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Abstract. We revisit the fragment-based docking and design of single-stranded RNA aptamers (ssR-
NAs), consisting of k nucleotides, onto a rigid protein. Fragments, representing either one or multiple
pieced nucleotides, are individually docked onto the protein surface using a force field, and some among
the resulting n poses are pieced together to form a conformation compatible with the input ssRNA
sequence. Relaxing the sequence compatibility constraint, a similar methodology can be used to design
ssRNAs that preferentially bind a protein of interest, possibly targeting a pocket. However, a brute-
force enumeration of clash-free conformations quickly becomes prohibitive due to their superexponential
(Θ(nk) worst-case) combinatorial explosion, hindering the potential of fragment-based methods towards
docking and design.

We adopt the color-coding technique, introduced by Alon, Yuster and Zwick, to optimize over self-
avoiding fragment assemblies in time/space linear on n the number of poses, and in time only expo-
nential on k the number of fragments. The dynamic programming algorithm at the core of our method
is surprisingly simple, and can be extended to produce suboptimal candidates, or modified to perform
Boltzmann sampling of candidates assemblies. Using a rejection principle, and further optimized by
a clique decomposition of clashing poses, these algorithms can be leveraged into efficient algorithms
optimizing over clash-free complexes. The resulting sampling procedure can further be adapted into
statistically-consistent estimators for any computable feature of interest.

We showcase some of the capabilities of this new framework by reanalyzing a set of 7 documented
ssRNA-protein complexes, demonstrating its practical relevance and versatility.

Keywords: Fragment-based docking, RNA design, RNA-protein interaction, Parameterized complex-
ity algorithms
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1 Introduction

Fragment-based Design is a powerful strategy, used both in academia and pharmaceutical industry to
develop potent compounds from fragment. Five drugs designed with this approach were approved by
the FDA (Bollag et al., 2012; Tap et al., 2015; Perera et al., 2017; Schoepfer et al., 2018), one of which
as recently as 2021 (Souers et al., 2013). Fragments are usually small compounds with low molecular
weight, having about 20 heavy atoms (Kirsch et al., 2019; Schuffenhauer et al., 2005). The principle of
this strategy is to dock a library of fragments on a receptor and to select those specifically binding the
target. One or several initial poses are then extended to form a complete chemical compound.

While this strategy is generally applied to chemical compounds for the design, fragment-based approach
has been utilized to predict complexes formed by ssRNAs of known sequence with RBP (RNA-Binding
Protein) (Hall et al., 2015; de Beauchene et al., 2016; Kappel and Das, 2019). To predict the inter-
action of RNA-RBP complexes, fragments libraries must embrace a large diversity of RNA fragments
containing for instance chemical modifications for the design. Such a diversity is also crucial towards
a fragment-based design of therapeutic molecules, most of which require a good affinity towards the
target to achieve the desired activity (e.g. antagonist, agonist).

For instance, a recent approach (González-Alemán et al., 2021) initially performs a sampling of mononu-
cleotides with Multiple Copy Simultaneously Search (MCSS). From a library of mononucleotides, the
principle of MCSS is to dock randomly copies of each nucleotide to obtain a set of fragment poses
docked on the target with known orientation and position. However, the assembly of consecutive nu-
cleotides into an optimal oligonucleotide, either of known (ssRNA docking) or unknown (ssRNA design)
sequence, cannot reasonably be performed through brute force due to punishing combinatorics. Indeed,
the success of the fragment-based approach hinges critically on a sufficient density of poses which, in
turn, greatly impacts the number of candidate positions/sequences. The problem is made even worse
by a consideration of modified nucleotides, increasing the basis of an exponential growth.

In this work, we revisit the fragment-based docking and design through the prism of color coding, an
algorithmic technique introduced by Alon, Yuster and Zwick (Alon et al., 1994) that allows to capture
a necessary notion of ssRNA self avoidance. This elegant technique initially addressed the problem of
finding sparse motifs in graphs, and has been utilized in the context Bioinformatics for searching (Dost
et al., 2008; Shlomi et al., 2006) and counting occurrences of motifs in biological networks (Alon et al.,
2008). In Section 2, we show how to adapt color coding, further optimized by a clique decomposition,
to obtain exact or probabilistic algorithms for fragment-based docking through energy minimization.
Section 2.3 describes how to perform design by relaxing the requirement of being compatible with
a given nucleotide sequence. The framework is further extended to produce equilibrium statistics for
virtually any feature of interest. Section 3 illustrates the proposed algorithms in the context of 6 RNA
binding proteins, and Section 4 discusses some limitations of the approach, and future extensions.

