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Using Euler's Method to Prove the Convergence of Neural Networks

It was shown in the literature that, for a fully connected neural network (NN), the gradient descent algorithm converges to zero. Motivated by that work, we provide here general conditions under which we can derive the convergence of the gradient descent algorithm from the convergence of the gradient flow, in the case of NNs, in a systematic way. Our approach is based on an analysis of the error in Euler's method in the case of NNs, and relies on the concept of local strong convexity. Unlike existing approaches in the literature, our approach allows to provide convergence guarantees without making any assumptions on the number of hidden nodes of the NN or the number of training data points. A numerical example is proposed, showing the merits of our approach.

I. INTRODUCTION

Theoretical conditions to guarantee the convergence of first order algorithms to train neural networks (NNs) have attracted attention of researchers in the recent years, where different tools have been explored to show the convergence, ranging from landscape analysis in [START_REF] Safran | On the quality of the initial basin in overspecified neural networks[END_REF], to optimal transport theory in [START_REF] Chizat | On the global convergence of gradient descent for over-parameterized models using optimal transport[END_REF] and dynamical analysis in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF], [START_REF] Li | Learning overparameterized neural networks via stochastic gradient descent on structured data[END_REF] 1 .

In a recent work, [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] has shown that for a shallow fully connected NN with ReLU activation functions, if number m of hidden nodes is sufficiently large and if the initial values of the weights of the NN are chosen according to a Gaussian distribution, then the gradient descent converges to a globally optimal solution, with a given probability. Indeed, showing the convergence of the gradient descent algorithm to a globally optimal solution boils down to showing the convergence of the error (i.e, the error between the outputs of the real data, and the outputs generated by the NN) to zero. The proof in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] is based on the analysis of the error dynamics and is made of two steps: first, the authors in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] start by writing the dynamics of the error in terms of the gradient flow, i.e., gradient descent with an infinitesimal step size, and have shown the convergence of the error dynamics to zero. In a second step, they rely on the proof of the convergence of the gradient flow, to generate a proof of convergence of the gradient descent algorithm to zero, while using a constant step size.

Motivated by the work of [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF], in this paper, we provide sufficient conditions allowing to show how to go, in a sys-tematic way, from the convergence of the gradient flow to the convergence of the gradient descent algorithm, while using a constant step size. Interestingly, we also provide an explicit bound on the convergence rate for the gradient descent algorithm in the case of NNs. Our approach is inspired from the works in [START_REF] Jerray | Asymptotic error in Euler's method with a constant step size[END_REF] and [6, Theorem 1] by analyzing a function δ bounding the mismatch between the solutions to the gradient flow and the gradient descent algorithm.

Related work: In spirit, the closest work in the literature is [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF]. The authors in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] make the following assumptions: (H1) Dλ 0 ą 0 such that λ min pH 8 q ą λ0 2 , where the matrix H 82 is the Gram matrix induced by the activation function and the random initialization of the weights of the NN, and λ min pAq is the minimal eigenvalue of a matrix A. (H2) The number of hidden nodes m satisfy m "

Ωp n 6 pλ0q 4 ε 3 q and the constant step size h " Op λ0 n 2 q, where n is the number of training data points and ε ą 0 is a failure probability. Under these conditions, the authors in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] provide a linear convergence rate for the gradient flow method, and then use it to generate a linear convergence rate of the gradient descent algorithm for the case of NNs.

Besides [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF], we are inspired here by the works of [START_REF] Lee | Gradient descent only converges to minimizers[END_REF] and [START_REF] Zhong | Recovery guarantees for one-hidden-layer neural networks[END_REF]. In [START_REF] Lee | Gradient descent only converges to minimizers[END_REF] it is shown that, under some conditions, gradient descent converges to a local minimizer, almost surely with random initialization. In [START_REF] Zhong | Recovery guarantees for one-hidden-layer neural networks[END_REF], it is shown that, when the nonlinear activation function of a one-hidden layer NN satisfies a property of "local strong convexity", then gradient descent converges at a linear rate under a resampling rule.

