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Introduction

Capital allocation is a crucial issue for insurance groups. Its impact on financial results can be very significant. Once the solvency capital has been determined using risk aggregation methods, it must be distributed between different business lines. Considering a dependent risk processes X = (X 1 , . . . , X d ), the determination of the solvency capital is based on the study of the stochastic behavior of the aggregated claim amount S = X 1 + • • • + X d . Capital allocation consists to determine the amount of the obtained economic capital that will be allocated to each risk X i , i = 1, . . . , d. The dependence modeling choices will definitely impact the allocation contributions. This operation is based in general on a top-down approach. We assume a multivariate model for the risk vector X, we choose a risk measure to evaluate the solvency capital based on the sum S distribution, and we determine the marginal contribution of each risk in this capital using an allocation method.

Several methods to allocate economic capital are proposed in the literature. The most known principle is Euler's method which is also called gradient method. From Euler's principle, one can drive allocation rules using any homogeneous risk measure. There is a bulk of papers on VaR and TVaR allocation rules including contributions expressions in different cases, studying in particular the impact of dependence on the allocation and also including concrete classes of examples, see [START_REF] Tasche | Conditional expectation as quantile derivative[END_REF] [START_REF] Tasche | Conditional expectation as quantile derivative[END_REF], [START_REF] Bargès | Tvar-based capital allocation with copulas[END_REF] [START_REF] Bargès | Tvar-based capital allocation with copulas[END_REF], or [START_REF] Cossette | Tvar-based capital allocation for multivariate compound distributions with positive continuous claim amounts[END_REF] [START_REF] Cossette | Tvar-based capital allocation for multivariate compound distributions with positive continuous claim amounts[END_REF].

The importance of the VaR and TVaR based allocation rules results directly from the practical interest of VaR and TVaR as usual risk measures. Since the VaR is a non coherent measure with respect to the coherence as defined using an axiomatic approach by [START_REF] Artzner | Coherent measures of risk[END_REF] [START_REF] Artzner | Coherent measures of risk[END_REF], the VaR-based capital allocation is therefore blameworthy for the same reason. The coherence of TVaR gives naturally more importance to the allocation rule based on it. However, various recent works in risk theory emphasize the non elicitability of TVaR, which makes its direct backtesting a hard task, see [START_REF] Gneiting | Making and Evaluating Point Forecasts[END_REF] [START_REF] Gneiting | Making and Evaluating Point Forecasts[END_REF] and [START_REF] Bellini | On elicitable risk measures[END_REF] [START_REF] Bellini | On elicitable risk measures[END_REF]. This verdict necessarily impacts the performance of an allocation constructed using TVaR rule. [START_REF] Bellini | On elicitable risk measures[END_REF] [START_REF] Bellini | On elicitable risk measures[END_REF] show that expectiles of level α ∈ [1/2, 1[ are the only law invariant risk measures both elicitable and coherent. This also makes expectiles a perfect candidate to construct a capital allocation. [START_REF] Emmer | What is the best risk measure in practice? A comparison of standard measures[END_REF] [START_REF] Emmer | What is the best risk measure in practice? A comparison of standard measures[END_REF] obtained a general formula of contributions in a capital allocation based on expectiles. We devote this paper to the expectile-based capital allocation. Our main objective is to examine more closely the allocation composition for some usual risk models, and to analyze its difference with the TVaR allocation rule.

The paper is organized in 6 sections. Section 1 recalls the Euler's allocation principle and its application to drive allocation rules from the homogeneous risk measures, especially the Wang measures family. The expectiles risk measures are also briefly presented before recalling the expectilebased allocation rule. We give an economic interpretation to this rule, and we compare it to the TVaR allocation. In Section 2, the capital allocation is studied for some independent models. We focus on the allocation composition for some exponential combinations and mixture models in Sections 3 and 4. The case of perfect dependence is examined in Section 5. The last section is devoted to some numerical illustrations.

Expectile-based capital allocation

This section is devoted to the allocation method presentation. We recall firstly the Euler allocation principle, and then we present the allocation rule derived from expectiles risk measures. An economic interpretation is given to the obtained rule, and a first comparison with the TVaR-based allocation rule is formulated. Euler's capital allocation method is studied in [START_REF] Tasche | Euler allocation: Theory and practice[END_REF] [START_REF] Tasche | Euler allocation: Theory and practice[END_REF] and [START_REF] Tasche | Capital allocation to business units and sub-portfolios: the euler principle[END_REF] [START_REF] Tasche | Capital allocation to business units and sub-portfolios: the euler principle[END_REF]. This technique is based on the idea of allocating capital according to the infinitesimal marginal impact of each risk, which corresponds to the decrease obtained on the overall risk, for an infinitely small decrement in risk X i .

We denote by ρ(X i |S) the contribution of risk X i in the overall risk. This contribution is given using Euler's principle by

ρ(X i |S) = lim h→0 ρ(S) -ρ(S -hX i ) h .
Using Euler's allocation principle, one can construct an allocation rule with any homogeneous risk measure. We recall the definitions of usual risk measures Value at Risk and Tail Value at Risk. The VaR risk measure of level α is defined for all random variable X by

V aR α (X) = inf{x ∈ R : P(X ≤ x) ≥ α} = inf{x ∈ R : F (x) ≥ α} = F -1 X (α),
which is the quantile of the same level. The TVaR of level α is defined as the mean of the VaRs exceeding V aR α (X)

T V aR α (X) = 1 1 -α 1 α V aR µ (X)dµ.
The well known VaR and TVaR based allocations are examples of rules obtained from this method. The risk contribution of each risk in the overall one by the V aR-based allocation rule is

V aR(X i |S) = E[X i |S = V aR α (S)].
In the case of continuous distributions, the risk contribution expression, for T V aR risk measure and Euler's method is given by

T V aR (X i |S) = E[X i |S > V aR α (S)] 1 -α .
Euler's method has been studied extensively in the allocation literature over the past decade. Its properties, such as coherence and RORAC compatibility, are analyzed in many works, and under different assumptions. See as examples Balog (2011) [START_REF] Balog | Capital allocation in financial institutions: the euler method[END_REF], Tasche (2000) [START_REF] Tasche | Conditional expectation as quantile derivative[END_REF] and [START_REF] Tasche | Allocating portfolio economic capital to sub-portfolios[END_REF] [START_REF] Tasche | Allocating portfolio economic capital to sub-portfolios[END_REF].

The economic interpretation of Euler's method makes it a relevant answer to the issue of capital allocation, and explains its fame as an actuarial practice. The composition of VaR-based capital allocation is studied in Marceau (2013) [START_REF] Marceau | Modélisation et évaluation quantitative des risques en actuariat: Modèles sur une période[END_REF] for several risk models, and the TVaR-based allocation rule in [START_REF] Bargès | Tvar-based capital allocation with copulas[END_REF] [START_REF] Bargès | Tvar-based capital allocation with copulas[END_REF] and [START_REF] Cossette | Tvar-based capital allocation for multivariate compound distributions with positive continuous claim amounts[END_REF] [START_REF] Cossette | Tvar-based capital allocation for multivariate compound distributions with positive continuous claim amounts[END_REF].

Elicitability is a natural desirable statistical property for risk measures. According to Bellini and Bignozzi (2015) [START_REF] Bellini | On elicitable risk measures[END_REF], a risk measure ρ is said to be elicitable in respect to the class P if there exists a scoring function S : R 2 → R + such that ρ(P) = arg min x∈R S(x, y)dP(y), ∀P ∈ P.

