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Abstract

Machine learning (ML) methods extract statistical relationships between inputs and

results. When the inputs are solid-state crystal structures, structure-property relation-

ship can be obtained. In this work, we investigate whether a simple neural network

is able to learn the 3d orbital occupations for the transition-metal (TM) centers in

crystalline inorganic solid-state compounds using only the local structure around the

transition-metal centers described by rotational invariant fingerprints based on spheri-

cal harmonics and one-hot elemental encoding. A multilayer neural network trained on

density functional theory (DFT) results of about 1800 samples was developed showing

good performance in predicting the TM orbital occupations (for both spin channels).

We study in detail how the local structure affects the predictions of the local properties,

and how they provide physical insights for the design of future machine learning model

for materials chemistry. The proposed ML method is illustrated in practical applica-

tion by predicting local magnetic moments of the transition-metal atoms in a full set

of inorganic structures with large unit cells. Although less accurate compared to the

experimental data, the ML results compared well with the DFT results, suggesting the

feasibility of electronic property prediction based only on structure input.
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INTRODUCTION

Although the physical phenomena for various properties of transition-metal compounds are

well understood, it is still difficult today to suggest chemical compositions and crystal struc-

tures of transition-metal compounds with desired properties.1–4 Given a structure, these

properties are available recently thanks to advances in materials simulation via first-principles

methods and various analysis tools.5–9 Unfortunately, this often incurs a high computational

cost that limits effectiveness in exploring large search spaces and complex compounds with

large unit cells. Nevertheless, it is clear that, due to the relatively localized behavior of the

d orbitals, chemical interactions between 3d transition-metal elements and their neighboring

atoms in these compounds are relatively easy to understand and play a central role in deter-

mining their electronic properties, such as band dispersion and density of states (DOS).10–12

On the other hand, machine learning (ML) statistical methods have been demonstrated

as a powerful alternative to DFT calculations, offering the possibility to speed up materials’

discovery by learning patterns within large data sets and proposing novel candidates that

are statistically likely to have the desired properties.13–15 Indeed, ML models can be highly

efficient, portable and able to make prediction for materials properties with good accuracy,16

assuming that a standard of “best practices” is followed.17

Chemical environments in transition-metal compounds offer a good playground where

ML structure-property relationships can be examined with our chemical intuition and inter-

pretation.10,11,18 Crystal-and-ligand field theory considering only local environments enabled

simple theoretical analysis of the band dispersion and DOS in transition-metal compounds

long before that first-principles calculations became a common practice.10,11,18 Therefore,

the correspondingly formulated machine learning problem and its results should be rela-

tively simple and easy to analysis with our chemical understanding.

Good ML prediction of materials properties strongly relies on both the learning algo-

rithms and on the representation of the input data.19 For the latter, two main approaches

can be used. One featurizes compounds by their composition and the individual properties of
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the contained elements. The other featurizes compounds using only their structural arrange-

ments. It is naturally desirable to use the latter approach to study the structure-property

relationships directly, but encoding materials’ atomic neighborhood environments efficiently

is not a straightforward task. Nevertheless, some progress has been made in this direction

over the last years, and we summarize here a few of the most important works published in

this area. Bartok et al. pioneered the local description of chemical systems with different

methods to represent atomic neighborhood environments.20,21 ML frameworks using these

representations were recently developed to estimate electronic22,23 and phononic24 density

of states in condensed matter. Faber et al. compared various structure representations and