We give here a general framework in order to generalize these various results. Roughly speaking, we show here that, if ' The gradient descent converges to a local minimizer of the cost function L (see (C1) below), ' The cost function L is locally strongly convex around the minimizers (see (C3) below), and ' All the eigenvalues of the matrix Hrwptqs, describing the continuous dynamics of the gradient flow, are greater than some positive value λ ˚(see (C2) below), 3 then the gradient descent algorithm makes the training error converge to 0 at a linear rate (see Theorem 2).

The advantages of our approach with respect to the one of [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] are as follows:

' Our approach is general and does not depend on the algorithm giving the discrete evolution (and continuous evolution) of the weights of the NN, nor on the used activation functions. ' Our approach makes it possible to provide convergence of the gradient descent algorithm without making any assumptions on the number of data points n and number of hidden nodes m. ' While the approach in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] uses a constant step size depending on the training data n. In this paper, we use a constant step size that do not depend on the number of training data.

Plan of the paper

Section II recalls the explicit Euler discretization approach. Section III recalls the gradient descent approach for NNs. Section IV gives the main result of the paper, by showing the convergence of the gradient descent algorithm, for the case of NNs. Finally, Section V provides a numerical example illustrating the theoretical results of the paper.

A. Notation

We denote by R and N the set of real and natural numbers, respectively. These symbols are annotated with subscripts to restrict them in the usual way, e.g., R ą0 denotes the positive real numbers. We denote by R n an n-dimensional Euclidean space and by R nˆm a space of real matrices with n rows and m columns. For a matrix A, we denote by λ min pAq its minimal eigenvalue. The Euclidean norm is denoted by } ¨}. The set t1, . . . , mu is denoted by rms.

II. PRELIMINARIES

Consider a differential system of the form

9 xptq " gpxptqq (1) 
with initial condition x 0 P R n , where g : R n Ñ R n is a differentiable Lipschitzian function. For the sake of simplicity, we will denote by xptq, the solution of (1) at time t. For k P N, We denote by xk the (explicit) Euler discretization of (1) at time t " t k with t k " kh, for k ě 0.

Given an initial condition

x0 P R n , xk is defined, for k ě 1, by: xk " xk´1 `hgpx k´1 q (2)
We then obtain a continuous function x : R ě0 Ñ R n satisfying for all k P N, xpt k q " xk by linear interpolation between points xk , k P N.

We now define the property of "local strong convexity". In [START_REF] Zhong | Recovery guarantees for one-hidden-layer neural networks[END_REF], it is shown that, when the nonlinear activation function of a one-hidden layer NN satisfies this property, then gradient descent converges at a linear rate under a resampling rule. Definition 1. Consider a function g : R n Ñ R n . The function g is said to be locally strongly convex on a neighborhood U of a point z P R n with a factor γ P R ą0 if, for all x, y P U : px ´yq J pgpxq ´gpyqq ě γ}x ´y} 2

(3)

Remark 1. In the literature, different names are used to refer to γ in Equation (3). For example, in [START_REF] Lohmiller | On contraction analysis for nonlinear systems[END_REF], [START_REF] Wensing | Beyond convexity-Contraction and global convergence of gradient descent[END_REF], γ is called "constant of contraction" of g with respect to the Euclidean norm. In [START_REF] Söderlind | The logarithmic norm. History and modern theory[END_REF], ´γ is called "least upperbound Lipschitz constant" (or "one-sided Lipschitz constant") induced by the Euclidean norm.

III. GRADIENT DESCENT FOR NEURAL NETWORKS

We now recall from [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] some definitions regarding the application of the gradient descent algorithms to NNs. We consider a NN of the form:

f pw, a, xq " 1 ? m m ÿ r"1 a r σppw r q J xq (4) 
where x P R d is the input, w r P R d is the weight vector of the first layer, a r P R is the output weight and σp¨q is the ReLU activation function: σpzq " z if z ě 0 and σpzq " 0 if z ă 0.

We focus on the empirical risk minimization problem with a quadratic loss. Indeed, given a training data set tpx i , y i qu n i"1 , the objective is to minimize the loss function Lpwq "

ř n i"1 1 
2 pf pw, a, x i q ´yi q 2 . To do this, the authors in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] fix the second layer and apply the gradient descent on the first layer weights matrix:

wk`1 " wk ´h BLp wk q Bw k . (5) 
where the gradient formula for each weight vector is

BLpwq Bw r " 1 ? m n ÿ i"1
pf pw, a, x i q ´yi qa r x i Itpw r q J x i ě 0u.