They show in the same paper that expectiles are the only coherent as well as elicitable risk measures. Expectiles were introduced in the context of statistical regression models by [START_REF] Newey | Asymmetric Least Squares Estimation and Testing[END_REF] [START_REF] Newey | Asymmetric Least Squares Estimation and Testing[END_REF]. For a random variable X with finite second moment order, the expectile of level α is defined as

e α (X) = arg min x∈R E[α(X -x) 2 + + (1 -α)(x -X) 2 + ], (1.1) 
where (x) + = max(x, 0).

Bellini et al. (2014) [START_REF] Bellini | Generalized quantiles as risk measures[END_REF] have introduced generalized quantile risk measures, which include expectiles, and are defined as a minimizer of an asymmetric error as follows

x α (X) = arg min x∈R {αE[Φ + ((X -x) + )] + (1 -α)E[Φ -((X -x) -)]},
where Φ + and Φ -are convex scoring functions. Expectiles correspond to the case Φ + (x) = Φ -(x) = x 2 . Maume-Deschamps et al. ( 2016) [START_REF] Maume-Deschamps | Multivariate extensions of expectiles risk measures[END_REF] introduced multivariate extensions of expectiles risk measures.

Expectiles are elicitable by construction. They are coherent for all α 1/2. Expectile can be defined equivalently for all random variable with finite first order moment as the unique solution for the following equation

αE[(X -x) + ] = (1 -α)E[(x -X) + ]. (1.2) 
The properties of expectile risk measures have been studied in several papers. They are presented in [START_REF] Emmer | What is the best risk measure in practice? A comparison of standard measures[END_REF] and in [START_REF] Bellini | Risk management with expectiles[END_REF]. The asymptotic behavior of expectiles is studied in [START_REF] Bellini | Risk management with expectiles[END_REF], and the second order of this behavior is analyzed in [START_REF] Mao | Risk concentration based on expectiles for extreme risks under fgm copula[END_REF]. Extremes for multivariate expectiles are studied in [START_REF] Maume-Deschamps | Extremes for multivariate expectiles[END_REF].

In this paper, we focus on Euler's capital allocation rule based on expectiles. Emmer et al. (2015) [START_REF] Emmer | What is the best risk measure in practice? A comparison of standard measures[END_REF] show that a risk X i contribution to the sum S = d =1 X is given by Definition 1.1.

Definition 1.1 (Expectile-based capital allocation)

The marginal contribution of a risk X i to an aggregated risk S = d =1 X using expectile is given by

e α (X i |S) = αE X i 1 1 {S>eα(S)} + (1 -α)E X i 1 1 {S<eα(S)} αP (S > e α (S)) + (1 -α)P (S < e α (S)) , ( 1.3 
)

for α ∈ [1/2, 1[.
To give an economic interpretation to the capital allocation rule of Definition 1.1, let α s denote the percentage α s = αP (S > e α (S)) αP (S > e α (S)) + (1 -α)P (S < e α (S))

.

The contribution e α (X i |S) can hence be written

e α (X i |S) = α s E [X i |S > e α (S)] T - +(1 -α s ) E [X i |S < e α (S)] T +
, from which the allocation can be interpreted as a linear combination of the marginal contribution in the exceeding of the overall expectile as ruin case (T -) and the marginal contribution in the global solvency from expectile point of view (T + ). This allocation rule, takes into account not only the marginal participation in negative global scenarios, like its the case for TVaR allocation, but also, the participation in the global performances.

In order to make clearer the relation between the expectile-based allocation and the TVaRbased one, we can write (1.3) in the following form

e α (X i |S) = (2α -1)(1 -β) (2α -1)(1 -β) + (1 -α) T V aR β (X i |S) + (1 -α) (2α -1)(1 -β) + (1 -α) E [X i ] ,
where β = F S (e α (S)). The allocation using expectiles is finally a transformation of the TVaR-based rule with safety margin percentage. The transformation concerns the TVaR level (e α -→ T V aR β ) but also the composition using a linear convex combination between T V aR β contribution and

E [X i ].
In a financial context, when the random variables represent P&L, an economic interpretation to the allocation contributions can been derived from the following expression

e α (X i |S) = α(1 -β) α(1 -β) + (1 -α)β T V aR β (X i |S) - (1 -α)β α(1 -β) + (1 -α)β T V aR 1-β (-X i | -S) ,
which corresponds to a linear combination between the marginal participations to the global profits and to the global losses, measured using the T V aR.

We can also write the contribution e α (X i |S) as

e α (X i |S) = αE X i 1 1 {S>eα(S)} + (1 -α)E X i 1 1 {S<eα(S)} αE S1 1 {S>eα(S)} + (1 -α)E S1 1 {S<eα(S)} e α (S), (1.4) 
since the expectile e α (S) satisfies

e α (S) = αE S1 1 {S>eα(S)} + (1 -α)E S1 1 {S<eα(S)}
αP (S > e α (S)) + (1 -α)P (S < e α (S)) .

The allocation percentage e α (X i |S)/e α (S) is then given directly from (1.4).

The expectile capital allocation is trivially additive from (1.4)

d i=1 e α (X i |S) = e α d i=1 X i .
From (1.3), it is also a neutral allocation, since

∃C i ∈ R, X i = C i a.s ⇒ e α (X i |S) = C i .
The allocation is sub-additive since for all subsets A ⊆ {1, . . . , d}, we have

e α ( ∈A X |S) = ∈A e α (X |S),
as it is the case for the VaR and TVaR based allocation rules.

In the rest of this article, we focus on the behavior of the contributions given by the expectilebased allocation rule. The impact of dependence is examined using different families of models.

Some bivariate independent models

This section presents a study of the expectile-based allocation rule in the case of independence. The main objective of this part is to highlight the impact of the marginals nature on the allocation contributions.

Bivariate independent exponential model

We consider bivariate independent exponential random vector (X 1 , X 2 ) with X i ∈ E(β i ), i ∈ {1, 2}. We denote by S the aggregated sum of risks X 1 + X 2 . In the case where β 1 = β 2 , the allocation is trivial e α (X 1 |S) = e α (X 2 |S) = e α (S)/2. Proposition 2.1 gives the allocation contributions expressions.

Proposition 2.1 (Expectile-based allocation, EI Model) According to the expectile allocation rule, the contribution from the risk

X i is e α (X i |S) = (2α -1)β i ξ (s * ; β i , β 3-i ) + (1 -α) (2α -1) H (s * ; β 1 , β 2 ) + (1 -α) 1 β i ,
where s * is the unique solution to the following equation

(2α -1) ζ (s; β 1 , β 2 ) -s H (s; β 1 , β 2 ) = (1 -α) s - 1 β 1 - 1 β 2 ,
where H, ζ, ξ are defined as follows

H (x; β i , β j ) =        e -βx 2-1 =0 (βx) ! , β i = β j = β 2 k=1 2 =1, =k β β -β k e -β k x , β i = β j , ζ (x; β 1 , β 2 ) =          2 β e -βx 2 =0 (βx) ! , β i = β j = β 2 k=1 2 =1, =k β β -β k xe -β k x + e -β k x β k , β i = β j , and ξ (x; β i , β j ) =        1 β H (x; 3, β) , β i = β j = β β j e -β i x x+ 1 β i (β j -β i ) -β j e -β i x (β i -β j ) 2 -β i e -β j x (β i -β j ) 2 , β i = β j .
Proof. From the expectile definition (1.2), e α (S) is the unique solution to equation