ML models for getting properties of molecular systems.16 Schütt et al. tried to predict the

electronic DOS at the Fermi level in crystalline materials using a simple radial distribu-

tion function and regression methods.25 Later, the same authors developed a deep learning

approach that enables spatially and chemically resolved insights into quantum-mechanical

observables of organic molecules using purpose-designed deep neural networks that consider

atoms and bonds as nodes and edges in a graph.26,27 Somewhat similarly, Xie and Grossman

proposed a crystal graph convolutional neural network to directly learn material properties

from the connection of atoms in the crystal, providing a universal and interpretable repre-

sentation of crystalline materials. Their approach was successfully applied to the design of

novel perovskites.28 Equivariant tensor field neural networks were also proposed that further

preserve rotational properties using symmetry group representations.29

Although the recent graph-based networks26–28 are very powerful, they typically use

atomic distances and structure connectivity as inputs, which does not describe well the local

structure that is important for the transition-metal atoms. Following the insights from local

crystal field and ligand field theory, we describe herein an ML model that is based on strictly

local structure representations (fingerprints) developed by Uhrin30 and trained to predict the

electronic occupation of up and down spin channels of transition-metal 3d orbitals in solid-

state compounds. We report the performance of the machine learning model. We also put
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emphasis on a detailed analysis of the ML learning errors in complex chemical environments.

THEORY

We first provide a brief overview of the quantum chemistry theory of electronic bands formed

from transition-metal orbitals to show that our ML problem mapping the local structure to

the electronic configurations of the transition metals is straightforward.11,18

In simple coordination environments, the formation of the energy bands from atomic

orbitals can be considered in two steps: firstly, degenerated atomic 3d orbitals are perturbed

by the presence of neighboring anions. Different local symmetries lead to different energy

level splittings for the 3d orbitals, as shown for three cases in Figure 1 (b). In the second

step, periodicity of the crystal is introduced and Bloch functions, modulated by the reciprocal

vector k can be formed. The band structure is therefore given by the dispersion E(k). The

positions in energy of the 3d bands are determined by the energies of the MOs of the building

motifs while the width of their dispersion is governed by the interaction between building

motifs. If the interaction is small, then the bands formed from the 3d orbitals of the transition

metals will be narrow or even localized. This is generally true if the metal–metal distance is

relatively large, then, the DOS and occupation of the TM 3d orbitals are largely determined

by its nearest neighbors (local environment), which consequently determine the electron

occupations of the TM 3d orbitals.

The above qualitative analysis is limited in two ways: it is unrealistic to perform such

a treatment for thousands of structures and, for more general cases, distortion from ideal

symmetry or varying ligand field strength will be case-specific and will affect the energy of

the MO levels quantitatively (see Figure 1 (b) for an elongated octahedron). ML can be

expected to capture these quantitative effects and make accurate on-the-fly prediction for

3d orbital occupation on the metal centers. Since the theoretical background in our ML

formulation is the analytic theory outlined above, we aim to achieve a similar prediction

5



accuracy in 3d orbital occupations using only crystal structures as input.

Nearest-neighbor effects are the most important ones for the electronic configurations of

the transition metal atoms. Although less important, atoms that are outside the nearest-

neighbor environment also affect the energies of the 3d orbital-derived bands. However, it

should be noted that by taking more atoms into consideration (such as secondary neighbors),

we sacrifice the simplicity of the structure-property relationship we want the ML model

to comprehend. Therefore, it is important to study how many surrounding atoms, apart

from the nearest neighbors, is necessary to take into account to give a good prediction of

the electronic configurations of the transition-metal centers. We answer this question by

comparing different choices as input for ML in this work.

Methods

Dataset

The entire workflow of training and application of ML method is shown in Figure 2 (a).

The only input for this study is crystal structures, which were gathered from either Ma-

terials Project (MP) Database31 or from the Crystallography Open Database (COD).32 H,

noble gases, and rare-earth elements were excluded when we searched for compounds in the

databases. From all the available compounds containing transition-metal elements, we only

selected those that contain 3d transition-metal element the nearest neighbors of which are

main group elements in the p block of the Periodic Table. Such a consideration simplifies

the transition-metal bonding that the ML needs to identify in this work by excluding strong

metal–metal interactions, as discussed previously. Furthermore, B, C, N, O and F elements

were also excluded in our study for the following two reasons: 1) the number of these com-

pounds in the database dominates the dataset and could lead to biased training set, and

2) the correlation effects on transition metal are more important in the narrow d bands of

nitrides or oxides and large errors are expected from a PBE treatment in DFT calculation.33
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Figure 1: (a) Part of the Periodic Table showing the element set: transition metals (yellow),
simple metals (light green) and main group anions (blue-green), 65 elements inside the red
box are used for one-hot encoding. (b) Schematic illustration of how the symmetry of local
polyhedron and distortion determine the energy level splitting of the transition-metal d
states. (c) Crystal structure of the example compound BaCoS2 (d)–(f) Different methods to
represent the local structure of Co atoms in the example structure: (d) “Voronoi-bonded”,
(e) “First-shell” and (f) “Cut-off” (5 Å) with their respective fingerprints.