(6) with r P rms and I is the indicator on whether the event pw r q J e i ě 0 happens. Note that the ReLU activation function is not continuously differentiable and one can view BLpwq Bw r as a convenient notation for the right hand side of [START_REF] Le Coënt | Distributed control synthesis using Euler's method[END_REF]. The discrete equation ( 5) corresponds to the Euler discterization, with a step size h, of the set of ordinary differential equations defined for r P rms by:

dw r ptq dt " ´BLpwptqq Bw r ptq (7) 

IV. ASYMPTOTIC ERROR IN EULER'S METHOD

As mentioned in the introduction, showing the convergence of the gradient descent algorithm, for the case of NNs, to a globally optimal solution boils down to showing the convergence of the error (i.e. the error between the outputs of the real data, and the outputs generated by the NN) to zero. For this reason, in the rest of paper we will focus on the analysis the dynamics of the error v : R ě0 Ñ R n , defined by v " f pw, a, xq ´y.

As shown in [3, Section 3], the continuous dynamics of the error v can be written in a compact way

d dt vptq " ´Hrwptqsvptq, vp0q " v 0 (8) 
where Hrws : R ě0 Ñ R nˆn is a symmetric time-varying matrix. 4The discrete version resulting from the Euler discretization of (8), and which corresponds to the gradient descent algorithm of ṽ, writes: ṽk`1 ´ṽ k " ´hHr wk sṽ k ,

is generated using the step size h, with ṽp0q " ṽ0 .

We are now ready to formalize the main problem of the paper: Problem 1. Given the discrete time system in [START_REF] Lohmiller | On contraction analysis for nonlinear systems[END_REF], provide conditions on the matrix Hrws : R ě0 Ñ R nˆn , the loss function L : R d Ñ R ě0 and the step size h to ensure the convergence of ṽk , to zero, together with an explicit bound on its convergence rate.

In the rest of the paper, we provide a solution to Problem 1 under the following assumptions: (C1) The gradient descent algorithm for the update of the weights of the NN in equation ( 5) converges to a local minima w ˚, i.e. BLp wk q Bw converges to 0 as k goes to the infinity. (C2) There exist λ ˚ą 0 and t 0 ě 0 such that, for all t ě t 0 : λ min pHrwptqsq ě λ ˚, where the time-varying matrix Hrwptqs is given in [START_REF] Zhong | Recovery guarantees for one-hidden-layer neural networks[END_REF]. (cf [3, Lemma 3.2 and Lemma 3.3]) (C3) L is locally strongly convex around every local minimizer w ˚of L, that is: for every local minimizer w ˚, there is a neighborhood around w ˚on which L is strongly convex. Remark 2. Let us mention that the local strong convexity property is equivalent to the fact that ´BLp wk q Bw belongs to a contractive region, i.e, there exists k 0 P N, a convex region D and a positive real γ ą 0 such that wk P D for all k ě k 0 , and x BLpwq Bw ´BLpw 1 q Bw , w ´w1 y ě γ}w ´w1 }2 for all w P D, w 1 P D. This is also equivalent to the positive definiteness of the Hessian of L in the neighborhood of each local minimizer w ˚. Moreover, in view of [START_REF] Wensing | Beyond convexity-Contraction and global convergence of gradient descent[END_REF], the strong convexity corresponds to the special case of contracting gradient descent in the identity metric. Before providing our proof of the error dynamics ṽk to zero, let us first provide an analysis of the conservatism of the Assumptions (C1)-(C2)-(C3) and compare them to the Assumptions (H1) and (H2), used in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF].

' Assumption (C1) is satisfied when the gradient descent algorithm reaches a local minima, from [START_REF] Lee | Gradient descent only converges to minimizers[END_REF] this condition is satisfied almost surely with a random initialisation of the algorithm, when the step size of the Euler discretization h is chosen such that h ă 1 L where L is the Lipschitz constant of the loss function L;

' Assumption (C3) is satisfied when the loss function L is strongly convex on a the neighborhood of each minimizer. This condition can be always satisfied by intializing the parameters so that they fall into the basin of the local strong convexity region, and which can be done for example by following the tensor-based approach proposed in [START_REF] Zhong | Recovery guarantees for one-hidden-layer neural networks[END_REF]. ' Assumption (C2) is a direct consequence of Assumptions (H1) and (H2) used in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] (See Proposition 1 below).