αE[(S -s) + ] = (1 -α)E[(s -S)+],
which can be written as

(2α -1)E[(S -s) + ] = (1 -α) (s -E[S]) ,
and from Equation 1.3, the contribution e α (X i |S) can be written

e α (X i |S) = (2α -1)E X i 1 1 {S>eα(S)} + (1 -α)E [X i ] (2α -1)P (S > e α (S)) + (1 -α) ,
then, the expressions are obtained straightforwardly from their definition using

F S (x) = H (x; β 1 , β 2 ) =        1 -e -βx 2-1 j=0 (βx) j j! , β 1 = β 2 = β 2 i=1 2 j=1,j =i β j β j -β i 1 -e -β i x , β 1 = β 2 , E S × 1 1 {S>x} = ζ (x; β 1 , β 2 ) =          2 β e -βx 2 j=0 (βx) j j! , β 1 = β 2 = β 2 i=1 2 j=1,j =i β j β j -β i xe -β i x + e -β i x β i , β 1 = β 2
, and

E X 1 × 1 1 {S>x} = ξ (x; β 1 , β 2 ) =      1 β H (x; 3, β) , β 1 = β 2 = β β 2 e -β 1 x x+ 1 β 1 (β 2 -β 1 )
-

β 2 e -β 1 x (β 1 -β 2 ) 2 -β 1 e -β 2 x (β 1 -β 2 ) 2 , β 1 = β 2 .
In this model, the random variable S follows an Erlang-2 distribution if

β 1 = β 2 = β and a generalized Erlang distribution if β 1 = β 2 .
Proposition 2.1 can be generalized in th case of higher dimension d > 2 and different distributions parameters. In fact, assume X 1 , X 2 , . . . , X d are independent exponential random variables with respective parameters 0

< β 1 < β 2 < • • • < β d .
We denote by S the aggregated sum of risks

X i , i = 1, . . . , d. Since X i ∼ E(β i ), ∀i ∈ {1, . . . , d}, then FS (s) = HS (s, β 1 , . . . , β d ) = d =1   d j=1,j = β j β j -β   e -β s , ∀ s ∈ R + ,
which is the distribution function of the Generalized Erlang distribution. In another hand, the sum expectile e α (S) is the unique solution to the equation

αE[(S -s) + ] = (1 -α)E[(S -s) -],
which is equivalent to

s = E[S] + 2α -1 1 -α E[(S -s) + ].
And since

E[(S -s) + ] = +∞ s FS (s)dt = d =1 A β e -β s , where A = d j=1,j = β j β j -β
, ∀ ∈ {1, . . . , d}, then e α (S) is the unique solution to the following equation

s = d =1 1 β 1 + 2α -1 1 -α A e -β s . (2.1)
We remark that X i and S (-i) = d =1, =1 X are independent. And since S (-i) is also the sum of exponentially independent random variables, then f

(-i) S (s) = d =1, =i   d j=1,j = ,j =i β j β j -β   β e -β s = d =1, =i A β β i (β i -β )e -β s , ∀ s ∈ R + .
This expression is used to get

E X i × 1 1 {S>x} = ξ i (x; β 1 , . . . , β d ) = d =1, =i A β i -β e -β x -e -β i x 1 + x + 1 β i .
Finally, the allocation contributions in this case are given by

e α (X i |S) = (2α -1)β i ξ i (s * ; β 1 , . . . , β d ) + (1 -α) (2α -1) H (s * ; β 1 , . . . , β d ) + (1 -α) 1 β i ,
where s * is the unique solution to (2.1). Remark that, in the particular case where

β 1 = β 2 = • • • = β d , we have e α (X i |S) = e α (S)/d, ∀i ∈ {1, . . . , d}.

Bivariate independent Gamma model

In this subsection, we consider two random variables of gamma distribution

X i ∼ G(α i , β), i = 1, 2.
The rate parameter is the same for both distributions. If X 1 and X 2 are independent, then S ∼ G(α 1 + α 2 , β).

Proposition 2.2 (Expectile-allocation, IG-Model) According to the expectile allocation rule, the contribution from the risk

X i is e α (X i |S) = (2α -1) Ḡ (s * ; α 1 + α 2 + 1, β) + (1 -α) 2α -1) Ḡ (s * ; α 1 + α 2 , β) + (1 -α) α i β , i ∈ {1, 2},
where s * is the unique solution to the following equation

(2α -1) α 1 + α 2 β Ḡ (s * ; α 1 + α 2 + 1, β) -s * Ḡ (s * ; α 1 + α 2 , β) = (1 -α) s - α 1 + α 2 β ,
and Ḡ (., α, β) is the survival function of Gamma(α, β) distribution.

Proposition 2.2 can be generalized for dimension d higher than 2. In fact for d independent random variables of gamma distribution

X i ∼ G(α i , β), i = 1, . . . , d e α X i S = d =1 X = (2α -1) Ḡ s * ; 1 + d =1 α , β + (1 -α) 2α -1) Ḡ s * ; d =1 α , β + (1 -α) α i β , i ∈ {1, . . . , d},
where s * is the unique solution to the following equation

(2α -1) d =1 α β Ḡ s * ; 1 + d =1 α , β -s * Ḡ s * ; d =1 α , β = (1 -α) s - d =1 α β .
Proof. The result is obtained directly using Equation 1.3.

Bivariate combinations of exponentials

Bivariate distributions with exponential marginals are well known in the actuarial science literature. They are presented in detail in Kotz et al. ( 2004) [START_REF] Kotz | Continuous multivariate distributions, models and applications[END_REF] and Balakrishnan and Lai (2009) [START_REF] Balakrishnan | Continuous bivariate distributions[END_REF]. The TVaR-based allocation rule was studied for this family of bivariate models in Cossette et al.

(2015) [START_REF] Cossette | On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation[END_REF] where explicit formulas of contributions are given.

In this section, we first give the general expression of the expectile-based allocation contributions for the family of bivariate combinations of exponentials with exponential marginals. Then, we provide the obtained expressions in some examples of models.

Bivariate combinations of exponential distributions

A random vector (X 1 , X 2 ) follows a bivariate combination of exponential distributions if its joint density can be written as follows

f X 1 ,X 2 (x 1 , x 2 ) = m i=1 m j=1 c i,j γ i e -γ i x 1 λ j e -λ j x 2 , ( 3.1) 
where

c i,j ∈ R with m i=1 m j=1 c i,j = 1.
We assume that 0 < γ 1 < ... < γ m and 0 < λ 1 < ... < λ m . We denote

c i, * = m j=1 c i,j and c * ,j = m i=1 c i,j where {c i,j , i = 1, ..., m, j = 1, ..., m} are such that f X 1 ,X 2 (x 1 , x 2 ) ≥ 0 for all (x 1 , x 2 ) ∈ R 2 .
This class includes the family of bivariate mixed exponential distributions for which 0 ≤ c i,j ≤ 1. Note that the class of bivariate combinations of exponential distributions is a subset within the family of bivariate matrix exponential distributions studied in Bladt and Nielsen (2010) [START_REF] Bladt | On the construction of bivariate exponential distributions with an arbitrary correlation coefficient[END_REF]. The marginal distributions are univariate combinations of exponentials given by

F X 1 (x 1 ) = m i=1 c i, * 1 -e -γ i x 1 and F X 2 (x 2 ) = m j=1 c * ,j 1 -e -λ j x 2 ,
respectively. Proposition 3.1 provides the general expressions of marginal contributions in a solvency capital by the expectile-based allocation method. Proposition 3.1 (Expectile-allocation for bivariate combinations of exponentials) Let (X 1 , X 2 ) follow a bivariate combination of exponentials. Then, for S = X 1 + X 2 , we have

e α (X 1 |S) = (2α -1) m i=1 m j=1 c i,j ξ (s * ; γ i , λ j ) + (1 -α) m i=1 c i, * γ i (2α -1) m i=1 m j=1 c i,j H (s * ; γ i , λ j ) + 1 -α ,
where ξ, ζ and H are the same functions defined in Proposition 2.1, and s * is the unique solution to the following equation