Finally, we restricted the number of atoms per unit cell to be less than 30 to reduce data

acquisition time by DFT calculations.

DFT results were obtained for a total of ca. 1800 compounds that satisfied the above

criteria. In terms of elemental distribution in this training dataset, the number of compounds

containing Cu is slightly larger than the number of compounds containing other transition-

metal elements, which are distributed more or less evenly. For anions, S, Se and Te are

the most frequent ones, followed by other anions such as Si, Ge, P, Sn and Cl. Overall,

the dataset used does not bias heavily towards any particular metals or anions. A detailed

description of how structures were gathered and their properties, including metal, anion

distribution and their coordination, can be found in the Supplementary Information (SI).
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Figure 2: (a) Workflow divided into training and application stages. The input for the model
is the local structure fingerprints F generated using MILAD package and one-hot encoding,
and the target output is the DFT calculated 3d orbital occupations N3d

↑/↓. (b) Detailed
structure of the neural network model. Input matrices have the shape 65 × 117, which is
reduced to 65 × 40 dimension by self-interaction layers. The matrices are flattened and
introduced into fully connected linear layers to give final outputs for the orbital occupation
of spin-up and spin-down channels. Training (c) and testing (d) MAE of a 10-fold cross
validation with different local environment descriptions as function of the number of epochs.
The error bars show standard deviations.

DFT Calculations

As noted in previous studies,34,35 different calculation schemes and functionals can lead to

errors ranging from 1% to 10% in calculated properties such as band gap and total mag-

netization, which is on the same magnitude of ML prediction errors.16 To have consistent

results between model predictions and later DFT validation, we prepared training data from

in-house spin polarized calculations, using the Quantum Espresso code36,37 with the GGA

PBEsol functional38 from Pseudo-Dojo39 with suggested energy cutoffs. Hybrid functionals

usually give more accurate results for the electronic structure of transition metal compounds,

but they are forbiddingly expensive to use. On the other hand, although meta-GGA func-

tionals improves upon GGA functionals in calculating band gap values,40 it is not clear
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whether they systematically outperform GGA functionals in predicting other properties, for

example, magnetic moment.41 Structures for DFT calculations were used without relaxation.

Comparing a few relaxed vs. non-relaxed structures, we observed that the effects on orbital

occupations are relatively minor (see SI). Other details of calculations are provided in the

corresponding sections in SI. The orbital occupations of the transition-metal d states were

calculated using Löwdin population analysis and projection for both spin channels.42 Finally,

it should be mentioned that although all DFT calculations were performed within a ferro-

magnetic configuration, we do not expect the spin moments to change dramatically imposing

an antiferromagnetic configuration, since we assume that magnetic structure is determined

by spin cooperative interactions, and spin moments are governed by the local coordination.43

Structure Representation

Since we focus on transition metals in their local coordination, the structure representation

should faithfully describe the position of the neighboring atoms.

In this work, a two-step procedure is used to generate the local structure representations,

as shown in Figure 1 (c)–(f). First, we need to identify the local atoms surrounding the

transition metal atom to be used as inputs for local structure representation. We tried three

different strategies that we call “first-shell”, “Voronoi-bonded” and “cut-off”. The “first-

shell” method considers only the nearest neighboring atoms in the covalent sphere while the

“cut-off” method includes all atoms within a cut-off radius of 5 Å from the transition-metal

atom, a distance beyond which chemical interactions between atoms should be negligible.