2 Method and algorithms

Let us make a few assumptions explicit: Firstly, our docking is assumed to be rigid on the protein level,
so that ssRNA fragments (nucleotides or k-mers) can be individually docked onto the protein without
overly losing precision; Secondly, we assume that the length or nucleotide composition of the input
ssRNA forbids the adoption of secondary structure elements; Thirdly, the ssRNA/protein system can
be assumed to be at the thermodynamic equilibrium so that minimizing the free-energy coincides with
maximizing the probability of the joint configuration. Under these assumptions, the fragment-based
docking and design of ssRNAs interacting with a protein can both be reformulated as graph problems.

Definitions and notations. Namely, we denote as fragment f a nucleotide r(f) in an RNA sequence
r, associated with a reference 3D conformation. A fragment pose, or pose x, represents a fragment
docked onto the protein surface, and is defined by the 3D position of its atoms relative to the protein. An
ordered pair of poses is said to be compatible if their spatial occupancies do not induce unresolvable
geometric clashes, and enables the sequential connection of the two fragments into a longer RNA.
Compatibility is an oriented relation (associated with the polarity of RNA), whose assessment is a
problem in its own right, and is the object of specialized tools such as MolPy (Chevrollier, 2019) or
Nuclear (to be released) to deal with short ssRNAs.
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Fig. 1: General workflow: Starting from a graph of docked fragments, for which pairwise connectivity has
been assessed by an external tool, our method considers various – random or deterministic – colorings from
which solutions to hard computational problems can be obtained.

Through a systematic docking of fragments, e.g. using constrained molecular dynamics, onto the surface
of the target protein, followed by an evaluation of the connectivity of resulting fragment poses, one
obtains a poses connectivity graph. It is defined as a directed graph, i.e a pair G = (V,E) where V
is a set of fragment poses, and any directed edge (v, v′) ∈ E implies the possibility to connect v and v′.
In the following, we denote by n := |V | the number of poses in the graph. Any path of the connectivity
graph can be associated with a joint ssRNA/protein conformation, called complex in the following.

Next, we associate a notion of free-energy ∆G(x) to any complex x = (v1, . . . , vk), defined as:

∆G(x) =

k∑
i=1

δ(vi) +

k−1∑
i=1

δ′(vi, vi+1)

where δ : V → R∪{+∞} and δ′ : V×V → R∪{+∞} are terms, specific to a fragment docking procedure,
which capture the contributions of individual and pairwise-connected fragments respectively.

However some pairs of fragments may clash, occupying overlapping or overly proximal geometric
regions in the 3D space, leading some of the paths of the connectivity graph do not always represent
promising candidates. Trivial instances of such a clash occur within complexes that reuse the same
pose twice. Beyond such a simple cases, pairwise clashes can be modeled using a clash function
C : E × E → {True,False}. A path x of length k is self-avoiding, also named a k-path, iff it nodes
are pairwise distinct. A path is clash-free if and only if its nodes are pairwise non-clashing, i.e.
∀1 ≤ i < j ≤ k, C(xi, xj) = False. Note that clash-avoidance induces self-avoidance as long as, for each
pose v, one has C(v, v) = True.

Problem statement and complexity aspects. Assuming thermodynamic equilibrium, the most sta-
ble/probable complex, for a given nucleotides sequence r of length k, is the one having Minimum
Free-Energy. Moreover, fragment assembly should be restricted to complexes compatible with the se-
quence. The computation of such a complex can be restated as follows:

MFEdock problem
Input: Pose connectivity graph G = (V,E); Clash function C : E × E → {True,False}; Energy
function ∆G; Residue sequence r = r1,r2 . . . rk.
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Output: Complex x⋆ = (v⋆1 , v
⋆
2 , . . . , v

⋆
k) minimizing free-energy

x⋆ = argmin
x=(v1,...,vk) such that

vi ̸=vj∀i ̸=j, ← self avoidance

C(vi,vi+1)=False,∀i ← clash-free

and r(vi)=ri,∀i ← nucleotides sequence compatibility

∆G(x)

Computational complexity-wise, for a general input graph, trivial sequence c and unit-valued energy
function (δ(·) = −1, δ′(·, ·) = 0), MFEdock solves the problem of deciding the existence of a Hamilto-
nian path in G, implying NP-hardness. The problem remains robustly intractable even when restricted
to subclasses of input graphs that can be drawn on a protein surface, such as grid graphs (Itai et al.,
1982). Moreover, for the complete compatibility graph and unit-valued energy, solving MFEdock an-
swers the existence of a k-set of non-clashing nodes in the graph (V, {v, v′ | C(v, v′) = True}), thus
solving the Max Independent Set (MIS) problem. However, MIS is not only NP-hard, but also re-
mains intractable (W[1] hard for k) from the perspective of parameterized complexity on geometric
instances, e.g. graphs stemming from intersections of segments/discs (Marx, 2006). Taken together,
these results indicate a robust computational hardness of the problem, motivating the exploration of
alternatives and heuristics.