(2α -1)   m i=1 m j=1 c i,j ζ (s; γ i , λ j ) -s H (s; γ i , λ j )   = (1 -α) s - m i=1 c i, * γ i + c * ,i λ i . (3.2)
The contribution of X 2 is given directly from

e α (X 2 |S) = s * -e α (X 1 |S) ,
and it can also be obtained directly by

e α (X 2 |S) = (2α -1) m i=1 m j=1 c j,i ξ (s * ; λ j , γ i ) + (1 -α) m i=1 c * ,j λ j (2α -1) m i=1 m j=1 c i,j H (s * ; γ i , λ j ) + 1 -α .
Proof. Since the marginals are

F X 1 (x 1 ) = m i=1 c i, * (1 -e -γ i x 1 ) and F X 2 (x 2 ) = m j=1 c * ,j 1 -e -λ j x 2 respectively, then E[X 1 ] = m i=1 c i, * γ i and E[X 2 ] = m j=1 c * ,j λ j .
In this model, the joint distribution of (X 1 , X 2 ) is a linear combination of m × m terms. By a direct calculation, we get

FS (s) = m i=1 m j=1 c i,j H (s; γ i , λ j ) , ( 3.3) 
E S × 1 1 {S>s} = m i=1 m j=1 c i,j ζ (s; γ i , λ j ) , ( 3.4) 
and

E X 1 × 1 1 {S>s} = m i=1 m j=1 c i,j ξ (s; γ i , λ j ) . (3.5)
It also follows that

E[(S -s) + ] = m i=1 m j=1 c i,j ζ (s; γ i , λ j ) -s H (s; γ i , λ j ) . (3.6)
Combining expressions (3.3), (3.5) and (3.6), we obtain the announced result.

Remark that in this model, S follows a combination of Erlang-2 and/or generalized Erlang distributions. The value of e α (S) is obtained by solving Equation 3.2 using numerical methods. Then, we compute e α (X 1 |S) and e α (X 2 |S).

Specific models

We consider some well known bivariate exponential distributions which belongs to the class presented in the previous subsection.

Bivariate FGM-exponential Model

Let the joint distribution of (X 1 , X 2 ) be defined with a Farlie-Gumbel-Morgenstern (FGM) copula

C θ (u 1 , u 2 ) = u 1 u 2 + θu 1 u 2 (1 -u 1 ) (1 -u 2 ) , -1 ≤ θ ≤ 1,
(see e.g. Nelsen (2007) [START_REF] Nelsen | An introduction to copulas[END_REF], Example 3.12, Section 3.2.5) and with exponential marginals of parameters β 1 and β 2 . This leads to

F X 1 ,X 2 (x 1 , x 2 ) = 1 -e -β 1 x 1 1 -e -β 2 x 2 + θ 1 -e -β 1 x 1 1 -e -β 2 x 2 e -β 1 x 1 e -β 2 x 2 .
The FGM construction is considered a weak dependence model only. In fact, the Pearson correlation coefficient is 1 4 , and its Spearman's correlation coefficient is ρ S = θ 3 ∈ -1 3 , 1 3 . We recall that Spearman's rho is the concordance measure defined for continuous bivariate distributions, with copula C as dependence structure, by

ρ P (X 1 , X 2 ) = θ 4 , then ρ P (X 1 , X 2 ) ∈ -1 4 ,
ρ S = 12 [0,1] 2 uvdC(u, v) -3 = 12 [0,1] 2 C(u, v)dudv -3.
It is also considered as an asymptotic independent model since its upper tail dependence coefficient is λ U = 0. We recall the definition of the upper tail dependence coefficient as presented in Joe (1997) [START_REF] Joe | Multivariate models and multivariate dependence concepts[END_REF], for bivariate random variables (X, Y ) of a continuous marginal distributions

λ U = lim u-→1 -P(Y > F -1 Y (u)|X > F -1 X (u)).
The upper tail dependence coefficient can be expressed in terms of copula by

λ U = lim u-→1 - 1 -2u + C(u, u) 1 -u ,
when the limit exists.

The joint density is given by

f X 1 ,X 2 (x 1 , x 2 ) = β 1 e -β 1 x 1 β 2 e -β 2 x 2 + θ 2 i=1 2 j=1 (-1) i+j × iβ 1 e -iβ 1 x 1 × jβ 2 e -jβ 2 x 2 . (3.7)
Given (3.7), and with m = 2, 

γ i = iβ 1 (i = 1, 2), λ j = jβ 2 (j = 1, 2), c 1,1 = (1 + θ), c 1,2 = c 2,1 = -θ
e α (X k |S) = (2α -1)β k   ξ (s * ; β k , β ) + θ 2 i=1 2 j=1 (-1) i+j ξ (s * ; iβ k , jβ )   + 1 -α (2α -1) H (s * ; β 1 , β 2 ) + θ 2 i=1 2 j=1 (-1) i+j H (s * ; iβ 1 , jβ 2 ) + 1 -α 1 β k ,
where s * is the unique solution to the following equation

(2α -1)   T (s; β 1 , β 2 ) + θ 2 i=1 2 j=1 (-1) i+j T (s; iβ 1 , jβ 2 )   = (1 -α) s - 1 β 1 + 1 β 2 ,
and ξ, ζ and H are the same function defined in Proposition 2.1, and T is the function defined by

T (s; iβ 1 , jβ 2 ) = ζ (s; iβ 1 , jβ 2 ) -s H (s; iβ 1 , jβ 2 ) , ∀sR + , ∀(i, j) ∈ {1, 2} 2 .
Proof. The allocation contributions are directly obtained using 1.3 and the results of [START_REF] Bargès | Tvar-based capital allocation with copulas[END_REF] [START_REF] Bargès | Tvar-based capital allocation with copulas[END_REF] without the constraints on β 1 and β 2 i.e.

F S (x) = H (x; β 1 , β 2 ) + θ 2 i=1 2 j=1 (-1) i+j H (x; iβ 1 , jβ 2 ) , E S × 1 1 {S>x} = ζ (x; β 1 , β 2 ) + θ 2 i=1 2 j=1 (-1) i+j ζ (x; iβ 1 , jβ 2 )
and

E X k × 1 1 {S>x} = ξ (x; β k , β 3-k ) + θ 2 i=1 2 j=1 (-1) i+j ξ 1 (x; iβ k , jβ 3-k ) .