The “Voronoi-bonded” approach sits in between the above two methods since it includes all

the nearest neighbors and also atoms that share common boundaries upon partitioning the

inter-atomic space, measured in terms of solid angle.44,45

Next, to encode the structure arrangement and elemental information, we used the re-

cently introduced structure representations by Uhrin,30 which is a set of linear combinations

of spectral coefficients that are rotational (rotation of the reference frame) and permutational
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(shuffle of atomic index) invariants. It encodes local structure by projecting the atomic den-

sity function fc(x) =
∑

i f(x− rci) to a set of rotational invariant basis functions built from

spherical harmonics. Here, rci is the position of the ith atom of element type c, function f

in the summation can be a delta or Gaussian function providing the atomic contribution to

the density function fc. As shown in SI, a simple neural network can extract angular and

distance distortions perfectly using the structure fingerprints generated from the distorted

structure, showing that this representation encodes local geometric faithfully. This is in

contrast to the graph-based networks26–28 typically built from only inter-atomic distances,

which does not encode angular information. Finally, elemental information is encoded by

one-hot encoding. The element set for one-hot encoding is shown in Figure 1 (a).

We take BaCoS2 compound46 as an example for generating local structure fingerprints

with one-hot encoding in Figure 1: We first identify the non-equivalent transition-metal

sites in the structure (one in this case) and its neighbors. Every Co atom is surrounded

by a square pyramid of S atoms which constitute its first neighbors, Ba atoms as second

neighbors and other Co atoms further out. Each kind of element is considered as a set of

points for which structure fingerprints can be obtained separately. These fingerprints are

put in rows in an input feature matrix (65×117, 117 fingerprints for each of the 65 elements

taken from the Periodic Table). A row would be zeros if the element does not appear in the

specific local structure. Although we did not include compounds containing B–F elements

in the dataset, we included these elements in the one-hot encoding for uniformity.

The same procedures were carried out for all the non-equivalent transition-metal sites

identified in the calculated structures in the preprocessing stage, which form the inputs for

the ML model.

Model

We used a multilayer neural network47,48 to learn the electronic occupations from the above

obtained descriptors, since neural networks are easy to build, flexible with respect to inputs
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and are found to give good prediction accuracy in similar tasks.16 The design of the network

is shown in Figure 2 (b).

As described above, the input to the network are rotational permutational invariant

feature matrices. The first two layers consist of self-interaction for fingerprints that aims to

extract element-specific structure features from the inputs and to reduce the number of total

connections in the following layers. Linear layers are fully connected and diverge to give

prediction of the occupation of the spin-up and spin-down channels. We used squared loss as

loss function. Random drop-out and weight decay are used to improve the performance of the

network48 while training epochs are determined from 10-fold cross validation. Information on

training parameters and further details of the neural network used in this work are provided

in SI.

RESULTS

Evaluation of the Structure Description

To compare the different strategies of representing local structures, mean absolute errors

(MAE) were evaluated using a 10-fold cross validation47 for the models trained with different

inputs. Cross validation is necessary to achieve consistent results because our data set is

small and the random partitioning of the test set makes it difficult to compare the predictions

systematically. The average error and the standard deviations of the training and testing

sets over the models trained with each partition are shown in Figure 2 (c) and (d).

A clear trend can be observed from the errors in Figure 2, namely, the more atoms

that are considered in the local structure representation, the better the fitting performance

(training error) but the more it suffers from the over-fitting problem. In the end, the best

generalization results were achieved by the network trained with only the information on the

nearest neighboring atoms (“first-shell”), making better predictions on the unseen samples

and leading to the lowest MAE in testing at 0.07-electron occupation.
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The following conclusion can be drawn from the above result. Firstly, it again emphasizes

that chemical and structure configurations of the nearest neighbor atoms play the dominant

role in determining the electronic state of the transition-metal atoms, confirming the theory

we outlined earlier, since using the nearest neighbor approach alone achieves a decent predic-

tion. Secondly, it is easier for our neural network to learn the effect of the nearest neighbors