2.1 Ensuring self-avoidance through color coding

Given the dire complexity status of MFEdock, we initially address a restricted version of the problem
that only considers clashes resulting from the reuse of certain poses. In other words, we optimize the
energy optimization over self-avoiding paths, which is equivalent to setting C(·, ·) = False. In this
setting, the algorithmic problem remains NP-hard but simplifies into a, practically solvable, Fixed-
Parameter Tractable (FPT) problem for the path length k, using the color coding technique (Alon
et al., 1994).

Classic color coding. The key principle of color coding is to associate a coloring κ : V → [1, k]
to the input graph G = (V,E), and to replace the (hard) search for a path (or motif) of length k
(k-path) with the (easier) search of a colorful path, using each of the k colors exactly once. Colorful
paths can be optimized for, and counted, in time that linear on n + |E|, and only exponential on k.
For a single coloring, the set of colorful paths is only a subset of k-paths, the optimal k-path may be
overlooked. One may then use derandomization to turn this approach into an efficient, deterministic
and exact algorithm. To that purpose, one needs to construct a family of colorings which, taken as
a whole, represents every possible k-path. Naor et al. (1995) propose an explicit construct for such a
family, consisting of ekkO(log k) logn colorings. Iterating the search for optimal colorful paths over the
family yields an exact algorithm in overall time O((2e)kkO(log k)(n+ |E|) logn), critically using O(2kn)
memory.

Well-colored path as a memory-frugal alternative. To work around this substantial memory re-
quirement, we instead consider a variant of color coding based on well-colored paths. A well-colored
path is a k-path whose colors in κ are not only distinct, but occur in a specific order, assumed to
be 1 → 2 → · · · → k without loss of generality. For the sake of simplicity, we say that a coloring
κ hits (resp. misses) a k-path x when x is well-colored (resp. not well-colored) by x. For any given
coloring, the optimal/MFE k-path can be obtained in O(k.(n+ |E|)) time, e.g. using simple dynamic
programming. To be well-colored only constrains the colors assigned to the k nodes of x, leaving only
one possiblility out of the kk possible colorings, so the odds of a random uniform coloring hitting x is
simply P(x well colored) = 1/kk. Iterating over α independently-draw random colorings κ1, . . . , κα, the
probability of a k-path being missed by all colorings is then

P(x missed by α random colorings) =

(
1− 1

kk

)α
. (1)

This property holds for any k-path, including the MFE path x⋆. Consequently, for any targeted toler-
ance ε ∈ (0, 1), it suffices to set

α :=

⌈
log ε

log
(
1− 1

kk

)⌉ ∈ Θ(kk log ε)
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and we obtain a probabilistic algorithm that returns x⋆ with probability 1− ε, and runs in total time
O(kk+2 log ε (n+ |E|)) and memory linear in both k and n. Derandomization can also be used in the
context of well-colored paths. Here, the constructs of Alon et al. (1995), coupled with the earlier results
of Schmidt and Siegel (1990), provide a family of kO(k) logn colorings that hits every k-path, thus
implying an exact deterministic algorithm for MFEdock w/o clash constraints. Its complexity is now
in O(kO(k)n. logn) for time, marginally higher than for colorful paths, while using a, much reduced,
linear memory.

Rejecting from suboptimals to produce the clash-free MFE complex. In order to recover the MFE
clash-free complex, and thus provide a solution for MFEdock, we elicit to extract it from the list of
∆ (self-avoiding) suboptimals, defined as having energy distance at most ∆ from the self-avoiding
MFE. The list of ∆-suboptimals can be produced using an adapted version of the Waterman/Byers
scheme (Waterman and Byers, 1985). It starts by computing the well-colored MFE for a given coloring
κ using the following dynamic programming scheme:

mfeκ = min
v∈V

such that r(v)=r1

mfeκ[v, 1] (2)

mfeκ[v,m] =


E(v) [if m = k]

min
(v,v′)∈E s.t.

κ(v′)=m+1

and r(v′)=rm+1

δ(v) + δ′(v, v′) + mfeκ[v
′,m+ 1]

[otherwise]
(3)

Once the mfe matrix computed in O(k.(n+ |E|)) time, the exhaustive list of ∆-subopts can be obtained
using a modified backtrack:

suboptsκ(∆) →
⋃

v∈V s.t
r(v)=r1

suboptsκ(v, 1;∆
′) (4)

[if ∆′ := ∆− (mfeκ[v, 1]−mfeκ) ≥ 0]

suboptsκ(v,m;∆) →


{v} [if m = k]⋃

(v,v′)∈E s.t

κ(v′)=m+1

and r(v′)=rm+1

{v} ⊗ suboptsκ(v
′,m+ 1;∆′)

[if m < k and ∆′ ≥ 0] (5)

Such a backtrack essentially runs in time and memory in Θ(kD), where D is the total number of
∆-subopts, and is expected to grow exponentially with ∆.