Proposition 1. Assumption (C2) follows from (H1)-(H2) when the map f is defined by (4).

The proof of the proposition follows immediately from Lemmas 3.2 and 3.3 in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF].

From the discussion above and the result of Proposition 1 it follows that Assumptions (H1) and (H2) used in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] are in general more conservative than the Assumptions (C1), (C2) and (C3) used in this paper.

In order to analyse the convergence properties of the NN, we use the result of [START_REF] Jerray | Asymptotic error in Euler's method with a constant step size[END_REF] that allows to bound the sequence δ k " } wk ´wk }, k P N, where w k " wpkhq, h is a constant step size and w : R ě0 Ñ R m is the solution to [START_REF] Lee | Gradient descent only converges to minimizers[END_REF]. Intuitively, the sequence δ k characterizes the mismatch between the solutions to the gradient flow in [START_REF] Lee | Gradient descent only converges to minimizers[END_REF] and the gradient descent algorithm in (5) when using the Euler method.

Theorem 1. [START_REF] Jerray | Asymptotic error in Euler's method with a constant step size[END_REF] Under assumptions (C1) and (C3), if the the step size h satisfies h ă 2 L , where L is the Lipschitz constant of the loss function L, then the sequence } wk ẃk }, k P N converges to 0, where wk is defined by (5) and w k " pw 1 pkhq, . . . , w m pkhqq with w r ptq defined for r P rms by [START_REF] Lee | Gradient descent only converges to minimizers[END_REF].

We also have the following auxilliary result Lemma 1. Under assumptions (C1), (C2) and (C3), if the the step size h satisfies h ă 2 L , where L is the Lipschitz constant of the loss function L, then there exist λ ˚ą 0 and k 0 P N such that, for all k ě k 0

λ min pHr wpkhqsq ě λ 2 .
where wk is defined by [START_REF] Jerray | Asymptotic error in Euler's method with a constant step size[END_REF].

Proof. From Assumption (C2), we have the existence of t 0 ě 0 such that fot all t ě t 0 , λ min pHrwptqsq ě λ ˚.

Moreover, we have from Theorem 1 that the sequence } wk ´wk } converges to zero. Hence, by continuity of the map t Þ Ñ λ min pHr wptqsq 5 , we conclude the existence of k 0 P N that λ min pHr wpkhqsq ě λ

We are now ready to provide the main result of the paper, showing the convergence of the gradient descent algorithm for NNs.

Theorem 2. Under assumptions (C1), (C2) and (C3), if the the step size h satisfies h ă 2 L , where L is the Lipschitz constant of the loss function L, then there exist λ ˚ą 0 and k 0 P N such that, for all k ě k 0 }ṽ k } ď }ṽ k0 }p1 ´1 2 λ ˚hq k´k0 [START_REF] Wensing | Beyond convexity-Contraction and global convergence of gradient descent[END_REF] where ṽk is defined by [START_REF] Lohmiller | On contraction analysis for nonlinear systems[END_REF].

Proof. We have by ( 9):

ṽk`1 " ṽk ´hHr wk sṽ k .

which implies that }ṽ k`1 } " }pI ´hHr wk sqṽ k } ď }I ´hHr wk s}}ṽ k }.

Using the fact that I ´hHr wk s is a symmetric matrix, we have: }ṽ k`1 } ă p1 ´hλ min pHr wpt k qsqq}ṽ k }.

Therefore, using Lemma 1, we have the existence of k 0 P N such that for all k ě k 0 :

}ṽ k`1 } ă p1 ´1 2 λ ˚hq}ṽ k }.
Hence, for all k ě k 0 : }ṽ k } ď }ṽ k0 }p1 ´1 2 λ ˚hq k´k0 .

Remark 3. The proposed approach in the paper is not restricted to the form of f given in (4). Indeed, other forms of f , and therefore other types of NNs with potentially different activation functions, can be used under Assumptions (C1)-(C2)-(C3). Remark 4. Let us mention that although we focused on deterministic guarantees in the paper, the result of Theorem 2 can be generalized using the same approach to the probabilistic case. That is if Assumptions (C1)-(C2)-(C3) hold with a probability p on random initialization, then Equation ( 10) also holds with probability p, and which corresponds to the result obtained in [START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF].