of the transition-metal atoms than that of the higher order interactions from the secondary

neighbors (over-fitting implies low learning quality). There can be multiple contributing

effects: the configuration space of the secondary neighbors is much larger and more complex

than that of the nearest neighbors, since the secondary neighbors can consist of simple ionic

s-metals, transition metals in the neighboring cell, or even covalently bonded main group

atoms in different coordinations. On the contrary, the chemical and structure configurations

of the nearest neighbors are much simpler. As a result, the effects of the secondary neigh-

bors are much more difficult to learn with a limited data set. It is also possible that the

simple structure of our neural network used here limits the learning performance with more

input information such as related to secondary neighbors, but it is not clear how this can be

improved. This will be studied in future works.

Analysis of Errors

We dedicate this part to analyze the different sources of errors in our predictions. The

errors reported in Figure 3 are the errors of all test sets in the 10-fold cross validation, each

predicted by the ML trained with that set left out.

In Figure 3 (a) we show the prediction error grouped into three categories in terms of the

chemical formula. We have three categories in increasing order of chemical complexity: 1)

compounds containing only transition-metal atoms (TM) and main group anions (MG) are

included, i.e., most of the binary compounds or compounds with mixed anions, 2) compounds

that contain TM, MG and s-block metal atoms, and finally, 3) other compounds that can

contain additional heavier d-block metals (Ag, Cd, Y, Zr, Nb and La being the common
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Figure 3: (a) Comparison between predicted and calculated values of the occupation of the
TM 3d orbitals (N3d

↑/↓) for both spin-up and spin-down channels in each compound of the

training set (TM = transition metal, MG = main group). Spin-up and spin-down occupations
are plotted together. The gray area refers to error of 0.15 electron. We highlighted several
transition-metal type that deviate the most from the diagonal line. MAE and RMSD of all
the test samples are shown in the table. (b) and (c) Histograms of calculated and predicted
number of unpaired electron (N3d

↑ −N3d
↓ ) for the complete training data (they are normalized

in such a way that maximum values are the same for each elements). (d)–(f) Prediction error
(MAE) for different categories of training samples (blue curve) and their relative distribution
(gray bars). All errors refer to the y-axis in (d). Distribution in each plot sums up to 1. A
decomposition of figure (e) and (f) for each transition metal element is given in SI.

additional elements). Overall, we find that predictions are most accurate when the formula

contains TM, MG and s-block metal with an MAE of 0.066, while the other categories have

slightly larger error and more mispredictions far away from the diagonal (MAE = 0.084

for TM + MG and MAE = 0.071 for others). It is possible that the s-block metals, the

main effect of which is to donate electrons, play a minor and more predictive role in terms
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of affecting the TM–anion interaction, and thus help to reduce prediction errors in these

compounds.

In Figure 3 (b)–(d) we show errors related to each TM element. The error is relatively

small for Sc, Cu and Zn, likely due to their fewer possible oxidation states. On the other

hand, errors are relatively large for V and Fe. As it can be seen in the comparison between

the calculated and predicted number of unpaired spins, these two elements have the most

scattered spin polarization, leading to the more error-prone prediction results.

Finally, Figures 3 (e) and (f) show the error in terms of different coordination geome-

tries and metal–metal bond distances. It is interesting to note that although both are well

understood in terms of transition-metal chemistry, prediction for TM atoms in tetrahedral

coordination is more accurate. For the metal–metal distance, we find a clear trend that with

increasing the metal–metal distance up to 5 Å, the prediction errors decreased. This agrees

well with the analysis made above which shows that the approach from local geometry is

valid if long-range metal–metal interactions can be safely ignored. Above 5 Å, the prediction

error increases again, which is likely due to complex crystal structures with a large unit cell.

Application

We apply our machine learning model to predict the local magnetic moments on the 3d

transition metal elements given by ms = 2µB
√
Sp(Sp + 1) from the predicted unpaired

electron numbers Sp = (N occ.
↑ −N occ.