An exact, exponential-time in the worst-case, algorithm for the clash-free MFE then starts by computing
the global self-avoiding MFE E⋆

SA, using a derandomizing family κ := (κi)i of colorings. It then iterates
again several times over the whole family using increasing values of ∆ until

∆ ≥ ∆max := E−clash-free − E⋆
SA,

where E−clash-free denotes the clash-free MFE observed for ∆-suboptimals over κ so far. At this point, the
algorithm may simply return the clash-free MFE complex within the∆max subopts, i.e. the structure S⋆

achieving E−clash-free, since this structure is then the clash-free MFE, and a valid solution to MFEdock.

Indeed, for any clash-free complex S′ ̸= S⋆, if S′ is found in the combined list of ∆-suboptimals, then
it has higher energy than E−clash-free by definition. If S′ is not listed as a ∆max-subopt for κ then, for
any coloring κ that hits S′, one has mfeκ +∆max ≤ ∆G(S′). Since E⋆

SA ≤ mfeκ, one concludes with

∆G(S⋆) = E−clash-free ≤ E⋆
SA +∆max ≤ mfeκ +∆max ≤ ∆G(S′).

The energy of any alternative S′ is thus higher than that of S⋆, from which we conclude that our
algorithm is correct.

Of course, the practical performances of the algorithm may critically depend on the ∆max value, i.e.
the energy difference between the MFE self-avoiding and clash-free complexes. To mitigate the issue,
we introduce in the next Section 2.2 an optimization based on cliques, which we illustrate in Figure 2
along with our algorithm.
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Fig. 2: Example of ∆-suboptimal color coding based on monochromatic cliques. From a MFEdock
instance (A), including compatibility arcs (blue) and clashes edges (red), a clique cover is heuristically
computed (gray). A family of coloring is then generated (B; random or deterministic), and a dynamic
programming algorithm allows to build a list of (self-avoiding) k-paths (C). Among those, only f → j → l
presents a clash (red box) and is filtered out to obtain a merged list of clash-free ∆-suboptimals. Notably,
the two colorings above are sufficient to hit all clash-free paths. Moreover, j → l → i, a valid k-path which
features two clashing nodes, cannot be well-colored in the current clique cover.

2.2 Reducing clashes through monochromatic clique covers

During the initial docking phase, individual fragments usually cluster around hotspots on the protein
surface. On the one hand, such an accumulation is beneficial to the resolution of the selected poses as,
to a degree, it enables simulating flexibility. On the other hand, high local densities may result in a
combinatorial explosion of clashes, drastically reducing the density of clash-free complexes, all the while
hindering the performances of our algorithms. Instead, we would rather focus our effort on a subset of
self-avoiding paths featuring a good density of clash-free associated complexes.

Cliques of clashing nodes can be safely set to a single color. To achieve such a goal, we trivially
remark that the nodes of a clashing clique C, i.e. a set of pairwise clashing poses, may not occur more
than once within a reasonable candidate complex. Nicely, such clashes can be avoided by enforcing the
monochromaticity of κ with respect to C, the use of a single color for all v ∈ C. This restriction is
conservative with respect to clash-free complexes, since any clash-free k-path, hit by a coloring κ and
featuring a node vc ∈ C, is also hit by a monochromatic coloring κ′ such that

κ′ : v →

{
κ(vc) if v ∈ C
κ(v) otherwise.

Meanwhile, any k-path that borrowed two or more nodes from C is no longer admissible, thereby
increasing the density of clash-free complexes within the search space. Moreover, from the perspective
of derandomization, this restriction enables the complete clash-free paths to be hit by a smaller family
of colorings, since whole cliques can be treated as a single nodes.

This observation, and overall strategy, provably generalizes to collections of disjoint cliques in the
clash graph. Two overlapping cliques C and C′, however, should not be forced to be simultaneously
monochromatic. Indeed the color of C would, due to its overlap with C′, spread to the latter. This
would result in treating C∪C′ as a single clique, thereby potentially eliminating some clash-free k-paths
from the search space. In order to minimize runtime, and maximize the density of clash-free paths within
the runspace, we preprocess clashes by decomposing them as a clique cover, a partition of nodes into
a set of cliques C = {Ci} while attempting to maximize the number of clashing pairs occurring within a
clique Ci. Though not strictly equivalent, this problem is related to min clique cover and likely hard.