Bivariate AMH-exponential Model

Let the joint distribution of (X 1 , X 2 ) be defined by a bivariate Ali-Mikhail-Haq (AMH) copula, given by

C θ (u 1 , u 2 ) = u 1 u 2 1 -θ (1 -u 1 ) (1 -u 2 ) = u 1 u 2 + u 1 u 2 ∞ k=1 θ k (1 -u 1 ) k (1 -u 2 ) k ,
with dependence parameter θ ∈ [-1, 1]. As a special case, C 0 (u 1 , u 2 ) = u 1 u 2 is the independence copula. The AMH copula is also an Archimedian copula associated to the following generator

φ(t) = ln (1 -θ(1 -t)) t .
It introduces a moderate, positive or negative dependence relation. It is considered as a perturbation of the independence copula. The first-degree approximation of the AMH copula corresponds to the FGM copula (see e.g. Nelsen (2007) [START_REF] Nelsen | An introduction to copulas[END_REF]). The Pearson correlation coefficient is

ρ P (X 1 , X 2 ) = ∞ k=1 θ k 1 i=0 1 j=0 (-1) i+j 1 (k + i)(k + j) ∈ 4 ln(2) -3, π 2 3 -3 .
The upper extremes are asymptotically independent since λ U = 0. The joint density of (X 1 , X 2 ) is given by

f X 1 ,X 2 (x 1 , x 2 ) = β 1 e -β 1 x 1 β 2 e -β 2 x 2 + ∞ k=1 θ k 1 i=0 1 j=0 (-1) i+j (k + i) β 1 e -(k+i)β 1 x 1 (k + j) β 2 e -(k+j)β 2 x 2 ,
from which we can see that it is also a bivariate combination of exponentials, by taking m = ∞, andc i,1 = 0, i = 2, 3, . . ., and

γ i = iβ 1 (i ∈ N + ), λ j = jβ 2 (i ∈ N + ), c 1,1 = (1 + θ), c 1,2 = c 2,1 = -θ, c 1,j = 0, j = 2, 3, . . .,
c k,k = c k+1,k+1 = θ, c k,k+1 = c k+1,k = -θ, c k,j = c k+1,j = 0, j ∈ N + \ {k, k + 1} , c i,k = c i,k+1 = 0, i ∈ N + \ {k, k + 1} ,
for k = 2, 3, . . .. By Proposition 3.1, we obtain the expressions of marginal contributions in expectile allocation as presented in Lemma 3.3.

Lemma 3.3 (Expectile-Allocation

, AHM Model) Let (X 1 , X 2 ) follow a bivariate FGM model. Then, for S = X 1 + X 2 , we have for (k, ) ∈ {(1, 2), (2, 1)} e α (X k |S) = (2α -1)β k ξ (s * ; β k , β ) + ∞ k=1 θ k 1 i=0 1 j=0 (-1) i+j ξ (s * ; (k + i) β k , (k + j) β ) + 1 -α (2α -1) H (s * ; β 1 , β 2 ) + ∞ k=1 θ k 1 i=0 1 j=0 (-1) i+j H (s * ; (k + i) β 1 , (k + j) β 2 ) + 1 -α 1 β k ,
where s * is the unique solution to the following equation

(2α-1)   T (x; β 1 , β 2 ) + ∞ k=1 θ k 1 i=0 1 j=0 (-1) i+j T (x; (k + i) β 1 , (k + j) β 2 )   = (1-α) s - 1 β 1 + 1 β 2 ,
and ξ, ζ and H are the same function defined in Proposition 2.1, and T is the function defined by

T (s; a 1 , a 2 ) = ζ (s; a 1 , a 2 ) -s H (s; a 1 , a 2 ) .
Proof. The allocation contributions are obtained using 1.3 and the following expressions :

F S (x) = H (x; β 1 , β 2 ) + ∞ k=1 θ k 1 i=0 1 j=0 (-1) i+j H (x; (k + i) β 1 , (k + j) β 2 ) , E S × 1 1 {S>x} = ζ (x; β 1 , β 2 ) + ∞ k=1 θ k 1 i=0 1 j=0 (-1) i+j ζ (x; (k + i) β 1 , (k + j) β 2 ) ,
and

E X × 1 1 {S>x} = ξ (x; β , β 3-) + ∞ k=1 θ k 1 i=0 1 j=0 (-1) i+j ξ (x; (k + i) β , (k + j) β 3-) , ∈ {1, 2}.
Another interesting example is Sarmanov's bivariate exponential distribution introduced by Sarmanov (1966) [START_REF] Ov Sarmanov | Generalized normal correlation and 2-dimensional frechet-classes[END_REF]. The bivariate density is given by

f X 1 ,X 2 (x 1 , x 2 ) = β 1 β 2 e -(β 1 x 1 +β 2 x 2 ) + θβ 1 β 2 (β 1 + 1)(β 2 + 1) 1 i=0 1 j=0 (-1) i+j (β 1 +i)e -(β 1 +i)x 1 (β 2 +j)e -(β 2 +j)x 2 .
where

-(1+β 1 )(1+β 2 ) max(β 1 ,β 2 ,1) ≤ θ ≤ (1+β 1 )(1+β 2 ) max(β 1 ,β 2 )
. The correlation coefficient is

ρ P (X 1 , X 2 ) = θβ 1 β 2 (1 + β 1 ) 2 (1 + β 2 ) 2 ∈ - 1 4 , + 1 4 . 
The expectile-based allocation contributions can be found directly using Proposition 3.1 by letting m = 3,

γ 1 = β 1 , λ 1 = β 2 , γ i = β 1 + i -2 (i = 2, 3), λ j = β 2 + i -2 (j = 2, 3), c 1,1 = 1, c 1,2 = c 1,3 = c 2,1 = c 3,1 = 0, c 2,2 = c 3,3 = θβ 1 β 2 (β 1 +1)(β 2 +1
) , and

c 2,3 = c 3,2 = -θβ 1 β 2 (β 1 +1)(β 2 +1) .
The main inconvenient of the three previous examples is the limited interval of correlation taken into account. To face this problem, Bladt and Nielsen (2010) [START_REF] Bladt | On the construction of bivariate exponential distributions with an arbitrary correlation coefficient[END_REF] use multivariate phasetype distributions to define a class of bivariate exponential distributions with any feasible Pearson correlation coefficient ρ P (X 1 , X 2 ) ∈ [ρ min , ρ max ]. The characteristics of Bladt-Nielsen's bivariate exponential distribution are summarized in [START_REF] Cossette | On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation[END_REF] [START_REF] Cossette | On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation[END_REF]. They show that for a fixed m ∈ N + and ρ

P (X 1 , X 2 ) = ρ ∈ ρ (m)
min , ρ (m) max , where ρ

(m) min = 1 -m k=1 1 k 2 and ρ (m) max = 1 -1 m m k=1
1 k , the expression of the joint density of (X 1 , X 2 ) for Bladt-Nielsen's bivariate exponential distribution is given by

f X 1 ,X 2 (x 1 , x 2 ) = m l=1 m k=1 c l,k lλe -lλx 1 kµe -kµx 2 , where c l,k = (-1) l+k-(m+1) m m l m k m i=m+1-l k j=1 p i,j (-1) -i-j l -1 m -i k -1 k -j and p i,j =        ρ ρ (m) max δ i+j-n-1 + 1 m 1 -ρ ρ (m) max , ρ > 0 ρ ρ (m) min δ i-j + 1 m 1 -ρ ρ (m) min , ρ < 0 , with δ x = 1, if x = 0.
From this expression and taking γ i = iβ 1 (i = 1, 2, ..., m) and λ j = jβ 2 (j = 1, 2, ..., m), this construction can be seen as a bivariate combination of exponentials. Then, with Proposition 3.1, we find the expectile-based allocation contributions.

Bivariate exponentials mixture models

This section is devoted to a stronger dependence models, in the sens of extreme dependence presence λ U > 0. In the first subsection, we study the Marshall-Olkin model. The second subsection presents the contributions by expectile allocation in the case of a common mixture model.

Marshall-Olkin model

Let Y i ∼ exp(λ i ), with i = 0, 1, 2 be three independent random variables.