↓ )/2.49 Crystal structure parameters (for example, CIF

files) are the only input that is necessary. Such an application can be useful, for example,

to help assess the electronic configurations of the transition-metal compounds when access

to DFT electronic structures is difficult (for experimental chemists) or when CPU time

is of concern (screening). Long time (hours) needed for carrying out DFT calculations on

structures of the data set can be reduced to within a few seconds to obtain magnetic moment

prediction for hundreds of compounds on a normal laptop CPU, irrespective of the cell size.

We use the “first-shell” method as the structure description and average the prediction
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results among 10 separately trained models.47

A total of 170 compounds were predicted and tested against DFT calculations. Each of

the compounds contain from 30 to 100 atoms per unit cell. Therefore they are not included

in the training data sets, and they were randomly chosen from the structure databases as

long as they satisfy the requirement that 3d transition metal atoms are surrounded by main

group anions. Prediction results in terms of unpaired electron numbers Sp are compared to

the results of DFT calculations, and are shown in Figure 4. The entries were sorted according

to the DFT calculated magnetizations.

Figure 4: Predicted and calculated number of unpaired electrons for the application dataset.
Only one site is predicted for a given compounds and results are sorted according to increasing
polarization calculated using DFT method. The error bar shows the standard deviation in
the predictions of the ensemble model. MAE and RMSD score are reported in the table for
all prediction (Total) and prediction where number of unpaired electron is larger than 0.2
(Mag.)

It was found that the model shows good ability to distinguish magnetic compounds from

the non-magnetic ones, although there are occasional overestimation of spin polarization.

The most notable one is the compound Mn4Si7, which is predicted to have an unpaired

electron count around 2 but is in fact almost non-magnetic. In terms of values of predicted

magnetization, a MAE value of 0.123 was obtained over all samples, which increased to

0.279 if only the magnetic ones were counted. From Figure 4, the main prediction errors

in magnetization come from two regions where prediction underestimated the calculated

values. We found that the first region was due to the mispredictions related to V and Cr,
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while the second region of mispredictions concerns exclusively compounds containing Fe with

a tetrahedral coordination. This agrees with our observation in the training that V and Fe

show the largest error.

Table 1: Space Group (SG), dM-M (Å), Metal Coordination (M coord.), ML Predicted
(mpred

s , µB) Spin-Only Magnetic Moments (± standard deviation) and Experimental Mag-
netic Moments (mexp

s , µB) of ML Predicted Magnetic Compounds

Formula SG dM-M M coord. mpred.
s mexp.

s ref.
Cr5S8 P1 2.96 Cr-octa 3.78 ± 0.07 4.00 50

Mn4Si7 P4c2 2.97 Mn-other 2.49 ± 0.92 0.01 51

Mn3Ge5 P4 3.05 Mn-octa 3.49 ± 0.44 1.00 52

Fe7Se8 P31 3.17 Fe-octa 3.02 ± 0.46 2.40 53

MnGa2S4 I4 5.45 Mn-tetra 5.32 ± 0.10 5.10 54

Ba3FeS5 Pnma 6.27 Fe-tetra 3.62 ± 0.32 5.10 55

V4S9Br4 P4/nmm 2.98 V-other 1.68 ± 1.53 1.77 56

V2P4S13 P1 3.71 V-octa 2.90 ± 0.05 2.80 57

CsMnInTe3 C2/c 4.31 Mn-tetra 5.34 ± 0.05 5.92 58

K10Mn4Sn4S17 R3m 3.91 Mn-tetra 5.21 ± 0.19 5.00 59

Ba3FeS4Br Pnma 6.26 Fe-tetra 3.61 ± 0.31 3.85 60

Ba2FeSbS5 Pnma 5.84 Fe-tetra 3.67 ± 0.35 5.09 61

Finally, we compared our model with a series of experimental measurements available,

as shown in Table 1. The accuracy between prediction and experiments is worse than when

comparing to DFT results, with a relatively large error observed for some of them such as

Mn3Ge5, Mn4Si7, Fe7Se8, Ba3FeS5, or Ba2FeSbS5.

