e.g., Rą0 denotes the positive
real numbers. We denote by Rn an n-dimensional Euclidean
space and by Rnˆm a space of real matrices with n rows
and m columns. For a matrix A, we denote by λminpAq its
minimal eigenvalue. The Euclidean norm is denoted by } ¨ }.
The set t1, . . . ,mu is denoted by rms.

II. PRELIMINARIES

Consider a differential system of the form

9xptq “ gpxptqq (1)

with initial condition x0 P Rn, where g : Rn Ñ Rn

is a differentiable Lipschitzian function. For the sake of
simplicity, we will denote by xptq, the solution of (1) at
time t. For k P N, We denote by x̃k the (explicit) Euler
discretization of (1) at time t “ tk with tk “ kh, for k ě 0.
Given an initial condition x̃0 P Rn, x̃k is defined, for k ě 1,
by:

x̃k “ x̃k´1 ` hgpx̃k´1q (2)

We then obtain a continuous function x̃ : Rě0 Ñ Rn

satisfying for all k P N, x̃ptkq “ x̃k by linear interpolation
between points x̃k, k P N.

We now define the property of “local strong convexity”.
In [8], it is shown that, when the nonlinear activation function
of a one-hidden layer NN satisfies this property, then gradient
descent converges at a linear rate under a resampling rule.

Definition 1. Consider a function g : Rn Ñ Rn. The func-
tion g is said to be locally strongly convex on a neighborhood
U of a point z P Rn with a factor γ P Rą0 if, for all x, y P U :

px ´ yqJpgpxq ´ gpyqq ě γ}x ´ y}2 (3)

Remark 1. In the literature, different names are used to refer
to γ in Equation (3). For example, in [9], [10], γ is called
“constant of contraction” of g with respect to the Euclidean
norm. In [11], ´γ is called “least upperbound Lipschitz
constant” (or “one-sided Lipschitz constant”) induced by the
Euclidean norm.

III. GRADIENT DESCENT FOR NEURAL NETWORKS

We now recall from [3] some definitions regarding the
application of the gradient descent algorithms to NNs. We
consider a NN of the form:

fpw, a, xq “
1

?
m

m
ÿ

r“1

arσppwrqJxq (4)

where x P Rd is the input, wr P Rd is the weight vector of
the first layer, ar P R is the output weight and σp¨q is the
ReLU activation function: σpzq “ z if z ě 0 and σpzq “ 0
if z ă 0.

We focus on the empirical risk minimization problem
with a quadratic loss. Indeed, given a training data set
tpxi, yiquni“1, the objective is to minimize the loss function
Lpwq “

řn
i“1

1
2 pfpw, a, xiq ´ yiq

2. To do this, the authors
in [3] fix the second layer and apply the gradient descent on
the first layer weights matrix:

w̃k`1 “ w̃k ´ h
BLpw̃kq

Bwk
. (5)

where the gradient formula for each weight vector is

BLpwq

Bwr
“

1
?
m

n
ÿ

i“1

pfpw, a, xiq ´ yiqarxiItpwrqJxi ě 0u.

(6)
with r P rms and I is the indicator on whether the event
pwrqJei ě 0 happens. Note that the ReLU activation
function is not continuously differentiable and one can view
BLpwq

Bwr as a convenient notation for the right hand side of (6).
The discrete equation (5) corresponds to the Euler discter-

ization, with a step size h, of the set of ordinary differential
equations defined for r P rms by:

dwrptq

dt
“ ´

BLpwptqq

Bwrptq
(7)

IV. ASYMPTOTIC ERROR IN EULER’S METHOD

As mentioned in the introduction, showing the conver-
gence of the gradient descent algorithm, for the case of NNs,
to a globally optimal solution boils down to showing the
convergence of the error (i.e. the error between the outputs
of the real data, and the outputs generated by the NN) to
zero. For this reason, in the rest of paper we will focus on
the analysis the dynamics of the error v : Rě0 Ñ Rn, defined
by v “ fpw, a, xq ´ y.

As shown in [3, Section 3], the continuous dynamics of
the error v can be written in a compact way

d

dt
vptq “ ´Hrwptqsvptq, vp0q “ v0 (8)



where Hrws : Rě0 Ñ Rnˆn is a symmetric time-varying
matrix.4

The discrete version resulting from the Euler discretiza-
tion of (8), and which corresponds to the gradient descent
algorithm of ṽ, writes:

ṽk`1 ´ ṽk “ ´hHrw̃ksṽk, (9)

is generated using the step size h, with ṽp0q “ ṽ0.
We are now ready to formalize the main problem of the

paper:

Problem 1. Given the discrete time system in (9), provide
conditions on the matrix Hrws : Rě0 Ñ Rnˆn, the loss
function L : Rd Ñ Rě0 and the step size h to ensure the
convergence of ṽk, to zero, together with an explicit bound
on its convergence rate.