A pragmatic solution to decompose clashes into non-overlapping cliques. To pragmatically solve
the problem, we implemented an greedy heuristic for min clique cover which initializes the cover
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C := ∅ and, at each iteration, starts from the node v+ having max degree node in the remaining graph.
It initializes a clique C := {v+} and a list of common neighbors N := neighbors(v+). Then, until
N = ∅, it alternates:

1. Choose a node v ∈ N having max degree within N , is added to C;

2. Update of list of common neighbors through N := N ∩ neighbors(v);

The clique C is then added to the cover C, removed from the clique graph for future iterations (choice
of v+, construction of C. . . ) until all nodes have been removed from the clash graph and added as part
of a clique to C. While this heuristic does not provide formal guarantees regarding its result, we found
it performs adequately for our typical instances, as shown in Section 3.2.

2.3 Rational ssRNA design as a relaxation of docking

Rational design in the context of a fragment-based docking usually requires two properties to be fulfilled
by the designed RNA aptamer: Positive design requires the ligand to have optimal affinity, or low
interaction free-energy, towards the target protein or targeted pocket; Negative design constrains the
ligand to be specifically binding to a given region of the protein. Interestingly, both criteria are at least
partially addressed by a simple relaxation of the MFEdock problem.

The required modification simply consists in partially specifying (e.g. using IUPAC codes), or even
disregarding altogether (e.g. poly-N mask), the input ssRNA sequence without added complexity. In
this setting, solving the MFEdock problem provides an MFE complex, from which both an ssRNA
sequence r⋆ := r(x1).r(x2) · · · r(xk) and its MFE conformation can be derived. More precisely, we can
show that: i) No alternative sequence has higher affinity than r⋆ towards the protein (positive design);
ii) The binding site induced on the protein surface by x⋆ is the most likely target for r⋆ (negative
design). Admittedly, this approach does not enable targeting of a specific site or pocket, since the best
complex location of is induced by the MFE criterion. Nevertheless, by generating suboptimals and
only retaining the first occurrence of each sequence (i.e associated with their MFE complex), one can
produce a diversity of sequences that are both stable, and specifically target various sites.

2.4 Equilibrium statistics

While clearly an important – computationally challenging – problem, docking through energy min-
imization is hindered by its single focus on the MFE conformation. Indeed, at the thermodynamic
equilibrium, the probability of a clash-free complex x follows a Boltzmann distribution

P(X = x | r) = e−β.∆G(x)

Zr
where Zr =

∑
x′ clash-free

and comp. with r

e−β.∆G(x′)

is the partition function for a nucleotide sequence r, µ = RT with R the Boltzmann constant and T
the absolute temperature. Since the number of valid complexes typically grows (at least) exponentially
with k, the probability of the MFE complex becomes abysmally small in larger systems. As an extreme
example, for the clique input graph, the number of complexes grows in Θ(nk) when k ≪ n, and even
n! ≍ (n/e)n when k = n, thereby completely crushing the probability of any single complex.

Boltzmann statistics. This motivates a computation of equilibrium statistics, i.e expected proper-
ties of the system under a Boltzmann distribution. Such properties are measured by a set of real-valued
feature functions {f1, f2, . . .}, each mapping a valid complex to some numerical value in R. Features
can represent any relevant quantity (free-energy, %occupancy of druggable pocket. . . ), provided that
they can be effectively computed from a fully-specified complex. The expectation of a feature f is
defined as:

E(f(X) | r) =
∑

x self avoiding
and comp. with r

f(x)× P(X = x | r)
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and can be interpreted as a collective variables.Probabilities can also be computed as expectations of
(0/1)-valued features. Indeed, setting fc(r) = 1 or 0 depending on the presence/absence of a contact
with a targeted residue A, the expectation simplifies into

E(fc(X) | r) =
∑
x

fc(x)× P(x | r) =
∑

x s.t. fc(x)=1

P(x | r) = P (fc(X) = 1 | r) .

Higher moments of the distributions can finally be computed from the expectations of f, f2, f3 . . .
enabling access to finer characteristics of the distribution, such as its variance/stddev, skewness, kurto-
sis. . . or even correlations between multiple features. Complexity-wise, computing the partition function
is provably harder than the, already-hard, optimization problem addressed in Section ??. Worse, as
defined for optimization, families of coloring used for derandomization would typically introduces a bias
in the subsequent estimates, and thus cannot be used.