It should be pointed out that these compounds share some common features of disruption

of long-range ordering that might influence their physical properties. For example, Mn4Si7

and Mn3Ge5 are examples of Nowotny chimney-ladder structures which consist of the in-

terpenetration of [Si/Ge] and [Mn] subsystems with an incommensurate c parameter.52,62–65

Similarly, Fe7Se8 and its counterpart Fe7S8 are well known examples of compounds with

a superstructure due to ordered intrinsic vacancies.66,67 The difference between ideal input

structures and experimental ones must contribute to prediction deviations. Furthermore,

some of these compounds may show a strong itinerant magnetic behavior, as exhibited by

Mn4Si7, for instance, and therefore, local description of the magnetic moment may not be
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valid. The last two compounds, namely Ba2FeSbS5 and Ba3FeSe5 correspond to the high-

pressure and low pressure phases of Ba3FeS5, respectively.55,68–71 For the latter, the experi-

mental magnetic moment extracted from the magnetic susceptibility measurement seems to

fit well with Fe4+ ions. However, a Mössbauer analysis rather showed Fe3+,55 suggesting some

complexity of the magnetic properties. It is also noteworthy that this compound can deviate

from stoichiometry as part of the solid solution Ba3Fe1+xSe5 (0 ≤ x ≤ 1).68 Therefore, one

important point that should not be overlooked is how the crystal and electronic structures

of these compounds with a large unit cell in general are experimentally more complex than

assumed in the training data sets, and this complexity contributes to the prediction errors

when comparing to experimental results.

Other factors contributing to the deviations between prediction and experimental results

include the choice of functionals, geometry relaxation and a more careful determination of

the magnetic ground state, which are related to the DFT calculations which form the base

of training data. It is known that GGA functionals systematically underestimate of the

spin polarization due to the inaccuracy in the treatment of exchange interactions. However,

hybrid functionals which could partly overcome this problem, are computationally too much

expensive to perform in a high-throughput way. Geometry relaxation could also influence

the value of the magnetic moment, but according to the few compounds we tested, its effect

is minor in most cases. Finally, we note that DFT self-consistent calculations only determine

a local minimum which may not be the true ground state. Exploration of different magnetic

structures and carefully determination of the ground state could lead to more accurate DFT

results and therefore better ML prediction, although this would come at the expense of CPU

time.35,43

Finally, it should be stressed again that the machine learning method developed here

was trained on a dataset of solid-state compounds containing transition-metals surrounding

by a specific type of neighbor atoms to predict their DFT-calculated properties. It is not

then expected that it will perform well for oxides or nitrides for instance, due to the specific
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choice of the training dataset. It will also not perform well for metals or covalently-bonded

semiconductors due to the underlying theory of transition-metal–anion interactions.

CONCLUSION

Motivated by the use of local atomic structure to directly estimate the electronic structures

of the transition-metal elements in inorganic chemistry, a neural network model using only

local structure descriptions and trained from DFT-calculated electronic structures was de-

veloped to predict the electronic occupations of the 3d transition metal atoms in inorganic

compounds including diverse intermetallic and semiconducting compounds. Trained on DFT

calculations, this ML model is rather accurate in predicting the electron occupation of spin-up

and spin-down channels for TM 3d orbitals. We also performed decomposition of prediction

errors showing that they roughly agree with our chemical intuition. The application of this

network model was illustrated to predict the magnetic moments of transition-metal atoms

in compounds with large unit cells, that would be costly to calculate with the DFT method.

Although the prediction results of the current model are not fully ideal when comparing to

experimental observations, it constitutes a step toward building better ML models based on

local structure features to predict electronic properties of inorganic solid-state compounds.

Data and Code Availability

The Python codes used in this work are organized as a package and can be found in Github

repository https://github.com/whzhangg/ElectronicConfiguration. Crystal structures

and calculated electronic occupations are provided along the code as well as examples. Com-

plete data of DFT input and output can be obtained upon requests from the authors.
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