In the rest of the paper, we provide a solution to Problem 1
under the following assumptions:
(C1) The gradient descent algorithm for the update of the

weights of the NN in equation (5) converges to a local
minima w˚, i.e. BLpw̃kq

Bw converges to 0 as k goes to the
infinity.

(C2) There exist λ˚ ą 0 and t0 ě 0 such that, for all t ě t0:
λminpHrwptqsq ě λ˚, where the time-varying matrix
Hrwptqs is given in (8). (cf [3, Lemma 3.2 and Lemma
3.3])

(C3) L is locally strongly convex around every local min-
imizer w˚ of L, that is: for every local minimizer
w˚, there is a neighborhood around w˚ on which L
is strongly convex.

Remark 2. Let us mention that the local strong convexity
property is equivalent to the fact that ´

BLpw̃kq

Bw belongs to a
contractive region, i.e, there exists k0 P N, a convex region
D and a positive real γ ą 0 such that w̃k P D for all k ě k0,
and

x
BLpwq

Bw
´

BLpw1q

Bw
,w ´ w1y ě γ}w ´ w1}2

for all w P D, w1 P D. This is also equivalent to the positive
definiteness of the Hessian of L in the neighborhood of each
local minimizer w˚. Moreover, in view of [10], the strong
convexity corresponds to the special case of contracting
gradient descent in the identity metric.

Before providing our proof of the error dynamics ṽk to
zero, let us first provide an analysis of the conservatism of
the Assumptions (C1)-(C2)-(C3) and compare them to the
Assumptions (H1) and (H2), used in [3].

‚ Assumption (C1) is satisfied when the gradient descent
algorithm reaches a local minima, from [7] this condi-
tion is satisfied almost surely with a random initialisa-
tion of the algorithm, when the step size of the Euler
discretization h is chosen such that h ă 1

L where L is
the Lipschitz constant of the loss function L;

4For f given by (4), Hrws is the (symmetric positive definite matrix)
defined for w “ pw1, ..., wmq P Rdˆm as the n ˆ n matrix with pi, jq-th
entry Hijrws “ 1

m
peiqJejΣm

r“1ItpeiqJwr ě 0, pejqJwr ě 0u.

‚ Assumption (C3) is satisfied when the loss function
L is strongly convex on a the neighborhood of each
minimizer. This condition can be always satisfied by
intializing the parameters so that they fall into the
basin of the local strong convexity region, and which
can be done for example by following the tensor-based
approach proposed in [8].

‚ Assumption (C2) is a direct consequence of Assump-
tions (H1) and (H2) used in [3] (See Proposition 1
below).

Proposition 1. Assumption (C2) follows from (H1)-(H2)
when the map f is defined by (4).

The proof of the proposition follows immediately from
Lemmas 3.2 and 3.3 in [3].

From the discussion above and the result of Proposition 1
it follows that Assumptions (H1) and (H2) used in [3] are in
general more conservative than the Assumptions (C1), (C2)
and (C3) used in this paper.

In order to analyse the convergence properties of the NN,
we use the result of [5] that allows to bound the sequence
δk “ }w̃k ´ wk}, k P N, where wk “ wpkhq, h is a
constant step size and w : Rě0 Ñ Rm is the solution to
(7). Intuitively, the sequence δk characterizes the mismatch
between the solutions to the gradient flow in (7) and the
gradient descent algorithm in (5) when using the Euler
method.

Theorem 1. [5] Under assumptions (C1) and (C3), if the
the step size h satisfies h ă 2

L , where L is the Lipschitz
constant of the loss function L, then the sequence }w̃k ´

wk}, k P N converges to 0, where w̃k is defined by (5) and
wk “ pw1pkhq, . . . , wmpkhqq with wrptq defined for r P rms

by (7).

We also have the following auxilliary result

Lemma 1. Under assumptions (C1), (C2) and (C3), if the
the step size h satisfies h ă 2

L , where L is the Lipschitz
constant of the loss function L, then there exist λ˚ ą 0 and
k0 P N such that, for all k ě k0

λminpHrw̃pkhqsq ě
λ˚

2
.

where w̃k is defined by (5).

Proof. From Assumption (C2), we have the existence of
t0 ě 0 such that fot all t ě t0, λminpHrwptqsq ě λ˚.
Moreover, we have from Theorem 1 that the sequence
}w̃k´wk} converges to zero. Hence, by continuity of the map
t ÞÑ λminpHrw̃ptqsq5, we conclude the existence of k0 P N
that

λminpHrw̃pkhqsq ě
λ˚

2

for all k ě k0.

5The function t ÞÑ w̃ptq is continuous from the Euler’s construction,
which implies the continuity of the map t ÞÑ λminpHrw̃ptqsq.