We construct two random variables with common shock X i = min(Y i , Y 0 ) for i = 1, 2. The obtained random variables X i have exponential marginal distributions of parameters β i = λ i + λ 0 (see e.g. Nelsen [START_REF] Nelsen | An introduction to copulas[END_REF] section 3.1.1.). The joint distribution function is given by

FX 1 ,X2 (x 1 , x 2 ) = P(X 1 > x 1 , X 2 > x 2 ) = P(Y 1 > x 1 , Y 2 > x 2 , Y 0 > max(x 1 , x 2 )) = e -λ 1 x 1 e -λ 2 x 2 e -λ 0 max(x 1 ,x 2 ) = e -(λ 0 +λ 1 )x 1 e -(λ 0 +λ 2 )x 2 e λ 0 min(x 1 ,x 2 ) = FX 1 (x 1 ) FX 2 (x 2 )e λ 0 min(x 1 ,x 2 ) ,
this construction leads to a copula given by

C(u 1 , u 2 ) = min u 1-λ 0 /β 1 1 u 2 , u 1 u 1-λ 0 /β 2 2
.

The joint density is

f X 1 ,X 2 (x 1 , x 2 ) =      f 1 X 1 ,X 2 (x 1 , x 2 ) = β 1 e -β 1 x 1 (β 2 -λ 0 )e -(β 2 -λ 0 )x 2 si x 1 > x 2 f 2 X 1 ,X 2 (x 1 , x 2 ) = (β 1 -λ 0 )e -(β 1 -λ 0 )x 1 β 2 e -β 2 x 2 si x 1 < x 2 f 0 X 1 ,X 2 (x 1 , x 2 ) = λ 0 e -β 1 x e -β 2 x e λ 0 x si x 1 = x 2 = x .
This model has as Pearson correlation coefficient ρ P = λ 0 λs , where λ s = λ 0 + λ 1 + λ 2 . The Spearman's rho for Marshall-Olkin copulas is

ρ S = 1 1 + 2 3 λ 1 +λ 2 λ 0 .
Since ρ S ∈]0, 1[, the Marshall-Olkin copulas model only the positive dependence. On another hand, they have upper tail dependence, and it is given by

λ U = min λ 0 β 1 , λ 0 β 2 = λ 0 max(λ 1 , λ 2 ) + λ 0 ,
Marshall-Olkin model takes then into account the asymptotic dependence. The density of S = X 1 + X 2 is given by

f S (s) = f 0 X 1 ,X 2 (s/2, s/2) + s/2 0 f 2 X 1 ,X 2 (x, s -x)dx + s s/2 f 1 X 1 ,X 2 (x, s -x)dx = λ 0 e -λs s 2 + λ 1 β 2 λ 1 -β 2 e -β 2 s -e -λs s 2 + λ 2 β 1 λ 2 -β 1 e -β 1 s -e -λs s 2 = λ 0 + λ 1 β 2 β 2 -λ 1 + λ 2 β 1 β 1 -λ 1 e -λs s 2 + λ 1 β 2 λ 1 -β 2 e -β 2 s + λ 2 β 1 λ 2 -β 1 e -β 1 s , from which we deduce F M O S (s, λ 0 , λ 1 , λ 2 ) = 2 λ s λ 0 + λ 1 β 2 β 2 -λ 1 + λ 2 β 1 β 1 -λ 1 e -λs s 2 + λ 1 λ 1 -β 2 e -β 2 s + λ 2 λ 2 -β 1 e -β 1 s .
Proposition 4.1 gives the expectile-based allocation contributions for Marshall-Olkin Model.

Proposition 4.1 (Expectile-Allocation, MO Model) Let (X 1 , X 2 ) follow a bivariate Marshall- Olkin model. Then, for S = X 1 + X 2 , we have for (k, ) ∈ {(1, 2), (2, 1)} e α (X k |S) = (2α -1)ξ M O (s * , λ 0 , λ k , λ ) + (1 -α) 1 λ 0 +λ k (2α -1) F M O S (s * , λ 0 , λ k , λ ) + (1 -α) ,
where s * is the unique solution to the following equation

(1 -α)s = 2 λ s 2 λ 0 + λ 1 β 2 β 2 -λ 1 + λ 2 β 1 β 1 -λ 1 (2α -1)e -λs s 2 + 1 -α + λ 1 /β 2 λ 1 -β 2 (2α -1)e -β 2 s + 1 -α + λ 2 /β 1 λ 2 -β 1 (2α -1)e -β 1 s + 1 -α ,
and ξ M O is defined by

ξ M O (s, λ 0 , λ 1 , λ 2 ) = λ 0 λ s + λ 1 λ s β 2 β 2 -λ 1 + λ 2 λ s β 1 β 1 -λ 1 e -λs s 2 s + 2 λ s + λ 2 λ 2 -β 1 e -β 1 s s + 1 β 1 + λ 1 β 2 (λ 1 -β 2 ) 2 1 β 2 e -β 2 s - 2 λ s e -λs s 2 - λ 2 β 1 (λ 2 -β 1 ) 2 1 β 1 e -β 1 s - 2 λ s e -λs s 2 .

Proof. Using the expression of F M O S

, we obtain

E[(S -s) + ] = 2 λ s 2 λ 0 + λ 1 β 2 β 2 -λ 1 + λ 2 β 1 β 1 -λ 1 e -λs s 2 + λ 1 /β 2 λ 1 -β 2 e -β 2 s + λ 2 /β 1 λ 2 -β 1 e -β 1 s , in particular E[S] = 2 λ s 2 λ 0 + λ 1 β 2 β 2 -λ 1 + λ 2 β 1 β 1 -λ 1 + λ 1 λ 1 -β 2 1 β 2 + λ 2 λ 2 -β 1 1 β 1 .
So, the expectile e α (S) is the unique solution to the following equation

(1 -α)s = 2 λ s 2 λ 0 + λ 1 β 2 β 2 -λ 1 + λ 2 β 1 β 1 -λ 1 (2α -1)e -λs s 2 + 1 -α + λ 1 /β 2 λ 1 -β 2 (2α -1)e -β 2 s + 1 -α + λ 2 /β 1 λ 2 -β 1 (2α -1)e -β 1 s + 1 -α .
And using the bivariate distribution, we get

E X 1 × 1 1 {S=s} = λ 0 + λ 1 β 2 β 2 -λ 1 + λ 2 β 1 β 1 -λ 1 s 2 e -λs s 2 + β 1 λ 2 λ 2 -β 1 se -β 1 s + λ 1 β 2 (λ 1 -β 2 ) 2 e -β 2 s -e -λs s 2 - λ 2 β 1 (λ 2 -β 1 ) 2 e -β 1 s -e -λs s 2 ,
and

E X 1 × 1 1 {S>s} = ξ M O (s, λ 0 , λ 1 , λ 2 ) = λ 0 λ s + λ 1 λ s β 2 β 2 -λ 1 + λ 2 λ s β 1 β 1 -λ 1 e -λs s 2 s + 2 λ s + λ 2 λ 2 -β 1 e -β 1 s s + 1 β 1 + λ 1 β 2 (λ 1 -β 2 ) 2 1 β 2 e -β 2 s - 2 λ s e -λs s 2 - λ 2 β 1 (λ 2 -β 1 ) 2 1 β 1 e -β 1 s - 2 λ s e -λs s 2 ,
that is sufficient to obtain the allocation contributions expressions.

Remark that in the Marshall-Olkin model, the dependence construction changes the marginals, contrary to the FGM model as example, where by construction the marginals are all the time the same, and the dependence effect is limited to the copula.