Statistical estimators from colored statistics. To work around those hurdles, we adopt an approach
that estimates the expectation based on a sequence of random colorings κ1, κ2 . . . Namely, we introduce
the color-restricted expectation of a feature f given a coloring κ as:

E(f(X) | r, κ) =
∑

x clash-free,
comp. with r
well col. by κ

f(x)P(x | r, κ) =
∑

x clash-free,
comp. with r
well col. by κ

f(x)
e−β∆G(x)

Zr,κ
where Zr,κ =

∑
x′ clash-free,
comp. with r
well col. by κ

e−β∆G(x′).

To estimate this quantity, we first introduce a dynamic programming scheme to compute the (coloring-
restricted) partition function:

Zκ =
∑
v∈V

such that r(v)=r1

Zv,1 and Zv,m =


e−βE(v) if m = k∑

(v,v′)∈E s.t.

κ(v′)=m+1

and r(v′)=rm+1

e−β(E(v)+E′(v,v′))Zv′,m+1 otherwise
(6)

A stochastic backtrack then consists in, starting from Zk, the repeated choice a node with probability
proportional to its contribution to Zκ, recursing until the m = k condition is met. The returned
random complex is then Boltzmann distributed within well-colored k-paths. The average value of f on
a set of generated complexes, further filtered to retain only clash-free paths, represents an unbiased
estimator for E(f(X) | r, κ). Our, provably consistent, final estimator takes a collection of random
uniformly-distributed colorings, and returns:

f̂(κ1, κ2 . . . κM ) =

∑M
i=1 Zr,κi × E(f(X) | r, κi)∑M

j=1 Zr,κj
(7)

3 Results

Implementation. We implemented our algorithms for MFEdock (optimization; subopts; +/- sequence
constraints) and statistical estimators into the ColorDocking software, a collection of Python scripts
interfacing C code, freely downloadable with datasets and further information to reproduce experiments
at https://gitlab.inria.fr/amibio/colordocking. All experiments were performed on a PBS cluster with
a Linux kernel, using 125GB of memory. Each calculation was done on a single CPU.

Datasets. We selected seven ssRNA/protein complexes to validate our method. Among them, six
complexes are RNA-RRM complexes (RRM; 1B7F, 1CVJ, 2MGZ, 2YH1, 3NNH and 4BS2) and the
remaining one is a Pumilio domain (PUF; 3BX3). This generally coincides with the benchmark selected
by de Beauchene et al. (2016), removing two structures: 4N0T, which natively interacts with a double-
stranded RNA; and 5BZV, another PUF which we saw as redundant with 3BX3. To provide a realistic
setting for docking, proteins were prepared and minimised using the CHARMM36 force field in the
absence of the ssRNA ligand and solvent. As a result, the protein surface at the RNA binding site may
have been altered, and in a more specific way at some specific position of the RNA chain.
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Complex k #Poses Target Seq. α #Paths #SA (cliques) #Clash-Free

1B7F 5 2 171 UUUUU 14 388 5.22·108 1.49·108 6.98·106
1CVJ 5 2 031 AAAAA 14 388 9.44·107 2.24·107 1.46·106
2MGZ 5 4 329 GGUGU 14 388 1.84·107 4.89·106 3.20·105
2YH1 5 2 064 UUUUU 14 388 1.57·108 2.97·107 1.22·106
3BX3 5 7 464 UAUAU 14 388 1.42·108 5.39·107 5.21·106
3NNH 5 4 606 UUUUG 14 388 5.58·107 1.85·107 3.64·106
4BS2 5 8 150 GAAUG 14 388 2.37·107 8.65·106 1.03·106

1B7F 7 2 171 GUUUUUU 214 856 - - -
1CVJ 8 2 031 AAAAAAAA 3 792 553 - - -
1CVJ 8 5 785 AAAAAAAA 3 792 553 - - -
1CVJ 8 26 570 AAAAAAAA 3 792 553 - - -
2MGZ 7 4 329 UGGUGUG 214 856 - - -
3BX3 8 7 464 UGUAUAUA 3 792 553 - - -
3NNH 6 4 606 UUUUGU 214 856 - - -

Table 1: Summary of our benchmark and paths cardinality analysis.

For each of our targets, we used the MCSS (Miranker and Karplus, 1991) method to generate a distribu-
tion of 10.000 fragment poses. These fragments are composed of Adenine (A), Cytosine (C), Guanine
(G) and Uracil (U). Only the first 4.000 fragments poses (2.000 anti-conformations and 2.000 syn-
conformations) were used for this study. From these, the python package NUCLEAR (González-Alemán
and Leclerc, 2023) was used to cluster poses within 0.5Å RMSD, and to build matrices (connectivity,
clashes, scores) using 4.5Å as a max. value for the O3’-C5’ distance. The max contact distance between
the protein and a fragment was set to 3.5Å. All atoms of amino acids were considered, as well as for
nucleotides, except for the terminal patch which was omitted to improve connectivity. All NUCLEAR runs
were constrained to only generate the various matrices (run type = partial option).