V. NUMERICAL EXAMPLE Consider the numerical example described in [3, Section 5], where the objective is to train a NN to fit a given data set. The training has been conducted using n " 10 data points and m " 200 hidden nodes. We initialize w r " N p0, Iq and a r " unif rt´1, 1us for r P rms (initial first layer weight vector w r drawn from a normal distribution and initial output weight a r drawn uniformly on t´1, 1u).

We focus here on a typical simulation for a given initialization (but all the simulations we made are similar). Using the software ORBITADOR (see [START_REF] Jerray | Robust optimal periodic control using guaranteed Euler's method[END_REF]), we compute the Lipschitz constant L " 9.7 of L, and take h " 0.15 as a step size (thus ensuring h ă 2 L ). 6 We then compute γ k , which is the constant appearing in the right-hand side of Equation (3) on a neighborhood U k of wk (see Figure 1). We find γ k ą 0.18 for all k ě 0. It follows that L is strongly convex of factor γ ě 0.18, which is in accordance with Assumption (C3).

We also compute δ k with initial value δ 0 " 1 (see Figure 2), λ min pHr wk sq (see Figure 3) and ṽk with initial value ṽ0 " 4 (see Figure 4). We check that δ k converges to 0, which is in accordance with Theorem 1. We also check that, for all k ě 0, λ min pHr wk sq ě λ 2 with λ ˚" 0.26, which is in accordance with Lemma 1. Finally, we check on Figure 4 that }ṽ k } converges to 0 at a linear rate µ, which is consistent with the result of Theorem 2. The rate µ « 0.23 is again in accordance with the theoretical lower bound given by Theorem 2, which is λ 2 « 0.13. VI. CONCLUSION In this paper, we proposed an approach to show the convergence of the gradient descent algorithm for NNs. Our approach is based on an analysis on the error in Euler's method. The proposed approach makes it possible to provide deterministic convergence guarantees, without making any assumptions on the number of hidden nodes of the NN. Moreover, our approach is generic, since it does not take into account the algorithmic procedure used to update the parameters of the NN, which makes our method potentially applicable to other optimization problems that go beyond the training of NNs. Moreover, we also believe that proposed approach can be used to explore the convergence properties of the stochastic gradient descent algorithm by following for example the approach proposed in [START_REF] Latz | Analysis of stochastic gradient descent in continuous time[END_REF]. 
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Fig. 1 .

 1 Fig. 1. Evolution of γ k with time (t " t k )

Fig. 2 .Fig. 3 .

 23 Fig. 2. Evolution of δ k (upper bound of } wk ´wk }) with time t " t k

See [3, Assumption

3.1] for more details about the matrix H 8 .[START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] (C2) is proven in[START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] as a consequence of Assumptions (H1)-(H2).

For f given by (4), Hrws is the (symmetric positive definite matrix) defined for w " pw 1 , ..., w m q P R dˆm as the n ˆn matrix with pi, jq-th entry H ij rws " 1 m pe i q J e j Σ m r"1 Itpe i q J w r ě 0, pe j q J w r ě 0u.

for all k ě k 0 .[START_REF] Jerray | Asymptotic error in Euler's method with a constant step size[END_REF] The function t Þ Ñ wptq is continuous from the Euler's construction, which implies the continuity of the map t Þ Ñ λ min pHr wptqsq.

Note that the constraint h ă 2 L is independent of n while[START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] requires h " Op λ 0 n 2 q with λ 0 « 0.3 and n " 10 here.

Note that our proof of convergence does not involve the number m of hidden nodes, but assumes that (C2) holds. In contrast, the proof of[START_REF] Du | Gradient descent provably optimizes over-parameterized neural networks[END_REF] assumes a number m " Ωp n 6 λ 4 0 ε 3 q (which is huge here (« Ωp10 13 q for a probability of failure ε " 0.1), but guarantees the satisfaction of (C2).

This work was supported by ANR PIA funding: ANR-20-IDEES-0002. 1 The current paper uses a dynamical analysis perspective to provide convergence guarantees.