Common Mixture Model

This method of multivariate models construction is presented in detail in Joe (1997) [START_REF] Joe | Multivariate models and multivariate dependence concepts[END_REF]. It is based on the choice of a random variable Θ of support S Θ , and independent random variables Y i to construct random variables X i conditionally independent knowing Θ, such that

FX i |Θ=θ (x i ) = ( FY i (x i )) θ .
This construction provides the marginal distributions and the joint distribution by integration with respect to the law of Θ, as presented in Marceau (2013) [START_REF] Marceau | Modélisation et évaluation quantitative des risques en actuariat: Modèles sur une période[END_REF].

We are interested here to the case of bivariate exponential mixture model, and we assume that the moment generating function of Θ, M Θ exists, then

f X 1 ,X 2 (x 1 , x 2 ) = θ∈S Θ β 1 θe -β 1 θx 1 β 2 θe -β 2 θx 2 dF Θ (θ) = β 1 β 2 d 2 M Θ (t) dt 2 | t=-(β 1 x 1 +β 2 x 2 ) .
Let (X 1 , X 2 ) be a pair of continuous random variables which follows mixture of exponential distributions such that for all i ∈ {1, 2}, X i ∼ E(β i θ), with (β 1 < β 2 ), and θ ∼ Ga(γ, b). Therefore,

X i 's survival functions are FX i (x) = ∞ 0 FX i |Θ=θ f Θ (θ)dθ = ∞ 0 e -β i θx f Θ (θ)dθ = 1 + β i x b -γ
, consequently, X i is Pareto distributed with parameters γ, b β i . The risks X i , i = 1, 2 are conditionally independents. The survival bivariate distribution is given by

FX 1 ,X 2 (x 1 , x 2 ) = 1 1 + β 1 b x 1 + β 2 b x 2 γ = FX 1 (x 1 ) -1/γ + FX 1 (x 1 ) -1/γ -1 -γ
, that is the survival Clayton copula of dependence parameter θ = 1/γ. So, the upper tail dependence coefficient is

λ U = λ Clayton L = 2 -γ ,
where λ Clayton L is the lower tail dependence coefficient of Clayton copula. This dependence model have then upper tail dependence. The density of S is given by

f S (s) = β 1 β 2 γ (β 1 -β 2 )b   1 1 + β 2 b s γ+1 - 1 1 + β 1 b s γ+1   ,
and the its distribution function by

FS (s) = β 1 β 1 -β 2 1 1 + β 2 b s γ + β 2 β 2 -β 1 1 1 + β 1 b s γ .
Proposition 4.2 (Expectile-Allocation, CM Model) Let (X 1 , X 2 ) follow a bivariate common Gamma mixture model. Then, for S = X 1 + X 2 , we have for (k, ) ∈ {(1, 2), (2, 1)}

e α (X k |S) = (2α -1)ξ CM (s * , β k , β , γ, b) + (1 -α) b (γ-1)β k (2α -1) F CM S (s * , β 1 , β 2 , γ, b) + (1 -α) ,
where s * is the unique solution to the following equation

(2α-1)   β 1 /β 2 (β 1 -β 2 )γ 1 1 + β 2 b s γ-1 + β 2 /β 1 (β 2 -β 1 )γ 1 1 + β 1 b s γ-1   = (1-α) s b - β 1 /β 2 (β 1 -β 2 )γ - β 2 /β 1 (β 2 -β 1 )γ ,
and ξ CM is defined by

ξ CM (s * , β k , β , γ, b) = β 2 b (β -β k )β k (γ -1) 1 1 + β k b s γ 1 + γ β k b s + 1 (β k -β ) 2   β k b 1 1 + β b s γ-1 -β b 1 1 + β k b s γ-1   , ∀(k, ) ∈ {(1, 2), (2, 1)}.
Proof. Firstly, we have

E[(S -s) + ] = β 1 β 2 b (β 1 -β 2 )γ 1 1 + β 2 b s γ-1 + β 2 β 1 b (β 2 -β 1 )γ 1 1 + β 1 b s γ-1 ,
the expectile e α (S) is then the unique solution to the following equation

(2α-1)   β 1 /β 2 (β 1 -β 2 )γ 1 1 + β 2 b s γ-1 + β 2 /β 1 (β 2 -β 1 )γ 1 1 + β 1 b s γ-1   = (1-α) s b - β 1 /β 2 (β 1 -β 2 )γ - β 2 /β 1 (β 2 -β 1 )γ . Now, using E X 1 × 1 1 {S=s} = β 1 β 2 γ (β 2 -β 1 )b s 1 1 + β 1 b s γ+1 + β 1 β 2 (β 1 -β 2 ) 2 1 1 + β 2 b s γ - 1 1 + β 1 b s γ , we calculate the truncated expectation E X 1 × 1 1 {S>s} E X 1 × 1 1 {S>s} = β 2 b (β 2 -β 1 )β 1 (γ -1) 1 1 + β 1 b s γ 1 + γ β 1 b s + 1 (β 1 -β 2 ) 2   β 1 b 1 1 + β 2 b s γ-1 -β 2 b 1 1 + β 1 b s γ-1   ,
which gives us the announced expressions of the allocation contributions. Remark, computations can also be done by conditioning on the random variable θ and then integrating the formulas found for the case of independent exponential distributions.

Comonotonic case for positive distributions

In this section, we study the case of comonotonic risks which corresponds to the perfect dependence. The concept of comonotonic random variables is related to the studies of [START_REF] Hoeffding | Masstabinvariante Korrelationstheorie[END_REF] [START_REF] Hoeffding | Masstabinvariante Korrelationstheorie[END_REF] and [START_REF] Fréchet | Sur les tableaux de corrélation dont les marges sont données[END_REF] [START_REF] Fréchet | Sur les tableaux de corrélation dont les marges sont données[END_REF]. Here we use the definition of comonotonic risks as it was first mentioned in the actuarial literature in [START_REF] Borch | Equilibrium in a reinsurance market[END_REF] [START_REF] Borch | Equilibrium in a reinsurance market[END_REF]. A vector of random variables (X 1 , X 2 , . . . , X n ) is said to be comonotonic if and only if there exists a random variable Y and non-decreasing functions ϕ 1 , . . . , ϕ n such that:

(X 1 , . . . , X n ) d = (ϕ 1 (Y ), . . . , ϕ n (Y )).
In the case where the risks X 1 ,. . . ,X d are comonotonic, there exists a uniform random variable U such that X i = F -1 X i (U ) for all i ∈ {1, . . . , d}, and

S = d i=1 F -1 X i (U ) = ϕ(U ), where ϕ(t) = d i=1 F -1 X i (t)
, ϕ is a non-decreasing function. Proposition 5.1 gives a general expressions of marginal contributions by the expectile-based capital allocation rule for comonotonic risk vectors. Two applications in the case of exponential and Pareto distributions are presented respectively in Lemmas 5.2 and 5.3. Proposition 5.1 (Expectile-based allocation for comonotonic risks) Let X 1 , . . . , X d be comonotonic continuous risks with increasing distribution functions, the marginal contributions using ex-pectile allocation rule are given by

e α (X i |S) = (2α -1) (1 -ϕ -1 (s * ))F -1 X i (ϕ -1 (s * )) + E X i -F -1 X i (ϕ -1 (s * )) + + (1 -α)E[X i ] (2α -1)(1 -ϕ -1 (s * )) + 1 -α ,
for all i ∈ {1, . . . , d}, where s * is the unique solution to the following equation

(2α -1) d =1 E X -F -1 X ϕ -1 (s) + = (1 -α) s - d =1 E[X ] .
Proof. Since the risks X 1 , . . . , X d are comonotonic, for all i ∈ {1, . . . , d}, X i , S are also comonotonic. The distributions are assumed positive and continuous, then 

E X i × 1 1 {S>s} = +∞ 0 min FX i (t), FS (s) dt = F -1 X i (F S (s)) 0 FS (s)dt + +∞ F -1 X i (F S (s)) FX i (t)dt = FS (s) × F -1 X i (F S (s)) + E X i -F -1 X i (F S (s)) + . Form 1.
= d =1 λ β -1   2α -1 1 -α d =1 λ d =1 λ + s β-1 + 1   .
Remark that in this case also, the allocation is proportional to the risk level. In fact, the allocation percentages can be written as follows

e α (X i |S) /e α (S) = E[X i ] E[S]
, ∀i ∈ {1, . . . , d}.