A directed graph (+ clash matrix) was then generated and fed as input to our implementation of
ColorDocking algorithm, using collections of clique-level random uniform colorings. We uniformly set
the tolerance to ε = 0.01, i.e. the clash-free MFE complex was predicted with probability of p = 99%.
Clash-free MFE candidates were produced, based on a suboptimality cutoff ∆ = 10 kcal.mol−1.

3.1 Stability analysis

Setting the RNA length to k = 5 enables the execution of our algorithm in modest time (about a dozen
seconds per run). Such a runtime enables a comparison the results obtained over successive executions,
in order to assess the impact of the random generation of colorings on the stability of predictions.
Namely, for all of the 7 complexes, and setting k = 5, we performed 100 independent experiments. In
addition, we used a brute-force approach to compute both self-avoiding and clash-free MFE complexes.
As expected, we consistently recover the clash-free MFE complex in our experiments, namely between
97/100 and 100/100 of experiments over all targets. Such a behavior is expected from our choice of
ε = 0.01, implying a 1% chance of missing the MFE but could, at least in theory, have been affected
by setting ∆ to a fixed value. Setting ε = 0.63 expectedly reduces the runtime by a factor 10, at the
cost of degraded performances, with the MFE clash-free structure being only found between 25/100
and 47/100 of experiments.

In a second analysis, we investigated whether the top-100 clash-free complex present a strong overlap
across independent executions of the algorithm. We filtered the output of ∆-suboptimal version of the
MFEdock algorithm (∆ = 10, ε = 0.01) to produce the 100 lowest-energy clash-free complexes. We
iterated the experiment 100 times, and found the average pairwise overlap between two runs to be of
98%, with very limited variations.

3.2 Impact of monochromatic clique covers

Next we turn to an investigation of the effect of clique-based coloring on the density of clash-free paths,
the runtime and energy distance between the self-avoiding MFE and the clash-free MFE. To investigate
those points, in addition to the MFE obtained as above, we used a brute-force approach to compute
the numbers of unconstrained, self-avoiding and clash-free paths.
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Max %Clique Avg time (sec) |MFEclash-free −MFESA|
Complex #Poses #Cliques clique size edges +cliques -cliques +cliques -cliques

1B7F 2 171 49 298 54.56 10.63 16.37 9.15 11.45
1CVJ 2 031 40 344 60.38 6.75 30.00 1.37 1.37
2MGZ 4 329 63 584 57.64 2.40 5.40 8.45 18.74
2YH1 2 064 49 312 66.40 8.60 15.53 5.2 9.6
3BX3 7 464 70 889 49.29 16.71 18.02 5.3 10.97
3NNH 4 606 55 629 57.62 3.61 12.73 2.52 7.25
4BS2 8 150 98 625 53.79 6.19 12.28 2.07 8.68

1CVJ 5 785 44 1 109 71.50 - -

Table 2: Properties and impact of cliques cover on runtime. Values observed for k = 5, averaged over 100
iterations (std dev ≈ 1).

We first report in Table 2 the clique covers returned by our greedy heuristic. While the number of
poses is in the order of (dozens of) thousands, the number of clashing cliques scales between 40 and
100, with larger cliques representing a sizeable proportion of the vertex set (10 to 20%). Moreover, a
large proportion (50% to 70%) of clashing edges are internal to a clique. Such clashes can no longer occur
upon restricting to clique-based coloring, substantially reducing the probability of a k-path featuring a
clash.

As can be seen in Table 1, the number of paths is typically reduced by 75% when clique-monochromatic
self-avoidance is ensured. This results in a runtime reduction an overall factor 1.5 to 4. Meanwhile, as
can be seen in Table 2, the energy distance between the self-avoiding and clash-free MFEs can be greatly
reduced (e.g. -10 kcal.mol−1 for 2MGZ) when cliques are used to reduce the search space. Overall, the
consideration of monochromatic cliques represents a very positive addition: it greatly improves the
runtime and purifies self-avoiding paths to increase the density of clash-free paths.