We are now ready to provide the main result of the paper,
showing the convergence of the gradient descent algorithm
for NNs.

Theorem 2. Under assumptions (C1), (C2) and (C3), if the
the step size h satisfies h ă 2

L , where L is the Lipschitz
constant of the loss function L, then there exist λ˚ ą 0 and
k0 P N such that, for all k ě k0

}ṽk} ď }ṽk0}p1 ´
1

2
λ˚hqk´k0 (10)

where ṽk is defined by (9).

Proof. We have by (9):

ṽk`1 “ ṽk ´ hHrw̃ksṽk.

which implies that

}ṽk`1} “ }pI ´ hHrw̃ksqṽk} ď }I ´ hHrw̃ks}}ṽk}.

Using the fact that I ´ hHrw̃ks is a symmetric matrix, we
have:

}ṽk`1} ă p1 ´ hλminpHrw̃ptkqsqq}ṽk}.

Therefore, using Lemma 1, we have the existence of k0 P N
such that for all k ě k0:

}ṽk`1} ă p1 ´
1

2
λ˚hq}ṽk}.

Hence, for all k ě k0:

}ṽk} ď }ṽk0
}p1 ´

1

2
λ˚hqk´k0 .

Remark 3. The proposed approach in the paper is not
restricted to the form of f given in (4). Indeed, other forms of
f , and therefore other types of NNs with potentially different
activation functions, can be used under Assumptions (C1)-
(C2)-(C3).

Remark 4. Let us mention that although we focused on deter-
ministic guarantees in the paper, the result of Theorem 2 can
be generalized using the same approach to the probabilistic
case. That is if Assumptions (C1)-(C2)-(C3) hold with a
probability p on random initialization, then Equation (10)
also holds with probability p, and which corresponds to the
result obtained in [3].

V. NUMERICAL EXAMPLE

Consider the numerical example described in [3, Sec-
tion 5], where the objective is to train a NN to fit a given
data set. The training has been conducted using n “ 10
data points and m “ 200 hidden nodes. We initialize wr „

Np0, Iq and ar „ unif rt´1, 1us for r P rms (initial first
layer weight vector wr drawn from a normal distribution
and initial output weight ar drawn uniformly on t´1, 1u).

We focus here on a typical simulation for a given initializa-
tion (but all the simulations we made are similar). Using the
software ORBITADOR (see [12]), we compute the Lipschitz
constant L “ 9.7 of L, and take h “ 0.15 as a step size

(thus ensuring h ă 2
L ).6 We then compute γk, which is the

constant appearing in the right-hand side of Equation (3) on
a neighborhood Uk of w̃k (see Figure 1). We find γk ą 0.18
for all k ě 0. It follows that L is strongly convex of factor
γ ě 0.18, which is in accordance with Assumption (C3).

We also compute δk with initial value δ0 “ 1 (see
Figure 2), λminpHrw̃ksq (see Figure 3) and ṽk with initial
value ṽ0 “ 4 (see Figure 4). We check that δk converges
to 0, which is in accordance with Theorem 1. We also check
that, for all k ě 0, λminpHrw̃ksq ě λ˚

2 with λ˚ “ 0.26,
which is in accordance with Lemma 1. Finally, we check on
Figure 4 that }ṽk} converges to 0 at a linear rate µ, which is
consistent with the result of Theorem 2. The rate µ « 0.23 is
again in accordance with the theoretical lower bound given
by Theorem 2, which is λ˚

2 « 0.13. 7

Fig. 1. Evolution of γk with time (t “ tk)

VI. CONCLUSION

In this paper, we proposed an approach to show the
convergence of the gradient descent algorithm for NNs. Our
approach is based on an analysis on the error in Euler’s
method. The proposed approach makes it possible to provide
deterministic convergence guarantees, without making any
assumptions on the number of hidden nodes of the NN.
Moreover, our approach is generic, since it does not take
into account the algorithmic procedure used to update the
parameters of the NN, which makes our method potentially
applicable to other optimization problems that go beyond the
training of NNs. Moreover, we also believe that proposed
approach can be used to explore the convergence properties
of the stochastic gradient descent algorithm by following for
example the approach proposed in [13].

6Note that the constraint h ă 2
L

is independent of n while [3] requires
h “ Op

λ0
n2 q with λ0 « 0.3 and n “ 10 here.

7Note that our proof of convergence does not involve the number m of
hidden nodes, but assumes that (C2) holds. In contrast, the proof of [3]
assumes a number m “ Ωp n6

λ4
0ε

3 q (which is huge here (« Ωp1013q for a
probability of failure ε “ 0.1), but guarantees the satisfaction of (C2).



Fig. 2. Evolution of δk (upper bound of }w̃k ´ wk}) with time t “ tk

Fig. 3. Evolution of λminpHrw̃ptqsq with time (t “ tk)
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