Proof. We remark that in this case S ∼ P a(β, d i=1 λ i ). By Proposition 5.1 we obtain the announced contributions expressions.

Numerical illustrations

In this section, we present some numerical illustrations of the differences between contributions to the aggregate risk given by TVaR and Expectiles based capital allocations. For that, we consider a bivariate case with exponential marginal distributions. We examine the allocation amounts and their percentages in the aggregate risk. We also analyze the impact of dependence on the capital allocation using the FGM model.

Case of independence

We consider the bivariate exponential model. X 1 represents a riskier business line than that modeled by X 2 (β 1 < β 2 ). Proposition 2.1 gives the expressions of the marginal contributions to the global risk. Figure 1 presents the amount of the contribution of X 1 (Left) and the percentage of its participation in the aggregated risk (Right). These same quantities are presented in Figure 2 for X 2 .

For both risks, the contribution obtained by the Expectile-based allocation is less significant than that determined by the TVAR-based allocation. This is directly related to the definition of the Expectile risk measure, and to its ability to take performance into account in its quantification of risk. To see the real difference between the two methods, we look at the percentages assigned to each risk. We notice that the Expectile-based allocation allocates less capital to the riskiest branch (X 1 ). The percentage attributed to X 1 remains an increasing (and symmetrically decreasing for X 2 ) function of the level α like it's the case for the TVaR allocation. 

FGM Model

For the same marginals, we now consider a dependence structure modeled using an FGM copula with parameter θ = 1. In this case ρ S = 1/3, the model therefore presents a positive dependence. The expressions of marginal contributions obtained for the expectile-based allocation rule are given in Lemma 3.2. Figure 3 presents the amount (Left) and the percentage (Right) of X 1 contribution in the aggre-gated risk, and figure 4 gives the evolution of the amount (Left) and the percentage (Right) of the contribution of X 2 function of α. The introduction of the positive dependency between X 1 and X 2 increased the contribution of X 2 . This behavior is consistent with the decrease in the diversification gain.

FGM Model, Impact of dependence

To better examine the impact of dependence on the allocation composition, we now set the α level and vary the θ dependency parameter of the FGM copula. Figures 5 and6 respectively present the results obtained for the contribution (Left) and its percentage (Right) of X 1 and X 2 . Since the family of parametric copulas FGM is totally ordered, bivariate dependence increases by increasing the parameter θ. The percentage attributed to the riskiest branch (here X 1 ) is a decreasing function of θ, and therefore of the dependence. Indeed, the increase in dependence increases the participation of the less risky branch (here X 2 ) in the aggregate risk.

Conclusion

The main objective of this paper was to illustrate, using several multivariate risk models, the practical way to construct a capital allocation based on expectiles risk measures. Since expectiles are the only law invariant risk measures both elicitable and coherent, it seems natural to be interested in marginal contributions in the sum's expectile. The constructed allocation is backtestable using elicitability of the expectiles, and it verifies some desirable properties derived from their coherence.

Figure 1 :

 1 Figure 1: TVaR allocation Vs Expectile allocation, Exponential independent model ( X 1 ∼ E(β 1 = 0.10), X 2 ∼ E(β 2 = 0.25)) -X 1 contribution.

Figure 2 :

 2 Figure 2: TVaR allocation Vs Expectile allocation, Exponential independent model ( X 1 ∼ E(β 1 = 0.10), X 2 ∼ E(β 2 = 0.25)) -X 2 contribution.

Figure 3 :

 3 Figure 3: TVaR allocation Vs Expectile allocation, FGM model ( X 1 ∼ E(β 1 = 0.10), X 2 ∼ E(β 2 = 0.25), θ = 1) -X 1 contribution.

Figure 4 :

 4 Figure 4: TVaR allocation Vs Expectile allocation, FGM model ( X 1 ∼ E(β 1 = 0.10), X 2 ∼ E(β 2 = 0.25), θ = 1) -X 2 contribution.

Figure 5 :

 5 Figure 5: Impact of dependence, FGM model ( X 1 ∼ E(β 1 = 0.10), X 2 ∼ E(β 2 = 0.25), α = 0.99) -X 1 contribution.

Figure 6 :

 6 Figure 6: Impact of dependence, FGM model ( X 1 ∼ E(β 1 = 0.10), X 2 ∼ E(β 2 = 0.25), α = 0.99) -X 2 contribution.

  and c 2,2 = θ, the bivariate distribution defined with the FGM copula and exponential marginals is a bivariate combination of exponentials. Lemma 3.2 presents the expressions of marginal contributions obtained for the expectile-based allocation rule. The contributions expressions for the TVaR allocation are given in[START_REF] Bargès | Tvar-based capital allocation with copulas[END_REF] [START_REF] Bargès | Tvar-based capital allocation with copulas[END_REF]. Let (X 1 , X 2 ) follow a bivariate FGM model. Then, for S = X 1 + X 2 , we have for all (k, ) ∈ {(1, 2), (2, 1)}

	Lemma 3.2 (Expectile-Allocation, FGM Model)

  Let X 1 , . . . , X d be comonotonic risks following Pareto marginal distributions of the same shape parameter X i ∼ P a(β, λ i ), i = 1, . . . , d, with β > 1. The marginal contributions using expectile allocation rule are given by

	(2α -1) Remark, the allocation percentages in this case can be written as follows e -βss β s = (1 -α) s -1 β s , and β s = 1/ d =1 1 β . e α (X i |S) /e α (S) = E[X i ] E[S] , ∀i ∈ {1, . . . , d}. The allocation is then proportional to the risk level. Proof. In this case S ∼ E (β s ), with β s = 1/ d =1 1 β , and by Proposition 5.1, the marginal contributions are given by e α (X i |S) = (2α -1)e -βss (2α -1)e -βss + 1 -α β s β i e α (S) + 1 β e α (X i |S) = λ i d =1 λ s

[START_REF] Balog | Capital allocation in financial institutions: the euler method[END_REF]

, we obtain directly the announced contributions. The equation verified by the sum expectile is rewritten using Theorem 7 of

[START_REF] Dhaene | The concept of comonotonicity in actuarial science and finance: theory[END_REF]

[START_REF] Dhaene | The concept of comonotonicity in actuarial science and finance: theory[END_REF]

. Lemma 5.2 (Comonotonic Exponential distributions ) Let X 1 , . . . , X d be comonotonic risks with exponential marginal distributions X i ∼ E(β i ), i = 1, . . . , d, the marginal contributions using expectile allocation rule are given by

e α (X i |S) = β s β i s * ,

for all i ∈ {1, . . . , d}, where s * is the unique solution to the following equation i , from which we deduce directly the obtained contributions expressions. Lemma 5.3 (Comonotonic Pareto distributions) * , ∀i ∈ {1, . . . , d}, where s * is the unique solution to the following equation s