3.3 Docking through energy-minimization under different fragment definitions

We showcased the versatility of our approach by supplementing the MCSS set of poses with the connec-
tivity graphs associated with overlapping trinucleotide fragments, following de Beauchene et al. (2016).
For 1CVJ, we used the ATTRACT software (de Vries et al., 2015) to generate 1.000.000 non-redundant
(0.2Å RMSD threshold) fragment poses, in coarse-grained representation. We built a connectivity ma-
trix, using as connectivity criteria a 1.8Å RMSD cutoff for overlapping nucleotides between consecutive
fragments. We created a directed graph of connected poses, using the ssRNATTRACT package as described
in de Beauchene et al. (2016). We used a new fragment library of RNA trinucleotides extracted from
the PDB with the ProtNAff software (Moniot et al., 2022), using our Radius clustering method

From the 1.000.000 initial poses, 5327 could be assembled in a 5-fragments chain, and were therefore
retained in the final graph of connected poses. We then constructed a clash matrix of those poses,
using a 1.5Å distance criteria between two clashing heavy atoms (excluding overlapping nucleotides of
connected poses). In addition, we considered a pair of poses as incompatible if both can be connected
only at the same position in a 5-fragments chain, since they can not be together in the same chain. The
full matrix of poses incompatibility (either clashing or only at the same position in chains) was used to
define cliques of incompatible poses

The resulting MFEdock instance only needs to be executed for k = 6, since each fragment represents
a trinucleotide, and assembling 6 fragments is sufficient to reach the size of 8 nucleotides. This allows
to execute our algorithm in as little as 34 sec. Meanwhile, the runtime required by 1CVJ for our MCSS
dataset, implying k = 8, is of 2·103 sec, or approximately 33 minutes. Beyond the demonstrated ability
of ColorDocking to support multiple fragment definition, we did not analyze further the quality of the
produced fragments (e.g. RMSD to native complex), since our goal is not to compare different force
fields/fragment definitions.
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3.4 Design

To illustrate the capacity of MFEdock to address design, we considered a design study recently
published by Perzanowska et al. (2022), where an oligonucleotide targeting a poly(A)-binding pro-
tein (PDBID: 1CVJ) was designed. Since this study included modified nucleotides, we considered
an extended list of nucleotides: two without modification (A,G), and 5 with modifications: adenosine
and guanosine with a phosphorothioate (AP , GP ), protonated adenosine (Aψ), N6-methyladenosine
(m6A), N6-methyladenosine including phosphorothioate (m6AP ), O-methyladenosine (Am) and O-
methyladenosine including phosphorothioate (AmP ). All were used in anti- and syn-conformations,
for a total of 1 000 poses (500 syn/500 anit) per nucleotide type. They were clustered at 0.5Å RMSD
for a remaining number of 5 785 individual poses.

To generate solutions of length k=8, we considered a maximum value of ∆max := 3, and gradually
increased ∆ by unit steps, to reach a maximum of 100 clash-free per coloring. We initially did not
consider sequence constraints. The number of unique sequences was 75 out of 562 clash-free solutions.
We report below the top 10 of unique sequence, along with their minimum free energy:

Aψ-A-AP-GP-AP-m
6A-m6A-A -178.405 m6AP-m

6A-A-GP-AP-m
6A-m6A-A -178.404

Aψ-A-GP-GP-AP-m
6A-m6A-A -178.377 G-m6AP-m

6A-A-AP-AP-m
6A-m6A -178.055

Aψ-A-AP-GP-AP-Am-Am-m6A -178.052 AmP-Am-A-GP-AP-Am-Am-m
6A -178.050

AmP-Am-A-AP-AP-Am-Am-A -178.030 Aψ-A-GP-GP-AP–Am-Am-m
6A -178.023

AP-AmP-Am-A-GP-AP-Am-Am -177.864 Aψ-A-AP-GP-AmP-Am-Am-A -177.812

Interestingly, those differ from the sequences investigated by Perzanowska et al. (2022). In particular,
the pair of sequences having highest affinity in the study, was not found in our list. This is not entirely
surprising, since the authors limited their investigation to a single modified nucleotide per design. We
further analyzed their two best sequences, running a sequence-constrained instance of MFEdock

A-A-A-A-A-A-m6A-A -161.252 m6A-A-A-A-A-A-A-A -151.976

and found that their MFE is significantly higher (+16/+26 kcal.mol−1), suggesting that our ability to
tame the combinatorial explosion grants us access to promising alternatives.

4 Conclusions and perspectives

We have introduced a new algorithmic approach, based on color coding, to solve natural problems
arising in the context of fragment-based ssRNA docking and design on the surface of a rigid protein.
We have illustrated their utility in the context of four RNA binding proteins, showing that color coding
provides a versatile toolkit for the study and design of ssRNAs.

A key strength of our exact algorithm resides in its linear complexity on the number of pairwise
connected poses, only being exponential on the length k of the ssRNA. As such, it can be seen as a pa-
rameterized complexity algorithm, showing that the MFEdock problem is Fixed Parameter Tractable
(FPT) for the ssRNA length k. On a practical level, much larger sets of poses/connections could be
supported, allowing to explore the impact of various sampling depth/density of poses on the quality
of predictions. Our algorithmic method is not restricted to individually docked nucleotides, and could
accommodate other fragment libraries.
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